Aprosagok...
authoralpar
Sat, 20 Mar 2004 21:38:16 +0000
changeset 2220c6bd3a98edf
parent 221 d8a67c5b26d1
child 223 02948c4c68e1
Aprosagok...
src/work/alpar/dijkstra/bin_heap.hh
src/work/alpar/dijkstra/dijkstra.cc
src/work/alpar/dijkstra/dijkstra.h
src/work/alpar/dijkstra/fib_heap.h
src/work/alpar/dijkstra/makefile
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/work/alpar/dijkstra/bin_heap.hh	Sat Mar 20 21:38:16 2004 +0000
     1.3 @@ -0,0 +1,235 @@
     1.4 +/* FIXME: Copyright ... 
     1.5 + *
     1.6 + * This implementation is heavily based on STL's heap functions and
     1.7 + * the similar class by Alpar Juttner in IKTA...
     1.8 + */
     1.9 +
    1.10 +/******
    1.11 + *
    1.12 + * BinHeap<KeyType, ValueType, KeyIntMap, [ValueCompare]>
    1.13 + *
    1.14 + * Ez az osztaly kulcs-ertek parok tarolasara alkalmas binaris kupacot
    1.15 + * valosit meg.
    1.16 + * A kupacban legfolul mindig az a par talalhato, amiben az _ertek_ a
    1.17 + * legkisebb. (Gondolj a Dijkstra pont-tavolsag kupacara; igazabol ahhoz
    1.18 + * lett keszitve...)
    1.19 + *
    1.20 + * Megjegyzes: egy kicsit gyanus nekem, hogy a kupacos temakorben nem
    1.21 + * azt hivjak kulcsnak, amit most en annak nevezek. :) En olyan 
    1.22 + * property_map -os ertelemben hasznalom.
    1.23 + *
    1.24 + * A hasznalatahoz szukseg van egy irhato/olvashato property_map-re, ami
    1.25 + * a kulcsokhoz egy int-et tud tarolni (ezzel tudom megkeresni az illeto
    1.26 + * elemet a kupacban a csokkentes es hasonlo muveletekhez).
    1.27 + * A map-re csak referenciat tarol, ugy hogy a kupac elete folyan a map-nek
    1.28 + * is elnie kell. (???)
    1.29 + *
    1.30 + * Ketfele modon hasznalhato:
    1.31 + * Lusta mod:
    1.32 + * put(Key, Value) metodussal pakolunk a kupacba,
    1.33 + * aztan o majd eldonti, hogy ez az elem mar benne van-e es ha igen, akkor
    1.34 + * csokkentettunk-e rajta, vagy noveltunk.
    1.35 + * Ehhez nagyon fontos, hogy az atadott property map inicializalva legyen
    1.36 + * minden szobajovo kulcs ertekre, -1 -es ertekkel!
    1.37 + * Es ilyen esetben a kulcsokrol lekerdezheto az allapotuk a state metodussal:
    1.38 + * (nem jart meg a kupacban PRE_HEAP=-1, epp a kupacban van IN_HEAP=0,
    1.39 + *  mar kikerult a kupacbol POST_HEAP=-2).
    1.40 + * Szoval ebben a modban a kupac nagyjabol hasznalhato property_map-kent, csak
    1.41 + * meg meg tudja mondani a "legkisebb" erteku elemet. De csak nagyjabol,
    1.42 + * hiszen a kupacbol kikerult elemeknek elvesz az ertekuk...
    1.43 + *
    1.44 + * Kozvetlen mod:
    1.45 + * push(Key, Value) metodussal belerakunk a kupacba (ha az illeto kulcs mar
    1.46 + * benn volt, akkor gaz).
    1.47 + * increase/decrease(Key k, Value new_value) metodusokkal lehet
    1.48 + * novelni/csokkenteni az illeto kulcshoz tartozo erteket. (Ha nem volt meg
    1.49 + * benne a kupacban az illeto kulcs, vagy nem abba az iranyba valtoztattad
    1.50 + * az erteket, amerre mondtad -- gaz).
    1.51 + *
    1.52 + * Termeszetesen a fenti ket modot ertelemszeruen lehet keverni.
    1.53 + * Ja es mindig nagyon gaz, ha belepiszkalsz a map-be, amit a kupac
    1.54 + * hasznal. :-))
    1.55 + *
    1.56 + *
    1.57 + * Bocs, most faradt vagyok, majd egyszer leforditom. (Misi)
    1.58 + *
    1.59 + */
    1.60 +
    1.61 +
    1.62 +#ifndef BIN_HEAP_HH
    1.63 +#define BIN_HEAP_HH
    1.64 +
    1.65 +#include <vector>
    1.66 +#include <utility>
    1.67 +#include <functional>
    1.68 +
    1.69 +namespace hugo {
    1.70 +
    1.71 +  template <typename Key, typename Val, typename KeyIntMap,
    1.72 +	    typename Compare = std::less<Val> >
    1.73 +  class BinHeap {
    1.74 +
    1.75 +  public:
    1.76 +    typedef Key	             KeyType;
    1.77 +    // FIXME: stl-ben nem ezt hivjak value_type -nak, hanem a kovetkezot...
