src/work/alpar/emptygraph.h
author alpar
Sat, 20 Mar 2004 21:38:16 +0000
changeset 222 0c6bd3a98edf
parent 187 35a2c1fd5d73
child 242 b255f25ad394
permissions -rw-r--r--
Aprosagok...
     1 // -*- c++ -*-
     2 #ifndef HUGO_EMPTYGRAPH_H
     3 #define HUGO_EMPTYGRAPH_H
     4 
     5 #include <invalid.h>
     6 
     7 /// The namespace of HugoLib
     8 namespace hugo {
     9 
    10   // @defgroup empty_graph The GraphSkeleton class
    11   // @{
    12 
    13   /// An empty graph class.
    14   
    15   /// When you read this for the first time,
    16   /// please send an e-mail to alpar\@cs.elte.hu.
    17   ///
    18   /// This class provides all the common features of a graph structure,
    19   /// however completely without implementations and real data structures
    20   /// behind the interface.
    21   /// All graph algorithms should compile with this class, but it will not
    22   /// run properly, of course.
    23   ///
    24   /// It can be used for checking the interface compatibility,
    25   /// or it can serve as a skeleton of a new graph structure.
    26   /// 
    27   /// Also, you will find here the full documentation of a certain graph
    28   /// feature, the documentation of a real graph imlementation
    29   /// like @ref ListGraph or
    30   /// @ref SmartGraph will just refer to this structure.
    31   class GraphSkeleton
    32   {
    33   public:
    34     
    35     /// The base type of the node iterators.
    36 
    37     /// This is the base type of each node iterators,
    38     /// thus each kind of node iterator will convert to this.
    39     class Node {
    40     public:
    41       /// @warning The default constructor sets the iterator
    42       /// to an undefined value.
    43       Node() {}   //FIXME
    44       /// Invalid constructor \& conversion.
    45 
    46       /// This constructor initializes the iterator to be invalid.
    47       /// \sa Invalid for more details.
    48 
    49       Node(Invalid) {}
    50       //Node(const Node &) {}
    51 
    52       /// Two iterators are equal if and only if they point to the
    53       /// same object or both are invalid.
    54       bool operator==(Node n) const { return true; }
    55 
    56       /// \sa \ref operator==(Node n)
    57       ///
    58       bool operator!=(Node n) const { return true; }
    59 
    60       bool operator<(Node n) const { return true; }
    61     };
    62     
    63     /// This iterator goes through each node.
    64 
    65     /// This iterator goes through each node.
    66     /// Its usage is quite simple, for example you can count the number
    67     /// of nodes in graph \c G of type \c Graph like this:
    68     /// \code
    69     ///int count=0;
    70     ///for(Graph::NodeIt n(G);G.valid(n);G.next(n)) count++;
    71     /// \endcode
    72     class NodeIt : public Node {
    73     public:
    74       /// @warning The default constructor sets the iterator
    75       /// to an undefined value.
    76       NodeIt() {} //FIXME
    77       /// Invalid constructor \& conversion.
    78 
    79       /// Initialize the iterator to be invalid
    80       /// \sa Invalid for more details.
    81       NodeIt(Invalid) {}
    82       /// Sets the iterator to the first node of \c G.
    83       NodeIt(const GraphSkeleton &G) {}
    84       /// @warning The default constructor sets the iterator
    85       /// to an undefined value.
    86       NodeIt(const NodeIt &) {}
    87     };
    88     
    89     
    90     /// The base type of the edge iterators.
    91     class Edge {
    92     public:
    93       /// @warning The default constructor sets the iterator
    94       /// to an undefined value.
    95       Edge() {}   //FIXME
    96       /// Initialize the iterator to be invalid
    97       Edge(Invalid) {}
    98       /// Two iterators are equal if and only if they point to the
    99       /// same object or both are invalid.
   100       bool operator==(Edge n) const { return true; }
   101       bool operator!=(Edge n) const { return true; }
   102       bool operator<(Edge n) const { return true; }
   103     };
   104     
   105     /// This iterator goes trought the outgoing edges of a node.
   106 
   107     /// This iterator goes trought the \e outgoing edges of a certain node
   108     /// of a graph.
   109     /// Its usage is quite simple, for example you can count the number
   110     /// of outgoing edges of a node \c n
   111     /// in graph \c G of type \c Graph as follows.
   112     /// \code
   113     ///int count=0;
   114     ///for(Graph::OutEdgeIt e(G,n);G.valid(e);G.next(e)) count++;
   115     /// \endcode
   116     
   117     class OutEdgeIt : public Edge {
   118     public:
   119       /// @warning The default constructor sets the iterator
   120       /// to an undefined value.
