lemon/max_matching.h
changeset 2548 a3ba22ebccc6
parent 2505 1bb471764ab8
child 2549 88b81ec599ed
     1.1 --- a/lemon/max_matching.h	Thu Dec 27 13:40:16 2007 +0000
     1.2 +++ b/lemon/max_matching.h	Fri Dec 28 11:00:51 2007 +0000
     1.3 @@ -19,10 +19,14 @@
     1.4  #ifndef LEMON_MAX_MATCHING_H
     1.5  #define LEMON_MAX_MATCHING_H
     1.6  
     1.7 +#include <vector>
     1.8  #include <queue>
     1.9 +#include <set>
    1.10 +
    1.11  #include <lemon/bits/invalid.h>
    1.12  #include <lemon/unionfind.h>
    1.13  #include <lemon/graph_utils.h>
    1.14 +#include <lemon/bin_heap.h>
    1.15  
    1.16  ///\ingroup matching
    1.17  ///\file
    1.18 @@ -31,7 +35,7 @@
    1.19  namespace lemon {
    1.20  
    1.21    ///\ingroup matching
    1.22 -
    1.23 +  ///
    1.24    ///\brief Edmonds' alternating forest maximum matching algorithm.
    1.25    ///
    1.26    ///This class provides Edmonds' alternating forest matching
    1.27 @@ -618,6 +622,2500 @@
    1.28      }
    1.29  
    1.30    };
    1.31 +
    1.32 +  /// \ingroup matching
    1.33 +  ///
    1.34 +  /// \brief Weighted matching in general undirected graphs
    1.35 +  ///
    1.36 +  /// This class provides an efficient implementation of Edmond's
    1.37 +  /// maximum weighted matching algorithm. The implementation is based
    1.38 +  /// on extensive use of priority queues and provides
    1.39 +  /// \f$O(nm\log(n))\f$ time complexity.
    1.40 +  ///
    1.41 +  /// The maximum weighted matching problem is to find undirected
    1.42 +  /// edges in the graph with maximum overall weight and no two of
    1.43 +  /// them shares their endpoints. The problem can be formulated with
    1.44 +  /// the next linear program: 
    1.45 +  /// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f]
    1.46 +  ///\f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} \quad \forall B\in\mathcal{O}\f] 
    1.47 +  /// \f[x_e \ge 0\quad \forall e\in E\f]
    1.48 +  /// \f[\max \sum_{e\in E}x_ew_e\f]
    1.49 +  /// where \f$\delta(X)\f$ is the set of edges incident to a node in
    1.50 +  /// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both endpoints in
    1.51 +  /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality subsets of
    1.52 +  /// the nodes.
    1.53 +  ///
    1.54 +  /// The algorithm calculates an optimal matching and a proof of the
    1.55 +  /// optimality. The solution of the dual problem can be used to check
    1.56 +  /// the result of the algorithm. The dual linear problem is the next:
    1.57 +  /// \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge w_{uv} \quad \forall uv\in E\f]
    1.58 +  /// \f[y_u \ge 0 \quad \forall u \in V\f]
    1.59 +  /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
    1.60 +  /// \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}\frac{\vert B \vert - 1}{2}z_B\f]
    1.61 +  ///
    1.62 +  /// The algorithm can be executed with \c run() or the \c init() and
    1.63 +  /// then the \c start() member functions. After it the matching can
    1.64 +  /// be asked with \c matching() or mate() functions. The dual
    1.65 +  /// solution can be get with \c nodeValue(), \c blossomNum() and \c
    1.66 +  /// blossomValue() members and \ref MaxWeightedMatching::BlossomIt
    1.67 +  /// "BlossomIt" nested class which is able to iterate on the nodes
    1.68 +  /// of a blossom. If the value type is integral then the dual
    1.69 +  /// solution is multiplied by \ref MaxWeightedMatching::dualScale "4".
    1.70 +  ///
    1.71 +  /// \author Balazs Dezso
    1.72 +  template <typename _UGraph, 
    1.73 +	    typename _WeightMap = typename _UGraph::template UEdgeMap<int> >
    1.74 +  class MaxWeightedMatching {
    1.75 +  public:
    1.76 +
    1.77 +    typedef _UGraph UGraph;
    1.78 +    typedef _WeightMap WeightMap;
    1.79 +    typedef typename WeightMap::Value Value;
    1.80 +
    1.81 +    /// \brief Scaling factor for dual solution
    1.82 +    ///
    1.83 +    /// Scaling factor for dual solution, it is equal to 4 or 1
    1.84 +    /// according to the value type.
    1.85 +    static const int dualScale = 
    1.86 +      std::numeric_limits<Value>::is_integer ? 4 : 1;
    1.87 +
    1.88 +    typedef typename UGraph::template NodeMap<typename UGraph::Edge> 
    1.89 +    MatchingMap;
    1.90 +    
    1.91 +  private:
    1.92 +
    1.93 +    UGRAPH_TYPEDEFS(typename UGraph);
    1.94 +
    1.95 +    typedef typename UGraph::template NodeMap<Value> NodePotential;
    1.96 +    typedef std::vector<Node> BlossomNodeList;
    1.97 +
    1.98 +    struct BlossomVariable {
    1.99 +      int begin, end;
   1.100 +      Value value;
   1.101 +      
   1.102 +      BlossomVariable(int _begin, int _end, Value _value)
   1.103 +        : begin(_begin), end(_end), value(_value) {}
   1.104 +
   1.105 +    };
   1.106 +
   1.107 +    typedef std::vector<BlossomVariable> BlossomPotential;
   1.108 +
   1.109 +    const UGraph& _ugraph;
   1.110 +    const WeightMap& _weight;
   1.111 +
   1.112 +    MatchingMap* _matching;
   1.113 +
   1.114 +    NodePotential* _node_potential;
   1.115 +
   1.116 +    BlossomPotential _blossom_potential;
   1.117 +    BlossomNodeList _blossom_node_list;
   1.118 +
   1.119 +    int _node_num;
   1.120 +    int _blossom_num;
   1.121 +
   1.122 +    typedef typename UGraph::template NodeMap<int> NodeIntMap;
   1.123 +    typedef typename UGraph::template EdgeMap<int> EdgeIntMap;
   1.124 +    typedef typename UGraph::template UEdgeMap<int> UEdgeIntMap;
   1.125 +    typedef IntegerMap<int> IntIntMap;
   1.126 +
   1.127 +    enum Status {
   1.128 +      EVEN = -1, MATCHED = 0, ODD = 1, UNMATCHED = -2
   1.129 +    };
   1.130 +
   1.131 +    typedef HeapUnionFind<Value, NodeIntMap> BlossomSet;
   1.132 +    struct BlossomData {
   1.133 +      int tree;
   1.134 +      Status status;
   1.135 +      Edge pred, next;
   1.136 +      Value pot, offset;
   1.137 +      Node base;
   1.138 +    };
   1.139 +
   1.140 +    NodeIntMap *_blossom_index;
   1.141 +    BlossomSet *_blossom_set;
   1.142 +    IntegerMap<BlossomData>* _blossom_data;
   1.143 +
   1.144 +    NodeIntMap *_node_index;
   1.145 +    EdgeIntMap *_node_heap_index;
   1.146 +
   1.147 +    struct NodeData {
   1.148 +      
   1.149 +      NodeData(EdgeIntMap& node_heap_index) 
   1.150 +	: heap(node_heap_index) {}
   1.151 +      
   1.152 +      int blossom;
   1.153 +      Value pot;
   1.154 +      BinHeap<Value, EdgeIntMap> heap;
   1.155 +      std::map<int, Edge> heap_index;
   1.156 +      
   1.157 +      int tree;
   1.158 +    };
   1.159 +
   1.160 +    IntegerMap<NodeData>* _node_data;
   1.161 +
   1.162 +    typedef ExtendFindEnum<IntIntMap> TreeSet;
   1.163 +
   1.164 +    IntIntMap *_tree_set_index;
   1.165 +    TreeSet *_tree_set;
   1.166 +
   1.167 +    NodeIntMap *_delta1_index;
   1.168 +    BinHeap<Value, NodeIntMap> *_delta1;
   1.169 +
   1.170 +    IntIntMap *_delta2_index;
   1.171 +    BinHeap<Value, IntIntMap> *_delta2;
   1.172 +    
   1.173 +    UEdgeIntMap *_delta3_index;
   1.174 +    BinHeap<Value, UEdgeIntMap> *_delta3;
   1.175 +
   1.176 +    IntIntMap *_delta4_index;
   1.177 +    BinHeap<Value, IntIntMap> *_delta4;
   1.178 +
   1.179 +    Value _delta_sum;
   1.180 +
   1.181 +    void createStructures() {
   1.182 +      _node_num = countNodes(_ugraph); 
   1.183 +      _blossom_num = _node_num * 3 / 2;
   1.184 +
   1.185 +      if (!_matching) {
   1.186 +	_matching = new MatchingMap(_ugraph);
   1.187 +      }
   1.188 +      if (!_node_potential) {
   1.189 +	_node_potential = new NodePotential(_ugraph);
   1.190 +      }
   1.191 +      if (!_blossom_set) {
   1.192 +	_blossom_index = new NodeIntMap(_ugraph);
   1.193 +	_blossom_set = new BlossomSet(*_blossom_index);
   1.194 +	_blossom_data = new IntegerMap<BlossomData>(_blossom_num);
   1.195 +      }
   1.196 +
   1.197 +      if (!_node_index) {
   1.198 +	_node_index = new NodeIntMap(_ugraph);
   1.199 +	_node_heap_index = new EdgeIntMap(_ugraph);
   1.200 +	_node_data = new IntegerMap<NodeData>(_node_num, 
   1.201 +					      NodeData(*_node_heap_index));
   1.202 +      }
   1.203 +
   1.204 +      if (!_tree_set) {
   1.205 +	_tree_set_index = new IntIntMap(_blossom_num);
   1.206 +	_tree_set = new TreeSet(*_tree_set_index);
   1.207 +      }
   1.208 +      if (!_delta1) {
   1.209 +	_delta1_index = new NodeIntMap(_ugraph);
   1.210 +	_delta1 = new BinHeap<Value, NodeIntMap>(*_delta1_index);
   1.211 +      }
   1.212 +      if (!_delta2) {
   1.213 +	_delta2_index = new IntIntMap(_blossom_num);
   1.214 +	_delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
   1.215 +      }
   1.216 +      if (!_delta3) {
   1.217 +	_delta3_index = new UEdgeIntMap(_ugraph);
   1.218 +	_delta3 = new BinHeap<Value, UEdgeIntMap>(*_delta3_index);
   1.219 +      }
   1.220 +      if (!_delta4) {
   1.221 +	_delta4_index = new IntIntMap(_blossom_num);
   1.222 +	_delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
   1.223 +      }
   1.224 +    }
   1.225 +
   1.226 +    void destroyStructures() {
   1.227 +      _node_num = countNodes(_ugraph); 
   1.228 +      _blossom_num = _node_num * 3 / 2;
   1.229 +
   1.230 +      if (_matching) {
   1.231 +	delete _matching;
   1.232 +      }
   1.233 +      if (_node_potential) {
   1.234 +	delete _node_potential;
   1.235 +      }
   1.236 +      if (_blossom_set) {
   1.237 +	delete _blossom_index;
   1.238 +	delete _blossom_set;
   1.239 +	delete _blossom_data;
   1.240 +      }
   1.241 +
   1.242 +      if (_node_index) {
   1.243 +	delete _node_index;
   1.244 +	delete _node_heap_index;
   1.245 +	delete _node_data;			      
   1.246 +      }
   1.247 +
   1.248 +      if (_tree_set) {
   1.249 +	delete _tree_set_index;
   1.250 +	delete _tree_set;
   1.251 +      }
   1.252 +      if (_delta1) {
   1.253 +	delete _delta1_index;
   1.254 +	delete _delta1;
   1.255 +      }
   1.256 +      if (_delta2) {
   1.257 +	delete _delta2_index;
   1.258 +	delete _delta2;
   1.259 +      }
   1.260 +      if (_delta3) {
   1.261 +	delete _delta3_index;
   1.262 +	delete _delta3;
   1.263 +      }
   1.264 +      if (_delta4) {
   1.265 +	delete _delta4_index;
   1.266 +	delete _delta4;
   1.267 +      }
   1.268 +    }
   1.269 +
   1.270 +    void matchedToEven(int blossom, int tree) {
   1.271 +      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
   1.272 +	_delta2->erase(blossom);
   1.273 +      }
   1.274 +
   1.275 +      if (!_blossom_set->trivial(blossom)) {
   1.276 +	(*_blossom_data)[blossom].pot -= 
   1.277 +	  2 * (_delta_sum - (*_blossom_data)[blossom].offset);
   1.278 +      }
   1.279 +
   1.280 +      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); 
   1.281 +	   n != INVALID; ++n) {
   1.282 +
   1.283 +	_blossom_set->increase(n, std::numeric_limits<Value>::max());
   1.284 +	int ni = (*_node_index)[n];
   1.285 +
   1.286 +	(*_node_data)[ni].heap.clear();
   1.287 +	(*_node_data)[ni].heap_index.clear();
   1.288 +
   1.289 +	(*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset;
   1.290 +
   1.291 +	_delta1->push(n, (*_node_data)[ni].pot);
   1.292 +
   1.293 +	for (InEdgeIt e(_ugraph, n); e != INVALID; ++e) {
   1.294 +	  Node v = _ugraph.source(e);
   1.295 +	  int vb = _blossom_set->find(v);
   1.296 +	  int vi = (*_node_index)[v];
   1.297 +
   1.298 +	  Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - 
   1.299 +	    dualScale * _weight[e];
   1.300 +
   1.301 +	  if ((*_blossom_data)[vb].status == EVEN) {
   1.302 +	    if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
   1.303 +	      _delta3->push(e, rw / 2);
   1.304 +	    }
   1.305 +	  } else if ((*_blossom_data)[vb].status == UNMATCHED) {
   1.306 +	    if (_delta3->state(e) != _delta3->IN_HEAP) {
   1.307 +	      _delta3->push(e, rw);
   1.308 +	    }	    
   1.309 +	  } else {
   1.310 +	    typename std::map<int, Edge>::iterator it = 
   1.311 +	      (*_node_data)[vi].heap_index.find(tree);	  
   1.312 +
   1.313 +	    if (it != (*_node_data)[vi].heap_index.end()) {
   1.314 +	      if ((*_node_data)[vi].heap[it->second] > rw) {
   1.315 +		(*_node_data)[vi].heap.replace(it->second, e);
   1.316 +		(*_node_data)[vi].heap.decrease(e, rw);
   1.317 +		it->second = e;
   1.318 +	      }
   1.319 +	    } else {
   1.320 +	      (*_node_data)[vi].heap.push(e, rw);
   1.321 +	      (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
   1.322 +	    }
   1.323 +
   1.324 +	    if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
   1.325 +	      _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
   1.326 +
   1.327 +	      if ((*_blossom_data)[vb].status == MATCHED) {
   1.328 +		if (_delta2->state(vb) != _delta2->IN_HEAP) {
   1.329 +		  _delta2->push(vb, _blossom_set->classPrio(vb) -
   1.330 +			       (*_blossom_data)[vb].offset);
   1.331 +		} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
   1.332 +			   (*_blossom_data)[vb].offset){
   1.333 +		  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
   1.334 +				   (*_blossom_data)[vb].offset);
   1.335 +		}
   1.336 +	      }
   1.337 +	    }
   1.338 +	  }
   1.339 +	}
   1.340 +      }
   1.341 +      (*_blossom_data)[blossom].offset = 0;
   1.342 +    }
   1.343 +
   1.344 +    void matchedToOdd(int blossom) {
   1.345 +      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
   1.346 +	_delta2->erase(blossom);
   1.347 +      }
   1.348 +      (*_blossom_data)[blossom].offset += _delta_sum;
   1.349 +      if (!_blossom_set->trivial(blossom)) {
