lemon/lp_base.h
author ladanyi
Mon, 23 May 2005 04:48:14 +0000
changeset 1435 8e85e6bbefdf
parent 1431 src/lemon/lp_base.h@ad44b1dd8013
child 1436 e0beb94d08bf
permissions -rw-r--r--
trunk/src/* move to trunk/
     1 /* -*- C++ -*-
     2  * lemon/lp_base.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_LP_BASE_H
    18 #define LEMON_LP_BASE_H
    19 
    20 #include<vector>
    21 #include<map>
    22 #include<limits>
    23 #include<cmath>
    24 
    25 #include<lemon/utility.h>
    26 #include<lemon/error.h>
    27 #include<lemon/invalid.h>
    28 
    29 //#include"lin_expr.h"
    30 
    31 ///\file
    32 ///\brief The interface of the LP solver interface.
    33 ///\ingroup gen_opt_group
    34 namespace lemon {
    35   
    36   ///Internal data structure to convert floating id's to fix one's
    37     
    38   ///\todo This might be implemented to be also usable in other places.
    39   class _FixId 
    40   {
    41     std::vector<int> index;
    42     std::vector<int> cross;
    43     int first_free;
    44   public:
    45     _FixId() : first_free(-1) {};
    46     ///Convert a floating id to a fix one
    47 
    48     ///\param n is a floating id
    49     ///\return the corresponding fix id
    50     int fixId(int n) {return cross[n];}
    51     ///Convert a fix id to a floating one
    52 
    53     ///\param n is a fix id
    54     ///\return the corresponding floating id
    55     int floatingId(int n) { return index[n];}
    56     ///Add a new floating id.
    57 
    58     ///\param n is a floating id
    59     ///\return the fix id of the new value
    60     ///\todo Multiple additions should also be handled.
    61     int insert(int n)
    62     {
    63       if(n>=int(cross.size())) {
    64 	cross.resize(n+1);
    65 	if(first_free==-1) {
    66 	  cross[n]=index.size();
    67 	  index.push_back(n);
    68 	}
    69 	else {
    70 	  cross[n]=first_free;
    71 	  int next=index[first_free];
    72 	  index[first_free]=n;
    73 	  first_free=next;
    74 	}
    75 	return cross[n];
    76       }
    77       ///\todo Create an own exception type.
    78       else throw LogicError(); //floatingId-s must form a continuous range;
    79     }
    80     ///Remove a fix id.
    81 
    82     ///\param n is a fix id
    83     ///
    84     void erase(int n) 
    85     {
    86       int fl=index[n];
    87       index[n]=first_free;
    88       first_free=n;
    89       for(int i=fl+1;i<int(cross.size());++i) {
    90 	cross[i-1]=cross[i];
    91 	index[cross[i]]--;
    92       }
    93       cross.pop_back();
    94     }
    95     ///An upper bound on the largest fix id.
    96 
    97     ///\todo Do we need this?
    98     ///
    99     std::size_t maxFixId() { return cross.size()-1; }
   100   
   101   };
   102     
   103   ///Common base class for LP solvers
   104   
   105   ///\todo Much more docs
   106   ///\ingroup gen_opt_group
   107   class LpSolverBase {
   108 
   109   public:
   110 
   111     ///\e
   112     enum SolveExitStatus {
   113       ///\e
   114       SOLVED = 0,
   115       ///\e
   116       UNSOLVED = 1
   117     };
   118       
   119     ///\e
   120     enum SolutionStatus {
   121       ///Feasible solution has'n been found (but may exist).
   122 
   123       ///\todo NOTFOUND might be a better name.
   124       ///
   125       UNDEFINED = 0,
   126       ///The problem has no feasible solution
   127       INFEASIBLE = 1,
   128       ///Feasible solution found
   129       FEASIBLE = 2,
   130       ///Optimal solution exists and found
   131       OPTIMAL = 3,
   132       ///The cost function is unbounded
   133 
   134       ///\todo Give a feasible solution and an infinite ray (and the
   135       ///corresponding bases)
   136       INFINITE = 4
   137     };
   138       
   139     ///The floating point type used by the solver
   140     typedef double Value;
   141     ///The infinity constant
   142     static const Value INF;
   143     ///The not a number constant
   144     static const Value NaN;
   145     
   146     ///Refer to a column of the LP.
