lemon/lp_base.h
changeset 1435 8e85e6bbefdf
parent 1431 ad44b1dd8013
child 1436 e0beb94d08bf
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/lp_base.h	Mon May 23 04:48:14 2005 +0000
     1.3 @@ -0,0 +1,907 @@
     1.4 +/* -*- C++ -*-
     1.5 + * lemon/lp_base.h - Part of LEMON, a generic C++ optimization library
     1.6 + *
     1.7 + * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     1.8 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
     1.9 + *
    1.10 + * Permission to use, modify and distribute this software is granted
    1.11 + * provided that this copyright notice appears in all copies. For
    1.12 + * precise terms see the accompanying LICENSE file.
    1.13 + *
    1.14 + * This software is provided "AS IS" with no warranty of any kind,
    1.15 + * express or implied, and with no claim as to its suitability for any
    1.16 + * purpose.
    1.17 + *
    1.18 + */
    1.19 +
    1.20 +#ifndef LEMON_LP_BASE_H
    1.21 +#define LEMON_LP_BASE_H
    1.22 +
    1.23 +#include<vector>
    1.24 +#include<map>
    1.25 +#include<limits>
    1.26 +#include<cmath>
    1.27 +
    1.28 +#include<lemon/utility.h>
    1.29 +#include<lemon/error.h>
    1.30 +#include<lemon/invalid.h>
    1.31 +
    1.32 +//#include"lin_expr.h"
    1.33 +
    1.34 +///\file
    1.35 +///\brief The interface of the LP solver interface.
    1.36 +///\ingroup gen_opt_group
    1.37 +namespace lemon {
    1.38 +  
    1.39 +  ///Internal data structure to convert floating id's to fix one's
    1.40 +    
    1.41 +  ///\todo This might be implemented to be also usable in other places.
    1.42 +  class _FixId 
    1.43 +  {
    1.44 +    std::vector<int> index;
    1.45 +    std::vector<int> cross;
    1.46 +    int first_free;
    1.47 +  public:
    1.48 +    _FixId() : first_free(-1) {};
    1.49 +    ///Convert a floating id to a fix one
    1.50 +
    1.51 +    ///\param n is a floating id
    1.52 +    ///\return the corresponding fix id
    1.53 +    int fixId(int n) {return cross[n];}
    1.54 +    ///Convert a fix id to a floating one
    1.55 +
    1.56 +    ///\param n is a fix id
    1.57 +    ///\return the corresponding floating id
    1.58 +    int floatingId(int n) { return index[n];}
    1.59 +    ///Add a new floating id.
    1.60 +
    1.61 +    ///\param n is a floating id
    1.62 +    ///\return the fix id of the new value
    1.63 +    ///\todo Multiple additions should also be handled.
    1.64 +    int insert(int n)
    1.65 +    {
    1.66 +      if(n>=int(cross.size())) {
    1.67 +	cross.resize(n+1);
    1.68 +	if(first_free==-1) {
    1.69 +	  cross[n]=index.size();
    1.70 +	  index.push_back(n);
    1.71 +	}
    1.72 +	else {
    1.73 +	  cross[n]=first_free;
    1.74 +	  int next=index[first_free];
    1.75 +	  index[first_free]=n;
    1.76 +	  first_free=next;
    1.77 +	}
    1.78 +	return cross[n];
    1.79 +      }
    1.80 +      ///\todo Create an own exception type.
    1.81 +      else throw LogicError(); //floatingId-s must form a continuous range;
    1.82 +    }
    1.83 +    ///Remove a fix id.
    1.84 +
    1.85 +    ///\param n is a fix id
    1.86 +    ///
    1.87 +    void erase(int n) 
    1.88 +    {
    1.89 +      int fl=index[n];
    1.90 +      index[n]=first_free;
    1.91 +      first_free=n;
    1.92 +      for(int i=fl+1;i<int(cross.size());++i) {
    1.93 +	cross[i-1]=cross[i];
    1.94 +	index[cross[i]]--;
    1.95 +      }
    1.96 +      cross.pop_back();
    1.97 +    }
    1.98 +    ///An upper bound on the largest fix id.
    1.99 +
   1.100 +    ///\todo Do we need this?
   1.101 +    ///
   1.102 +    std::size_t maxFixId() { return cross.size()-1; }
   1.103 +  
   1.104 +  };
   1.105 +    
   1.106 +  ///Common base class for LP solvers
   1.107 +  
   1.108 +  ///\todo Much more docs
   1.109 +  ///\ingroup gen_opt_group
   1.110 +  class LpSolverBase {
   1.111 +
   1.112 +  public:
   1.113 +
   1.114 +    ///\e
   1.115 +    enum SolveExitStatus {
   1.116 +      ///\e
   1.117 +      SOLVED = 0,
   1.118 +      ///\e
   1.119 +      UNSOLVED = 1
   1.120 +    };
   1.121 +      
   1.122 +    ///\e
   1.123 +    enum SolutionStatus {
   1.124 +      ///Feasible solution has'n been found (but may exist).
   1.125 +
   1.126 +      ///\todo NOTFOUND might be a better name.