   121       OutEdgeIt() {}
   122       /// Initialize the iterator to be invalid
   123       OutEdgeIt(Invalid) {}
   124       /// This constructor sets the iterator to first outgoing edge.
   125     
   126       /// This constructor set the iterator to the first outgoing edge of
   127       /// node
   128       ///@param n the node
   129       ///@param G the graph
   130       OutEdgeIt(const GraphSkeleton & G, Node n) {}
   131     };
   132 
   133     /// This iterator goes trought the incoming edges of a node.
   134 
   135     /// This iterator goes trought the \e incoming edges of a certain node
   136     /// of a graph.
   137     /// Its usage is quite simple, for example you can count the number
   138     /// of outgoing edges of a node \c n
   139     /// in graph \c G of type \c Graph as follows.
   140     /// \code
   141     ///int count=0;
   142     ///for(Graph::InEdgeIt e(G,n);G.valid(e);G.next(e)) count++;
   143     /// \endcode
   144 
   145     class InEdgeIt : public Edge {
   146     public:
   147       /// @warning The default constructor sets the iterator
   148       /// to an undefined value.
   149       InEdgeIt() {}
   150       /// Initialize the iterator to be invalid
   151       InEdgeIt(Invalid) {}
   152       InEdgeIt(const GraphSkeleton &, Node) {}    
   153     };
   154     //  class SymEdgeIt : public Edge {};
   155 
   156     /// This iterator goes through each edge.
   157 
   158     /// This iterator goes through each edge of a graph.
   159     /// Its usage is quite simple, for example you can count the number
   160     /// of edges in a graph \c G of type \c Graph as follows:
   161     /// \code
   162     ///int count=0;
   163     ///for(Graph::EdgeIt e(G);G.valid(e);G.next(e)) count++;
   164     /// \endcode
   165     class EdgeIt : public Edge {
   166     public:
   167       /// @warning The default constructor sets the iterator
   168       /// to an undefined value.
   169       EdgeIt() {}
   170       /// Initialize the iterator to be invalid
   171       EdgeIt(Invalid) {}
   172       EdgeIt(const GraphSkeleton &) {}
   173     };
   174 
   175     /// First node of the graph.
   176 
   177     /// \post \c i and the return value will be the first node.
   178     ///
   179     NodeIt &first(NodeIt &i) const { return i;}
   180 
   181     /// The first outgoing edge.
   182     InEdgeIt &first(InEdgeIt &i, Node n) const { return i;}
   183     /// The first incoming edge.
   184     OutEdgeIt &first(OutEdgeIt &i, Node n) const { return i;}
   185     //  SymEdgeIt &first(SymEdgeIt &, Node) const { return i;}
   186     /// The first edge of the Graph.
   187     EdgeIt &first(EdgeIt &i) const { return i;}
   188 
   189 //     Node getNext(Node) const {}
   190 //     InEdgeIt getNext(InEdgeIt) const {}
   191 //     OutEdgeIt getNext(OutEdgeIt) const {}
   192 //     //SymEdgeIt getNext(SymEdgeIt) const {}
   193 //     EdgeIt getNext(EdgeIt) const {}
   194 
   195     /// Go to the next node.
   196     NodeIt &next(NodeIt &i) const { return i;}
   197     /// Go to the next incoming edge.
   198     InEdgeIt &next(InEdgeIt &i) const { return i;}
   199     /// Go to the next outgoing edge.
   200     OutEdgeIt &next(OutEdgeIt &i) const { return i;}
   201     //SymEdgeIt &next(SymEdgeIt &) const {}
   202     /// Go to the next edge.
   203     EdgeIt &next(EdgeIt &i) const { return i;}
   204 
   205     ///Gives back the head node of an edge.
   206     Node head(Edge) const { return INVALID; }
   207     ///Gives back the tail node of an edge.
   208     Node tail(Edge) const { return INVALID; }
   209   
   210     //   Node aNode(InEdgeIt) const {}
   211     //   Node aNode(OutEdgeIt) const {}
   212     //   Node aNode(SymEdgeIt) const {}
   213 
   214     //   Node bNode(InEdgeIt) const {}
   215     //   Node bNode(OutEdgeIt) const {}
   216     //   Node bNode(SymEdgeIt) const {}
   217 
   218     /// Checks if a node iterator is valid
   219 
   220     ///\todo Maybe, it would be better if iterator converted to
   221     ///bool directly, as Jacint prefers.
   222     bool valid(const Node) const { return true;}
   223     /// Checks if an edge iterator is valid
   224 
   225     ///\todo Maybe, it would be better if iterator converted to
   226     ///bool directly, as Jacint prefers.
   227     bool valid(const Edge) const { return true;}
   228 
   229     ///Gives back the \e id of a node.
