lemon/full_graph.h
changeset 2115 4cd528a30ec1
parent 2111 ea1fa1bc3f6d
child 2116 b6a68c15a6a3
     1.1 --- a/lemon/full_graph.h	Wed Jun 28 16:27:44 2006 +0000
     1.2 +++ b/lemon/full_graph.h	Fri Jun 30 12:14:36 2006 +0000
     1.3 @@ -21,7 +21,6 @@
     1.4  
     1.5  #include <cmath>
     1.6  
     1.7 -#include <lemon/bits/base_extender.h>
     1.8  #include <lemon/bits/graph_extender.h>
     1.9  
    1.10  #include <lemon/bits/invalid.h>
    1.11 @@ -30,7 +29,7 @@
    1.12  
    1.13  ///\ingroup graphs
    1.14  ///\file
    1.15 -///\brief FullGraph and FullUGraph classes.
    1.16 +///\brief FullGraph class.
    1.17  
    1.18  
    1.19  namespace lemon {
    1.20 @@ -247,473 +246,6 @@
    1.21      }
    1.22    };
    1.23  
    1.24 -
    1.25 -  /// \brief Base of the FullUGrpah.
    1.26 -  ///
    1.27 -  /// Base of the FullUGrpah.
    1.28 -  class FullUGraphBase {
    1.29 -    int _nodeNum;
    1.30 -    int _edgeNum;
    1.31 -  public:
    1.32 -
    1.33 -    typedef FullUGraphBase Graph;
    1.34 -
    1.35 -    class Node;
    1.36 -    class Edge;
    1.37 -
    1.38 -  public:
    1.39 -
    1.40 -    FullUGraphBase() {}
    1.41 -
    1.42 -
    1.43 -    ///Creates a full graph with \c n nodes.
    1.44 -    void construct(int n) { _nodeNum = n; _edgeNum = n * (n - 1) / 2; }
    1.45 -
    1.46 -    /// \brief Returns the node with the given index.
    1.47 -    ///
    1.48 -    /// Returns the node with the given index. Because it is a
    1.49 -    /// static size graph the node's of the graph can be indiced
    1.50 -    /// by the range from 0 to \e nodeNum()-1 and the index of
    1.51 -    /// the node can accessed by the \e index() member.
    1.52 -    Node operator()(int index) const { return Node(index); }
    1.53 -
    1.54 -    /// \brief Returns the index of the node.
    1.55 -    ///
    1.56 -    /// Returns the index of the node. Because it is a
    1.57 -    /// static size graph the node's of the graph can be indiced
    1.58 -    /// by the range from 0 to \e nodeNum()-1 and the index of
    1.59 -    /// the node can accessed by the \e index() member.
    1.60 -    int index(const Node& node) const { return node.id; }
    1.61 -
    1.62 -    typedef True NodeNumTag;
    1.63 -    typedef True EdgeNumTag;
    1.64 -
    1.65 -    ///Number of nodes.
    1.66 -    int nodeNum() const { return _nodeNum; }
    1.67 -    ///Number of edges.
    1.68 -    int edgeNum() const { return _edgeNum; }
    1.69 -
    1.70 -    /// Maximum node ID.
    1.71 -    
    1.72 -    /// Maximum node ID.
    1.73 -    ///\sa id(Node)
    1.74 -    int maxNodeId() const { return _nodeNum-1; }
    1.75 -    /// Maximum edge ID.
    1.76 -    
    1.77 -    /// Maximum edge ID.
    1.78 -    ///\sa id(Edge)
    1.79 -    int maxEdgeId() const { return _edgeNum-1; }
    1.80 -
    1.81 -    /// \brief Returns the node from its \c id.
    1.82 -    ///
    1.83 -    /// Returns the node from its \c id. If there is not node
    1.84 -    /// with the given id the effect of the function is undefinied.
    1.85 -    static Node nodeFromId(int id) { return Node(id);}
    1.86 -
    1.87 -    /// \brief Returns the edge from its \c id.
    1.88 -    ///
    1.89 -    /// Returns the edge from its \c id. If there is not edge
    1.90 -    /// with the given id the effect of the function is undefinied.