   1.127 +      ///
   1.128 +      UNDEFINED = 0,
   1.129 +      ///The problem has no feasible solution
   1.130 +      INFEASIBLE = 1,
   1.131 +      ///Feasible solution found
   1.132 +      FEASIBLE = 2,
   1.133 +      ///Optimal solution exists and found
   1.134 +      OPTIMAL = 3,
   1.135 +      ///The cost function is unbounded
   1.136 +
   1.137 +      ///\todo Give a feasible solution and an infinite ray (and the
   1.138 +      ///corresponding bases)
   1.139 +      INFINITE = 4
   1.140 +    };
   1.141 +      
   1.142 +    ///The floating point type used by the solver
   1.143 +    typedef double Value;
   1.144 +    ///The infinity constant
   1.145 +    static const Value INF;
   1.146 +    ///The not a number constant
   1.147 +    static const Value NaN;
   1.148 +    
   1.149 +    ///Refer to a column of the LP.
   1.150 +
   1.151 +    ///This type is used to refer to a column of the LP.
   1.152 +    ///
   1.153 +    ///Its value remains valid and correct even after the addition or erase of
   1.154 +    ///other columns.
   1.155 +    ///
   1.156 +    ///\todo Document what can one do with a Col (INVALID, comparing,
   1.157 +    ///it is similar to Node/Edge)
   1.158 +    class Col {
   1.159 +    protected:
   1.160 +      int id;
   1.161 +      friend class LpSolverBase;
   1.162 +    public:
   1.163 +      typedef Value ExprValue;
   1.164 +      typedef True LpSolverCol;
   1.165 +      Col() {}
   1.166 +      Col(const Invalid&) : id(-1) {}
   1.167 +      bool operator<(Col c) const  {return id<c.id;}
   1.168 +      bool operator==(Col c) const  {return id==c.id;}
   1.169 +      bool operator!=(Col c) const  {return id==c.id;}
   1.170 +    };
   1.171 +
   1.172 +    ///Refer to a row of the LP.
   1.173 +
   1.174 +    ///This type is used to refer to a row of the LP.
   1.175 +    ///
   1.176 +    ///Its value remains valid and correct even after the addition or erase of
   1.177 +    ///other rows.
   1.178 +    ///
   1.179 +    ///\todo Document what can one do with a Row (INVALID, comparing,
   1.180 +    ///it is similar to Node/Edge)
   1.181 +    class Row {
   1.182 +    protected:
   1.183 +      int id;
   1.184 +      friend class LpSolverBase;
   1.185 +    public:
   1.186 +      typedef Value ExprValue;
   1.187 +      typedef True LpSolverRow;
   1.188 +      Row() {}
   1.189 +      Row(const Invalid&) : id(-1) {}
   1.190 +      typedef True LpSolverRow;
   1.191 +      bool operator<(Row c) const  {return id<c.id;}
   1.192 +      bool operator==(Row c) const  {return id==c.id;}
   1.193 +      bool operator!=(Row c) const  {return id==c.id;} 
   1.194 +   };
   1.195 +    
   1.196 +    ///Linear expression of variables and a constant component
   1.197 +    
   1.198 +    ///This data structure strores a linear expression of the variables
   1.199 +    ///(\ref Col "Col"s) and also has a constant component.
   1.200 +    ///
   1.201 +    ///There are several ways to access and modify the contents of this
   1.202 +    ///container.
   1.203 +    ///- Its it fully compatible with \c std::map<Col,double>, so for expamle
   1.204 +    ///if \c e is an Expr and \c v and \c w are of type \ref Col, then you can
   1.205 +    ///read and modify the coefficients like
   1.206 +    ///these.
   1.207 +    ///\code
   1.208 +    ///e[v]=5;
   1.209 +    ///e[v]+=12;
   1.210 +    ///e.erase(v);
   1.211 +    ///\endcode
   1.212 +    ///or you can also iterate through its elements.
   1.213 +    ///\code
   1.214 +    ///double s=0;
   1.215 +    ///for(LpSolverBase::Expr::iterator i=e.begin();i!=e.end();++i)
   1.216 +    ///  s+=i->second;
   1.217 +    ///\endcode
   1.218 +    ///(This code computes the sum of all coefficients).
   1.219 +    ///- Numbers (<tt>double</tt>'s)
   1.220 +    ///and variables (\ref Col "Col"s) directly convert to an
   1.221 +    ///\ref Expr and the usual linear operations are defined so  
   1.222 +    ///\code
   1.223 +    ///v+w
   1.224 +    ///2*v-3.12*(v-w/2)+2
   1.225 +    ///v*2.1+(3*v+(v*12+w+6)*3)/2
   1.226 +    ///\endcode
   1.227 +    ///are valid \ref Expr "Expr"essions.
   1.228 +    ///The usual assignment operations are also defined.
   1.229 +    ///\code
   1.230 +    ///e=v+w;
   1.231 +    ///e+=2*v-3.12*(v-w/2)+2;
   1.232 +    ///e*=3.4;
   1.233 +    ///e/=5;
   1.234 +    ///\endcode
   1.235 +    ///- The constant member can be set and read by \ref constComp()
   1.236 +    ///\code
   1.237 +    ///e.constComp()=12;
   1.238 +    ///double c=e.constComp();
   1.239 +    ///\endcode
   1.240 +    ///
   1.241 +    ///\note \ref clear() not only sets all coefficients to 0 but also
   1.242 +    ///clears the constant components.