   147 
   148     ///This type is used to refer to a column of the LP.
   149     ///
   150     ///Its value remains valid and correct even after the addition or erase of
   151     ///other columns.
   152     ///
   153     ///\todo Document what can one do with a Col (INVALID, comparing,
   154     ///it is similar to Node/Edge)
   155     class Col {
   156     protected:
   157       int id;
   158       friend class LpSolverBase;
   159     public:
   160       typedef Value ExprValue;
   161       typedef True LpSolverCol;
   162       Col() {}
   163       Col(const Invalid&) : id(-1) {}
   164       bool operator<(Col c) const  {return id<c.id;}
   165       bool operator==(Col c) const  {return id==c.id;}
   166       bool operator!=(Col c) const  {return id==c.id;}
   167     };
   168 
   169     ///Refer to a row of the LP.
   170 
   171     ///This type is used to refer to a row of the LP.
   172     ///
   173     ///Its value remains valid and correct even after the addition or erase of
   174     ///other rows.
   175     ///
   176     ///\todo Document what can one do with a Row (INVALID, comparing,
   177     ///it is similar to Node/Edge)
   178     class Row {
   179     protected:
   180       int id;
   181       friend class LpSolverBase;
   182     public:
   183       typedef Value ExprValue;
   184       typedef True LpSolverRow;
   185       Row() {}
   186       Row(const Invalid&) : id(-1) {}
   187       typedef True LpSolverRow;
   188       bool operator<(Row c) const  {return id<c.id;}
   189       bool operator==(Row c) const  {return id==c.id;}
   190       bool operator!=(Row c) const  {return id==c.id;} 
   191    };
   192     
   193     ///Linear expression of variables and a constant component
   194     
   195     ///This data structure strores a linear expression of the variables
   196     ///(\ref Col "Col"s) and also has a constant component.
   197     ///
   198     ///There are several ways to access and modify the contents of this
   199     ///container.
   200     ///- Its it fully compatible with \c std::map<Col,double>, so for expamle
   201     ///if \c e is an Expr and \c v and \c w are of type \ref Col, then you can
   202     ///read and modify the coefficients like
   203     ///these.
   204     ///\code
   205     ///e[v]=5;
   206     ///e[v]+=12;
   207     ///e.erase(v);
   208     ///\endcode
   209     ///or you can also iterate through its elements.
   210     ///\code
   211     ///double s=0;
   212     ///for(LpSolverBase::Expr::iterator i=e.begin();i!=e.end();++i)
   213     ///  s+=i->second;
   214     ///\endcode
   215     ///(This code computes the sum of all coefficients).
   216     ///- Numbers (<tt>double</tt>'s)
   217     ///and variables (\ref Col "Col"s) directly convert to an
   218     ///\ref Expr and the usual linear operations are defined so  
   219     ///\code
   220     ///v+w
   221     ///2*v-3.12*(v-w/2)+2
   222     ///v*2.1+(3*v+(v*12+w+6)*3)/2
   223     ///\endcode
   224     ///are valid \ref Expr "Expr"essions.
   225     ///The usual assignment operations are also defined.
   226     ///\code
   227     ///e=v+w;
   228     ///e+=2*v-3.12*(v-w/2)+2;
   229     ///e*=3.4;
   230     ///e/=5;
   231     ///\endcode
   232     ///- The constant member can be set and read by \ref constComp()
   233     ///\code
   234     ///e.constComp()=12;
   235     ///double c=e.constComp();
   236     ///\endcode
   237     ///
   238     ///\note \ref clear() not only sets all coefficients to 0 but also
   239     ///clears the constant components.
