lemon/full_graph.h
changeset 2116 b6a68c15a6a3
parent 2115 4cd528a30ec1
child 2151 38ec4a930c05
     1.1 --- a/lemon/full_graph.h	Fri Jun 30 12:14:36 2006 +0000
     1.2 +++ b/lemon/full_graph.h	Fri Jun 30 12:15:45 2006 +0000
     1.3 @@ -21,6 +21,7 @@
     1.4  
     1.5  #include <cmath>
     1.6  
     1.7 +#include <lemon/bits/base_extender.h>
     1.8  #include <lemon/bits/graph_extender.h>
     1.9  
    1.10  #include <lemon/bits/invalid.h>
    1.11 @@ -29,7 +30,7 @@
    1.12  
    1.13  ///\ingroup graphs
    1.14  ///\file
    1.15 -///\brief FullGraph class.
    1.16 +///\brief FullGraph and FullUGraph classes.
    1.17  
    1.18  
    1.19  namespace lemon {
    1.20 @@ -246,6 +247,473 @@
    1.21      }
    1.22    };
    1.23  
    1.24 +
    1.25 +  /// \brief Base of the FullUGrpah.
    1.26 +  ///
    1.27 +  /// Base of the FullUGrpah.
    1.28 +  class FullUGraphBase {
    1.29 +    int _nodeNum;
    1.30 +    int _edgeNum;
    1.31 +  public:
    1.32 +
    1.33 +    typedef FullUGraphBase Graph;
    1.34 +
    1.35 +    class Node;
    1.36 +    class Edge;
    1.37 +
    1.38 +  public:
    1.39 +
    1.40 +    FullUGraphBase() {}
    1.41 +
    1.42 +
    1.43 +    ///Creates a full graph with \c n nodes.
    1.44 +    void construct(int n) { _nodeNum = n; _edgeNum = n * (n - 1) / 2; }
    1.45 +
    1.46 +    /// \brief Returns the node with the given index.
    1.47 +    ///
    1.48 +    /// Returns the node with the given index. Because it is a
    1.49 +    /// static size graph the node's of the graph can be indiced
    1.50 +    /// by the range from 0 to \e nodeNum()-1 and the index of
    1.51 +    /// the node can accessed by the \e index() member.
    1.52 +    Node operator()(int index) const { return Node(index); }
    1.53 +
    1.54 +    /// \brief Returns the index of the node.
    1.55 +    ///
    1.56 +    /// Returns the index of the node. Because it is a
    1.57 +    /// static size graph the node's of the graph can be indiced
    1.58 +    /// by the range from 0 to \e nodeNum()-1 and the index of
    1.59 +    /// the node can accessed by the \e index() member.
    1.60 +    int index(const Node& node) const { return node.id; }
    1.61 +
    1.62 +    typedef True NodeNumTag;
    1.63 +    typedef True EdgeNumTag;
    1.64 +
    1.65 +    ///Number of nodes.
    1.66 +    int nodeNum() const { return _nodeNum; }
    1.67 +    ///Number of edges.
    1.68 +    int edgeNum() const { return _edgeNum; }
    1.69 +
    1.70 +    /// Maximum node ID.
    1.71 +    
    1.72 +    /// Maximum node ID.
    1.73 +    ///\sa id(Node)
    1.74 +    int maxNodeId() const { return _nodeNum-1; }
    1.75 +    /// Maximum edge ID.
    1.76 +    
    1.77 +    /// Maximum edge ID.
    1.78 +    ///\sa id(Edge)
    1.79 +    int maxEdgeId() const { return _edgeNum-1; }
    1.80 +
    1.81 +    /// \brief Returns the node from its \c id.
    1.82 +    ///
    1.83 +    /// Returns the node from its \c id. If there is not node
    1.84 +    /// with the given id the effect of the function is undefinied.
    1.85 +    static Node nodeFromId(int id) { return Node(id);}
    1.86 +
    1.87 +    /// \brief Returns the edge from its \c id.
    1.88 +    ///
    1.89 +    /// Returns the edge from its \c id. If there is not edge
    1.90 +    /// with the given id the effect of the function is undefinied.