   1.243 +    ///
   1.244 +    ///\sa Constr
   1.245 +    ///
   1.246 +    class Expr : public std::map<Col,Value>
   1.247 +    {
   1.248 +    public:
   1.249 +      typedef LpSolverBase::Col Key; 
   1.250 +      typedef LpSolverBase::Value Value;
   1.251 +      
   1.252 +    protected:
   1.253 +      typedef std::map<Col,Value> Base;
   1.254 +      
   1.255 +      Value const_comp;
   1.256 +  public:
   1.257 +      typedef True IsLinExpression;
   1.258 +      ///\e
   1.259 +      Expr() : Base(), const_comp(0) { }
   1.260 +      ///\e
   1.261 +      Expr(const Key &v) : const_comp(0) {
   1.262 +	Base::insert(std::make_pair(v, 1));
   1.263 +      }
   1.264 +      ///\e
   1.265 +      Expr(const Value &v) : const_comp(v) {}
   1.266 +      ///\e
   1.267 +      void set(const Key &v,const Value &c) {
   1.268 +	Base::insert(std::make_pair(v, c));
   1.269 +      }
   1.270 +      ///\e
   1.271 +      Value &constComp() { return const_comp; }
   1.272 +      ///\e
   1.273 +      const Value &constComp() const { return const_comp; }
   1.274 +      
   1.275 +      ///Removes the components with zero coefficient.
   1.276 +      void simplify() {
   1.277 +	for (Base::iterator i=Base::begin(); i!=Base::end();) {
   1.278 +	  Base::iterator j=i;
   1.279 +	  ++j;
   1.280 +	  if ((*i).second==0) Base::erase(i);
   1.281 +	  j=i;
   1.282 +	}
   1.283 +      }
   1.284 +
   1.285 +      ///Sets all coefficients and the constant component to 0.
   1.286 +      void clear() {
   1.287 +	Base::clear();
   1.288 +	const_comp=0;
   1.289 +      }
   1.290 +
   1.291 +      ///\e
   1.292 +      Expr &operator+=(const Expr &e) {
   1.293 +	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   1.294 +	  (*this)[j->first]+=j->second;
   1.295 +	///\todo it might be speeded up using "hints"
   1.296 +	const_comp+=e.const_comp;
   1.297 +	return *this;
   1.298 +      }
   1.299 +      ///\e
   1.300 +      Expr &operator-=(const Expr &e) {
   1.301 +	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   1.302 +	  (*this)[j->first]-=j->second;
   1.303 +	const_comp-=e.const_comp;
   1.304 +	return *this;
   1.305 +      }
   1.306 +      ///\e
   1.307 +      Expr &operator*=(const Value &c) {
   1.308 +	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   1.309 +	  j->second*=c;
   1.310 +	const_comp*=c;
   1.311 +	return *this;
   1.312 +      }
   1.313 +      ///\e
   1.314 +      Expr &operator/=(const Value &c) {
   1.315 +	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   1.316 +	  j->second/=c;
   1.317 +	const_comp/=c;
   1.318 +	return *this;
   1.319 +      }
   1.320 +    };
   1.321 +    
   1.322 +    ///Linear constraint
   1.323 +
   1.324 +    ///This data stucture represents a linear constraint in the LP.
   1.325 +    ///Basically it is a linear expression with a lower or an upper bound
   1.326 +    ///(or both). These parts of the constraint can be obtained by the member
   1.327 +    ///functions \ref expr(), \ref lowerBound() and \ref upperBound(),
   1.328 +    ///respectively.
   1.329 +    ///There are two ways to construct a constraint.
   1.330 +    ///- You can set the linear expression and the bounds directly
   1.331 +    ///  by the functions above.
   1.332 +    ///- The operators <tt>\<=</tt>, <tt>==</tt> and  <tt>\>=</tt>
   1.333 +    ///  are defined between expressions, or even between constraints whenever
   1.334 +    ///  it makes sense. Therefore if \c e and \c f are linear expressions and
   1.335 +    ///  \c s and \c t are numbers, then the followings are valid expressions
   1.336 +    ///  and thus they can be used directly e.g. in \ref addRow() whenever
   1.337 +    ///  it makes sense.
   1.338 +    ///  \code
   1.339 +    ///  e<=s
   1.340 +    ///  e<=f
   1.341 +    ///  s<=e<=t
   1.342 +    ///  e>=t
   1.343 +    ///  \endcode
   1.344 +    ///\warning The validity of a constraint is checked only at run time, so
   1.345 +    ///e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will compile, but will throw a
   1.346 +    ///\ref LogicError exception.