   240     ///
   241     ///\sa Constr
   242     ///
   243     class Expr : public std::map<Col,Value>
   244     {
   245     public:
   246       typedef LpSolverBase::Col Key; 
   247       typedef LpSolverBase::Value Value;
   248       
   249     protected:
   250       typedef std::map<Col,Value> Base;
   251       
   252       Value const_comp;
   253   public:
   254       typedef True IsLinExpression;
   255       ///\e
   256       Expr() : Base(), const_comp(0) { }
   257       ///\e
   258       Expr(const Key &v) : const_comp(0) {
   259 	Base::insert(std::make_pair(v, 1));
   260       }
   261       ///\e
   262       Expr(const Value &v) : const_comp(v) {}
   263       ///\e
   264       void set(const Key &v,const Value &c) {
   265 	Base::insert(std::make_pair(v, c));
   266       }
   267       ///\e
   268       Value &constComp() { return const_comp; }
   269       ///\e
   270       const Value &constComp() const { return const_comp; }
   271       
   272       ///Removes the components with zero coefficient.
   273       void simplify() {
   274 	for (Base::iterator i=Base::begin(); i!=Base::end();) {
   275 	  Base::iterator j=i;
   276 	  ++j;
   277 	  if ((*i).second==0) Base::erase(i);
   278 	  j=i;
   279 	}
   280       }
   281 
   282       ///Sets all coefficients and the constant component to 0.
   283       void clear() {
   284 	Base::clear();
   285 	const_comp=0;
   286       }
   287 
   288       ///\e
   289       Expr &operator+=(const Expr &e) {
   290 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   291 	  (*this)[j->first]+=j->second;
   292 	///\todo it might be speeded up using "hints"
   293 	const_comp+=e.const_comp;
   294 	return *this;
   295       }
   296       ///\e
   297       Expr &operator-=(const Expr &e) {
   298 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   299 	  (*this)[j->first]-=j->second;
   300 	const_comp-=e.const_comp;
   301 	return *this;
   302       }
   303       ///\e
   304       Expr &operator*=(const Value &c) {
   305 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   306 	  j->second*=c;
   307 	const_comp*=c;
   308 	return *this;
   309       }
   310       ///\e
   311       Expr &operator/=(const Value &c) {
   312 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   313 	  j->second/=c;
   314 	const_comp/=c;
   315 	return *this;
   316       }
   317     };
   318     
   319     ///Linear constraint
   320 
   321     ///This data stucture represents a linear constraint in the LP.
   322     ///Basically it is a linear expression with a lower or an upper bound
   323     ///(or both). These parts of the constraint can be obtained by the member
   324     ///functions \ref expr(), \ref lowerBound() and \ref upperBound(),
   325     ///respectively.
   326     ///There are two ways to construct a constraint.
   327     ///- You can set the linear expression and the bounds directly
   328     ///  by the functions above.
   329     ///- The operators <tt>\<=</tt>, <tt>==</tt> and  <tt>\>=</tt>
   330     ///  are defined between expressions, or even between constraints whenever
   331     ///  it makes sense. Therefore if \c e and \c f are linear expressions and
   332     ///  \c s and \c t are numbers, then the followings are valid expressions
   333     ///  and thus they can be used directly e.g. in \ref addRow() whenever
   334     ///  it makes sense.
   335     ///  \code
   336     ///  e<=s
   337     ///  e<=f
   338     ///  s<=e<=t
   339     ///  e>=t
   340     ///  \endcode
   341     ///\warning The validity of a constraint is checked only at run time, so
   342     ///e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will compile, but will throw a
   343     ///\ref LogicError exception.