    1.91 -    static Edge edgeFromId(int id) { return Edge(id);}
    1.92 -
    1.93 -    Node source(Edge e) const { 
    1.94 -      /// \todo we may do it faster
    1.95 -      return Node(((int)sqrt((double)(1 + 8 * e.id)) + 1) / 2);
    1.96 -    }
    1.97 -
    1.98 -    Node target(Edge e) const { 
    1.99 -      int source = ((int)sqrt((double)(1 + 8 * e.id)) + 1) / 2;;
   1.100 -      return Node(e.id - (source) * (source - 1) / 2);
   1.101 -    }
   1.102 -
   1.103 -
   1.104 -    /// \brief Node ID.
   1.105 -    ///
   1.106 -    /// The ID of a valid Node is a nonnegative integer not greater than
   1.107 -    /// \ref maxNodeId(). The range of the ID's is not surely continuous
   1.108 -    /// and the greatest node ID can be actually less then \ref maxNodeId().
   1.109 -    ///
   1.110 -    /// The ID of the \ref INVALID node is -1.
   1.111 -    /// \return The ID of the node \c v. 
   1.112 -
   1.113 -    static int id(Node v) { return v.id; }
   1.114 -
   1.115 -    /// \brief Edge ID.
   1.116 -    ///
   1.117 -    /// The ID of a valid Edge is a nonnegative integer not greater than
   1.118 -    /// \ref maxEdgeId(). The range of the ID's is not surely continuous
   1.119 -    /// and the greatest edge ID can be actually less then \ref maxEdgeId().
   1.120 -    ///
   1.121 -    /// The ID of the \ref INVALID edge is -1.
   1.122 -    ///\return The ID of the edge \c e. 
   1.123 -    static int id(Edge e) { return e.id; }
   1.124 -
   1.125 -    /// \brief Finds an edge between two nodes.
   1.126 -    ///
   1.127 -    /// Finds an edge from node \c u to node \c v.
   1.128 -    ///
   1.129 -    /// If \c prev is \ref INVALID (this is the default value), then
   1.130 -    /// It finds the first edge from \c u to \c v. Otherwise it looks for
   1.131 -    /// the next edge from \c u to \c v after \c prev.
   1.132 -    /// \return The found edge or INVALID if there is no such an edge.
   1.133 -    Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
   1.134 -      if (prev.id != -1 || u.id <= v.id) return Edge(-1);
   1.135 -      return Edge(u.id * (u.id - 1) / 2 + v.id);
   1.136 -    }
   1.137 -
   1.138 -    typedef True FindEdgeTag;
   1.139 -    
   1.140 -      
   1.141 -    class Node {
   1.142 -      friend class FullUGraphBase;
   1.143 -
   1.144 -    protected:
   1.145 -      int id;
   1.146 -      Node(int _id) { id = _id;}
   1.147 -    public:
   1.148 -      Node() {}
   1.149 -      Node (Invalid) { id = -1; }
   1.150 -      bool operator==(const Node node) const {return id == node.id;}
   1.151 -      bool operator!=(const Node node) const {return id != node.id;}
   1.152 -      bool operator<(const Node node) const {return id < node.id;}
   1.153 -    };
   1.154 -    
   1.155 -
   1.156 -
   1.157 -    class Edge {
   1.158 -      friend class FullUGraphBase;
   1.159 -      
   1.160 -    protected:
   1.161 -      int id;  // _nodeNum * target + source;
   1.162 -
   1.163 -      Edge(int _id) : id(_id) {}
   1.164 -
   1.165 -    public:
   1.166 -      Edge() { }
   1.167 -      Edge (Invalid) { id = -1; }
   1.168 -      bool operator==(const Edge edge) const {return id == edge.id;}
   1.169 -      bool operator!=(const Edge edge) const {return id != edge.id;}
   1.170 -      bool operator<(const Edge edge) const {return id < edge.id;}
   1.171 -    };
   1.172 -
   1.173 -    void first(Node& node) const {
   1.174 -      node.id = _nodeNum - 1;
   1.175 -    }
   1.176 -
   1.177 -    static void next(Node& node) {