   1.347 +    class Constr
   1.348 +    {
   1.349 +    public:
   1.350 +      typedef LpSolverBase::Expr Expr;
   1.351 +      typedef Expr::Key Key;
   1.352 +      typedef Expr::Value Value;
   1.353 +      
   1.354 +//       static const Value INF;
   1.355 +//       static const Value NaN;
   1.356 +
   1.357 +    protected:
   1.358 +      Expr _expr;
   1.359 +      Value _lb,_ub;
   1.360 +    public:
   1.361 +      ///\e
   1.362 +      Constr() : _expr(), _lb(NaN), _ub(NaN) {}
   1.363 +      ///\e
   1.364 +      Constr(Value lb,const Expr &e,Value ub) :
   1.365 +	_expr(e), _lb(lb), _ub(ub) {}
   1.366 +      ///\e
   1.367 +      Constr(const Expr &e,Value ub) : 
   1.368 +	_expr(e), _lb(NaN), _ub(ub) {}
   1.369 +      ///\e
   1.370 +      Constr(Value lb,const Expr &e) :
   1.371 +	_expr(e), _lb(lb), _ub(NaN) {}
   1.372 +      ///\e
   1.373 +      Constr(const Expr &e) : 
   1.374 +	_expr(e), _lb(NaN), _ub(NaN) {}
   1.375 +      ///\e
   1.376 +      void clear() 
   1.377 +      {
   1.378 +	_expr.clear();
   1.379 +	_lb=_ub=NaN;
   1.380 +      }
   1.381 +
   1.382 +      ///Reference to the linear expression 
   1.383 +      Expr &expr() { return _expr; }
   1.384 +      ///Cont reference to the linear expression 
   1.385 +      const Expr &expr() const { return _expr; }
   1.386 +      ///Reference to the lower bound.
   1.387 +
   1.388 +      ///\return
   1.389 +      ///- -\ref INF: the constraint is lower unbounded.
   1.390 +      ///- -\ref NaN: lower bound has not been set.
   1.391 +      ///- finite number: the lower bound
   1.392 +      Value &lowerBound() { return _lb; }
   1.393 +      ///The const version of \ref lowerBound()
   1.394 +      const Value &lowerBound() const { return _lb; }
   1.395 +      ///Reference to the upper bound.
   1.396 +
   1.397 +      ///\return
   1.398 +      ///- -\ref INF: the constraint is upper unbounded.
   1.399 +      ///- -\ref NaN: upper bound has not been set.
   1.400 +      ///- finite number: the upper bound
   1.401 +      Value &upperBound() { return _ub; }
   1.402 +      ///The const version of \ref upperBound()
   1.403 +      const Value &upperBound() const { return _ub; }
   1.404 +      ///Is the constraint lower bounded?
   1.405 +      bool lowerBounded() const { 
   1.406 +	using namespace std;
   1.407 +	return finite(_lb);
   1.408 +      }
   1.409 +      ///Is the constraint upper bounded?
   1.410 +      bool upperBounded() const {
   1.411 +	using namespace std;
   1.412 +	return finite(_ub);
   1.413 +      }
   1.414 +    };
   1.415 +    
   1.416 +
   1.417 +  protected:
   1.418 +    _FixId rows;
   1.419 +    _FixId cols;
   1.420 +
   1.421 +    //Abstract virtual functions
   1.422 +    virtual LpSolverBase &_newLp() = 0;
   1.423 +    virtual LpSolverBase &_copyLp() = 0;
   1.424 +
   1.425 +    virtual int _addCol() = 0;
   1.426 +    virtual int _addRow() = 0;
   1.427 +    virtual void _setRowCoeffs(int i, 
   1.428 +			       int length,
   1.429 +                               int  const * indices, 
   1.430 +                               Value  const * values ) = 0;
   1.431 +    virtual void _setColCoeffs(int i, 
   1.432 +			       int length,
   1.433 +                               int  const * indices, 
   1.434 +                               Value  const * values ) = 0;
   1.435 +    virtual void _setCoeff(int row, int col, Value value) = 0;
   1.436 +    virtual void _setColLowerBound(int i, Value value) = 0;
   1.437 +    virtual void _setColUpperBound(int i, Value value) = 0;
   1.438 +//     virtual void _setRowLowerBound(int i, Value value) = 0;
   1.439 +//     virtual void _setRowUpperBound(int i, Value value) = 0;
   1.440 +    virtual void _setRowBounds(int i, Value lower, Value upper) = 0;
   1.441 +    virtual void _setObjCoeff(int i, Value obj_coef) = 0;
   1.442 +    virtual void _clearObj()=0;
   1.443 +//     virtual void _setObj(int length,
   1.444 +//                          int  const * indices, 
   1.445 +//                          Value  const * values ) = 0;
   1.446 +    virtual SolveExitStatus _solve() = 0;
   1.447 +    virtual Value _getPrimal(int i) = 0;
   1.448 +    virtual Value _getPrimalValue() = 0;
   1.449 +    virtual SolutionStatus _getPrimalStatus() = 0;
   1.450 +    virtual void _setMax() = 0;
   1.451 +    virtual void _setMin() = 0;
   1.452 +    
   1.453 +    //Own protected stuff
   1.454 +    
   1.455 +    //Constant component of the objective function