    1.91 +    static Edge edgeFromId(int id) { return Edge(id);}
    1.92 +
    1.93 +    Node source(Edge e) const { 
    1.94 +      /// \todo we may do it faster
    1.95 +      return Node(((int)sqrt((double)(1 + 8 * e.id)) + 1) / 2);
    1.96 +    }
    1.97 +
    1.98 +    Node target(Edge e) const { 
    1.99 +      int source = ((int)sqrt((double)(1 + 8 * e.id)) + 1) / 2;;
   1.100 +      return Node(e.id - (source) * (source - 1) / 2);
   1.101 +    }
   1.102 +
   1.103 +
   1.104 +    /// \brief Node ID.
   1.105 +    ///
   1.106 +    /// The ID of a valid Node is a nonnegative integer not greater than
   1.107 +    /// \ref maxNodeId(). The range of the ID's is not surely continuous
   1.108 +    /// and the greatest node ID can be actually less then \ref maxNodeId().
   1.109 +    ///
   1.110 +    /// The ID of the \ref INVALID node is -1.
   1.111 +    /// \return The ID of the node \c v. 
   1.112 +
   1.113 +    static int id(Node v) { return v.id; }
   1.114 +
   1.115 +    /// \brief Edge ID.
   1.116 +    ///
   1.117 +    /// The ID of a valid Edge is a nonnegative integer not greater than
   1.118 +    /// \ref maxEdgeId(). The range of the ID's is not surely continuous
   1.119 +    /// and the greatest edge ID can be actually less then \ref maxEdgeId().
   1.120 +    ///
   1.121 +    /// The ID of the \ref INVALID edge is -1.
   1.122 +    ///\return The ID of the edge \c e. 
   1.123 +    static int id(Edge e) { return e.id; }
   1.124 +
   1.125 +    /// \brief Finds an edge between two nodes.
   1.126 +    ///
   1.127 +    /// Finds an edge from node \c u to node \c v.
   1.128 +    ///
   1.129 +    /// If \c prev is \ref INVALID (this is the default value), then
   1.130 +    /// It finds the first edge from \c u to \c v. Otherwise it looks for
   1.131 +    /// the next edge from \c u to \c v after \c prev.
   1.132 +    /// \return The found edge or INVALID if there is no such an edge.
   1.133 +    Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
   1.134 +      if (prev.id != -1 || u.id <= v.id) return Edge(-1);
   1.135 +      return Edge(u.id * (u.id - 1) / 2 + v.id);
   1.136 +    }
   1.137 +
   1.138 +    typedef True FindEdgeTag;
   1.139 +    
   1.140 +      
   1.141 +    class Node {
   1.142 +      friend class FullUGraphBase;
   1.143 +
   1.144 +    protected:
   1.145 +      int id;
   1.146 +      Node(int _id) { id = _id;}
   1.147 +    public:
   1.148 +      Node() {}
   1.149 +      Node (Invalid) { id = -1; }
   1.150 +      bool operator==(const Node node) const {return id == node.id;}
   1.151 +      bool operator!=(const Node node) const {return id != node.id;}
   1.152 +      bool operator<(const Node node) const {return id < node.id;}
   1.153 +    };
   1.154 +    
   1.155 +
   1.156 +
   1.157 +    class Edge {
   1.158 +      friend class FullUGraphBase;
   1.159 +      
   1.160 +    protected:
   1.161 +      int id;  // _nodeNum * target + source;
   1.162 +
   1.163 +      Edge(int _id) : id(_id) {}
   1.164 +
   1.165 +    public:
   1.166 +      Edge() { }
   1.167 +      Edge (Invalid) { id = -1; }
   1.168 +      bool operator==(const Edge edge) const {return id == edge.id;}
   1.169 +      bool operator!=(const Edge edge) const {return id != edge.id;}
   1.170 +      bool operator<(const Edge edge) const {return id < edge.id;}
   1.171 +    };
   1.172 +
   1.173 +    void first(Node& node) const {
   1.174 +      node.id = _nodeNum - 1;
   1.175 +    }
   1.176 +
   1.177 +    static void next(Node& node) {