   1.350 +	_delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 + 
   1.351 +		     (*_blossom_data)[blossom].offset);
   1.352 +      }
   1.353 +    }
   1.354 +
   1.355 +    void evenToMatched(int blossom, int tree) {
   1.356 +      if (!_blossom_set->trivial(blossom)) {
   1.357 +	(*_blossom_data)[blossom].pot += 2 * _delta_sum;
   1.358 +      }
   1.359 +
   1.360 +      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
   1.361 +	   n != INVALID; ++n) {
   1.362 +	int ni = (*_node_index)[n];
   1.363 +	(*_node_data)[ni].pot -= _delta_sum;
   1.364 +
   1.365 +	_delta1->erase(n);
   1.366 +
   1.367 +	for (InEdgeIt e(_ugraph, n); e != INVALID; ++e) {
   1.368 +	  Node v = _ugraph.source(e);
   1.369 +	  int vb = _blossom_set->find(v);
   1.370 +	  int vi = (*_node_index)[v];
   1.371 +
   1.372 +	  Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - 
   1.373 +	    dualScale * _weight[e];
   1.374 +
   1.375 +	  if (vb == blossom) {
   1.376 +	    if (_delta3->state(e) == _delta3->IN_HEAP) {
   1.377 +	      _delta3->erase(e);
   1.378 +	    }
   1.379 +	  } else if ((*_blossom_data)[vb].status == EVEN) {
   1.380 +
   1.381 +	    if (_delta3->state(e) == _delta3->IN_HEAP) {
   1.382 +	      _delta3->erase(e);
   1.383 +	    }
   1.384 +
   1.385 +	    int vt = _tree_set->find(vb);
   1.386 +	    
   1.387 +	    if (vt != tree) {
   1.388 +
   1.389 +	      Edge r = _ugraph.oppositeEdge(e);
   1.390 +
   1.391 +	      typename std::map<int, Edge>::iterator it = 
   1.392 +		(*_node_data)[ni].heap_index.find(vt);	  
   1.393 +
   1.394 +	      if (it != (*_node_data)[ni].heap_index.end()) {
   1.395 +		if ((*_node_data)[ni].heap[it->second] > rw) {
   1.396 +		  (*_node_data)[ni].heap.replace(it->second, r);
   1.397 +		  (*_node_data)[ni].heap.decrease(r, rw);
   1.398 +		  it->second = r;
   1.399 +		}
   1.400 +	      } else {
   1.401 +		(*_node_data)[ni].heap.push(r, rw);
   1.402 +		(*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
   1.403 +	      }
   1.404 +	      
   1.405 +	      if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
   1.406 +		_blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
   1.407 +		
   1.408 +		if (_delta2->state(blossom) != _delta2->IN_HEAP) {
   1.409 +		  _delta2->push(blossom, _blossom_set->classPrio(blossom) - 
   1.410 +			       (*_blossom_data)[blossom].offset);
   1.411 +		} else if ((*_delta2)[blossom] > 
   1.412 +			   _blossom_set->classPrio(blossom) - 
   1.413 +			   (*_blossom_data)[blossom].offset){
   1.414 +		  _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
   1.415 +				   (*_blossom_data)[blossom].offset);
   1.416 +		}
   1.417 +	      }
   1.418 +	    }
   1.419 +	    
   1.420 +	  } else if ((*_blossom_data)[vb].status == UNMATCHED) {
   1.421 +	    if (_delta3->state(e) == _delta3->IN_HEAP) {
   1.422 +	      _delta3->erase(e);
   1.423 +	    }
   1.424 +	  } else {
   1.425 +	  
   1.426 +	    typename std::map<int, Edge>::iterator it = 
   1.427 +	      (*_node_data)[vi].heap_index.find(tree);
   1.428 +
   1.429 +	    if (it != (*_node_data)[vi].heap_index.end()) {
   1.430 +	      (*_node_data)[vi].heap.erase(it->second);
   1.431 +	      (*_node_data)[vi].heap_index.erase(it);
   1.432 +	      if ((*_node_data)[vi].heap.empty()) {
   1.433 +		_blossom_set->increase(v, std::numeric_limits<Value>::max());
   1.434 +	      } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
   1.435 +		_blossom_set->increase(v, (*_node_data)[vi].heap.prio());
   1.436 +	      }
   1.437 +	      
   1.438 +	      if ((*_blossom_data)[vb].status == MATCHED) {
   1.439 +		if (_blossom_set->classPrio(vb) == 
   1.440 +		    std::numeric_limits<Value>::max()) {
   1.441 +		  _delta2->erase(vb);
   1.442 +		} else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
   1.443 +			   (*_blossom_data)[vb].offset) {
   1.444 +		  _delta2->increase(vb, _blossom_set->classPrio(vb) -
   1.445 +				   (*_blossom_data)[vb].offset);
   1.446 +		}
   1.447 +	      }	
   1.448 +	    }	
   1.449 +	  }
   1.450 +	}
   1.451 +      }
   1.452 +    }
   1.453 +
   1.454 +    void oddToMatched(int blossom) {
   1.455 +      (*_blossom_data)[blossom].offset -= _delta_sum;
   1.456 +
   1.457 +      if (_blossom_set->classPrio(blossom) != 
   1.458 +	  std::numeric_limits<Value>::max()) {
   1.459 +	_delta2->push(blossom, _blossom_set->classPrio(blossom) - 
   1.460 +		       (*_blossom_data)[blossom].offset);
   1.461 +      }
   1.462 +
   1.463 +      if (!_blossom_set->trivial(blossom)) {
   1.464 +	_delta4->erase(blossom);
   1.465 +      }
   1.466 +    }
   1.467 +
   1.468 +    void oddToEven(int blossom, int tree) {
   1.469 +      if (!_blossom_set->trivial(blossom)) {
   1.470 +	_delta4->erase(blossom);
   1.471 +	(*_blossom_data)[blossom].pot -= 
   1.472 +	  2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
   1.473 +      }
   1.474 +
   1.475 +      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); 
   1.476 +	   n != INVALID; ++n) {
   1.477 +	int ni = (*_node_index)[n];
   1.478 +
   1.479 +	_blossom_set->increase(n, std::numeric_limits<Value>::max());
   1.480 +
   1.481 +	(*_node_data)[ni].heap.clear();
   1.482 +	(*_node_data)[ni].heap_index.clear();
   1.483 +	(*_node_data)[ni].pot += 
   1.484 +	  2 * _delta_sum - (*_blossom_data)[blossom].offset;
   1.485 +
   1.486 +	_delta1->push(n, (*_node_data)[ni].pot);
   1.487 +
   1.488 +	for (InEdgeIt e(_ugraph, n); e != INVALID; ++e) {
   1.489 +	  Node v = _ugraph.source(e);
   1.490 +	  int vb = _blossom_set->find(v);
   1.491 +	  int vi = (*_node_index)[v];
   1.492 +
   1.493 +	  Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - 
   1.494 +	    dualScale * _weight[e];
   1.495 +
   1.496 +	  if ((*_blossom_data)[vb].status == EVEN) {
   1.497 +	    if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
   1.498 +	      _delta3->push(e, rw / 2);
   1.499 +	    }
   1.500 +	  } else if ((*_blossom_data)[vb].status == UNMATCHED) {
   1.501 +	    if (_delta3->state(e) != _delta3->IN_HEAP) {
   1.502 +	      _delta3->push(e, rw);
   1.503 +	    }
   1.504 +	  } else {
   1.505 +	  
   1.506 +	    typename std::map<int, Edge>::iterator it = 
   1.507 +	      (*_node_data)[vi].heap_index.find(tree);	  
   1.508 +
   1.509 +	    if (it != (*_node_data)[vi].heap_index.end()) {
   1.510 +	      if ((*_node_data)[vi].heap[it->second] > rw) {
   1.511 +		(*_node_data)[vi].heap.replace(it->second, e);
   1.512 +		(*_node_data)[vi].heap.decrease(e, rw);
   1.513 +		it->second = e;
   1.514 +	      }
   1.515 +	    } else {
   1.516 +	      (*_node_data)[vi].heap.push(e, rw);
   1.517 +	      (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
   1.518 +	    }
   1.519 +
   1.520 +	    if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
   1.521 +	      _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
   1.522 +
   1.523 +	      if ((*_blossom_data)[vb].status == MATCHED) {
   1.524 +		if (_delta2->state(vb) != _delta2->IN_HEAP) {
   1.525 +		  _delta2->push(vb, _blossom_set->classPrio(vb) - 
   1.526 +			       (*_blossom_data)[vb].offset);
   1.527 +		} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - 
   1.528 +			   (*_blossom_data)[vb].offset) {
   1.529 +		  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
   1.530 +				   (*_blossom_data)[vb].offset);
   1.531 +		}
   1.532 +	      }
   1.533 +	    }
   1.534 +	  }
   1.535 +	}
   1.536 +      }
   1.537 +      (*_blossom_data)[blossom].offset = 0;
   1.538 +    }
   1.539 +
   1.540 +
   1.541 +    void matchedToUnmatched(int blossom) {
   1.542 +      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
   1.543 +	_delta2->erase(blossom);
   1.544 +      }
   1.545 +
   1.546 +      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); 
   1.547 +	   n != INVALID; ++n) {
   1.548 +	int ni = (*_node_index)[n];
   1.549 +
   1.550 +	_blossom_set->increase(n, std::numeric_limits<Value>::max());
   1.551 +
   1.552 +	(*_node_data)[ni].heap.clear();
   1.553 +	(*_node_data)[ni].heap_index.clear();
   1.554 +
   1.555 +	for (OutEdgeIt e(_ugraph, n); e != INVALID; ++e) {
   1.556 +	  Node v = _ugraph.target(e);
   1.557 +	  int vb = _blossom_set->find(v);
   1.558 +	  int vi = (*_node_index)[v];
   1.559 +
   1.560 +	  Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - 
   1.561 +	    dualScale * _weight[e];
   1.562 +
   1.563 +	  if ((*_blossom_data)[vb].status == EVEN) {
   1.564 +	    if (_delta3->state(e) != _delta3->IN_HEAP) {
   1.565 +	      _delta3->push(e, rw);
   1.566 +	    }
   1.567 +	  }
   1.568 +	}
   1.569 +      }
   1.570 +    }
   1.571 +
   1.572 +    void unmatchedToMatched(int blossom) {
   1.573 +      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
   1.574 +	   n != INVALID; ++n) {
   1.575 +	int ni = (*_node_index)[n];
   1.576 +
   1.577 +	for (InEdgeIt e(_ugraph, n); e != INVALID; ++e) {
   1.578 +	  Node v = _ugraph.source(e);
   1.579 +	  int vb = _blossom_set->find(v);
   1.580 +	  int vi = (*_node_index)[v];
   1.581 +
   1.582 +	  Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - 
   1.583 +	    dualScale * _weight[e];
   1.584 +
   1.585 +	  if (vb == blossom) {
   1.586 +	    if (_delta3->state(e) == _delta3->IN_HEAP) {
   1.587 +	      _delta3->erase(e);
   1.588 +	    }
   1.589 +	  } else if ((*_blossom_data)[vb].status == EVEN) {
   1.590 +
   1.591 +	    if (_delta3->state(e) == _delta3->IN_HEAP) {
   1.592 +	      _delta3->erase(e);
   1.593 +	    }
   1.594 +
   1.595 +	    int vt = _tree_set->find(vb);
   1.596 +	    
   1.597 +	    Edge r = _ugraph.oppositeEdge(e);
   1.598 +	    
   1.599 +	    typename std::map<int, Edge>::iterator it = 
   1.600 +	      (*_node_data)[ni].heap_index.find(vt);	  
   1.601 +	    
   1.602 +	    if (it != (*_node_data)[ni].heap_index.end()) {
   1.603 +	      if ((*_node_data)[ni].heap[it->second] > rw) {
   1.604 +		(*_node_data)[ni].heap.replace(it->second, r);
   1.605 +		(*_node_data)[ni].heap.decrease(r, rw);
   1.606 +		it->second = r;
   1.607 +	      }
   1.608 +	    } else {
   1.609 +	      (*_node_data)[ni].heap.push(r, rw);
   1.610 +	      (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
   1.611 +	    }
   1.612 +	      
   1.613 +	    if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
   1.614 +	      _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
   1.615 +	      
   1.616 +	      if (_delta2->state(blossom) != _delta2->IN_HEAP) {
   1.617 +		_delta2->push(blossom, _blossom_set->classPrio(blossom) - 
   1.618 +			     (*_blossom_data)[blossom].offset);
   1.619 +	      } else if ((*_delta2)[blossom] > _blossom_set->classPrio(blossom)-
   1.620 +			 (*_blossom_data)[blossom].offset){
   1.621 +		_delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
   1.622 +				 (*_blossom_data)[blossom].offset);
   1.623 +	      }
   1.624 +	    }
   1.625 +	    
   1.626 +	  } else if ((*_blossom_data)[vb].status == UNMATCHED) {
   1.627 +	    if (_delta3->state(e) == _delta3->IN_HEAP) {
   1.628 +	      _delta3->erase(e);
   1.629 +	    }
   1.630 +	  }
   1.631 +	}
   1.632 +      }
   1.633 +    }
   1.634 +
   1.635 +    void alternatePath(int even, int tree) {
   1.636 +      int odd;
   1.637 +
   1.638 +      evenToMatched(even, tree);
   1.639 +      (*_blossom_data)[even].status = MATCHED;
   1.640 +
   1.641 +      while ((*_blossom_data)[even].pred != INVALID) {
   1.642 +	odd = _blossom_set->find(_ugraph.target((*_blossom_data)[even].pred));
   1.643 +	(*_blossom_data)[odd].status = MATCHED;
   1.644 +	oddToMatched(odd);
   1.645 +	(*_blossom_data)[odd].next = (*_blossom_data)[odd].pred;
   1.646 +      
   1.647 +	even = _blossom_set->find(_ugraph.target((*_blossom_data)[odd].pred));
   1.648 +	(*_blossom_data)[even].status = MATCHED;
   1.649 +	evenToMatched(even, tree);
   1.650 +	(*_blossom_data)[even].next = 
   1.651 +	  _ugraph.oppositeEdge((*_blossom_data)[odd].pred);
   1.652 +      }
   1.653 +      
   1.654 +    }
   1.655 +
   1.656 +    void destroyTree(int tree) {
   1.657 +      for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) {
   1.658 +	if ((*_blossom_data)[b].status == EVEN) {
   1.659 +	  (*_blossom_data)[b].status = MATCHED;
   1.660 +	  evenToMatched(b, tree);
   1.661 +	} else if ((*_blossom_data)[b].status == ODD) {
   1.662 +	  (*_blossom_data)[b].status = MATCHED;
   1.663 +	  oddToMatched(b);
   1.664 +	}
   1.665 +      }
   1.666 +      _tree_set->eraseClass(tree);
   1.667 +    }
   1.668 +    
   1.669 +
   1.670 +    void unmatchNode(const Node& node) {
   1.671 +      int blossom = _blossom_set->find(node);
   1.672 +      int tree = _tree_set->find(blossom);
   1.673 +
   1.674 +      alternatePath(blossom, tree);
   1.675 +      destroyTree(tree);
   1.676 +
   1.677 +      (*_blossom_data)[blossom].status = UNMATCHED;
   1.678 +      (*_blossom_data)[blossom].base = node;
   1.679 +      matchedToUnmatched(blossom);
   1.680 +    }
   1.681 +
   1.682 +
   1.683 +    void augmentOnEdge(const UEdge& edge) {
   1.684 +      
   1.685 +      int left = _blossom_set->find(_ugraph.source(edge));
   1.686 +      int right = _blossom_set->find(_ugraph.target(edge));
   1.687 +
   1.688 +      if ((*_blossom_data)[left].status == EVEN) {
   1.689 +	int left_tree = _tree_set->find(left);
   1.690 +	alternatePath(left, left_tree);
   1.691 +	destroyTree(left_tree);
   1.692 +      } else {
   1.693 +	(*_blossom_data)[left].status = MATCHED;
   1.694 +	unmatchedToMatched(left);
   1.695 +      }
   1.696 +
   1.697 +      if ((*_blossom_data)[right].status == EVEN) {