   1.456 +    Value obj_const_comp;
   1.457 +    
   1.458 +
   1.459 +
   1.460 +    
   1.461 +  public:
   1.462 +
   1.463 +    ///\e
   1.464 +    LpSolverBase() : obj_const_comp(0) {}
   1.465 +
   1.466 +    ///\e
   1.467 +    virtual ~LpSolverBase() {}
   1.468 +
   1.469 +    ///Creates a new LP problem
   1.470 +    LpSolverBase &newLp() {return _newLp();}
   1.471 +    ///Makes a copy of the LP problem
   1.472 +    LpSolverBase &copyLp() {return _copyLp();}
   1.473 +    
   1.474 +    ///\name Build up and modify of the LP
   1.475 +
   1.476 +    ///@{
   1.477 +
   1.478 +    ///Add a new empty column (i.e a new variable) to the LP
   1.479 +    Col addCol() { Col c; c.id=cols.insert(_addCol()); return c;}
   1.480 +
   1.481 +    ///\brief Adds several new columns
   1.482 +    ///(i.e a variables) at once
   1.483 +    ///
   1.484 +    ///This magic function takes a container as its argument
   1.485 +    ///and fills its elements
   1.486 +    ///with new columns (i.e. variables)
   1.487 +    ///\param t can be
   1.488 +    ///- a standard STL compatible iterable container with
   1.489 +    ///\ref Col as its \c values_type
   1.490 +    ///like
   1.491 +    ///\code
   1.492 +    ///std::vector<LpSolverBase::Col>
   1.493 +    ///std::list<LpSolverBase::Col>
   1.494 +    ///\endcode
   1.495 +    ///- a standard STL compatible iterable container with
   1.496 +    ///\ref Col as its \c mapped_type
   1.497 +    ///like
   1.498 +    ///\code
   1.499 +    ///std::map<AnyType,LpSolverBase::Col>
   1.500 +    ///\endcode
   1.501 +    ///- an iterable lemon \ref concept::WriteMap "write map" like 
   1.502 +    ///\code
   1.503 +    ///ListGraph::NodeMap<LpSolverBase::Col>
   1.504 +    ///ListGraph::EdgeMap<LpSolverBase::Col>
   1.505 +    ///\endcode
   1.506 +    ///\return The number of the created column.
   1.507 +#ifdef DOXYGEN
   1.508 +    template<class T>
   1.509 +    int addColSet(T &t) { return 0;} 
   1.510 +#else
   1.511 +    template<class T>
   1.512 +    typename enable_if<typename T::value_type::LpSolverCol,int>::type
   1.513 +    addColSet(T &t,dummy<0> = 0) {
   1.514 +      int s=0;
   1.515 +      for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;}
   1.516 +      return s;
   1.517 +    }
   1.518 +    template<class T>
   1.519 +    typename enable_if<typename T::value_type::second_type::LpSolverCol,
   1.520 +		       int>::type
   1.521 +    addColSet(T &t,dummy<1> = 1) { 
   1.522 +      int s=0;
   1.523 +      for(typename T::iterator i=t.begin();i!=t.end();++i) {
   1.524 +	i->second=addCol();
   1.525 +	s++;
   1.526 +      }
   1.527 +      return s;
   1.528 +    }
   1.529 +    template<class T>
   1.530 +    typename enable_if<typename T::ValueSet::value_type::LpSolverCol,
   1.531 +		       int>::type
   1.532 +    addColSet(T &t,dummy<2> = 2) { 
   1.533 +      ///\bug <tt>return addColSet(t.valueSet());</tt> should also work.
   1.534 +      int s=0;
   1.535 +      for(typename T::ValueSet::iterator i=t.valueSet().begin();
   1.536 +	  i!=t.valueSet().end();
   1.537 +	  ++i)
   1.538 +	{
   1.539 +	  *i=addCol();
   1.540 +	  s++;
   1.541 +	}
   1.542 +      return s;
   1.543 +    }
   1.544 +#endif
   1.545 +
   1.546 +    ///Add a new empty row (i.e a new constaint) to the LP
   1.547 +
   1.548 +    ///This function adds a new empty row (i.e a new constaint) to the LP.
   1.549 +    ///\return The created row
   1.550 +    Row addRow() { Row r; r.id=rows.insert(_addRow()); return r;}
   1.551 +
   1.552 +    ///Set a row (i.e a constaint) of the LP
   1.553 +
   1.554 +    ///\param r is the row to be modified
   1.555 +    ///\param l is lower bound (-\ref INF means no bound)
   1.556 +    ///\param e is a linear expression (see \ref Expr)
   1.557 +    ///\param u is the upper bound (\ref INF means no bound)
   1.558 +    ///\bug This is a temportary function. The interface will change to
   1.559 +    ///a better one.
   1.560 +    ///\todo Option to control whether a constraint with a single variable is
   1.561 +    ///added or not.
   1.562 +    void setRow(Row r, Value l,const Expr &e, Value u) {
   1.563 +      std::vector<int> indices;
   1.564 +      std::vector<Value> values;
   1.565 +      indices.push_back(0);
   1.566 +      values.push_back(0);
   1.567 +      for(Expr::const_iterator i=e.begin(); i!=e.end(); ++i)
   1.568 +	if((*i).second!=0) { ///\bug EPSILON would be necessary here!!!