   344     class Constr
   345     {
   346     public:
   347       typedef LpSolverBase::Expr Expr;
   348       typedef Expr::Key Key;
   349       typedef Expr::Value Value;
   350       
   351 //       static const Value INF;
   352 //       static const Value NaN;
   353 
   354     protected:
   355       Expr _expr;
   356       Value _lb,_ub;
   357     public:
   358       ///\e
   359       Constr() : _expr(), _lb(NaN), _ub(NaN) {}
   360       ///\e
   361       Constr(Value lb,const Expr &e,Value ub) :
   362 	_expr(e), _lb(lb), _ub(ub) {}
   363       ///\e
   364       Constr(const Expr &e,Value ub) : 
   365 	_expr(e), _lb(NaN), _ub(ub) {}
   366       ///\e
   367       Constr(Value lb,const Expr &e) :
   368 	_expr(e), _lb(lb), _ub(NaN) {}
   369       ///\e
   370       Constr(const Expr &e) : 
   371 	_expr(e), _lb(NaN), _ub(NaN) {}
   372       ///\e
   373       void clear() 
   374       {
   375 	_expr.clear();
   376 	_lb=_ub=NaN;
   377       }
   378 
   379       ///Reference to the linear expression 
   380       Expr &expr() { return _expr; }
   381       ///Cont reference to the linear expression 
   382       const Expr &expr() const { return _expr; }
   383       ///Reference to the lower bound.
   384 
   385       ///\return
   386       ///- -\ref INF: the constraint is lower unbounded.
   387       ///- -\ref NaN: lower bound has not been set.
   388       ///- finite number: the lower bound
   389       Value &lowerBound() { return _lb; }
   390       ///The const version of \ref lowerBound()
   391       const Value &lowerBound() const { return _lb; }
   392       ///Reference to the upper bound.
   393 
   394       ///\return
   395       ///- -\ref INF: the constraint is upper unbounded.
   396       ///- -\ref NaN: upper bound has not been set.
   397       ///- finite number: the upper bound
   398       Value &upperBound() { return _ub; }
   399       ///The const version of \ref upperBound()
   400       const Value &upperBound() const { return _ub; }
   401       ///Is the constraint lower bounded?
   402       bool lowerBounded() const { 
   403 	using namespace std;
   404 	return finite(_lb);
   405       }
   406       ///Is the constraint upper bounded?
   407       bool upperBounded() const {
   408 	using namespace std;
   409 	return finite(_ub);
   410       }
   411     };
   412     
   413 
   414   protected:
   415     _FixId rows;
   416     _FixId cols;
   417 
   418     //Abstract virtual functions
   419     virtual LpSolverBase &_newLp() = 0;
   420     virtual LpSolverBase &_copyLp() = 0;
   421 
   422     virtual int _addCol() = 0;
   423     virtual int _addRow() = 0;
   424     virtual void _setRowCoeffs(int i, 
   425 			       int length,
   426                                int  const * indices, 
   427                                Value  const * values ) = 0;
   428     virtual void _setColCoeffs(int i, 
   429 			       int length,
   430                                int  const * indices, 
   431                                Value  const * values ) = 0;
   432     virtual void _setCoeff(int row, int col, Value value) = 0;
   433     virtual void _setColLowerBound(int i, Value value) = 0;
   434     virtual void _setColUpperBound(int i, Value value) = 0;
   435 //     virtual void _setRowLowerBound(int i, Value value) = 0;
   436 //     virtual void _setRowUpperBound(int i, Value value) = 0;
   437     virtual void _setRowBounds(int i, Value lower, Value upper) = 0;
   438     virtual void _setObjCoeff(int i, Value obj_coef) = 0;
   439     virtual void _clearObj()=0;
   440 //     virtual void _setObj(int length,
   441 //                          int  const * indices, 
   442 //                          Value  const * values ) = 0;
   443     virtual SolveExitStatus _solve() = 0;
   444     virtual Value _getPrimal(int i) = 0;
   445     virtual Value _getPrimalValue() = 0;
   446     virtual SolutionStatus _getPrimalStatus() = 0;
   447     virtual void _setMax() = 0;
   448     virtual void _setMin() = 0;
   449     
   450     //Own protected stuff
   451     
   452     //Constant component of the objective function