   1.698 +	int right_tree = _tree_set->find(right);
   1.699 +	alternatePath(right, right_tree);
   1.700 +	destroyTree(right_tree);
   1.701 +      } else {
   1.702 +	(*_blossom_data)[right].status = MATCHED;
   1.703 +	unmatchedToMatched(right);
   1.704 +      }
   1.705 +
   1.706 +      (*_blossom_data)[left].next = _ugraph.direct(edge, true);
   1.707 +      (*_blossom_data)[right].next = _ugraph.direct(edge, false);
   1.708 +    }
   1.709 +
   1.710 +    void extendOnEdge(const Edge& edge) {
   1.711 +      int base = _blossom_set->find(_ugraph.target(edge));
   1.712 +      int tree = _tree_set->find(base);
   1.713 +      
   1.714 +      int odd = _blossom_set->find(_ugraph.source(edge));
   1.715 +      _tree_set->insert(odd, tree);
   1.716 +      (*_blossom_data)[odd].status = ODD;
   1.717 +      matchedToOdd(odd);
   1.718 +      (*_blossom_data)[odd].pred = edge;
   1.719 +
   1.720 +      int even = _blossom_set->find(_ugraph.target((*_blossom_data)[odd].next));
   1.721 +      (*_blossom_data)[even].pred = (*_blossom_data)[even].next;
   1.722 +      _tree_set->insert(even, tree);
   1.723 +      (*_blossom_data)[even].status = EVEN;
   1.724 +      matchedToEven(even, tree);
   1.725 +    }
   1.726 +    
   1.727 +    void shrinkOnEdge(const UEdge& uedge, int tree) {
   1.728 +      int nca = -1;
   1.729 +      std::vector<int> left_path, right_path;
   1.730 +
   1.731 +      {
   1.732 +	std::set<int> left_set, right_set;
   1.733 +	int left = _blossom_set->find(_ugraph.source(uedge));
   1.734 +	left_path.push_back(left);
   1.735 +	left_set.insert(left);
   1.736 +
   1.737 +	int right = _blossom_set->find(_ugraph.target(uedge));
   1.738 +	right_path.push_back(right);
   1.739 +	right_set.insert(right);
   1.740 +
   1.741 +	while (true) {
   1.742 +
   1.743 +	  if ((*_blossom_data)[left].pred == INVALID) break;
   1.744 +
   1.745 +	  left = 
   1.746 +	    _blossom_set->find(_ugraph.target((*_blossom_data)[left].pred));
   1.747 +	  left_path.push_back(left);
   1.748 +	  left = 
   1.749 +	    _blossom_set->find(_ugraph.target((*_blossom_data)[left].pred));
   1.750 +	  left_path.push_back(left);
   1.751 +
   1.752 +	  left_set.insert(left);
   1.753 +
   1.754 +	  if (right_set.find(left) != right_set.end()) {
   1.755 +	    nca = left;
   1.756 +	    break;
   1.757 +	  }
   1.758 +
   1.759 +	  if ((*_blossom_data)[right].pred == INVALID) break;
   1.760 +
   1.761 +	  right = 
   1.762 +	    _blossom_set->find(_ugraph.target((*_blossom_data)[right].pred));
   1.763 +	  right_path.push_back(right);
   1.764 +	  right = 
   1.765 +	    _blossom_set->find(_ugraph.target((*_blossom_data)[right].pred));
   1.766 +	  right_path.push_back(right);
   1.767 +
   1.768 +	  right_set.insert(right);
   1.769 + 
   1.770 +	  if (left_set.find(right) != left_set.end()) {
   1.771 +	    nca = right;
   1.772 +	    break;
   1.773 +	  }
   1.774 +
   1.775 +	}
   1.776 +
   1.777 +	if (nca == -1) {
   1.778 +	  if ((*_blossom_data)[left].pred == INVALID) {
   1.779 +	    nca = right;
   1.780 +	    while (left_set.find(nca) == left_set.end()) {
   1.781 +	      nca = 
   1.782 +		_blossom_set->find(_ugraph.target((*_blossom_data)[nca].pred));
   1.783 +	      right_path.push_back(nca);
   1.784 +	      nca = 
   1.785 +		_blossom_set->find(_ugraph.target((*_blossom_data)[nca].pred));
   1.786 +	      right_path.push_back(nca);
   1.787 +	    }
   1.788 +	  } else {
   1.789 +	    nca = left;
   1.790 +	    while (right_set.find(nca) == right_set.end()) {
   1.791 +	      nca = 
   1.792 +		_blossom_set->find(_ugraph.target((*_blossom_data)[nca].pred));
   1.793 +	      left_path.push_back(nca);
   1.794 +	      nca = 
   1.795 +		_blossom_set->find(_ugraph.target((*_blossom_data)[nca].pred));
   1.796 +	      left_path.push_back(nca);
   1.797 +	    }
   1.798 +	  }
   1.799 +	}
   1.800 +      }
   1.801 +
   1.802 +      std::vector<int> subblossoms;
   1.803 +      Edge prev;
   1.804 +
   1.805 +      prev = _ugraph.direct(uedge, true);
   1.806 +      for (int i = 0; left_path[i] != nca; i += 2) {
   1.807 +	subblossoms.push_back(left_path[i]);
   1.808 +	(*_blossom_data)[left_path[i]].next = prev;
   1.809 +	_tree_set->erase(left_path[i]);
   1.810 +
   1.811 +	subblossoms.push_back(left_path[i + 1]);
   1.812 +	(*_blossom_data)[left_path[i + 1]].status = EVEN;
   1.813 +	oddToEven(left_path[i + 1], tree);
   1.814 +	_tree_set->erase(left_path[i + 1]);
   1.815 +	prev = _ugraph.oppositeEdge((*_blossom_data)[left_path[i + 1]].pred);
   1.816 +      }
   1.817 +
   1.818 +      int k = 0;
   1.819 +      while (right_path[k] != nca) ++k;
   1.820 +
   1.821 +      subblossoms.push_back(nca);
   1.822 +      (*_blossom_data)[nca].next = prev;
   1.823 +      
   1.824 +      for (int i = k - 2; i >= 0; i -= 2) {
   1.825 +	subblossoms.push_back(right_path[i + 1]);
   1.826 +	(*_blossom_data)[right_path[i + 1]].status = EVEN;
   1.827 +	oddToEven(right_path[i + 1], tree);
   1.828 +	_tree_set->erase(right_path[i + 1]);
   1.829 +
   1.830 +	(*_blossom_data)[right_path[i + 1]].next = 
   1.831 +	  (*_blossom_data)[right_path[i + 1]].pred;
   1.832 +
   1.833 +	subblossoms.push_back(right_path[i]);
   1.834 +	_tree_set->erase(right_path[i]);
   1.835 +      }
   1.836 +
   1.837 +      int surface = 
   1.838 +	_blossom_set->join(subblossoms.begin(), subblossoms.end());
   1.839 +
   1.840 +      for (int i = 0; i < int(subblossoms.size()); ++i) {
   1.841 +	if (!_blossom_set->trivial(subblossoms[i])) {
   1.842 +	  (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum;
   1.843 +	}
   1.844 +	(*_blossom_data)[subblossoms[i]].status = MATCHED;
   1.845 +      }
   1.846 +
   1.847 +      (*_blossom_data)[surface].pot = -2 * _delta_sum;
   1.848 +      (*_blossom_data)[surface].offset = 0;
   1.849 +      (*_blossom_data)[surface].status = EVEN;
   1.850 +      (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred;
   1.851 +      (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred;
   1.852 +
   1.853 +      _tree_set->insert(surface, tree);
   1.854 +      _tree_set->erase(nca);
   1.855 +    }
   1.856 +
   1.857 +    void splitBlossom(int blossom) {
   1.858 +      Edge next = (*_blossom_data)[blossom].next; 
   1.859 +      Edge pred = (*_blossom_data)[blossom].pred;
   1.860 +
   1.861 +      int tree = _tree_set->find(blossom);
   1.862 +
   1.863 +      (*_blossom_data)[blossom].status = MATCHED;
   1.864 +      oddToMatched(blossom);
   1.865 +      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
   1.866 +	_delta2->erase(blossom);
   1.867 +      }
   1.868 +
   1.869 +      std::vector<int> subblossoms;
   1.870 +      _blossom_set->split(blossom, std::back_inserter(subblossoms));
   1.871 +
   1.872 +      Value offset = (*_blossom_data)[blossom].offset;
   1.873 +      int b = _blossom_set->find(_ugraph.source(pred));
   1.874 +      int d = _blossom_set->find(_ugraph.source(next));
   1.875 +      
   1.876 +      int ib, id;
   1.877 +      for (int i = 0; i < int(subblossoms.size()); ++i) {
   1.878 +	if (subblossoms[i] == b) ib = i;
   1.879 +	if (subblossoms[i] == d) id = i;
   1.880 +
   1.881 +	(*_blossom_data)[subblossoms[i]].offset = offset;
   1.882 +	if (!_blossom_set->trivial(subblossoms[i])) {
   1.883 +	  (*_blossom_data)[subblossoms[i]].pot -= 2 * offset;
   1.884 +	}
   1.885 +	if (_blossom_set->classPrio(subblossoms[i]) != 
   1.886 +	    std::numeric_limits<Value>::max()) {
   1.887 +	  _delta2->push(subblossoms[i], 
   1.888 +			_blossom_set->classPrio(subblossoms[i]) - 
   1.889 +			(*_blossom_data)[subblossoms[i]].offset);
   1.890 +	}
   1.891 +      }
   1.892 +      
   1.893 +      if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) {
   1.894 +	for (int i = (id + 1) % subblossoms.size(); 
   1.895 +	     i != ib; i = (i + 2) % subblossoms.size()) {
   1.896 +	  int sb = subblossoms[i];
   1.897 +	  int tb = subblossoms[(i + 1) % subblossoms.size()];
   1.898 +	  (*_blossom_data)[sb].next = 
   1.899 +	    _ugraph.oppositeEdge((*_blossom_data)[tb].next);
   1.900 +	}
   1.901 +
   1.902 +	for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
   1.903 +	  int sb = subblossoms[i];
   1.904 +	  int tb = subblossoms[(i + 1) % subblossoms.size()];
   1.905 +	  int ub = subblossoms[(i + 2) % subblossoms.size()];
   1.906 +
   1.907 +	  (*_blossom_data)[sb].status = ODD;
   1.908 +	  matchedToOdd(sb);
   1.909 +	  _tree_set->insert(sb, tree);
   1.910 +	  (*_blossom_data)[sb].pred = pred;
   1.911 +	  (*_blossom_data)[sb].next = 
   1.912 +			   _ugraph.oppositeEdge((*_blossom_data)[tb].next);
   1.913 +	  
   1.914 +	  pred = (*_blossom_data)[ub].next;
   1.915 +      
   1.916 +	  (*_blossom_data)[tb].status = EVEN;
   1.917 +	  matchedToEven(tb, tree);
   1.918 +	  _tree_set->insert(tb, tree);
   1.919 +	  (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next;
   1.920 +	}
   1.921 +      
   1.922 +	(*_blossom_data)[subblossoms[id]].status = ODD;
   1.923 +	matchedToOdd(subblossoms[id]);
   1.924 +	_tree_set->insert(subblossoms[id], tree);
   1.925 +	(*_blossom_data)[subblossoms[id]].next = next;
   1.926 +	(*_blossom_data)[subblossoms[id]].pred = pred;
   1.927 +      
   1.928 +      } else {
   1.929 +
   1.930 +	for (int i = (ib + 1) % subblossoms.size(); 
   1.931 +	     i != id; i = (i + 2) % subblossoms.size()) {
   1.932 +	  int sb = subblossoms[i];
   1.933 +	  int tb = subblossoms[(i + 1) % subblossoms.size()];
   1.934 +	  (*_blossom_data)[sb].next = 
   1.935 +	    _ugraph.oppositeEdge((*_blossom_data)[tb].next);
   1.936 +	}	
   1.937 +
   1.938 +	for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) {
   1.939 +	  int sb = subblossoms[i];
   1.940 +	  int tb = subblossoms[(i + 1) % subblossoms.size()];
   1.941 +	  int ub = subblossoms[(i + 2) % subblossoms.size()];
   1.942 +
   1.943 +	  (*_blossom_data)[sb].status = ODD;
   1.944 +	  matchedToOdd(sb);
   1.945 +	  _tree_set->insert(sb, tree);
   1.946 +	  (*_blossom_data)[sb].next = next; 
   1.947 +	  (*_blossom_data)[sb].pred =
   1.948 +	    _ugraph.oppositeEdge((*_blossom_data)[tb].next);
   1.949 +
   1.950 +	  (*_blossom_data)[tb].status = EVEN;
   1.951 +	  matchedToEven(tb, tree);
   1.952 +	  _tree_set->insert(tb, tree);
   1.953 +	  (*_blossom_data)[tb].pred =
   1.954 +	    (*_blossom_data)[tb].next = 
   1.955 +	    _ugraph.oppositeEdge((*_blossom_data)[ub].next);
   1.956 +	  next = (*_blossom_data)[ub].next;
   1.957 +	}
   1.958 +
   1.959 +	(*_blossom_data)[subblossoms[ib]].status = ODD;
   1.960 +	matchedToOdd(subblossoms[ib]);
   1.961 +	_tree_set->insert(subblossoms[ib], tree);
   1.962 +	(*_blossom_data)[subblossoms[ib]].next = next;
   1.963 +	(*_blossom_data)[subblossoms[ib]].pred = pred;
   1.964 +      }
   1.965 +      _tree_set->erase(blossom);
   1.966 +    }
   1.967 +
   1.968 +    void extractBlossom(int blossom, const Node& base, const Edge& matching) {
   1.969 +      if (_blossom_set->trivial(blossom)) {
   1.970 +	int bi = (*_node_index)[base];
   1.971 +	Value pot = (*_node_data)[bi].pot;
   1.972 +
   1.973 +	_matching->set(base, matching);
   1.974 +	_blossom_node_list.push_back(base);
   1.975 +	_node_potential->set(base, pot);
   1.976 +      } else {
   1.977 +
   1.978 +	Value pot = (*_blossom_data)[blossom].pot;
   1.979 +	int bn = _blossom_node_list.size();
   1.980 +	
   1.981 +	std::vector<int> subblossoms;
   1.982 +	_blossom_set->split(blossom, std::back_inserter(subblossoms));
   1.983 +	int b = _blossom_set->find(base);
   1.984 +	int ib = -1;
   1.985 +	for (int i = 0; i < int(subblossoms.size()); ++i) {
   1.986 +	  if (subblossoms[i] == b) { ib = i; break; }
   1.987 +	}
   1.988 +	
   1.989 +	for (int i = 1; i < int(subblossoms.size()); i += 2) {
   1.990 +	  int sb = subblossoms[(ib + i) % subblossoms.size()];
   1.991 +	  int tb = subblossoms[(ib + i + 1) % subblossoms.size()];
   1.992 +	  
   1.993 +	  Edge m = (*_blossom_data)[tb].next;
   1.994 +	  extractBlossom(sb, _ugraph.target(m), _ugraph.oppositeEdge(m));
   1.995 +	  extractBlossom(tb, _ugraph.source(m), m);
   1.996 +	}
   1.997 +	extractBlossom(subblossoms[ib], base, matching);      
   1.998 +	
   1.999 +	int en = _blossom_node_list.size();
  1.1000 +	
  1.1001 +	_blossom_potential.push_back(BlossomVariable(bn, en, pot));
  1.1002 +      }
  1.1003 +    }
  1.1004 +
  1.1005 +    void extractMatching() {
  1.1006 +      std::vector<int> blossoms;
  1.1007 +      for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
  1.1008 +	blossoms.push_back(c);
  1.1009 +      }
  1.1010 +
  1.1011 +      for (int i = 0; i < int(blossoms.size()); ++i) {
  1.1012 +	if ((*_blossom_data)[blossoms[i]].status == MATCHED) {
  1.1013 +
  1.1014 +	  Value offset = (*_blossom_data)[blossoms[i]].offset;
  1.1015 +	  (*_blossom_data)[blossoms[i]].pot += 2 * offset;
  1.1016 +	  for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]); 
  1.1017 +	       n != INVALID; ++n) {
  1.1018 +	    (*_node_data)[(*_node_index)[n]].pot -= offset;
  1.1019 +	  }
  1.1020 +
  1.1021 +	  Edge matching = (*_blossom_data)[blossoms[i]].next;
  1.1022 +	  Node base = _ugraph.source(matching);
  1.1023 +	  extractBlossom(blossoms[i], base, matching);
  1.1024 +	} else {
  1.1025 +	  Node base = (*_blossom_data)[blossoms[i]].base;	  
  1.1026 +	  extractBlossom(blossoms[i], base, INVALID);
  1.1027 +	}
  1.1028 +      }
  1.1029 +    }
  1.1030 +    
  1.1031 +  public:
  1.1032 +
  1.1033 +    /// \brief Constructor
  1.1034 +    ///
  1.1035 +    /// Constructor.