   1.569 +	  indices.push_back(cols.floatingId((*i).first.id));
   1.570 +	  values.push_back((*i).second);
   1.571 +	}
   1.572 +      _setRowCoeffs(rows.floatingId(r.id),indices.size()-1,
   1.573 +		    &indices[0],&values[0]);
   1.574 +//       _setRowLowerBound(rows.floatingId(r.id),l-e.constComp());
   1.575 +//       _setRowUpperBound(rows.floatingId(r.id),u-e.constComp());
   1.576 +       _setRowBounds(rows.floatingId(r.id),l-e.constComp(),u-e.constComp());
   1.577 +    }
   1.578 +
   1.579 +    ///Set a row (i.e a constaint) of the LP
   1.580 +
   1.581 +    ///\param r is the row to be modified
   1.582 +    ///\param c is a linear expression (see \ref Constr)
   1.583 +    void setRow(Row r, const Constr &c) {
   1.584 +      setRow(r,
   1.585 +	     c.lowerBounded()?c.lowerBound():-INF,
   1.586 +	     c.expr(),
   1.587 +	     c.upperBounded()?c.upperBound():INF);
   1.588 +    }
   1.589 +
   1.590 +    ///Add a new row (i.e a new constaint) to the LP
   1.591 +
   1.592 +    ///\param l is the lower bound (-\ref INF means no bound)
   1.593 +    ///\param e is a linear expression (see \ref Expr)
   1.594 +    ///\param u is the upper bound (\ref INF means no bound)
   1.595 +    ///\return The created row.
   1.596 +    ///\bug This is a temportary function. The interface will change to
   1.597 +    ///a better one.
   1.598 +    Row addRow(Value l,const Expr &e, Value u) {
   1.599 +      Row r=addRow();
   1.600 +      setRow(r,l,e,u);
   1.601 +      return r;
   1.602 +    }
   1.603 +
   1.604 +    ///Add a new row (i.e a new constaint) to the LP
   1.605 +
   1.606 +    ///\param c is a linear expression (see \ref Constr)
   1.607 +    ///\return The created row.
   1.608 +    Row addRow(const Constr &c) {
   1.609 +      Row r=addRow();
   1.610 +      setRow(r,c);
   1.611 +      return r;
   1.612 +    }
   1.613 +
   1.614 +    /// Set the lower bound of a column (i.e a variable)
   1.615 +
   1.616 +    /// The upper bound of a variable (column) has to be given by an 
   1.617 +    /// extended number of type Value, i.e. a finite number of type 
   1.618 +    /// Value or -\ref INF.
   1.619 +    void colLowerBound(Col c, Value value) {
   1.620 +      _setColLowerBound(cols.floatingId(c.id),value);
   1.621 +    }
   1.622 +    /// Set the upper bound of a column (i.e a variable)
   1.623 +
   1.624 +    /// The upper bound of a variable (column) has to be given by an 
   1.625 +    /// extended number of type Value, i.e. a finite number of type 
   1.626 +    /// Value or \ref INF.
   1.627 +    void colUpperBound(Col c, Value value) {
   1.628 +      _setColUpperBound(cols.floatingId(c.id),value);
   1.629 +    };
   1.630 +    /// Set the lower and the upper bounds of a column (i.e a variable)
   1.631 +
   1.632 +    /// The lower and the upper bounds of
   1.633 +    /// a variable (column) have to be given by an 
   1.634 +    /// extended number of type Value, i.e. a finite number of type 
   1.635 +    /// Value, -\ref INF or \ref INF.
   1.636 +    void colBounds(Col c, Value lower, Value upper) {
   1.637 +      _setColLowerBound(cols.floatingId(c.id),lower);
   1.638 +      _setColUpperBound(cols.floatingId(c.id),upper);
   1.639 +    }
   1.640 +    
   1.641 +//     /// Set the lower bound of a row (i.e a constraint)
   1.642 +
   1.643 +//     /// The lower bound of a linear expression (row) has to be given by an 
   1.644 +//     /// extended number of type Value, i.e. a finite number of type 
   1.645 +//     /// Value or -\ref INF.
   1.646 +//     void rowLowerBound(Row r, Value value) {
   1.647 +//       _setRowLowerBound(rows.floatingId(r.id),value);
   1.648 +//     };
   1.649 +//     /// Set the upper bound of a row (i.e a constraint)
   1.650 +
   1.651 +//     /// The upper bound of a linear expression (row) has to be given by an 
   1.652 +//     /// extended number of type Value, i.e. a finite number of type 
   1.653 +//     /// Value or \ref INF.
   1.654 +//     void rowUpperBound(Row r, Value value) {
   1.655 +//       _setRowUpperBound(rows.floatingId(r.id),value);
   1.656 +//     };
   1.657 +
   1.658 +    /// Set the lower and the upper bounds of a row (i.e a constraint)
   1.659 +
   1.660 +    /// The lower and the upper bounds of
   1.661 +    /// a constraint (row) have to be given by an 
   1.662 +    /// extended number of type Value, i.e. a finite number of type 
   1.663 +    /// Value, -\ref INF or \ref INF.