   453     Value obj_const_comp;
   454     
   455 
   456 
   457     
   458   public:
   459 
   460     ///\e
   461     LpSolverBase() : obj_const_comp(0) {}
   462 
   463     ///\e
   464     virtual ~LpSolverBase() {}
   465 
   466     ///Creates a new LP problem
   467     LpSolverBase &newLp() {return _newLp();}
   468     ///Makes a copy of the LP problem
   469     LpSolverBase &copyLp() {return _copyLp();}
   470     
   471     ///\name Build up and modify of the LP
   472 
   473     ///@{
   474 
   475     ///Add a new empty column (i.e a new variable) to the LP
   476     Col addCol() { Col c; c.id=cols.insert(_addCol()); return c;}
   477 
   478     ///\brief Adds several new columns
   479     ///(i.e a variables) at once
   480     ///
   481     ///This magic function takes a container as its argument
   482     ///and fills its elements
   483     ///with new columns (i.e. variables)
   484     ///\param t can be
   485     ///- a standard STL compatible iterable container with
   486     ///\ref Col as its \c values_type
   487     ///like
   488     ///\code
   489     ///std::vector<LpSolverBase::Col>
   490     ///std::list<LpSolverBase::Col>
   491     ///\endcode
   492     ///- a standard STL compatible iterable container with
   493     ///\ref Col as its \c mapped_type
   494     ///like
   495     ///\code
   496     ///std::map<AnyType,LpSolverBase::Col>
   497     ///\endcode
   498     ///- an iterable lemon \ref concept::WriteMap "write map" like 
   499     ///\code
   500     ///ListGraph::NodeMap<LpSolverBase::Col>
   501     ///ListGraph::EdgeMap<LpSolverBase::Col>
   502     ///\endcode
   503     ///\return The number of the created column.
   504 #ifdef DOXYGEN
   505     template<class T>
   506     int addColSet(T &t) { return 0;} 
   507 #else
   508     template<class T>
   509     typename enable_if<typename T::value_type::LpSolverCol,int>::type
   510     addColSet(T &t,dummy<0> = 0) {
   511       int s=0;
   512       for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;}
   513       return s;
   514     }
   515     template<class T>
   516     typename enable_if<typename T::value_type::second_type::LpSolverCol,
   517 		       int>::type
   518     addColSet(T &t,dummy<1> = 1) { 
   519       int s=0;
   520       for(typename T::iterator i=t.begin();i!=t.end();++i) {
   521 	i->second=addCol();
   522 	s++;
   523       }
   524       return s;
   525     }
   526     template<class T>
   527     typename enable_if<typename T::ValueSet::value_type::LpSolverCol,
   528 		       int>::type
   529     addColSet(T &t,dummy<2> = 2) { 
   530       ///\bug <tt>return addColSet(t.valueSet());</tt> should also work.
   531       int s=0;
   532       for(typename T::ValueSet::iterator i=t.valueSet().begin();
   533 	  i!=t.valueSet().end();
   534 	  ++i)
   535 	{
   536 	  *i=addCol();
   537 	  s++;
   538 	}
   539       return s;
   540     }
   541 #endif
   542 
   543     ///Add a new empty row (i.e a new constaint) to the LP
   544 
   545     ///This function adds a new empty row (i.e a new constaint) to the LP.
   546     ///\return The created row
   547     Row addRow() { Row r; r.id=rows.insert(_addRow()); return r;}
   548 
   549     ///Set a row (i.e a constaint) of the LP
   550 
   551     ///\param r is the row to be modified
   552     ///\param l is lower bound (-\ref INF means no bound)
   553     ///\param e is a linear expression (see \ref Expr)
   554     ///\param u is the upper bound (\ref INF means no bound)
   555     ///\bug This is a temportary function. The interface will change to
   556     ///a better one.
   557     ///\todo Option to control whether a constraint with a single variable is
   558     ///added or not.
   559     void setRow(Row r, Value l,const Expr &e, Value u) {
   560       std::vector<int> indices;
   561       std::vector<Value> values;
   562       indices.push_back(0);
   563       values.push_back(0);
   564       for(Expr::const_iterator i=e.begin(); i!=e.end(); ++i)
   565 	if((*i).second!=0) { ///\bug EPSILON would be necessary here!!!