   1.178 +      --node.id;
   1.179 +    }
   1.180 +
   1.181 +    void first(Edge& edge) const {
   1.182 +      edge.id = _edgeNum - 1;
   1.183 +    }
   1.184 +
   1.185 +    static void next(Edge& edge) {
   1.186 +      --edge.id;
   1.187 +    }
   1.188 +
   1.189 +    void firstOut(Edge& edge, const Node& node) const {      
   1.190 +      int src = node.id;
   1.191 +      int trg = 0;
   1.192 +      edge.id = (trg < src ? src * (src - 1) / 2 + trg : -1);
   1.193 +    }
   1.194 +
   1.195 +    /// \todo with specialized iterators we can make faster iterating
   1.196 +    void nextOut(Edge& edge) const {
   1.197 +      int src = source(edge).id;
   1.198 +      int trg = target(edge).id;
   1.199 +      ++trg;
   1.200 +      edge.id = (trg < src ? src * (src - 1) / 2 + trg : -1);
   1.201 +    }
   1.202 +
   1.203 +    void firstIn(Edge& edge, const Node& node) const {
   1.204 +      int src = node.id + 1;
   1.205 +      int trg = node.id;
   1.206 +      edge.id = (src < _nodeNum ? src * (src - 1) / 2 + trg : -1);
   1.207 +    }
   1.208 +    
   1.209 +    void nextIn(Edge& edge) const {
   1.210 +      int src = source(edge).id;
   1.211 +      int trg = target(edge).id;
   1.212 +      ++src;
   1.213 +      edge.id = (src < _nodeNum ? src * (src - 1) / 2 + trg : -1);
   1.214 +    }
   1.215 +
   1.216 +  };
   1.217 +
   1.218 +  typedef UGraphExtender<UndirGraphExtender<FullUGraphBase> > 
   1.219 +  ExtendedFullUGraphBase;
   1.220 +
   1.221 +  /// \ingroup graphs
   1.222 +  ///
   1.223 +  /// \brief An undirected full graph class.
   1.224 +  ///
   1.225 +  /// This is a simple and fast undirected full graph implementation.
   1.226 +  /// It is completely static, so you can neither add nor delete either
   1.227 +  /// edges or nodes.
   1.228 +  ///
   1.229 +  /// The main difference beetween the \e FullGraph and \e FullUGraph class
   1.230 +  /// is that this class conforms to the undirected graph concept and
   1.231 +  /// it does not contain the loop edges.
   1.232 +  ///
   1.233 +  /// \sa FullUGraphBase
   1.234 +  /// \sa FullGraph
   1.235 +  ///
   1.236 +  /// \author Balazs Dezso
   1.237 +  class FullUGraph : public ExtendedFullUGraphBase {
   1.238 +  public:
   1.239 +
   1.240 +    typedef ExtendedFullUGraphBase Parent;
   1.241 +
   1.242 +    /// \brief Constructor
   1.243 +    FullUGraph() { construct(0); }
   1.244 +
   1.245 +    /// \brief Constructor
   1.246 +    FullUGraph(int n) { construct(n); }
   1.247 +
   1.248 +    /// \brief Resize the graph
   1.249 +    ///
   1.250 +    /// Resize the graph. The function will fully destroy and build the graph.
   1.251 +    /// This cause that the maps of the graph will reallocated
   1.252 +    /// automatically and the previous values will be lost.
   1.253 +    void resize(int n) {
   1.254 +      Parent::getNotifier(Edge()).clear();
   1.255 +      Parent::getNotifier(UEdge()).clear();
   1.256 +      Parent::getNotifier(Node()).clear();
   1.257 +      construct(n);
   1.258 +      Parent::getNotifier(Node()).build();
   1.259 +      Parent::getNotifier(UEdge()).build();
   1.260 +      Parent::getNotifier(Edge()).build();
   1.261 +    }
   1.262 +  };
   1.263 +
   1.264 +
   1.265 +  class FullBpUGraphBase {
   1.266 +  protected:
   1.267 +
   1.268 +    int _aNodeNum;
   1.269 +    int _bNodeNum;
   1.270 +
   1.271 +    int _edgeNum;
   1.272 +
   1.273 +  public:
   1.274 +
   1.275 +    class NodeSetError : public LogicError {