   1.178 -      --node.id;
   1.179 -    }
   1.180 -
   1.181 -    void first(Edge& edge) const {
   1.182 -      edge.id = _edgeNum - 1;
   1.183 -    }
   1.184 -
   1.185 -    static void next(Edge& edge) {
   1.186 -      --edge.id;
   1.187 -    }
   1.188 -
   1.189 -    void firstOut(Edge& edge, const Node& node) const {      
   1.190 -      int src = node.id;
   1.191 -      int trg = 0;
   1.192 -      edge.id = (trg < src ? src * (src - 1) / 2 + trg : -1);
   1.193 -    }
   1.194 -
   1.195 -    /// \todo with specialized iterators we can make faster iterating
   1.196 -    void nextOut(Edge& edge) const {
   1.197 -      int src = source(edge).id;
   1.198 -      int trg = target(edge).id;
   1.199 -      ++trg;
   1.200 -      edge.id = (trg < src ? src * (src - 1) / 2 + trg : -1);
   1.201 -    }
   1.202 -
   1.203 -    void firstIn(Edge& edge, const Node& node) const {
   1.204 -      int src = node.id + 1;
   1.205 -      int trg = node.id;
   1.206 -      edge.id = (src < _nodeNum ? src * (src - 1) / 2 + trg : -1);
   1.207 -    }
   1.208 -    
   1.209 -    void nextIn(Edge& edge) const {
   1.210 -      int src = source(edge).id;
   1.211 -      int trg = target(edge).id;
   1.212 -      ++src;
   1.213 -      edge.id = (src < _nodeNum ? src * (src - 1) / 2 + trg : -1);
   1.214 -    }
   1.215 -
   1.216 -  };
   1.217 -
   1.218 -  typedef UGraphExtender<UndirGraphExtender<FullUGraphBase> > 
   1.219 -  ExtendedFullUGraphBase;
   1.220 -
   1.221 -  /// \ingroup graphs
   1.222 -  ///
   1.223 -  /// \brief An undirected full graph class.
   1.224 -  ///
   1.225 -  /// This is a simple and fast undirected full graph implementation.
   1.226 -  /// It is completely static, so you can neither add nor delete either
   1.227 -  /// edges or nodes.
   1.228 -  ///
   1.229 -  /// The main difference beetween the \e FullGraph and \e FullUGraph class
   1.230 -  /// is that this class conforms to the undirected graph concept and
   1.231 -  /// it does not contain the loop edges.
   1.232 -  ///
   1.233 -  /// \sa FullUGraphBase
   1.234 -  /// \sa FullGraph
   1.235 -  ///
   1.236 -  /// \author Balazs Dezso
   1.237 -  class FullUGraph : public ExtendedFullUGraphBase {
   1.238 -  public:
   1.239 -
   1.240 -    typedef ExtendedFullUGraphBase Parent;
   1.241 -
   1.242 -    /// \brief Constructor
   1.243 -    FullUGraph() { construct(0); }
   1.244 -
   1.245 -    /// \brief Constructor
   1.246 -    FullUGraph(int n) { construct(n); }
   1.247 -
   1.248 -    /// \brief Resize the graph
   1.249 -    ///
   1.250 -    /// Resize the graph. The function will fully destroy and build the graph.
   1.251 -    /// This cause that the maps of the graph will reallocated
   1.252 -    /// automatically and the previous values will be lost.
   1.253 -    void resize(int n) {
   1.254 -      Parent::getNotifier(Edge()).clear();
   1.255 -      Parent::getNotifier(UEdge()).clear();
   1.256 -      Parent::getNotifier(Node()).clear();
   1.257 -      construct(n);
   1.258 -      Parent::getNotifier(Node()).build();
   1.259 -      Parent::getNotifier(UEdge()).build();
   1.260 -      Parent::getNotifier(Edge()).build();
   1.261 -    }
   1.262 -  };
   1.263 -
   1.264 -
   1.265 -  class FullBpUGraphBase {
   1.266 -  protected:
   1.267 -
   1.268 -    int _aNodeNum;
   1.269 -    int _bNodeNum;
   1.270 -
   1.271 -    int _edgeNum;
   1.272 -
   1.273 -  public:
   1.274 -
   1.275 -    class NodeSetError : public LogicError {