   566 	  indices.push_back(cols.floatingId((*i).first.id));
   567 	  values.push_back((*i).second);
   568 	}
   569       _setRowCoeffs(rows.floatingId(r.id),indices.size()-1,
   570 		    &indices[0],&values[0]);
   571 //       _setRowLowerBound(rows.floatingId(r.id),l-e.constComp());
   572 //       _setRowUpperBound(rows.floatingId(r.id),u-e.constComp());
   573        _setRowBounds(rows.floatingId(r.id),l-e.constComp(),u-e.constComp());
   574     }
   575 
   576     ///Set a row (i.e a constaint) of the LP
   577 
   578     ///\param r is the row to be modified
   579     ///\param c is a linear expression (see \ref Constr)
   580     void setRow(Row r, const Constr &c) {
   581       setRow(r,
   582 	     c.lowerBounded()?c.lowerBound():-INF,
   583 	     c.expr(),
   584 	     c.upperBounded()?c.upperBound():INF);
   585     }
   586 
   587     ///Add a new row (i.e a new constaint) to the LP
   588 
   589     ///\param l is the lower bound (-\ref INF means no bound)
   590     ///\param e is a linear expression (see \ref Expr)
   591     ///\param u is the upper bound (\ref INF means no bound)
   592     ///\return The created row.
   593     ///\bug This is a temportary function. The interface will change to
   594     ///a better one.
   595     Row addRow(Value l,const Expr &e, Value u) {
   596       Row r=addRow();
   597       setRow(r,l,e,u);
   598       return r;
   599     }
   600 
   601     ///Add a new row (i.e a new constaint) to the LP
   602 
   603     ///\param c is a linear expression (see \ref Constr)
   604     ///\return The created row.
   605     Row addRow(const Constr &c) {
   606       Row r=addRow();
   607       setRow(r,c);
   608       return r;
   609     }
   610 
   611     /// Set the lower bound of a column (i.e a variable)
   612 
   613     /// The upper bound of a variable (column) has to be given by an 
   614     /// extended number of type Value, i.e. a finite number of type 
   615     /// Value or -\ref INF.
   616     void colLowerBound(Col c, Value value) {
   617       _setColLowerBound(cols.floatingId(c.id),value);
   618     }
   619     /// Set the upper bound of a column (i.e a variable)
   620 
   621     /// The upper bound of a variable (column) has to be given by an 
   622     /// extended number of type Value, i.e. a finite number of type 
   623     /// Value or \ref INF.
   624     void colUpperBound(Col c, Value value) {
   625       _setColUpperBound(cols.floatingId(c.id),value);
   626     };
   627     /// Set the lower and the upper bounds of a column (i.e a variable)
   628 
   629     /// The lower and the upper bounds of
   630     /// a variable (column) have to be given by an 
   631     /// extended number of type Value, i.e. a finite number of type 
   632     /// Value, -\ref INF or \ref INF.
   633     void colBounds(Col c, Value lower, Value upper) {
   634       _setColLowerBound(cols.floatingId(c.id),lower);
   635       _setColUpperBound(cols.floatingId(c.id),upper);
   636     }
   637     
   638 //     /// Set the lower bound of a row (i.e a constraint)
   639 
   640 //     /// The lower bound of a linear expression (row) has to be given by an 
   641 //     /// extended number of type Value, i.e. a finite number of type 
   642 //     /// Value or -\ref INF.
   643 //     void rowLowerBound(Row r, Value value) {
   644 //       _setRowLowerBound(rows.floatingId(r.id),value);
   645 //     };
   646 //     /// Set the upper bound of a row (i.e a constraint)
   647 
   648 //     /// The upper bound of a linear expression (row) has to be given by an 
   649 //     /// extended number of type Value, i.e. a finite number of type 
   650 //     /// Value or \ref INF.
   651 //     void rowUpperBound(Row r, Value value) {
   652 //       _setRowUpperBound(rows.floatingId(r.id),value);
   653 //     };
   654 
   655     /// Set the lower and the upper bounds of a row (i.e a constraint)
   656 
   657     /// The lower and the upper bounds of
   658     /// a constraint (row) have to be given by an 
   659     /// extended number of type Value, i.e. a finite number of type 
   660     /// Value, -\ref INF or \ref INF.