   230 
   231     ///\warning Not all graph structure provide this feature.
   232     ///
   233     int id(const Node) const { return 0;}
   234     ///Gives back the \e id of an edge.
   235 
   236     ///\warning Not all graph structure provide this feature.
   237     ///
   238     int id(const Edge) const { return 0;}
   239 
   240     //void setInvalid(Node &) const {};
   241     //void setInvalid(Edge &) const {};
   242   
   243     ///Add a new node to the graph.
   244 
   245     /// \return the new node.
   246     ///
   247     Node addNode() { return INVALID;}
   248     ///Add a new edge to the graph.
   249 
   250     ///Add a new edge to the graph with tail node \c tail
   251     ///and head node \c head.
   252     ///\return the new edge.
   253     Edge addEdge(Node tail, Node head) { return INVALID;}
   254     
   255     /// Deletes a node.
   256     
   257     ///\warning Not all graph structure provide this feature.
   258     ///
   259     void erase(Node n) {}
   260     /// Deletes an edge.
   261 
   262     ///\warning Not all graph structure provide this feature.
   263     ///
   264     void erase(Edge e) {}
   265 
   266     /// Reset the graph.
   267 
   268     /// This function deletes all edges and nodes of the graph.
   269     /// It also frees the memory allocated to store them.
   270     void clear() {}
   271 
   272     int nodeNum() const { return 0;}
   273     int edgeNum() const { return 0;}
   274 
   275     GraphSkeleton() {}
   276     GraphSkeleton(const GraphSkeleton &G) {}
   277   
   278   
   279 
   280     ///Read/write/reference map of the nodes to type \c T.
   281 
   282     ///Read/write/reference map of the nodes to type \c T.
   283     /// \sa MemoryMapSkeleton
   284     /// \todo We may need copy constructor
   285     /// \todo We may need conversion from other nodetype
   286     /// \todo We may need operator=
   287     /// \warning Making maps that can handle bool type (NodeMap<bool>)
   288     /// needs extra attention!
   289 
   290     template<class T> class NodeMap
   291     {
   292     public:
   293       typedef T ValueType;
   294       typedef Node KeyType;
   295 
   296       NodeMap(const GraphSkeleton &G) {}
   297       NodeMap(const GraphSkeleton &G, T t) {}
   298 
   299       template<typename TT> NodeMap(const NodeMap<TT> &m) {}
   300 
   301       /// Sets the value of a node.
   302 
   303       /// Sets the value associated with node \c i to the value \c t.
   304       ///
   305       void set(Node i, T t) {}
   306       /// Gets the value of a node.
   307       T get(Node i) const {return *(T*)0;}  //FIXME: Is it necessary
   308       T &operator[](Node i) {return *(T*)0;}
   309       const T &operator[](Node i) const {return *(T*)0;}
   310 
   311       /// Updates the map if the graph has been changed
   312 
   313       /// \todo Do we need this?
   314       ///
   315       void update() {}
   316       void update(T a) {}   //FIXME: Is it necessary
   317     };
   318 
   319     ///Read/write/reference map of the edges to type \c T.
   320 
   321     ///Read/write/reference map of the edges to type \c T.
   322     ///It behaves exactly in the same way as \ref NodeMap.
   323     /// \sa NodeMap
   324     /// \sa MemoryMapSkeleton
   325     /// \todo We may need copy constructor
   326     /// \todo We may need conversion from other edgetype
   327     /// \todo We may need operator=
   328     template<class T> class EdgeMap
   329     {
   330     public:
   331       typedef T ValueType;
   332       typedef Edge KeyType;
   333 
   334       EdgeMap(const GraphSkeleton &G) {}
   335       EdgeMap(const GraphSkeleton &G, T t) {}
   336     
   337       void set(Edge i, T t) {}
   338       T get(Edge i) const {return *(T*)0;}
   339       T &operator[](Edge i) {return *(T*)0;}
   340     
   341       void update() {}
   342       void update(T a) {}   //FIXME: Is it necessary
   343     };
   344   };
   345 
   346   // @}
   347 
   348 } //namespace hugo
   349 
   350 
   351 
   352 // class EmptyBipGraph : public Graph Skeleton
   353 // {
   354 //   class ANode {};
   355 //   class BNode {};
   356 
   357 //   ANode &next(ANode &) {}
   358 //   BNode &next(BNode &) {}
   359 
   360 //   ANode &getFirst(ANode &) const {}
   361 //   BNode &getFirst(BNode &) const {}
   362 
   363 //   enum NodeClass { A = 0, B = 1 };
   364 //   NodeClass getClass(Node n) {}
   365 
   366 // }
   367 
   368 #endif // HUGO_EMPTYGRAPH_H