   1.276 +      virtual const char* exceptionName() const { 
   1.277 +	return "lemon::FullBpUGraph::NodeSetError";
   1.278 +      }
   1.279 +    };
   1.280 +  
   1.281 +    class Node {
   1.282 +      friend class FullBpUGraphBase;
   1.283 +    protected:
   1.284 +      int id;
   1.285 +
   1.286 +      Node(int _id) : id(_id) {}
   1.287 +    public:
   1.288 +      Node() {}
   1.289 +      Node(Invalid) { id = -1; }
   1.290 +      bool operator==(const Node i) const {return id==i.id;}
   1.291 +      bool operator!=(const Node i) const {return id!=i.id;}
   1.292 +      bool operator<(const Node i) const {return id<i.id;}
   1.293 +    };
   1.294 +
   1.295 +    class UEdge {
   1.296 +      friend class FullBpUGraphBase;
   1.297 +    protected:
   1.298 +      int id;
   1.299 +
   1.300 +      UEdge(int _id) { id = _id;}
   1.301 +    public:
   1.302 +      UEdge() {}
   1.303 +      UEdge (Invalid) { id = -1; }
   1.304 +      bool operator==(const UEdge i) const {return id==i.id;}
   1.305 +      bool operator!=(const UEdge i) const {return id!=i.id;}
   1.306 +      bool operator<(const UEdge i) const {return id<i.id;}
   1.307 +    };
   1.308 +
   1.309 +    void construct(int aNodeNum, int bNodeNum) {
   1.310 +      _aNodeNum = aNodeNum;
   1.311 +      _bNodeNum = bNodeNum;
   1.312 +      _edgeNum = aNodeNum * bNodeNum;
   1.313 +    }
   1.314 +
   1.315 +    void firstANode(Node& node) const {
   1.316 +      node.id = 2 * _aNodeNum - 2;
   1.317 +      if (node.id < 0) node.id = -1; 
   1.318 +    }
   1.319 +    void nextANode(Node& node) const {
   1.320 +      node.id -= 2;
   1.321 +      if (node.id < 0) node.id = -1; 
   1.322 +    }
   1.323 +
   1.324 +    void firstBNode(Node& node) const {
   1.325 +      node.id = 2 * _bNodeNum - 1;
   1.326 +    }
   1.327 +    void nextBNode(Node& node) const {
   1.328 +      node.id -= 2;
   1.329 +    }
   1.330 +
   1.331 +    void first(Node& node) const {
   1.332 +      if (_aNodeNum > 0) {
   1.333 +	node.id = 2 * _aNodeNum - 2;
   1.334 +      } else {
   1.335 +	node.id = 2 * _bNodeNum - 1;
   1.336 +      }
   1.337 +    }
   1.338 +    void next(Node& node) const {
   1.339 +      node.id -= 2;
   1.340 +      if (node.id == -2) {
   1.341 +	node.id = 2 * _bNodeNum - 1;
   1.342 +      }
   1.343 +    }
   1.344 +  
   1.345 +    void first(UEdge& edge) const {
   1.346 +      edge.id = _edgeNum - 1;
   1.347 +    }
   1.348 +    void next(UEdge& edge) const {
   1.349 +      --edge.id;
   1.350 +    }
   1.351 +
   1.352 +    void firstFromANode(UEdge& edge, const Node& node) const {
   1.353 +      LEMON_ASSERT((node.id & 1) == 0, NodeSetError());
   1.354 +      edge.id = (node.id >> 1) * _bNodeNum;
   1.355 +    }
   1.356 +    void nextFromANode(UEdge& edge) const {
   1.357 +      ++(edge.id);
   1.358 +      if (edge.id % _bNodeNum == 0) edge.id = -1;
   1.359 +    }
   1.360 +
   1.361 +    void firstFromBNode(UEdge& edge, const Node& node) const {
   1.362 +      LEMON_ASSERT((node.id & 1) == 1, NodeSetError());
   1.363 +      edge.id = (node.id >> 1);
   1.364 +    }
   1.365 +    void nextFromBNode(UEdge& edge) const {
   1.366 +      edge.id += _bNodeNum;
   1.367 +      if (edge.id >= _edgeNum) edge.id = -1;
   1.368 +    }
   1.369 +
   1.370 +    static int id(const Node& node) {
   1.371 +      return node.id;
   1.372 +    }
   1.373 +    static Node nodeFromId(int id) {
   1.374 +      return Node(id);
   1.375 +    }
   1.376 +    int maxNodeId() const {
   1.377 +      return _aNodeNum > _bNodeNum ? 