   661     void rowBounds(Row c, Value lower, Value upper) {
   662       _setRowBounds(rows.floatingId(c.id),lower, upper);
   663       // _setRowUpperBound(rows.floatingId(c.id),upper);
   664     }
   665     
   666     ///Set an element of the objective function
   667     void objCoeff(Col c, Value v) {_setObjCoeff(cols.floatingId(c.id),v); };
   668     ///Set the objective function
   669     
   670     ///\param e is a linear expression of type \ref Expr.
   671     ///\bug The previous objective function is not cleared!
   672     void setObj(Expr e) {
   673       _clearObj();
   674       for (Expr::iterator i=e.begin(); i!=e.end(); ++i)
   675 	objCoeff((*i).first,(*i).second);
   676       obj_const_comp=e.constComp();
   677     }
   678 
   679     ///Maximize
   680     void max() { _setMax(); }
   681     ///Minimize
   682     void min() { _setMin(); }
   683 
   684     
   685     ///@}
   686 
   687 
   688     ///\name Solve the LP
   689 
   690     ///@{
   691 
   692     ///\e
   693     SolveExitStatus solve() { return _solve(); }
   694     
   695     ///@}
   696     
   697     ///\name Obtain the solution
   698 
   699     ///@{
   700 
   701     ///\e
   702     SolutionStatus primalStatus() {
   703       return _getPrimalStatus();
   704     }
   705 
   706     ///\e
   707     Value primal(Col c) { return _getPrimal(cols.floatingId(c.id)); }
   708 
   709     ///\e
   710 
   711     ///\return
   712     ///- \ref INF or -\ref INF means either infeasibility or unboundedness
   713     /// of the primal problem, depending on whether we minimize or maximize.
   714     ///- \ref NaN if no primal solution is found.
   715     ///- The (finite) objective value if an optimal solution is found.
   716     Value primalValue() { return _getPrimalValue()+obj_const_comp;}
   717     ///@}
   718     
   719   };  
   720 
   721   ///\e
   722   
   723   ///\relates LpSolverBase::Expr
   724   ///
   725   inline LpSolverBase::Expr operator+(const LpSolverBase::Expr &a,
   726 				      const LpSolverBase::Expr &b) 
   727   {
   728     LpSolverBase::Expr tmp(a);
   729     tmp+=b; ///\todo Doesn't STL have some special 'merge' algorithm?
   730     return tmp;
   731   }
   732   ///\e
   733   
   734   ///\relates LpSolverBase::Expr
   735   ///
   736   inline LpSolverBase::Expr operator-(const LpSolverBase::Expr &a,
   737 				      const LpSolverBase::Expr &b) 
   738   {
   739     LpSolverBase::Expr tmp(a);
   740     tmp-=b; ///\todo Doesn't STL have some special 'merge' algorithm?
   741     return tmp;
   742   }
   743   ///\e
   744   
   745   ///\relates LpSolverBase::Expr
   746   ///
   747   inline LpSolverBase::Expr operator*(const LpSolverBase::Expr &a,
   748 				      const LpSolverBase::Value &b) 
   749   {
   750     LpSolverBase::Expr tmp(a);
   751     tmp*=b; ///\todo Doesn't STL have some special 'merge' algorithm?
   752     return tmp;
   753   }
   754   
   755   ///\e
   756   
   757   ///\relates LpSolverBase::Expr
   758   ///
   759   inline LpSolverBase::Expr operator*(const LpSolverBase::Value &a,
   760 				      const LpSolverBase::Expr &b) 
   761   {
   762     LpSolverBase::Expr tmp(b);
   763     tmp*=a; ///\todo Doesn't STL have some special 'merge' algorithm?
   764     return tmp;
   765   }
   766   ///\e
   767   
   768   ///\relates LpSolverBase::Expr
   769   ///
   770   inline LpSolverBase::Expr operator/(const LpSolverBase::Expr &a,
   771 				      const LpSolverBase::Value &b) 
   772   {
   773     LpSolverBase::Expr tmp(a);
   774     tmp/=b; ///\todo Doesn't STL have some special 'merge' algorithm?