  1.1036 +    MaxWeightedMatching(const UGraph& ugraph, const WeightMap& weight)
  1.1037 +      : _ugraph(ugraph), _weight(weight), _matching(0),
  1.1038 +	_node_potential(0), _blossom_potential(), _blossom_node_list(),
  1.1039 +	_node_num(0), _blossom_num(0),
  1.1040 +
  1.1041 +	_blossom_index(0), _blossom_set(0), _blossom_data(0),
  1.1042 +	_node_index(0), _node_heap_index(0), _node_data(0),
  1.1043 +	_tree_set_index(0), _tree_set(0),
  1.1044 +
  1.1045 +	_delta1_index(0), _delta1(0),
  1.1046 +	_delta2_index(0), _delta2(0),
  1.1047 +	_delta3_index(0), _delta3(0), 
  1.1048 +	_delta4_index(0), _delta4(0),
  1.1049 +
  1.1050 +	_delta_sum() {}
  1.1051 +
  1.1052 +    ~MaxWeightedMatching() {
  1.1053 +      destroyStructures();
  1.1054 +    }
  1.1055 +
  1.1056 +    /// \name Execution control 
  1.1057 +    /// The simplest way to execute the algorithm is to use the member
  1.1058 +    /// \c run() member function.
  1.1059 +
  1.1060 +    ///@{
  1.1061 +
  1.1062 +    /// \brief Initialize the algorithm
  1.1063 +    ///
  1.1064 +    /// Initialize the algorithm
  1.1065 +    void init() {
  1.1066 +      createStructures();
  1.1067 +
  1.1068 +      for (EdgeIt e(_ugraph); e != INVALID; ++e) {
  1.1069 +	_node_heap_index->set(e, BinHeap<Value, EdgeIntMap>::PRE_HEAP);
  1.1070 +      }
  1.1071 +      for (NodeIt n(_ugraph); n != INVALID; ++n) {
  1.1072 +	_delta1_index->set(n, _delta1->PRE_HEAP);
  1.1073 +      }
  1.1074 +      for (UEdgeIt e(_ugraph); e != INVALID; ++e) {
  1.1075 +	_delta3_index->set(e, _delta3->PRE_HEAP);
  1.1076 +      }
  1.1077 +      for (int i = 0; i < _blossom_num; ++i) {
  1.1078 +	_delta2_index->set(i, _delta2->PRE_HEAP);
  1.1079 +	_delta4_index->set(i, _delta4->PRE_HEAP);
  1.1080 +      }
  1.1081 +
  1.1082 +      int index = 0;
  1.1083 +      for (NodeIt n(_ugraph); n != INVALID; ++n) {
  1.1084 +	Value max = 0;
  1.1085 +	for (OutEdgeIt e(_ugraph, n); e != INVALID; ++e) {
  1.1086 +	  if (_ugraph.target(e) == n) continue;
  1.1087 +	  if ((dualScale * _weight[e]) / 2 > max) {
  1.1088 +	    max = (dualScale * _weight[e]) / 2;
  1.1089 +	  }
  1.1090 +	}
  1.1091 +	_node_index->set(n, index);
  1.1092 +	(*_node_data)[index].pot = max;
  1.1093 +	_delta1->push(n, max);
  1.1094 +	int blossom = 
  1.1095 +	  _blossom_set->insert(n, std::numeric_limits<Value>::max());
  1.1096 +
  1.1097 +	_tree_set->insert(blossom);
  1.1098 +
  1.1099 +	(*_blossom_data)[blossom].status = EVEN;
  1.1100 +	(*_blossom_data)[blossom].pred = INVALID;
  1.1101 +	(*_blossom_data)[blossom].next = INVALID;
  1.1102 +	(*_blossom_data)[blossom].pot = 0;
  1.1103 +	(*_blossom_data)[blossom].offset = 0;
  1.1104 +	++index;
  1.1105 +      }
  1.1106 +      for (UEdgeIt e(_ugraph); e != INVALID; ++e) {
  1.1107 +	int si = (*_node_index)[_ugraph.source(e)];
  1.1108 +	int ti = (*_node_index)[_ugraph.target(e)];
  1.1109 +	if (_ugraph.source(e) != _ugraph.target(e)) {
  1.1110 +	  _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - 
  1.1111 +			    dualScale * _weight[e]) / 2);
  1.1112 +	}
  1.1113 +      }
  1.1114 +    }
  1.1115 +
  1.1116 +    /// \brief Starts the algorithm
  1.1117 +    ///
  1.1118 +    /// Starts the algorithm
  1.1119 +    void start() {
  1.1120 +      enum OpType {
  1.1121 +	D1, D2, D3, D4
  1.1122 +      };
  1.1123 +
  1.1124 +      int unmatched = _node_num;
  1.1125 +      while (unmatched > 0) {
  1.1126 +	Value d1 = !_delta1->empty() ? 
  1.1127 +	  _delta1->prio() : std::numeric_limits<Value>::max();
  1.1128 +
  1.1129 +	Value d2 = !_delta2->empty() ? 
  1.1130 +	  _delta2->prio() : std::numeric_limits<Value>::max();
  1.1131 +
  1.1132 +	Value d3 = !_delta3->empty() ? 
  1.1133 +	  _delta3->prio() : std::numeric_limits<Value>::max();
  1.1134 +
  1.1135 +	Value d4 = !_delta4->empty() ? 
  1.1136 +	  _delta4->prio() : std::numeric_limits<Value>::max();
  1.1137 +
  1.1138 +	_delta_sum = d1; OpType ot = D1;
  1.1139 +	if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
  1.1140 +	if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
  1.1141 +	if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
  1.1142 +
  1.1143 +	
  1.1144 +	switch (ot) {
  1.1145 +	case D1:
  1.1146 +	  {
  1.1147 +	    Node n = _delta1->top();
  1.1148 +	    unmatchNode(n);
  1.1149 +	    --unmatched;
  1.1150 +	  }
  1.1151 +	  break;
  1.1152 +	case D2:
  1.1153 +	  {
  1.1154 +	    int blossom = _delta2->top();
  1.1155 +	    Node n = _blossom_set->classTop(blossom);
  1.1156 +	    Edge e = (*_node_data)[(*_node_index)[n]].heap.top();
  1.1157 +	    extendOnEdge(e);
  1.1158 +	  }
  1.1159 +	  break;
  1.1160 +	case D3:
  1.1161 +	  {
  1.1162 +	    UEdge e = _delta3->top();
  1.1163 +	    
  1.1164 +	    int left_blossom = _blossom_set->find(_ugraph.source(e));
  1.1165 +	    int right_blossom = _blossom_set->find(_ugraph.target(e));
  1.1166 +	  
  1.1167 +	    if (left_blossom == right_blossom) {
  1.1168 +	      _delta3->pop();
  1.1169 +	    } else {
  1.1170 +	      int left_tree;
  1.1171 +	      if ((*_blossom_data)[left_blossom].status == EVEN) {
  1.1172 +		left_tree = _tree_set->find(left_blossom);
  1.1173 +	      } else {
  1.1174 +		left_tree = -1;
  1.1175 +		++unmatched;
  1.1176 +	      }
  1.1177 +	      int right_tree;
  1.1178 +	      if ((*_blossom_data)[right_blossom].status == EVEN) {
  1.1179 +		right_tree = _tree_set->find(right_blossom);
  1.1180 +	      } else {
  1.1181 +		right_tree = -1;
  1.1182 +		++unmatched;
  1.1183 +	      }
  1.1184 +	    
  1.1185 +	      if (left_tree == right_tree) {
  1.1186 +		shrinkOnEdge(e, left_tree);
  1.1187 +	      } else {
  1.1188 +		augmentOnEdge(e);
  1.1189 +		unmatched -= 2;
  1.1190 +	      }
  1.1191 +	    }
  1.1192 +	  } break;
  1.1193 +	case D4:
  1.1194 +	  splitBlossom(_delta4->top());
  1.1195 +	  break;
  1.1196 +	}
  1.1197 +      }
  1.1198 +      extractMatching();
  1.1199 +    }
  1.1200 +
  1.1201 +    /// \brief Runs %MaxWeightedMatching algorithm.
  1.1202 +    ///
  1.1203 +    /// This method runs the %MaxWeightedMatching algorithm.
  1.1204 +    ///
  1.1205 +    /// \note mwm.run() is just a shortcut of the following code.
  1.1206 +    /// \code
  1.1207 +    ///   mwm.init();
  1.1208 +    ///   mwm.start();
  1.1209 +    /// \endcode
  1.1210 +    void run() {
  1.1211 +      init();
  1.1212 +      start();
  1.1213 +    }
  1.1214 +
  1.1215 +    /// @}
  1.1216 +
  1.1217 +    /// \name Primal solution
  1.1218 +    /// Functions for get the primal solution, ie. the matching.
  1.1219 +    
  1.1220 +    /// @{
  1.1221 +
  1.1222 +    /// \brief Returns the matching value.
  1.1223 +    ///
  1.1224 +    /// Returns the matching value.
  1.1225 +    Value matchingValue() const {
  1.1226 +      Value sum = 0;
  1.1227 +      for (NodeIt n(_ugraph); n != INVALID; ++n) {
  1.1228 +	if ((*_matching)[n] != INVALID) {
  1.1229 +	  sum += _weight[(*_matching)[n]];
  1.1230 +	}
  1.1231 +      }
  1.1232 +      return sum /= 2;
  1.1233 +    }
  1.1234 +
  1.1235 +    /// \brief Returns true when the edge is in the matching.
  1.1236 +    ///
  1.1237 +    /// Returns true when the edge is in the matching.
  1.1238 +    bool matching(const UEdge& edge) const {
  1.1239 +      return (*_matching)[_ugraph.source(edge)] == _ugraph.direct(edge, true);
  1.1240 +    }
  1.1241 +
  1.1242 +    /// \brief Returns the incident matching edge.
  1.1243 +    ///
  1.1244 +    /// Returns the incident matching edge from given node. If the
  1.1245 +    /// node is not matched then it gives back \c INVALID.
  1.1246 +    Edge matching(const Node& node) const {
  1.1247 +      return (*_matching)[node];
  1.1248 +    }
  1.1249 +
  1.1250 +    /// \brief Returns the mate of the node.
  1.1251 +    ///
  1.1252 +    /// Returns the adjancent node in a mathcing edge. If the node is
  1.1253 +    /// not matched then it gives back \c INVALID.
  1.1254 +    Node mate(const Node& node) const {
  1.1255 +      return (*_matching)[node] != INVALID ?
  1.1256 +	_ugraph.target((*_matching)[node]) : INVALID;
  1.1257 +    }
  1.1258 +
  1.1259 +    /// @}
  1.1260 +
  1.1261 +    /// \name Dual solution
  1.1262 +    /// Functions for get the dual solution.
  1.1263 +    
  1.1264 +    /// @{
  1.1265 +
  1.1266 +    /// \brief Returns the value of the dual solution.
  1.1267 +    ///
  1.1268 +    /// Returns the value of the dual solution. It should be equal to
  1.1269 +    /// the primal value scaled by \ref dualScale "dual scale".
  1.1270 +    Value dualValue() const {
  1.1271 +      Value sum = 0;
  1.1272 +      for (NodeIt n(_ugraph); n != INVALID; ++n) {
  1.1273 +	sum += nodeValue(n);
  1.1274 +      }
  1.1275 +      for (int i = 0; i < blossomNum(); ++i) {
  1.1276 +        sum += blossomValue(i) * (blossomSize(i) / 2);
  1.1277 +      }
  1.1278 +      return sum;
  1.1279 +    }
  1.1280 +
  1.1281 +    /// \brief Returns the value of the node.