   1.378 +	_aNodeNum * 2 - 2 : _bNodeNum * 2 - 1;
   1.379 +    }
   1.380 +  
   1.381 +    static int id(const UEdge& edge) {
   1.382 +      return edge.id;
   1.383 +    }
   1.384 +    static UEdge uEdgeFromId(int id) {
   1.385 +      return UEdge(id);
   1.386 +    }
   1.387 +    int maxUEdgeId() const {
   1.388 +      return _edgeNum - 1;
   1.389 +    }
   1.390 +  
   1.391 +    static int aNodeId(const Node& node) {
   1.392 +      return node.id >> 1;
   1.393 +    }
   1.394 +    static Node fromANodeId(int id) {
   1.395 +      return Node(id << 1);
   1.396 +    }
   1.397 +    int maxANodeId() const {
   1.398 +      return _aNodeNum;
   1.399 +    }
   1.400 +
   1.401 +    static int bNodeId(const Node& node) {
   1.402 +      return node.id >> 1;
   1.403 +    }
   1.404 +    static Node fromBNodeId(int id) {
   1.405 +      return Node((id << 1) + 1);
   1.406 +    }
   1.407 +    int maxBNodeId() const {
   1.408 +      return _bNodeNum;
   1.409 +    }
   1.410 +
   1.411 +    Node aNode(const UEdge& edge) const {
   1.412 +      return Node((edge.id / _bNodeNum) << 1);
   1.413 +    }
   1.414 +    Node bNode(const UEdge& edge) const {
   1.415 +      return Node(((edge.id % _bNodeNum) << 1) + 1);
   1.416 +    }
   1.417 +
   1.418 +    static bool aNode(const Node& node) {
   1.419 +      return (node.id & 1) == 0;
   1.420 +    }
   1.421 +
   1.422 +    static bool bNode(const Node& node) {
   1.423 +      return (node.id & 1) == 1;
   1.424 +    }
   1.425 +
   1.426 +    static Node aNode(int index) {
   1.427 +      return Node(index << 1);
   1.428 +    }
   1.429 +
   1.430 +    static Node bNode(int index) {
   1.431 +      return Node((index << 1) + 1);
   1.432 +    }
   1.433 +
   1.434 +    typedef True NodeNumTag;
   1.435 +    int nodeNum() const { return _aNodeNum + _bNodeNum; }
   1.436 +    int aNodeNum() const { return _aNodeNum; }
   1.437 +    int bNodeNum() const { return _bNodeNum; }
   1.438 +
   1.439 +    typedef True EdgeNumTag;
   1.440 +    int uEdgeNum() const { return _edgeNum; }
   1.441 +
   1.442 +  };
   1.443 +
   1.444 +
   1.445 +  typedef BpUGraphExtender<FullBpUGraphBase> ExtendedFullBpUGraphBase;
   1.446 +
   1.447 +
   1.448 +  /// \ingroup graphs
   1.449 +  ///
   1.450 +  /// \brief An undirected full bipartite graph class.
   1.451 +  ///
   1.452 +  /// This is a simple and fast bipartite undirected full graph implementation.
   1.453 +  /// It is completely static, so you can neither add nor delete either
   1.454 +  /// edges or nodes.
   1.455 +  ///
   1.456 +  /// \sa FullUGraphBase
   1.457 +  /// \sa FullGraph
   1.458 +  ///
   1.459 +  /// \author Balazs Dezso
   1.460 +  class FullBpUGraph : 
   1.461 +    public ExtendedFullBpUGraphBase {
   1.462 +  public:
   1.463 +
   1.464 +    typedef ExtendedFullBpUGraphBase Parent;
   1.465 +
   1.466 +    FullBpUGraph() {
   1.467 +      Parent::construct(0, 0);
   1.468 +    }
   1.469 +
   1.470 +    FullBpUGraph(int aNodeNum, int bNodeNum) {
   1.471 +      Parent::construct(aNodeNum, bNodeNum);
   1.472 +    }
   1.473 +
   1.474 +    /// \brief Resize the graph
   1.475 +    ///
   1.476 +    void resize(int n, int m) {
   1.477 +      Parent::getNotifier(Edge()).clear();
   1.478 +      Parent::getNotifier(UEdge()).clear();
   1.479 +      Parent::getNotifier(Node()).clear();
   1.480 +      Parent::getNotifier(ANode()).clear();
   1.481 +      Parent::getNotifier(BNode()).clear();
   1.482 +      construct(n, m);
   1.483 +      Parent::getNotifier(ANode()).build();
   1.484 +      Parent::getNotifier(BNode()).build();
   1.485 +      Parent::getNotifier(Node()).build();
   1.486 +      Parent::getNotifier(UEdge()).build();
   1.487 +      Parent::getNotifier(Edge()).build();
   1.488 +    }
   1.489 +  };
   1.490 +
   1.491  } //namespace lemon
   1.492  
   1.493