   1.276 -      virtual const char* exceptionName() const { 
   1.277 -	return "lemon::FullBpUGraph::NodeSetError";
   1.278 -      }
   1.279 -    };
   1.280 -  
   1.281 -    class Node {
   1.282 -      friend class FullBpUGraphBase;
   1.283 -    protected:
   1.284 -      int id;
   1.285 -
   1.286 -      Node(int _id) : id(_id) {}
   1.287 -    public:
   1.288 -      Node() {}
   1.289 -      Node(Invalid) { id = -1; }
   1.290 -      bool operator==(const Node i) const {return id==i.id;}
   1.291 -      bool operator!=(const Node i) const {return id!=i.id;}
   1.292 -      bool operator<(const Node i) const {return id<i.id;}
   1.293 -    };
   1.294 -
   1.295 -    class UEdge {
   1.296 -      friend class FullBpUGraphBase;
   1.297 -    protected:
   1.298 -      int id;
   1.299 -
   1.300 -      UEdge(int _id) { id = _id;}
   1.301 -    public:
   1.302 -      UEdge() {}
   1.303 -      UEdge (Invalid) { id = -1; }
   1.304 -      bool operator==(const UEdge i) const {return id==i.id;}
   1.305 -      bool operator!=(const UEdge i) const {return id!=i.id;}
   1.306 -      bool operator<(const UEdge i) const {return id<i.id;}
   1.307 -    };
   1.308 -
   1.309 -    void construct(int aNodeNum, int bNodeNum) {
   1.310 -      _aNodeNum = aNodeNum;
   1.311 -      _bNodeNum = bNodeNum;
   1.312 -      _edgeNum = aNodeNum * bNodeNum;
   1.313 -    }
   1.314 -
   1.315 -    void firstANode(Node& node) const {
   1.316 -      node.id = 2 * _aNodeNum - 2;
   1.317 -      if (node.id < 0) node.id = -1; 
   1.318 -    }
   1.319 -    void nextANode(Node& node) const {
   1.320 -      node.id -= 2;
   1.321 -      if (node.id < 0) node.id = -1; 
   1.322 -    }
   1.323 -
   1.324 -    void firstBNode(Node& node) const {
   1.325 -      node.id = 2 * _bNodeNum - 1;
   1.326 -    }
   1.327 -    void nextBNode(Node& node) const {
   1.328 -      node.id -= 2;
   1.329 -    }
   1.330 -
   1.331 -    void first(Node& node) const {
   1.332 -      if (_aNodeNum > 0) {
   1.333 -	node.id = 2 * _aNodeNum - 2;
   1.334 -      } else {
   1.335 -	node.id = 2 * _bNodeNum - 1;
   1.336 -      }
   1.337 -    }
   1.338 -    void next(Node& node) const {
   1.339 -      node.id -= 2;
   1.340 -      if (node.id == -2) {
   1.341 -	node.id = 2 * _bNodeNum - 1;
   1.342 -      }
   1.343 -    }
   1.344 -  
   1.345 -    void first(UEdge& edge) const {
   1.346 -      edge.id = _edgeNum - 1;
   1.347 -    }
   1.348 -    void next(UEdge& edge) const {
   1.349 -      --edge.id;
   1.350 -    }
   1.351 -
   1.352 -    void firstFromANode(UEdge& edge, const Node& node) const {
   1.353 -      LEMON_ASSERT((node.id & 1) == 0, NodeSetError());
   1.354 -      edge.id = (node.id >> 1) * _bNodeNum;
   1.355 -    }
   1.356 -    void nextFromANode(UEdge& edge) const {
   1.357 -      ++(edge.id);
   1.358 -      if (edge.id % _bNodeNum == 0) edge.id = -1;
   1.359 -    }
   1.360 -
   1.361 -    void firstFromBNode(UEdge& edge, const Node& node) const {
   1.362 -      LEMON_ASSERT((node.id & 1) == 1, NodeSetError());
   1.363 -      edge.id = (node.id >> 1);
   1.364 -    }
   1.365 -    void nextFromBNode(UEdge& edge) const {
   1.366 -      edge.id += _bNodeNum;
   1.367 -      if (edge.id >= _edgeNum) edge.id = -1;
   1.368 -    }
   1.369 -
   1.370 -    static int id(const Node& node) {
   1.371 -      return node.id;
   1.372 -    }
   1.373 -    static Node nodeFromId(int id) {
   1.374 -      return Node(id);
   1.375 -    }
   1.376 -    int maxNodeId() const {
   1.377 -      return _aNodeNum > _bNodeNum ? 