   775     return tmp;
   776   }
   777   
   778   ///\e
   779   
   780   ///\relates LpSolverBase::Constr
   781   ///
   782   inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
   783 					 const LpSolverBase::Expr &f) 
   784   {
   785     return LpSolverBase::Constr(-LpSolverBase::INF,e-f,0);
   786   }
   787 
   788   ///\e
   789   
   790   ///\relates LpSolverBase::Constr
   791   ///
   792   inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &e,
   793 					 const LpSolverBase::Expr &f) 
   794   {
   795     return LpSolverBase::Constr(e,f);
   796   }
   797 
   798   ///\e
   799   
   800   ///\relates LpSolverBase::Constr
   801   ///
   802   inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
   803 					 const LpSolverBase::Value &f) 
   804   {
   805     return LpSolverBase::Constr(e,f);
   806   }
   807 
   808   ///\e
   809   
   810   ///\relates LpSolverBase::Constr
   811   ///
   812   inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
   813 					 const LpSolverBase::Expr &f) 
   814   {
   815     return LpSolverBase::Constr(-LpSolverBase::INF,f-e,0);
   816   }
   817 
   818 
   819   ///\e
   820   
   821   ///\relates LpSolverBase::Constr
   822   ///
   823   inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &e,
   824 					 const LpSolverBase::Expr &f) 
   825   {
   826     return LpSolverBase::Constr(f,e);
   827   }
   828 
   829 
   830   ///\e
   831   
   832   ///\relates LpSolverBase::Constr
   833   ///
   834   inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
   835 					 const LpSolverBase::Value &f) 
   836   {
   837     return LpSolverBase::Constr(f,e);
   838   }
   839 
   840   ///\e
   841   
   842   ///\relates LpSolverBase::Constr
   843   ///
   844   inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e,
   845 					 const LpSolverBase::Expr &f) 
   846   {
   847     return LpSolverBase::Constr(0,e-f,0);
   848   }
   849 
   850   ///\e
   851   
   852   ///\relates LpSolverBase::Constr
   853   ///
   854   inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &n,
   855 					 const LpSolverBase::Constr&c) 
   856   {
   857     LpSolverBase::Constr tmp(c);
   858     ///\todo Create an own exception type.
   859     if(!isnan(tmp.lowerBound())) throw LogicError();
   860     else tmp.lowerBound()=n;
   861     return tmp;
   862   }
   863   ///\e
   864   
   865   ///\relates LpSolverBase::Constr
   866   ///
   867   inline LpSolverBase::Constr operator<=(const LpSolverBase::Constr& c,
   868 					 const LpSolverBase::Value &n)
   869   {
   870     LpSolverBase::Constr tmp(c);
   871     ///\todo Create an own exception type.
   872     if(!isnan(tmp.upperBound())) throw LogicError();
   873     else tmp.upperBound()=n;
   874     return tmp;
   875   }
   876 
   877   ///\e
   878   
   879   ///\relates LpSolverBase::Constr
   880   ///
   881   inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &n,
   882 					 const LpSolverBase::Constr&c) 
   883   {
   884     LpSolverBase::Constr tmp(c);
   885     ///\todo Create an own exception type.
   886     if(!isnan(tmp.upperBound())) throw LogicError();
   887     else tmp.upperBound()=n;
   888     return tmp;
   889   }
   890   ///\e
   891   
   892   ///\relates LpSolverBase::Constr
   893   ///
   894   inline LpSolverBase::Constr operator>=(const LpSolverBase::Constr& c,
   895 					 const LpSolverBase::Value &n)
   896   {
   897     LpSolverBase::Constr tmp(c);
   898     ///\todo Create an own exception type.
   899     if(!isnan(tmp.lowerBound())) throw LogicError();
   900     else tmp.lowerBound()=n;
   901     return tmp;
   902   }
   903 
   904 
   905 } //namespace lemon
   906 
   907 #endif //LEMON_LP_BASE_H