  1.1282 +    ///
  1.1283 +    /// Returns the the value of the node.
  1.1284 +    Value nodeValue(const Node& n) const {
  1.1285 +      return (*_node_potential)[n];
  1.1286 +    }
  1.1287 +
  1.1288 +    /// \brief Returns the number of the blossoms in the basis.
  1.1289 +    ///
  1.1290 +    /// Returns the number of the blossoms in the basis.
  1.1291 +    /// \see BlossomIt
  1.1292 +    int blossomNum() const {
  1.1293 +      return _blossom_potential.size();
  1.1294 +    }
  1.1295 +
  1.1296 +
  1.1297 +    /// \brief Returns the number of the nodes in the blossom.
  1.1298 +    ///
  1.1299 +    /// Returns the number of the nodes in the blossom.
  1.1300 +    int blossomSize(int k) const {
  1.1301 +      return _blossom_potential[k].end - _blossom_potential[k].begin;
  1.1302 +    }
  1.1303 +
  1.1304 +    /// \brief Returns the value of the blossom.
  1.1305 +    ///
  1.1306 +    /// Returns the the value of the blossom.
  1.1307 +    /// \see BlossomIt
  1.1308 +    Value blossomValue(int k) const {
  1.1309 +      return _blossom_potential[k].value;
  1.1310 +    }
  1.1311 +
  1.1312 +    /// \brief Lemon iterator for get the items of the blossom.
  1.1313 +    ///
  1.1314 +    /// Lemon iterator for get the nodes of the blossom. This class
  1.1315 +    /// provides a common style lemon iterator which gives back a
  1.1316 +    /// subset of the nodes.
  1.1317 +    class BlossomIt {
  1.1318 +    public:
  1.1319 +
  1.1320 +      /// \brief Constructor.
  1.1321 +      ///
  1.1322 +      /// Constructor for get the nodes of the variable. 
  1.1323 +      BlossomIt(const MaxWeightedMatching& algorithm, int variable) 
  1.1324 +        : _algorithm(&algorithm)
  1.1325 +      {
  1.1326 +        _index = _algorithm->_blossom_potential[variable].begin;
  1.1327 +        _last = _algorithm->_blossom_potential[variable].end;
  1.1328 +      }
  1.1329 +
  1.1330 +      /// \brief Invalid constructor.
  1.1331 +      ///
  1.1332 +      /// Invalid constructor.
  1.1333 +      BlossomIt(Invalid) : _index(-1) {}
  1.1334 +
  1.1335 +      /// \brief Conversion to node.
  1.1336 +      ///
  1.1337 +      /// Conversion to node.
  1.1338 +      operator Node() const { 
  1.1339 +        return _algorithm ? _algorithm->_blossom_node_list[_index] : INVALID;
  1.1340 +      }
  1.1341 +
  1.1342 +      /// \brief Increment operator.
  1.1343 +      ///
  1.1344 +      /// Increment operator.
  1.1345 +      BlossomIt& operator++() {
  1.1346 +        ++_index;
  1.1347 +        if (_index == _last) {
  1.1348 +          _index = -1;
  1.1349 +        }
  1.1350 +        return *this; 
  1.1351 +      }
  1.1352 +
  1.1353 +      bool operator==(const BlossomIt& it) const { 
  1.1354 +        return _index == it._index; 
  1.1355 +      }
  1.1356 +      bool operator!=(const BlossomIt& it) const { 
  1.1357 +        return _index != it._index;
  1.1358 +      }
  1.1359 +
  1.1360 +    private:
  1.1361 +      const MaxWeightedMatching* _algorithm;
  1.1362 +      int _last;
  1.1363 +      int _index;
  1.1364 +    };
  1.1365 +
  1.1366 +    /// @}
  1.1367 +    
  1.1368 +  };
  1.1369 +
  1.1370 +  /// \ingroup matching
  1.1371 +  ///
  1.1372 +  /// \brief Weighted perfect matching in general undirected graphs
  1.1373 +  ///
  1.1374 +  /// This class provides an efficient implementation of Edmond's
  1.1375 +  /// maximum weighted perfecr matching algorithm. The implementation
  1.1376 +  /// is based on extensive use of priority queues and provides
  1.1377 +  /// \f$O(nm\log(n))\f$ time complexity.
  1.1378 +  ///
  1.1379 +  /// The maximum weighted matching problem is to find undirected
  1.1380 +  /// edges in the graph with maximum overall weight and no two of
  1.1381 +  /// them shares their endpoints and covers all nodes. The problem
  1.1382 +  /// can be formulated with the next linear program:
  1.1383 +  /// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f]
  1.1384 +  ///\f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} \quad \forall B\in\mathcal{O}\f] 
  1.1385 +  /// \f[x_e \ge 0\quad \forall e\in E\f]
  1.1386 +  /// \f[\max \sum_{e\in E}x_ew_e\f]
  1.1387 +  /// where \f$\delta(X)\f$ is the set of edges incident to a node in
  1.1388 +  /// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both endpoints in
  1.1389 +  /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality subsets of
  1.1390 +  /// the nodes.
  1.1391 +  ///
  1.1392 +  /// The algorithm calculates an optimal matching and a proof of the
  1.1393 +  /// optimality. The solution of the dual problem can be used to check
  1.1394 +  /// the result of the algorithm. The dual linear problem is the next:
  1.1395 +  /// \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge w_{uv} \quad \forall uv\in E\f]
  1.1396 +  /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
  1.1397 +  /// \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}\frac{\vert B \vert - 1}{2}z_B\f]
  1.1398 +  ///
  1.1399 +  /// The algorithm can be executed with \c run() or the \c init() and
  1.1400 +  /// then the \c start() member functions. After it the matching can
  1.1401 +  /// be asked with \c matching() or mate() functions. The dual
  1.1402 +  /// solution can be get with \c nodeValue(), \c blossomNum() and \c
  1.1403 +  /// blossomValue() members and \ref MaxWeightedMatching::BlossomIt
  1.1404 +  /// "BlossomIt" nested class which is able to iterate on the nodes
  1.1405 +  /// of a blossom. If the value type is integral then the dual
  1.1406 +  /// solution is multiplied by \ref MaxWeightedMatching::dualScale "4".
  1.1407 +  ///
  1.1408 +  /// \author Balazs Dezso
  1.1409 +  template <typename _UGraph, 
  1.1410 +	    typename _WeightMap = typename _UGraph::template UEdgeMap<int> >
  1.1411 +  class MaxWeightedPerfectMatching {
  1.1412 +  public:
  1.1413 +
  1.1414 +    typedef _UGraph UGraph;
  1.1415 +    typedef _WeightMap WeightMap;
  1.1416 +    typedef typename WeightMap::Value Value;
  1.1417 +
  1.1418 +    /// \brief Scaling factor for dual solution
  1.1419 +    ///
  1.1420 +    /// Scaling factor for dual solution, it is equal to 4 or 1
  1.1421 +    /// according to the value type.
  1.1422 +    static const int dualScale = 
  1.1423 +      std::numeric_limits<Value>::is_integer ? 4 : 1;
  1.1424 +
  1.1425 +    typedef typename UGraph::template NodeMap<typename UGraph::Edge> 
  1.1426 +    MatchingMap;
  1.1427 +    
  1.1428 +  private:
  1.1429 +
  1.1430 +    UGRAPH_TYPEDEFS(typename UGraph);
  1.1431 +
  1.1432 +    typedef typename UGraph::template NodeMap<Value> NodePotential;
  1.1433 +    typedef std::vector<Node> BlossomNodeList;
  1.1434 +
  1.1435 +    struct BlossomVariable {
  1.1436 +      int begin, end;
  1.1437 +      Value value;
  1.1438 +      
  1.1439 +      BlossomVariable(int _begin, int _end, Value _value)
  1.1440 +        : begin(_begin), end(_end), value(_value) {}
  1.1441 +
  1.1442 +    };
  1.1443 +
  1.1444 +    typedef std::vector<BlossomVariable> BlossomPotential;
  1.1445 +
  1.1446 +    const UGraph& _ugraph;
  1.1447 +    const WeightMap& _weight;
  1.1448 +
  1.1449 +    MatchingMap* _matching;
  1.1450 +
  1.1451 +    NodePotential* _node_potential;
  1.1452 +
  1.1453 +    BlossomPotential _blossom_potential;
  1.1454 +    BlossomNodeList _blossom_node_list;
  1.1455 +
  1.1456 +    int _node_num;
  1.1457 +    int _blossom_num;
  1.1458 +
  1.1459 +    typedef typename UGraph::template NodeMap<int> NodeIntMap;
  1.1460 +    typedef typename UGraph::template EdgeMap<int> EdgeIntMap;
  1.1461 +    typedef typename UGraph::template UEdgeMap<int> UEdgeIntMap;
  1.1462 +    typedef IntegerMap<int> IntIntMap;
  1.1463 +
  1.1464 +    enum Status {
  1.1465 +      EVEN = -1, MATCHED = 0, ODD = 1
  1.1466 +    };
  1.1467 +
  1.1468 +    typedef HeapUnionFind<Value, NodeIntMap> BlossomSet;
  1.1469 +    struct BlossomData {
  1.1470 +      int tree;
  1.1471 +      Status status;
  1.1472 +      Edge pred, next;
  1.1473 +      Value pot, offset;
  1.1474 +    };
  1.1475 +
  1.1476 +    NodeIntMap *_blossom_index;
  1.1477 +    BlossomSet *_blossom_set;
  1.1478 +    IntegerMap<BlossomData>* _blossom_data;
  1.1479 +
  1.1480 +    NodeIntMap *_node_index;
  1.1481 +    EdgeIntMap *_node_heap_index;
  1.1482 +
  1.1483 +    struct NodeData {
  1.1484 +      
  1.1485 +      NodeData(EdgeIntMap& node_heap_index) 
  1.1486 +	: heap(node_heap_index) {}
  1.1487 +      
  1.1488 +      int blossom;
  1.1489 +      Value pot;
  1.1490 +      BinHeap<Value, EdgeIntMap> heap;
  1.1491 +      std::map<int, Edge> heap_index;
  1.1492 +      
  1.1493 +      int tree;
  1.1494 +    };
  1.1495 +
  1.1496 +    IntegerMap<NodeData>* _node_data;
  1.1497 +
  1.1498 +    typedef ExtendFindEnum<IntIntMap> TreeSet;
  1.1499 +
  1.1500 +    IntIntMap *_tree_set_index;
  1.1501 +    TreeSet *_tree_set;
  1.1502 +
  1.1503 +    IntIntMap *_delta2_index;
  1.1504 +    BinHeap<Value, IntIntMap> *_delta2;
  1.1505 +    
  1.1506 +    UEdgeIntMap *_delta3_index;
  1.1507 +    BinHeap<Value, UEdgeIntMap> *_delta3;
  1.1508 +
  1.1509 +    IntIntMap *_delta4_index;
  1.1510 +    BinHeap<Value, IntIntMap> *_delta4;
  1.1511 +
  1.1512 +    Value _delta_sum;
  1.1513 +
  1.1514 +    void createStructures() {
  1.1515 +      _node_num = countNodes(_ugraph); 
  1.1516 +      _blossom_num = _node_num * 3 / 2;
  1.1517 +
  1.1518 +      if (!_matching) {
  1.1519 +	_matching = new MatchingMap(_ugraph);
  1.1520 +      }
  1.1521 +      if (!_node_potential) {
  1.1522 +	_node_potential = new NodePotential(_ugraph);
  1.1523 +      }
  1.1524 +      if (!_blossom_set) {
  1.1525 +	_blossom_index = new NodeIntMap(_ugraph);
  1.1526 +	_blossom_set = new BlossomSet(*_blossom_index);
  1.1527 +	_blossom_data = new IntegerMap<BlossomData>(_blossom_num);
  1.1528 +      }
  1.1529 +
  1.1530 +      if (!_node_index) {
  1.1531 +	_node_index = new NodeIntMap(_ugraph);
  1.1532 +	_node_heap_index = new EdgeIntMap(_ugraph);
  1.1533 +	_node_data = new IntegerMap<NodeData>(_node_num, 
  1.1534 +					      NodeData(*_node_heap_index));
  1.1535 +      }
  1.1536 +
  1.1537 +      if (!_tree_set) {
  1.1538 +	_tree_set_index = new IntIntMap(_blossom_num);
  1.1539 +	_tree_set = new TreeSet(*_tree_set_index);
  1.1540 +      }
  1.1541 +      if (!_delta2) {
  1.1542 +	_delta2_index = new IntIntMap(_blossom_num);
  1.1543 +	_delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
  1.1544 +      }
  1.1545 +      if (!_delta3) {
  1.1546 +	_delta3_index = new UEdgeIntMap(_ugraph);
  1.1547 +	_delta3 = new BinHeap<Value, UEdgeIntMap>(*_delta3_index);
  1.1548 +      }
  1.1549 +      if (!_delta4) {
  1.1550 +	_delta4_index = new IntIntMap(_blossom_num);
  1.1551 +	_delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
  1.1552 +      }
  1.1553 +    }
  1.1554 +
  1.1555 +    void destroyStructures() {
  1.1556 +      _node_num = countNodes(_ugraph); 
  1.1557 +      _blossom_num = _node_num * 3 / 2;
  1.1558 +
  1.1559 +      if (_matching) {
  1.1560 +	delete _matching;
  1.1561 +      }
  1.1562 +      if (_node_potential) {
  1.1563 +	delete _node_potential;
  1.1564 +      }
  1.1565 +      if (_blossom_set) {
  1.1566 +	delete _blossom_index;
  1.1567 +	delete _blossom_set;
  1.1568 +	delete _blossom_data;
  1.1569 +      }
  1.1570 +
  1.1571 +      if (_node_index) {
  1.1572 +	delete _node_index;
  1.1573 +	delete _node_heap_index;
  1.1574 +	delete _node_data;			      
  1.1575 +      }
  1.1576 +
  1.1577 +      if (_tree_set) {
  1.1578 +	delete _tree_set_index;
  1.1579 +	delete _tree_set;
  1.1580 +      }
  1.1581 +      if (_delta2) {
  1.1582 +	delete _delta2_index;
  1.1583 +	delete _delta2;
  1.1584 +      }
  1.1585 +      if (_delta3) {
  1.1586 +	delete _delta3_index;
  1.1587 +	delete _delta3;
  1.1588 +      }
  1.1589 +      if (_delta4) {
  1.1590 +	delete _delta4_index;
  1.1591 +	delete _delta4;
  1.1592 +      }
  1.1593 +    }
  1.1594 +
  1.1595 +    void matchedToEven(int blossom, int tree) {
  1.1596 +      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  1.1597 +	_delta2->erase(blossom);
  1.1598 +      }
  1.1599 +
  1.1600 +      if (!_blossom_set->trivial(blossom)) {
  1.1601 +	(*_blossom_data)[blossom].pot -= 