   1.664 +    void rowBounds(Row c, Value lower, Value upper) {
   1.665 +      _setRowBounds(rows.floatingId(c.id),lower, upper);
   1.666 +      // _setRowUpperBound(rows.floatingId(c.id),upper);
   1.667 +    }
   1.668 +    
   1.669 +    ///Set an element of the objective function
   1.670 +    void objCoeff(Col c, Value v) {_setObjCoeff(cols.floatingId(c.id),v); };
   1.671 +    ///Set the objective function
   1.672 +    
   1.673 +    ///\param e is a linear expression of type \ref Expr.
   1.674 +    ///\bug The previous objective function is not cleared!
   1.675 +    void setObj(Expr e) {
   1.676 +      _clearObj();
   1.677 +      for (Expr::iterator i=e.begin(); i!=e.end(); ++i)
   1.678 +	objCoeff((*i).first,(*i).second);
   1.679 +      obj_const_comp=e.constComp();
   1.680 +    }
   1.681 +
   1.682 +    ///Maximize
   1.683 +    void max() { _setMax(); }
   1.684 +    ///Minimize
   1.685 +    void min() { _setMin(); }
   1.686 +
   1.687 +    
   1.688 +    ///@}
   1.689 +
   1.690 +
   1.691 +    ///\name Solve the LP
   1.692 +
   1.693 +    ///@{
   1.694 +
   1.695 +    ///\e
   1.696 +    SolveExitStatus solve() { return _solve(); }
   1.697 +    
   1.698 +    ///@}
   1.699 +    
   1.700 +    ///\name Obtain the solution
   1.701 +
   1.702 +    ///@{
   1.703 +
   1.704 +    ///\e
   1.705 +    SolutionStatus primalStatus() {
   1.706 +      return _getPrimalStatus();
   1.707 +    }
   1.708 +
   1.709 +    ///\e
   1.710 +    Value primal(Col c) { return _getPrimal(cols.floatingId(c.id)); }
   1.711 +
   1.712 +    ///\e
   1.713 +
   1.714 +    ///\return
   1.715 +    ///- \ref INF or -\ref INF means either infeasibility or unboundedness
   1.716 +    /// of the primal problem, depending on whether we minimize or maximize.
   1.717 +    ///- \ref NaN if no primal solution is found.
   1.718 +    ///- The (finite) objective value if an optimal solution is found.
   1.719 +    Value primalValue() { return _getPrimalValue()+obj_const_comp;}
   1.720 +    ///@}
   1.721 +    
   1.722 +  };  
   1.723 +
   1.724 +  ///\e
   1.725 +  
   1.726 +  ///\relates LpSolverBase::Expr
   1.727 +  ///
   1.728 +  inline LpSolverBase::Expr operator+(const LpSolverBase::Expr &a,
   1.729 +				      const LpSolverBase::Expr &b) 
   1.730 +  {
   1.731 +    LpSolverBase::Expr tmp(a);
   1.732 +    tmp+=b; ///\todo Doesn't STL have some special 'merge' algorithm?
   1.733 +    return tmp;
   1.734 +  }
   1.735 +  ///\e
   1.736 +  
   1.737 +  ///\relates LpSolverBase::Expr
   1.738 +  ///
   1.739 +  inline LpSolverBase::Expr operator-(const LpSolverBase::Expr &a,
   1.740 +				      const LpSolverBase::Expr &b) 
   1.741 +  {
   1.742 +    LpSolverBase::Expr tmp(a);
   1.743 +    tmp-=b; ///\todo Doesn't STL have some special 'merge' algorithm?
   1.744 +    return tmp;
   1.745 +  }
   1.746 +  ///\e
   1.747 +  
   1.748 +  ///\relates LpSolverBase::Expr
   1.749 +  ///
   1.750 +  inline LpSolverBase::Expr operator*(const LpSolverBase::Expr &a,
   1.751 +				      const LpSolverBase::Value &b) 
   1.752 +  {
   1.753 +    LpSolverBase::Expr tmp(a);
   1.754 +    tmp*=b; ///\todo Doesn't STL have some special 'merge' algorithm?
   1.755 +    return tmp;
   1.756 +  }
   1.757 +  
   1.758 +  ///\e
   1.759 +  
   1.760 +  ///\relates LpSolverBase::Expr
   1.761 +  ///
   1.762 +  inline LpSolverBase::Expr operator*(const LpSolverBase::Value &a,
   1.763 +				      const LpSolverBase::Expr &b) 
   1.764 +  {
   1.765 +    LpSolverBase::Expr tmp(b);
   1.766 +    tmp*=a; ///\todo Doesn't STL have some special 'merge' algorithm?
   1.767 +    return tmp;
   1.768 +  }
   1.769 +  ///\e
   1.770 +  
   1.771 +  ///\relates LpSolverBase::Expr
   1.772 +  ///
   1.773 +  inline LpSolverBase::Expr operator/(const LpSolverBase::Expr &a,
   1.774 +				      const LpSolverBase::Value &b) 
   1.775 +  {
   1.776 +    LpSolverBase::Expr tmp(a);
   1.777 +    tmp/=b; ///\todo Doesn't STL have some special 'merge' algorithm?