   1.378 -	_aNodeNum * 2 - 2 : _bNodeNum * 2 - 1;
   1.379 -    }
   1.380 -  
   1.381 -    static int id(const UEdge& edge) {
   1.382 -      return edge.id;
   1.383 -    }
   1.384 -    static UEdge uEdgeFromId(int id) {
   1.385 -      return UEdge(id);
   1.386 -    }
   1.387 -    int maxUEdgeId() const {
   1.388 -      return _edgeNum - 1;
   1.389 -    }
   1.390 -  
   1.391 -    static int aNodeId(const Node& node) {
   1.392 -      return node.id >> 1;
   1.393 -    }
   1.394 -    static Node fromANodeId(int id) {
   1.395 -      return Node(id << 1);
   1.396 -    }
   1.397 -    int maxANodeId() const {
   1.398 -      return _aNodeNum;
   1.399 -    }
   1.400 -
   1.401 -    static int bNodeId(const Node& node) {
   1.402 -      return node.id >> 1;
   1.403 -    }
   1.404 -    static Node fromBNodeId(int id) {
   1.405 -      return Node((id << 1) + 1);
   1.406 -    }
   1.407 -    int maxBNodeId() const {
   1.408 -      return _bNodeNum;
   1.409 -    }
   1.410 -
   1.411 -    Node aNode(const UEdge& edge) const {
   1.412 -      return Node((edge.id / _bNodeNum) << 1);
   1.413 -    }
   1.414 -    Node bNode(const UEdge& edge) const {
   1.415 -      return Node(((edge.id % _bNodeNum) << 1) + 1);
   1.416 -    }
   1.417 -
   1.418 -    static bool aNode(const Node& node) {
   1.419 -      return (node.id & 1) == 0;
   1.420 -    }
   1.421 -
   1.422 -    static bool bNode(const Node& node) {
   1.423 -      return (node.id & 1) == 1;
   1.424 -    }
   1.425 -
   1.426 -    static Node aNode(int index) {
   1.427 -      return Node(index << 1);
   1.428 -    }
   1.429 -
   1.430 -    static Node bNode(int index) {
   1.431 -      return Node((index << 1) + 1);
   1.432 -    }
   1.433 -
   1.434 -    typedef True NodeNumTag;
   1.435 -    int nodeNum() const { return _aNodeNum + _bNodeNum; }
   1.436 -    int aNodeNum() const { return _aNodeNum; }
   1.437 -    int bNodeNum() const { return _bNodeNum; }
   1.438 -
   1.439 -    typedef True EdgeNumTag;
   1.440 -    int uEdgeNum() const { return _edgeNum; }
   1.441 -
   1.442 -  };
   1.443 -
   1.444 -
   1.445 -  typedef BpUGraphExtender<FullBpUGraphBase> ExtendedFullBpUGraphBase;
   1.446 -
   1.447 -
   1.448 -  /// \ingroup graphs
   1.449 -  ///
   1.450 -  /// \brief An undirected full bipartite graph class.
   1.451 -  ///
   1.452 -  /// This is a simple and fast bipartite undirected full graph implementation.
   1.453 -  /// It is completely static, so you can neither add nor delete either
   1.454 -  /// edges or nodes.
   1.455 -  ///
   1.456 -  /// \sa FullUGraphBase
   1.457 -  /// \sa FullGraph
   1.458 -  ///
   1.459 -  /// \author Balazs Dezso
   1.460 -  class FullBpUGraph : 
   1.461 -    public ExtendedFullBpUGraphBase {
   1.462 -  public:
   1.463 -
   1.464 -    typedef ExtendedFullBpUGraphBase Parent;
   1.465 -
   1.466 -    FullBpUGraph() {
   1.467 -      Parent::construct(0, 0);
   1.468 -    }
   1.469 -
   1.470 -    FullBpUGraph(int aNodeNum, int bNodeNum) {
   1.471 -      Parent::construct(aNodeNum, bNodeNum);
   1.472 -    }
   1.473 -
   1.474 -    /// \brief Resize the graph
   1.475 -    ///
   1.476 -    void resize(int n, int m) {
   1.477 -      Parent::getNotifier(Edge()).clear();
   1.478 -      Parent::getNotifier(UEdge()).clear();
   1.479 -      Parent::getNotifier(Node()).clear();
   1.480 -      Parent::getNotifier(ANode()).clear();
   1.481 -      Parent::getNotifier(BNode()).clear();
   1.482 -      construct(n, m);
   1.483 -      Parent::getNotifier(ANode()).build();
   1.484 -      Parent::getNotifier(BNode()).build();
   1.485 -      Parent::getNotifier(Node()).build();
   1.486 -      Parent::getNotifier(UEdge()).build();
   1.487 -      Parent::getNotifier(Edge()).build();
   1.488 -    }
   1.489 -  };
   1.490 -
   1.491  } //namespace lemon
   1.492  
   1.493