  1.1602 +	  2 * (_delta_sum - (*_blossom_data)[blossom].offset);
  1.1603 +      }
  1.1604 +
  1.1605 +      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); 
  1.1606 +	   n != INVALID; ++n) {
  1.1607 +
  1.1608 +	_blossom_set->increase(n, std::numeric_limits<Value>::max());
  1.1609 +	int ni = (*_node_index)[n];
  1.1610 +
  1.1611 +	(*_node_data)[ni].heap.clear();
  1.1612 +	(*_node_data)[ni].heap_index.clear();
  1.1613 +
  1.1614 +	(*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset;
  1.1615 +
  1.1616 +	for (InEdgeIt e(_ugraph, n); e != INVALID; ++e) {
  1.1617 +	  Node v = _ugraph.source(e);
  1.1618 +	  int vb = _blossom_set->find(v);
  1.1619 +	  int vi = (*_node_index)[v];
  1.1620 +
  1.1621 +	  Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - 
  1.1622 +	    dualScale * _weight[e];
  1.1623 +
  1.1624 +	  if ((*_blossom_data)[vb].status == EVEN) {
  1.1625 +	    if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
  1.1626 +	      _delta3->push(e, rw / 2);
  1.1627 +	    }
  1.1628 +	  } else {
  1.1629 +	    typename std::map<int, Edge>::iterator it = 
  1.1630 +	      (*_node_data)[vi].heap_index.find(tree);	  
  1.1631 +
  1.1632 +	    if (it != (*_node_data)[vi].heap_index.end()) {
  1.1633 +	      if ((*_node_data)[vi].heap[it->second] > rw) {
  1.1634 +		(*_node_data)[vi].heap.replace(it->second, e);
  1.1635 +		(*_node_data)[vi].heap.decrease(e, rw);
  1.1636 +		it->second = e;
  1.1637 +	      }
  1.1638 +	    } else {
  1.1639 +	      (*_node_data)[vi].heap.push(e, rw);
  1.1640 +	      (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
  1.1641 +	    }
  1.1642 +
  1.1643 +	    if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
  1.1644 +	      _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
  1.1645 +
  1.1646 +	      if ((*_blossom_data)[vb].status == MATCHED) {
  1.1647 +		if (_delta2->state(vb) != _delta2->IN_HEAP) {
  1.1648 +		  _delta2->push(vb, _blossom_set->classPrio(vb) -
  1.1649 +			       (*_blossom_data)[vb].offset);
  1.1650 +		} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
  1.1651 +			   (*_blossom_data)[vb].offset){
  1.1652 +		  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
  1.1653 +				   (*_blossom_data)[vb].offset);
  1.1654 +		}
  1.1655 +	      }
  1.1656 +	    }
  1.1657 +	  }
  1.1658 +	}
  1.1659 +      }
  1.1660 +      (*_blossom_data)[blossom].offset = 0;
  1.1661 +    }
  1.1662 +
  1.1663 +    void matchedToOdd(int blossom) {
  1.1664 +      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  1.1665 +	_delta2->erase(blossom);
  1.1666 +      }
  1.1667 +      (*_blossom_data)[blossom].offset += _delta_sum;
  1.1668 +      if (!_blossom_set->trivial(blossom)) {
  1.1669 +	_delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 + 
  1.1670 +		     (*_blossom_data)[blossom].offset);
  1.1671 +      }
  1.1672 +    }
  1.1673 +
  1.1674 +    void evenToMatched(int blossom, int tree) {
  1.1675 +      if (!_blossom_set->trivial(blossom)) {
  1.1676 +	(*_blossom_data)[blossom].pot += 2 * _delta_sum;
  1.1677 +      }
  1.1678 +
  1.1679 +      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  1.1680 +	   n != INVALID; ++n) {
  1.1681 +	int ni = (*_node_index)[n];
  1.1682 +	(*_node_data)[ni].pot -= _delta_sum;
  1.1683 +
  1.1684 +	for (InEdgeIt e(_ugraph, n); e != INVALID; ++e) {
  1.1685 +	  Node v = _ugraph.source(e);
  1.1686 +	  int vb = _blossom_set->find(v);
  1.1687 +	  int vi = (*_node_index)[v];
  1.1688 +
  1.1689 +	  Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - 
  1.1690 +	    dualScale * _weight[e];
  1.1691 +
  1.1692 +	  if (vb == blossom) {
  1.1693 +	    if (_delta3->state(e) == _delta3->IN_HEAP) {
  1.1694 +	      _delta3->erase(e);
  1.1695 +	    }
  1.1696 +	  } else if ((*_blossom_data)[vb].status == EVEN) {
  1.1697 +
  1.1698 +	    if (_delta3->state(e) == _delta3->IN_HEAP) {
  1.1699 +	      _delta3->erase(e);
  1.1700 +	    }
  1.1701 +
  1.1702 +	    int vt = _tree_set->find(vb);
  1.1703 +	    
  1.1704 +	    if (vt != tree) {
  1.1705 +
  1.1706 +	      Edge r = _ugraph.oppositeEdge(e);
  1.1707 +
  1.1708 +	      typename std::map<int, Edge>::iterator it = 
  1.1709 +		(*_node_data)[ni].heap_index.find(vt);	  
  1.1710 +
  1.1711 +	      if (it != (*_node_data)[ni].heap_index.end()) {
  1.1712 +		if ((*_node_data)[ni].heap[it->second] > rw) {
  1.1713 +		  (*_node_data)[ni].heap.replace(it->second, r);
  1.1714 +		  (*_node_data)[ni].heap.decrease(r, rw);
  1.1715 +		  it->second = r;
  1.1716 +		}
  1.1717 +	      } else {
  1.1718 +		(*_node_data)[ni].heap.push(r, rw);
  1.1719 +		(*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
  1.1720 +	      }
  1.1721 +	      
  1.1722 +	      if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
  1.1723 +		_blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
  1.1724 +		
  1.1725 +		if (_delta2->state(blossom) != _delta2->IN_HEAP) {
  1.1726 +		  _delta2->push(blossom, _blossom_set->classPrio(blossom) - 
  1.1727 +			       (*_blossom_data)[blossom].offset);
  1.1728 +		} else if ((*_delta2)[blossom] > 
  1.1729 +			   _blossom_set->classPrio(blossom) - 
  1.1730 +			   (*_blossom_data)[blossom].offset){
  1.1731 +		  _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
  1.1732 +				   (*_blossom_data)[blossom].offset);
  1.1733 +		}
  1.1734 +	      }
  1.1735 +	    }
  1.1736 +	  } else {
  1.1737 +	  
  1.1738 +	    typename std::map<int, Edge>::iterator it = 
  1.1739 +	      (*_node_data)[vi].heap_index.find(tree);
  1.1740 +
  1.1741 +	    if (it != (*_node_data)[vi].heap_index.end()) {
  1.1742 +	      (*_node_data)[vi].heap.erase(it->second);
  1.1743 +	      (*_node_data)[vi].heap_index.erase(it);
  1.1744 +	      if ((*_node_data)[vi].heap.empty()) {
  1.1745 +		_blossom_set->increase(v, std::numeric_limits<Value>::max());
  1.1746 +	      } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
  1.1747 +		_blossom_set->increase(v, (*_node_data)[vi].heap.prio());
  1.1748 +	      }
  1.1749 +	      
  1.1750 +	      if ((*_blossom_data)[vb].status == MATCHED) {
  1.1751 +		if (_blossom_set->classPrio(vb) == 
  1.1752 +		    std::numeric_limits<Value>::max()) {
  1.1753 +		  _delta2->erase(vb);
  1.1754 +		} else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
  1.1755 +			   (*_blossom_data)[vb].offset) {
  1.1756 +		  _delta2->increase(vb, _blossom_set->classPrio(vb) -
  1.1757 +				   (*_blossom_data)[vb].offset);
  1.1758 +		}
  1.1759 +	      }	
  1.1760 +	    }	
  1.1761 +	  }
  1.1762 +	}
  1.1763 +      }
  1.1764 +    }
  1.1765 +
  1.1766 +    void oddToMatched(int blossom) {
  1.1767 +      (*_blossom_data)[blossom].offset -= _delta_sum;
  1.1768 +
  1.1769 +      if (_blossom_set->classPrio(blossom) != 
  1.1770 +	  std::numeric_limits<Value>::max()) {
  1.1771 +	_delta2->push(blossom, _blossom_set->classPrio(blossom) - 
  1.1772 +		       (*_blossom_data)[blossom].offset);
  1.1773 +      }
  1.1774 +
  1.1775 +      if (!_blossom_set->trivial(blossom)) {
  1.1776 +	_delta4->erase(blossom);
  1.1777 +      }
  1.1778 +    }
  1.1779 +
  1.1780 +    void oddToEven(int blossom, int tree) {
  1.1781 +      if (!_blossom_set->trivial(blossom)) {
  1.1782 +	_delta4->erase(blossom);
  1.1783 +	(*_blossom_data)[blossom].pot -= 
  1.1784 +	  2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
  1.1785 +      }
  1.1786 +
  1.1787 +      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); 
  1.1788 +	   n != INVALID; ++n) {
  1.1789 +	int ni = (*_node_index)[n];
  1.1790 +
  1.1791 +	_blossom_set->increase(n, std::numeric_limits<Value>::max());
  1.1792 +
  1.1793 +	(*_node_data)[ni].heap.clear();
  1.1794 +	(*_node_data)[ni].heap_index.clear();
  1.1795 +	(*_node_data)[ni].pot += 
  1.1796 +	  2 * _delta_sum - (*_blossom_data)[blossom].offset;
  1.1797 +
  1.1798 +	for (InEdgeIt e(_ugraph, n); e != INVALID; ++e) {
  1.1799 +	  Node v = _ugraph.source(e);
  1.1800 +	  int vb = _blossom_set->find(v);
  1.1801 +	  int vi = (*_node_index)[v];
  1.1802 +
  1.1803 +	  Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - 
  1.1804 +	    dualScale * _weight[e];
  1.1805 +
  1.1806 +	  if ((*_blossom_data)[vb].status == EVEN) {
  1.1807 +	    if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
  1.1808 +	      _delta3->push(e, rw / 2);
  1.1809 +	    }
  1.1810 +	  } else {
  1.1811 +	  
  1.1812 +	    typename std::map<int, Edge>::iterator it = 
  1.1813 +	      (*_node_data)[vi].heap_index.find(tree);	  
  1.1814 +
  1.1815 +	    if (it != (*_node_data)[vi].heap_index.end()) {
  1.1816 +	      if ((*_node_data)[vi].heap[it->second] > rw) {
  1.1817 +		(*_node_data)[vi].heap.replace(it->second, e);
  1.1818 +		(*_node_data)[vi].heap.decrease(e, rw);
  1.1819 +		it->second = e;
  1.1820 +	      }
  1.1821 +	    } else {
  1.1822 +	      (*_node_data)[vi].heap.push(e, rw);
  1.1823 +	      (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
  1.1824 +	    }
  1.1825 +
  1.1826 +	    if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
  1.1827 +	      _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
  1.1828 +
  1.1829 +	      if ((*_blossom_data)[vb].status == MATCHED) {
  1.1830 +		if (_delta2->state(vb) != _delta2->IN_HEAP) {
  1.1831 +		  _delta2->push(vb, _blossom_set->classPrio(vb) - 
  1.1832 +			       (*_blossom_data)[vb].offset);
  1.1833 +		} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - 
  1.1834 +			   (*_blossom_data)[vb].offset) {
  1.1835 +		  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
  1.1836 +				   (*_blossom_data)[vb].offset);
  1.1837 +		}
  1.1838 +	      }
  1.1839 +	    }
  1.1840 +	  }
  1.1841 +	}
  1.1842 +      }
  1.1843 +      (*_blossom_data)[blossom].offset = 0;
  1.1844 +    }
  1.1845 +    
  1.1846 +    void alternatePath(int even, int tree) {
  1.1847 +      int odd;
  1.1848 +
  1.1849 +      evenToMatched(even, tree);
  1.1850 +      (*_blossom_data)[even].status = MATCHED;
  1.1851 +
  1.1852 +      while ((*_blossom_data)[even].pred != INVALID) {
  1.1853 +	odd = _blossom_set->find(_ugraph.target((*_blossom_data)[even].pred));
  1.1854 +	(*_blossom_data)[odd].status = MATCHED;
  1.1855 +	oddToMatched(odd);
  1.1856 +	(*_blossom_data)[odd].next = (*_blossom_data)[odd].pred;
  1.1857 +      
  1.1858 +	even = _blossom_set->find(_ugraph.target((*_blossom_data)[odd].pred));
  1.1859 +	(*_blossom_data)[even].status = MATCHED;
  1.1860 +	evenToMatched(even, tree);
  1.1861 +	(*_blossom_data)[even].next = 
  1.1862 +	  _ugraph.oppositeEdge((*_blossom_data)[odd].pred);
  1.1863 +      }
  1.1864 +      
  1.1865 +    }
  1.1866 +
  1.1867 +    void destroyTree(int tree) {
  1.1868 +      for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) {
  1.1869 +	if ((*_blossom_data)[b].status == EVEN) {
  1.1870 +	  (*_blossom_data)[b].status = MATCHED;
  1.1871 +	  evenToMatched(b, tree);
  1.1872 +	} else if ((*_blossom_data)[b].status == ODD) {
  1.1873 +	  (*_blossom_data)[b].status = MATCHED;
  1.1874 +	  oddToMatched(b);
  1.1875 +	}
  1.1876 +      }
  1.1877 +      _tree_set->eraseClass(tree);
  1.1878 +    }
  1.1879 +
  1.1880 +    void augmentOnEdge(const UEdge& edge) {
  1.1881 +      
  1.1882 +      int left = _blossom_set->find(_ugraph.source(edge));
  1.1883 +      int right = _blossom_set->find(_ugraph.target(edge));
  1.1884 +
  1.1885 +      int left_tree = _tree_set->find(left);
  1.1886 +      alternatePath(left, left_tree);
  1.1887 +      destroyTree(left_tree);
  1.1888 +
  1.1889 +      int right_tree = _tree_set->find(right);
  1.1890 +      alternatePath(right, right_tree);
  1.1891 +      destroyTree(right_tree);
  1.1892 +
  1.1893 +      (*_blossom_data)[left].next = _ugraph.direct(edge, true);
  1.1894 +      (*_blossom_data)[right].next = _ugraph.direct(edge, false);
  1.1895 +    }
  1.1896 +
  1.1897 +    void extendOnEdge(const Edge& edge) {
  1.1898 +      int base = _blossom_set->find(_ugraph.target(edge));
  1.1899 +      int tree = _tree_set->find(base);
  1.1900 +      
  1.1901 +      int odd = _blossom_set->find(_ugraph.source(edge));
  1.1902 +      _tree_set->insert(odd, tree);
  1.1903 +      (*_blossom_data)[odd].status = ODD;
  1.1904 +      matchedToOdd(odd);
  1.1905 +      (*_blossom_data)[odd].pred = edge;
  1.1906 +
  1.1907 +      int even = _blossom_set->find(_ugraph.target((*_blossom_data)[odd].next));