   1.778 +    return tmp;
   1.779 +  }
   1.780 +  
   1.781 +  ///\e
   1.782 +  
   1.783 +  ///\relates LpSolverBase::Constr
   1.784 +  ///
   1.785 +  inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
   1.786 +					 const LpSolverBase::Expr &f) 
   1.787 +  {
   1.788 +    return LpSolverBase::Constr(-LpSolverBase::INF,e-f,0);
   1.789 +  }
   1.790 +
   1.791 +  ///\e
   1.792 +  
   1.793 +  ///\relates LpSolverBase::Constr
   1.794 +  ///
   1.795 +  inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &e,
   1.796 +					 const LpSolverBase::Expr &f) 
   1.797 +  {
   1.798 +    return LpSolverBase::Constr(e,f);
   1.799 +  }
   1.800 +
   1.801 +  ///\e
   1.802 +  
   1.803 +  ///\relates LpSolverBase::Constr
   1.804 +  ///
   1.805 +  inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
   1.806 +					 const LpSolverBase::Value &f) 
   1.807 +  {
   1.808 +    return LpSolverBase::Constr(e,f);
   1.809 +  }
   1.810 +
   1.811 +  ///\e
   1.812 +  
   1.813 +  ///\relates LpSolverBase::Constr
   1.814 +  ///
   1.815 +  inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
   1.816 +					 const LpSolverBase::Expr &f) 
   1.817 +  {
   1.818 +    return LpSolverBase::Constr(-LpSolverBase::INF,f-e,0);
   1.819 +  }
   1.820 +
   1.821 +
   1.822 +  ///\e
   1.823 +  
   1.824 +  ///\relates LpSolverBase::Constr
   1.825 +  ///
   1.826 +  inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &e,
   1.827 +					 const LpSolverBase::Expr &f) 
   1.828 +  {
   1.829 +    return LpSolverBase::Constr(f,e);
   1.830 +  }
   1.831 +
   1.832 +
   1.833 +  ///\e
   1.834 +  
   1.835 +  ///\relates LpSolverBase::Constr
   1.836 +  ///
   1.837 +  inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
   1.838 +					 const LpSolverBase::Value &f) 
   1.839 +  {
   1.840 +    return LpSolverBase::Constr(f,e);
   1.841 +  }
   1.842 +
   1.843 +  ///\e
   1.844 +  
   1.845 +  ///\relates LpSolverBase::Constr
   1.846 +  ///
   1.847 +  inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e,
   1.848 +					 const LpSolverBase::Expr &f) 
   1.849 +  {
   1.850 +    return LpSolverBase::Constr(0,e-f,0);
   1.851 +  }
   1.852 +
   1.853 +  ///\e
   1.854 +  
   1.855 +  ///\relates LpSolverBase::Constr
   1.856 +  ///
   1.857 +  inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &n,
   1.858 +					 const LpSolverBase::Constr&c) 
   1.859 +  {
   1.860 +    LpSolverBase::Constr tmp(c);
   1.861 +    ///\todo Create an own exception type.
   1.862 +    if(!isnan(tmp.lowerBound())) throw LogicError();
   1.863 +    else tmp.lowerBound()=n;
   1.864 +    return tmp;
   1.865 +  }
   1.866 +  ///\e
   1.867 +  
   1.868 +  ///\relates LpSolverBase::Constr
   1.869 +  ///
   1.870 +  inline LpSolverBase::Constr operator<=(const LpSolverBase::Constr& c,
   1.871 +					 const LpSolverBase::Value &n)
   1.872 +  {
   1.873 +    LpSolverBase::Constr tmp(c);
   1.874 +    ///\todo Create an own exception type.
   1.875 +    if(!isnan(tmp.upperBound())) throw LogicError();
   1.876 +    else tmp.upperBound()=n;
   1.877 +    return tmp;
   1.878 +  }
   1.879 +
   1.880 +  ///\e
   1.881 +  
   1.882 +  ///\relates LpSolverBase::Constr
   1.883 +  ///
   1.884 +  inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &n,
   1.885 +					 const LpSolverBase::Constr&c) 
   1.886 +  {
   1.887 +    LpSolverBase::Constr tmp(c);
   1.888 +    ///\todo Create an own exception type.
   1.889 +    if(!isnan(tmp.upperBound())) throw LogicError();
   1.890 +    else tmp.upperBound()=n;
   1.891 +    return tmp;
   1.892 +  }
   1.893 +  ///\e
   1.894 +  
   1.895 +  ///\relates LpSolverBase::Constr
   1.896 +  ///
   1.897 +  inline LpSolverBase::Constr operator>=(const LpSolverBase::Constr& c,
   1.898 +					 const LpSolverBase::Value &n)
   1.899 +  {
   1.900 +    LpSolverBase::Constr tmp(c);
   1.901 +    ///\todo Create an own exception type.
   1.902 +    if(!isnan(tmp.lowerBound())) throw LogicError();
   1.903 +    else tmp.lowerBound()=n;
   1.904 +    return tmp;
   1.905 +  }
   1.906 +
   1.907 +
   1.908 +} //namespace lemon
   1.909 +
   1.910 +#endif //LEMON_LP_BASE_H