  1.1908 +      (*_blossom_data)[even].pred = (*_blossom_data)[even].next;
  1.1909 +      _tree_set->insert(even, tree);
  1.1910 +      (*_blossom_data)[even].status = EVEN;
  1.1911 +      matchedToEven(even, tree);
  1.1912 +    }
  1.1913 +    
  1.1914 +    void shrinkOnEdge(const UEdge& uedge, int tree) {
  1.1915 +      int nca = -1;
  1.1916 +      std::vector<int> left_path, right_path;
  1.1917 +
  1.1918 +      {
  1.1919 +	std::set<int> left_set, right_set;
  1.1920 +	int left = _blossom_set->find(_ugraph.source(uedge));
  1.1921 +	left_path.push_back(left);
  1.1922 +	left_set.insert(left);
  1.1923 +
  1.1924 +	int right = _blossom_set->find(_ugraph.target(uedge));
  1.1925 +	right_path.push_back(right);
  1.1926 +	right_set.insert(right);
  1.1927 +
  1.1928 +	while (true) {
  1.1929 +
  1.1930 +	  if ((*_blossom_data)[left].pred == INVALID) break;
  1.1931 +
  1.1932 +	  left = 
  1.1933 +	    _blossom_set->find(_ugraph.target((*_blossom_data)[left].pred));
  1.1934 +	  left_path.push_back(left);
  1.1935 +	  left = 
  1.1936 +	    _blossom_set->find(_ugraph.target((*_blossom_data)[left].pred));
  1.1937 +	  left_path.push_back(left);
  1.1938 +
  1.1939 +	  left_set.insert(left);
  1.1940 +
  1.1941 +	  if (right_set.find(left) != right_set.end()) {
  1.1942 +	    nca = left;
  1.1943 +	    break;
  1.1944 +	  }
  1.1945 +
  1.1946 +	  if ((*_blossom_data)[right].pred == INVALID) break;
  1.1947 +
  1.1948 +	  right = 
  1.1949 +	    _blossom_set->find(_ugraph.target((*_blossom_data)[right].pred));
  1.1950 +	  right_path.push_back(right);
  1.1951 +	  right = 
  1.1952 +	    _blossom_set->find(_ugraph.target((*_blossom_data)[right].pred));
  1.1953 +	  right_path.push_back(right);
  1.1954 +
  1.1955 +	  right_set.insert(right);
  1.1956 + 
  1.1957 +	  if (left_set.find(right) != left_set.end()) {
  1.1958 +	    nca = right;
  1.1959 +	    break;
  1.1960 +	  }
  1.1961 +
  1.1962 +	}
  1.1963 +
  1.1964 +	if (nca == -1) {
  1.1965 +	  if ((*_blossom_data)[left].pred == INVALID) {
  1.1966 +	    nca = right;
  1.1967 +	    while (left_set.find(nca) == left_set.end()) {
  1.1968 +	      nca = 
  1.1969 +		_blossom_set->find(_ugraph.target((*_blossom_data)[nca].pred));
  1.1970 +	      right_path.push_back(nca);
  1.1971 +	      nca = 
  1.1972 +		_blossom_set->find(_ugraph.target((*_blossom_data)[nca].pred));
  1.1973 +	      right_path.push_back(nca);
  1.1974 +	    }
  1.1975 +	  } else {
  1.1976 +	    nca = left;
  1.1977 +	    while (right_set.find(nca) == right_set.end()) {
  1.1978 +	      nca = 
  1.1979 +		_blossom_set->find(_ugraph.target((*_blossom_data)[nca].pred));
  1.1980 +	      left_path.push_back(nca);
  1.1981 +	      nca = 
  1.1982 +		_blossom_set->find(_ugraph.target((*_blossom_data)[nca].pred));
  1.1983 +	      left_path.push_back(nca);
  1.1984 +	    }
  1.1985 +	  }
  1.1986 +	}
  1.1987 +      }
  1.1988 +
  1.1989 +      std::vector<int> subblossoms;
  1.1990 +      Edge prev;
  1.1991 +
  1.1992 +      prev = _ugraph.direct(uedge, true);
  1.1993 +      for (int i = 0; left_path[i] != nca; i += 2) {
  1.1994 +	subblossoms.push_back(left_path[i]);
  1.1995 +	(*_blossom_data)[left_path[i]].next = prev;
  1.1996 +	_tree_set->erase(left_path[i]);
  1.1997 +
  1.1998 +	subblossoms.push_back(left_path[i + 1]);
  1.1999 +	(*_blossom_data)[left_path[i + 1]].status = EVEN;
  1.2000 +	oddToEven(left_path[i + 1], tree);
  1.2001 +	_tree_set->erase(left_path[i + 1]);
  1.2002 +	prev = _ugraph.oppositeEdge((*_blossom_data)[left_path[i + 1]].pred);
  1.2003 +      }
  1.2004 +
  1.2005 +      int k = 0;
  1.2006 +      while (right_path[k] != nca) ++k;
  1.2007 +
  1.2008 +      subblossoms.push_back(nca);
  1.2009 +      (*_blossom_data)[nca].next = prev;
  1.2010 +      
  1.2011 +      for (int i = k - 2; i >= 0; i -= 2) {
  1.2012 +	subblossoms.push_back(right_path[i + 1]);
  1.2013 +	(*_blossom_data)[right_path[i + 1]].status = EVEN;
  1.2014 +	oddToEven(right_path[i + 1], tree);
  1.2015 +	_tree_set->erase(right_path[i + 1]);
  1.2016 +
  1.2017 +	(*_blossom_data)[right_path[i + 1]].next = 
  1.2018 +	  (*_blossom_data)[right_path[i + 1]].pred;
  1.2019 +
  1.2020 +	subblossoms.push_back(right_path[i]);
  1.2021 +	_tree_set->erase(right_path[i]);
  1.2022 +      }
  1.2023 +
  1.2024 +      int surface = 
  1.2025 +	_blossom_set->join(subblossoms.begin(), subblossoms.end());
  1.2026 +
  1.2027 +      for (int i = 0; i < int(subblossoms.size()); ++i) {
  1.2028 +	if (!_blossom_set->trivial(subblossoms[i])) {
  1.2029 +	  (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum;
  1.2030 +	}
  1.2031 +	(*_blossom_data)[subblossoms[i]].status = MATCHED;
  1.2032 +      }
  1.2033 +
  1.2034 +      (*_blossom_data)[surface].pot = -2 * _delta_sum;
  1.2035 +      (*_blossom_data)[surface].offset = 0;
  1.2036 +      (*_blossom_data)[surface].status = EVEN;
  1.2037 +      (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred;
  1.2038 +      (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred;
  1.2039 +
  1.2040 +      _tree_set->insert(surface, tree);
  1.2041 +      _tree_set->erase(nca);
  1.2042 +    }
  1.2043 +
  1.2044 +    void splitBlossom(int blossom) {
  1.2045 +      Edge next = (*_blossom_data)[blossom].next; 
  1.2046 +      Edge pred = (*_blossom_data)[blossom].pred;
  1.2047 +
  1.2048 +      int tree = _tree_set->find(blossom);
  1.2049 +
  1.2050 +      (*_blossom_data)[blossom].status = MATCHED;
  1.2051 +      oddToMatched(blossom);
  1.2052 +      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  1.2053 +	_delta2->erase(blossom);
  1.2054 +      }
  1.2055 +
  1.2056 +      std::vector<int> subblossoms;
  1.2057 +      _blossom_set->split(blossom, std::back_inserter(subblossoms));
  1.2058 +
  1.2059 +      Value offset = (*_blossom_data)[blossom].offset;
  1.2060 +      int b = _blossom_set->find(_ugraph.source(pred));
  1.2061 +      int d = _blossom_set->find(_ugraph.source(next));
  1.2062 +      
  1.2063 +      int ib, id;
  1.2064 +      for (int i = 0; i < int(subblossoms.size()); ++i) {
  1.2065 +	if (subblossoms[i] == b) ib = i;
  1.2066 +	if (subblossoms[i] == d) id = i;
  1.2067 +
  1.2068 +	(*_blossom_data)[subblossoms[i]].offset = offset;
  1.2069 +	if (!_blossom_set->trivial(subblossoms[i])) {
  1.2070 +	  (*_blossom_data)[subblossoms[i]].pot -= 2 * offset;
  1.2071 +	}
  1.2072 +	if (_blossom_set->classPrio(subblossoms[i]) != 
  1.2073 +	    std::numeric_limits<Value>::max()) {
  1.2074 +	  _delta2->push(subblossoms[i], 
  1.2075 +			_blossom_set->classPrio(subblossoms[i]) - 
  1.2076 +			(*_blossom_data)[subblossoms[i]].offset);
  1.2077 +	}
  1.2078 +      }
  1.2079 +      
  1.2080 +      if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) {
  1.2081 +	for (int i = (id + 1) % subblossoms.size(); 
  1.2082 +	     i != ib; i = (i + 2) % subblossoms.size()) {
  1.2083 +	  int sb = subblossoms[i];
  1.2084 +	  int tb = subblossoms[(i + 1) % subblossoms.size()];
  1.2085 +	  (*_blossom_data)[sb].next = 
  1.2086 +	    _ugraph.oppositeEdge((*_blossom_data)[tb].next);
  1.2087 +	}
  1.2088 +
  1.2089 +	for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
  1.2090 +	  int sb = subblossoms[i];
  1.2091 +	  int tb = subblossoms[(i + 1) % subblossoms.size()];
  1.2092 +	  int ub = subblossoms[(i + 2) % subblossoms.size()];
  1.2093 +
  1.2094 +	  (*_blossom_data)[sb].status = ODD;
  1.2095 +	  matchedToOdd(sb);
  1.2096 +	  _tree_set->insert(sb, tree);
  1.2097 +	  (*_blossom_data)[sb].pred = pred;
  1.2098 +	  (*_blossom_data)[sb].next = 
  1.2099 +			   _ugraph.oppositeEdge((*_blossom_data)[tb].next);
  1.2100 +	  
  1.2101 +	  pred = (*_blossom_data)[ub].next;
  1.2102 +      
  1.2103 +	  (*_blossom_data)[tb].status = EVEN;
  1.2104 +	  matchedToEven(tb, tree);
  1.2105 +	  _tree_set->insert(tb, tree);
  1.2106 +	  (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next;
  1.2107 +	}
  1.2108 +      
  1.2109 +	(*_blossom_data)[subblossoms[id]].status = ODD;
  1.2110 +	matchedToOdd(subblossoms[id]);
  1.2111 +	_tree_set->insert(subblossoms[id], tree);
  1.2112 +	(*_blossom_data)[subblossoms[id]].next = next;
  1.2113 +	(*_blossom_data)[subblossoms[id]].pred = pred;
  1.2114 +      
  1.2115 +      } else {
  1.2116 +
  1.2117 +	for (int i = (ib + 1) % subblossoms.size(); 
  1.2118 +	     i != id; i = (i + 2) % subblossoms.size()) {
  1.2119 +	  int sb = subblossoms[i];
  1.2120 +	  int tb = subblossoms[(i + 1) % subblossoms.size()];
  1.2121 +	  (*_blossom_data)[sb].next = 
  1.2122 +	    _ugraph.oppositeEdge((*_blossom_data)[tb].next);
  1.2123 +	}	
  1.2124 +
  1.2125 +	for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) {
  1.2126 +	  int sb = subblossoms[i];
  1.2127 +	  int tb = subblossoms[(i + 1) % subblossoms.size()];
  1.2128 +	  int ub = subblossoms[(i + 2) % subblossoms.size()];
  1.2129 +
  1.2130 +	  (*_blossom_data)[sb].status = ODD;
  1.2131 +	  matchedToOdd(sb);
  1.2132 +	  _tree_set->insert(sb, tree);
  1.2133 +	  (*_blossom_data)[sb].next = next; 
  1.2134 +	  (*_blossom_data)[sb].pred =
  1.2135 +	    _ugraph.oppositeEdge((*_blossom_data)[tb].next);
  1.2136 +
  1.2137 +	  (*_blossom_data)[tb].status = EVEN;
  1.2138 +	  matchedToEven(tb, tree);
  1.2139 +	  _tree_set->insert(tb, tree);
  1.2140 +	  (*_blossom_data)[tb].pred =
  1.2141 +	    (*_blossom_data)[tb].next = 
  1.2142 +	    _ugraph.oppositeEdge((*_blossom_data)[ub].next);
  1.2143 +	  next = (*_blossom_data)[ub].next;
  1.2144 +	}
  1.2145 +
  1.2146 +	(*_blossom_data)[subblossoms[ib]].status = ODD;
  1.2147 +	matchedToOdd(subblossoms[ib]);
  1.2148 +	_tree_set->insert(subblossoms[ib], tree);
  1.2149 +	(*_blossom_data)[subblossoms[ib]].next = next;
  1.2150 +	(*_blossom_data)[subblossoms[ib]].pred = pred;
  1.2151 +      }
  1.2152 +      _tree_set->erase(blossom);
  1.2153 +    }
  1.2154 +
  1.2155 +    void extractBlossom(int blossom, const Node& base, const Edge& matching) {
  1.2156 +      if (_blossom_set->trivial(blossom)) {
  1.2157 +	int bi = (*_node_index)[base];
  1.2158 +	Value pot = (*_node_data)[bi].pot;
  1.2159 +
  1.2160 +	_matching->set(base, matching);
  1.2161 +	_blossom_node_list.push_back(base);
  1.2162 +	_node_potential->set(base, pot);
  1.2163 +      } else {
  1.2164 +
  1.2165 +	Value pot = (*_blossom_data)[blossom].pot;
  1.2166 +	int bn = _blossom_node_list.size();
  1.2167 +	
  1.2168 +	std::vector<int> subblossoms;
  1.2169 +	_blossom_set->split(blossom, std::back_inserter(subblossoms));
  1.2170 +	int b = _blossom_set->find(base);
  1.2171 +	int ib = -1;
  1.2172 +	for (int i = 0; i < int(subblossoms.size()); ++i) {
  1.2173 +	  if (subblossoms[i] == b) { ib = i; break; }
  1.2174 +	}
  1.2175 +	
  1.2176 +	for (int i = 1; i < int(subblossoms.size()); i += 2) {
  1.2177 +	  int sb = subblossoms[(ib + i) % subblossoms.size()];
  1.2178 +	  int tb = subblossoms[(ib + i + 1) % subblossoms.size()];
  1.2179 +	  
  1.2180 +	  Edge m = (*_blossom_data)[tb].next;
  1.2181 +	  extractBlossom(sb, _ugraph.target(m), _ugraph.oppositeEdge(m));
  1.2182 +	  extractBlossom(tb, _ugraph.source(m), m);
  1.2183 +	}
  1.2184 +	extractBlossom(subblossoms[ib], base, matching);      
  1.2185 +	
  1.2186 +	int en = _blossom_node_list.size();
  1.2187 +	
  1.2188 +	_blossom_potential.push_back(BlossomVariable(bn, en, pot));
  1.2189 +      }
  1.2190 +    }
  1.2191 +
  1.2192 +    void extractMatching() {
  1.2193 +      std::vector<int> blossoms;
  1.2194 +      for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
  1.2195 +	blossoms.push_back(c);
  1.2196 +      }
  1.2197 +
  1.2198 +      for (int i = 0; i < int(blossoms.size()); ++i) {
  1.2199 +
  1.2200 +	Value offset = (*_blossom_data)[blossoms[i]].offset;
  1.2201 +	(*_blossom_data)[blossoms[i]].pot += 2 * offset;
  1.2202 +	for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]); 
  1.2203 +	     n != INVALID; ++n) {
  1.2204 +	  (*_node_data)[(*_node_index)[n]].pot -= offset;
  1.2205 +	}
  1.2206 +	
  1.2207 +	Edge matching = (*_blossom_data)[blossoms[i]].next;
  1.2208 +	Node base = _ugraph.source(matching);
  1.2209 +	extractBlossom(blossoms[i], base, matching);
  1.2210 +      }
  1.2211 +    }
  1.2212 +    
  1.2213 +  public:
  1.2214 +
  1.2215 +    /// \brief Constructor
  1.2216 +    ///
  1.2217 +    /// Constructor.
  1.2218 +    MaxWeightedPerfectMatching(const UGraph& ugraph, const WeightMap& weight)
  1.2219 +      : _ugraph(ugraph), _weight(weight), _matching(0),
  1.2220 +	_node_potential(0), _blossom_potential(), _blossom_node_list(),
  1.2221 +	_node_num(0), _blossom_num(0),
  1.2222 +
  1.2223 +	_blossom_index(0), _blossom_set(0), _blossom_data(0),
  1.2224 +	_node_index(0), _node_heap_index(0), _node_data(0),
  1.2225 +	_tree_set_index(0), _tree_set(0),
  1.2226 +
  1.2227 +	_delta2_index(0), _delta2(0),
  1.2228 +	_delta3_index(0), _delta3(0), 
  1.2229 +	_delta4_index(0), _delta4(0),
  1.2230 +
  1.2231 +	_delta_sum() {}
  1.2232 +
  1.2233 +    ~MaxWeightedPerfectMatching() {
  1.2234 +      destroyStructures();
  1.2235 +    }
  1.2236 +
  1.2237 +    /// \name Execution control 
  1.2238 +    /// The simplest way to execute the algorithm is to use the member
  1.2239 +    /// \c run() member function.
  1.2240 +
  1.2241 +    ///@{
  1.2242 +
  1.2243 +    /// \brief Initialize the algorithm
  1.2244 +    ///
  1.2245 +    /// Initialize the algorithm
  1.2246 +    void init() {
  1.2247 +      createStructures();
  1.2248 +
  1.2249 +      for (EdgeIt e(_ugraph); e != INVALID; ++e) {
  1.2250 +	_node_heap_index->set(e, BinHeap<Value, EdgeIntMap>::PRE_HEAP);
  1.2251 +      }
  1.2252 +      for (UEdgeIt e(_ugraph); e != INVALID; ++e) {
  1.2253 +	_delta3_index->set(e, _delta3->PRE_HEAP);
  1.2254 +      }
  1.2255 +      for (int i = 0; i < _blossom_num; ++i) {
  1.2256 +	_delta2_index->set(i, _delta2->PRE_HEAP);
  1.2257 +	_delta4_index->set(i, _delta4->PRE_HEAP);
  1.2258 +      }
  1.2259 +
  1.2260 +      int index = 0;
  1.2261 +      for (NodeIt n(_ugraph); n != INVALID; ++n) {
  1.2262 +	Value max = std::numeric_limits<Value>::min();
  1.2263 +	for (OutEdgeIt e(_ugraph, n); e != INVALID; ++e) {
  1.2264 +	  if (_ugraph.target(e) == n) continue;
  1.2265 +	  if ((dualScale * _weight[e]) / 2 > max) {
  1.2266 +	    max = (dualScale * _weight[e]) / 2;
  1.2267 +	  }
  1.2268 +	}
  1.2269 +	_node_index->set(n, index);
  1.2270 +	(*_node_data)[index].pot = max;
  1.2271 +	int blossom = 
  1.2272 +	  _blossom_set->insert(n, std::numeric_limits<Value>::max());
  1.2273 +
  1.2274 +	_tree_set->insert(blossom);
  1.2275 +
  1.2276 +	(*_blossom_data)[blossom].status = EVEN;
  1.2277 +	(*_blossom_data)[blossom].pred = INVALID;
  1.2278 +	(*_blossom_data)[blossom].next = INVALID;
  1.2279 +	(*_blossom_data)[blossom].pot = 0;
  1.2280 +	(*_blossom_data)[blossom].offset = 0;
  1.2281 +	++index;
  1.2282 +      }
  1.2283 +      for (UEdgeIt e(_ugraph); e != INVALID; ++e) {
  1.2284 +	int si = (*_node_index)[_ugraph.source(e)];
  1.2285 +	int ti = (*_node_index)[_ugraph.target(e)];
  1.2286 +	if (_ugraph.source(e) != _ugraph.target(e)) {
  1.2287 +	  _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - 
  1.2288 +			    dualScale * _weight[e]) / 2);
  1.2289 +	}
  1.2290 +      }
  1.2291 +    }
  1.2292 +
  1.2293 +    /// \brief Starts the algorithm
  1.2294 +    ///
  1.2295 +    /// Starts the algorithm
  1.2296 +    bool start() {
  1.2297 +      enum OpType {
  1.2298 +	D2, D3, D4
  1.2299 +      };
  1.2300 +
  1.2301 +      int unmatched = _node_num;
  1.2302 +      while (unmatched > 0) {
  1.2303 +	Value d2 = !_delta2->empty() ? 
  1.2304 +	  _delta2->prio() : std::numeric_limits<Value>::max();
  1.2305 +
  1.2306 +	Value d3 = !_delta3->empty() ? 
  1.2307 +	  _delta3->prio() : std::numeric_limits<Value>::max();
  1.2308 +
  1.2309 +	Value d4 = !_delta4->empty() ? 
  1.2310 +	  _delta4->prio() : std::numeric_limits<Value>::max();
  1.2311 +
  1.2312 +	_delta_sum = d2; OpType ot = D2;
  1.2313 +	if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
  1.2314 +	if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
  1.2315 +
  1.2316 +	if (_delta_sum == std::numeric_limits<Value>::max()) {
  1.2317 +	  return false;
  1.2318 +	}
  1.2319 +	
  1.2320 +	switch (ot) {
  1.2321 +	case D2:
  1.2322 +	  {
  1.2323 +	    int blossom = _delta2->top();
  1.2324 +	    Node n = _blossom_set->classTop(blossom);
  1.2325 +	    Edge e = (*_node_data)[(*_node_index)[n]].heap.top();
  1.2326 +	    extendOnEdge(e);
  1.2327 +	  }
  1.2328 +	  break;
  1.2329 +	case D3:
  1.2330 +	  {
  1.2331 +	    UEdge e = _delta3->top();
  1.2332 +	    
  1.2333 +	    int left_blossom = _blossom_set->find(_ugraph.source(e));
  1.2334 +	    int right_blossom = _blossom_set->find(_ugraph.target(e));
  1.2335 +	  
  1.2336 +	    if (left_blossom == right_blossom) {
  1.2337 +	      _delta3->pop();
  1.2338 +	    } else {
  1.2339 +	      int left_tree = _tree_set->find(left_blossom);
  1.2340 +	      int right_tree = _tree_set->find(right_blossom);
  1.2341 +	    
  1.2342 +	      if (left_tree == right_tree) {
  1.2343 +		shrinkOnEdge(e, left_tree);
  1.2344 +	      } else {
  1.2345 +		augmentOnEdge(e);
  1.2346 +		unmatched -= 2;
  1.2347 +	      }
  1.2348 +	    }
  1.2349 +	  } break;
  1.2350 +	case D4:
  1.2351 +	  splitBlossom(_delta4->top());
  1.2352 +	  break;
  1.2353 +	}
  1.2354 +      }
  1.2355 +      extractMatching();
  1.2356 +      return true;
  1.2357 +    }
  1.2358 +
  1.2359 +    /// \brief Runs %MaxWeightedPerfectMatching algorithm.
  1.2360 +    ///
  1.2361 +    /// This method runs the %MaxWeightedPerfectMatching algorithm.
  1.2362 +    ///
  1.2363 +    /// \note mwm.run() is just a shortcut of the following code.
  1.2364 +    /// \code
  1.2365 +    ///   mwm.init();
  1.2366 +    ///   mwm.start();
  1.2367 +    /// \endcode
  1.2368 +    bool run() {
  1.2369 +      init();
  1.2370 +      return start();
  1.2371 +    }
  1.2372 +
  1.2373 +    /// @}
  1.2374 +
  1.2375 +    /// \name Primal solution
  1.2376 +    /// Functions for get the primal solution, ie. the matching.
  1.2377 +    
  1.2378 +    /// @{
  1.2379 +
  1.2380 +    /// \brief Returns the matching value.
  1.2381 +    ///
  1.2382 +    /// Returns the matching value.
  1.2383 +    Value matchingValue() const {
  1.2384 +      Value sum = 0;
  1.2385 +      for (NodeIt n(_ugraph); n != INVALID; ++n) {
  1.2386 +	if ((*_matching)[n] != INVALID) {
  1.2387 +	  sum += _weight[(*_matching)[n]];
  1.2388 +	}
  1.2389 +      }
  1.2390 +      return sum /= 2;
  1.2391 +    }
  1.2392 +
  1.2393 +    /// \brief Returns true when the edge is in the matching.
  1.2394 +    ///
  1.2395 +    /// Returns true when the edge is in the matching.
  1.2396 +    bool matching(const UEdge& edge) const {
  1.2397 +      return (*_matching)[_ugraph.source(edge)] == _ugraph.direct(edge, true);
  1.2398 +    }
  1.2399 +
  1.2400 +    /// \brief Returns the incident matching edge.
  1.2401 +    ///
  1.2402 +    /// Returns the incident matching edge from given node.
  1.2403 +    Edge matching(const Node& node) const {
  1.2404 +      return (*_matching)[node];
  1.2405 +    }
  1.2406 +
  1.2407 +    /// \brief Returns the mate of the node.
  1.2408 +    ///
  1.2409 +    /// Returns the adjancent node in a mathcing edge.
  1.2410 +    Node mate(const Node& node) const {
  1.2411 +      return _ugraph.target((*_matching)[node]);
  1.2412 +    }
  1.2413 +
  1.2414 +    /// @}
  1.2415 +
  1.2416 +    /// \name Dual solution
  1.2417 +    /// Functions for get the dual solution.
  1.2418 +    
  1.2419 +    /// @{
  1.2420 +
  1.2421 +    /// \brief Returns the value of the dual solution.
  1.2422 +    ///
  1.2423 +    /// Returns the value of the dual solution. It should be equal to
  1.2424 +    /// the primal value scaled by \ref dualScale "dual scale".
  1.2425 +    Value dualValue() const {
  1.2426 +      Value sum = 0;
  1.2427 +      for (NodeIt n(_ugraph); n != INVALID; ++n) {
  1.2428 +	sum += nodeValue(n);
  1.2429 +      }
  1.2430 +      for (int i = 0; i < blossomNum(); ++i) {
  1.2431 +        sum += blossomValue(i) * (blossomSize(i) / 2);
  1.2432 +      }
  1.2433 +      return sum;
  1.2434 +    }
  1.2435 +
  1.2436 +    /// \brief Returns the value of the node.
  1.2437 +    ///
  1.2438 +    /// Returns the the value of the node.
  1.2439 +    Value nodeValue(const Node& n) const {
  1.2440 +      return (*_node_potential)[n];
  1.2441 +    }
  1.2442 +
  1.2443 +    /// \brief Returns the number of the blossoms in the basis.
  1.2444 +    ///
  1.2445 +    /// Returns the number of the blossoms in the basis.
  1.2446 +    /// \see BlossomIt
  1.2447 +    int blossomNum() const {
  1.2448 +      return _blossom_potential.size();
  1.2449 +    }
  1.2450 +
  1.2451 +
  1.2452 +    /// \brief Returns the number of the nodes in the blossom.
  1.2453 +    ///
  1.2454 +    /// Returns the number of the nodes in the blossom.
  1.2455 +    int blossomSize(int k) const {
  1.2456 +      return _blossom_potential[k].end - _blossom_potential[k].begin;
  1.2457 +    }
  1.2458 +
  1.2459 +    /// \brief Returns the value of the blossom.
  1.2460 +    ///
  1.2461 +    /// Returns the the value of the blossom.
  1.2462 +    /// \see BlossomIt
  1.2463 +    Value blossomValue(int k) const {
  1.2464 +      return _blossom_potential[k].value;
  1.2465 +    }
  1.2466 +
  1.2467 +    /// \brief Lemon iterator for get the items of the blossom.
  1.2468 +    ///
  1.2469 +    /// Lemon iterator for get the nodes of the blossom. This class
  1.2470 +    /// provides a common style lemon iterator which gives back a
  1.2471 +    /// subset of the nodes.
  1.2472 +    class BlossomIt {
  1.2473 +    public:
  1.2474 +
  1.2475 +      /// \brief Constructor.
  1.2476 +      ///
  1.2477 +      /// Constructor for get the nodes of the variable. 
  1.2478 +      BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable) 
  1.2479 +        : _algorithm(&algorithm)
  1.2480 +      {
  1.2481 +        _index = _algorithm->_blossom_potential[variable].begin;
  1.2482 +        _last = _algorithm->_blossom_potential[variable].end;
  1.2483 +      }
  1.2484 +
  1.2485 +      /// \brief Invalid constructor.
  1.2486 +      ///
  1.2487 +      /// Invalid constructor.
  1.2488 +      BlossomIt(Invalid) : _index(-1) {}
  1.2489 +
  1.2490 +      /// \brief Conversion to node.
  1.2491 +      ///
  1.2492 +      /// Conversion to node.
  1.2493 +      operator Node() const { 
  1.2494 +        return _algorithm ? _algorithm->_blossom_node_list[_index] : INVALID;
  1.2495 +      }
  1.2496 +
  1.2497 +      /// \brief Increment operator.
  1.2498 +      ///
  1.2499 +      /// Increment operator.
  1.2500 +      BlossomIt& operator++() {
  1.2501 +        ++_index;
  1.2502 +        if (_index == _last) {
  1.2503 +          _index = -1;
  1.2504 +        }
  1.2505 +        return *this; 
  1.2506 +      }
  1.2507 +
  1.2508 +      bool operator==(const BlossomIt& it) const { 
  1.2509 +        return _index == it._index; 
  1.2510 +      }
  1.2511 +      bool operator!=(const BlossomIt& it) const { 
  1.2512 +        return _index != it._index;
  1.2513 +      }
  1.2514 +
  1.2515 +    private:
  1.2516 +      const MaxWeightedPerfectMatching* _algorithm;
  1.2517 +      int _last;
  1.2518 +      int _index;
  1.2519 +    };
  1.2520 +
  1.2521 +    /// @}
  1.2522 +    
  1.2523 +  };
  1.2524 +
  1.2525    
  1.2526  } //END OF NAMESPACE LEMON
  1.2527