    1.78 +    typedef Val              ValueType;
    1.79 +    typedef std::pair<KeyType,ValueType>     PairType;
    1.80 +    typedef KeyIntMap        KeyIntMapType;
    1.81 +    typedef Compare          ValueCompare;
    1.82 +
    1.83 +    /**
    1.84 +     * Each Key element have a state associated to it. It may be "in heap",
    1.85 +     * "pre heap" or "post heap". The later two are indifferent from the
    1.86 +     * heap's point of view, but may be useful to the user.
    1.87 +     *
    1.88 +     * The KeyIntMap _should_ be initialized in such way, that it maps
    1.89 +     * PRE_HEAP (-1) to any element to be put in the heap...
    1.90 +     */
    1.91 +    ///\todo it is used nowhere
    1.92 +    ///
    1.93 +    enum state_enum {
    1.94 +      IN_HEAP = 0,
    1.95 +      PRE_HEAP = -1,
    1.96 +      POST_HEAP = -2
    1.97 +    };
    1.98 +
    1.99 +  private:
   1.100 +    std::vector<PairType> data;
   1.101 +    Compare comp;
   1.102 +    // FIXME: jo ez igy???
   1.103 +    KeyIntMap &kim;
   1.104 +
   1.105 +  public:
   1.106 +    BinHeap(KeyIntMap &_kim) : kim(_kim) {}
   1.107 +    BinHeap(KeyIntMap &_kim, const Compare &_comp) : comp(_comp), kim(_kim) {}
   1.108 +
   1.109 +
   1.110 +    int size() const { return data.size(); }
   1.111 +    bool empty() const { return data.empty(); }
   1.112 +
   1.113 +  private:
   1.114 +    static int parent(int i) { return (i-1)/2; }
   1.115 +    static int second_child(int i) { return 2*i+2; }
   1.116 +    bool less(const PairType &p1, const PairType &p2) {
   1.117 +      return comp(p1.second, p2.second);
   1.118 +    }
   1.119 +
   1.120 +    int bubble_up(int hole, PairType p);
   1.121 +    int bubble_down(int hole, PairType p, int length);
   1.122 +
   1.123 +    void move(const PairType &p, int i) {
   1.124 +      data[i] = p;
   1.125 +      kim.set(p.first, i);
   1.126 +    }
   1.127 +
   1.128 +    void rmidx(int h) {
   1.129 +      int n = data.size()-1;
   1.130 +      if( h>=0 && h<=n ) {
   1.131 +	kim.set(data[h].first, POST_HEAP);
   1.132 +	if ( h<n ) {
   1.133 +	  bubble_down(h, data[n], n);
   1.134 +	}
   1.135 +	data.pop_back();
   1.136 +      }
   1.137 +    }
   1.138 +
   1.139 +  public:
   1.140 +    void push(const PairType &p) {
   1.141 +      int n = data.size();
   1.142 +      data.resize(n+1);
   1.143 +      bubble_up(n, p);
   1.144 +    }
   1.145 +    void push(const Key &k, const Val &v) { push(PairType(k,v)); }
   1.146 +
   1.147 +    Key top() const {
   1.148 +      // FIXME: test size>0 ?
   1.149 +      return data[0].first;
   1.150 +    }
   1.151 +    Val topValue() const {
   1.152 +      // FIXME: test size>0 ?
   1.153 +      return data[0].second;
   1.154 +    }
   1.155 +
   1.156 +    void pop() {
   1.157 +      rmidx(0);
   1.158 +    }
   1.159 +
   1.160 +    void erase(const Key &k) {
   1.161 +      rmidx(kim[k]);
   1.162 +    }
   1.163 +
   1.164 +    Val operator[](const Key &k) const {
   1.165 +      int idx = kim[k];
   1.166 +      return data[idx].second;
   1.167 +    }
   1.168 +    
   1.169 +    void put(const Key &k, const Val &v) {
   1.170 +      int idx = kim[k];
   1.171 +      if( idx < 0 ) {
   1.172 +	push(k,v);
   1.173 +      }
   1.174 +      else if( comp(v, data[idx].second) ) {
   1.175 +	bubble_up(idx, PairType(k,v));
   1.176 +      }
   1.177 +      else {
   1.178 +	bubble_down(idx, PairType(k,v), data.size());
   1.179 +      }
   1.180 +    }
   1.181 +
   1.182 +    void decrease(const Key &k, const Val &v) {
   1.183 +      int idx = kim[k];
   1.184 +      bubble_up(idx, PairType(k,v));
   1.185 +    }
   1.186 +    void increase(const Key &k, const Val &v) {
   1.187 +      int idx = kim[k];
   1.188 +      bubble_down(idx, PairType(k,v), data.size());
   1.189 +    }
   1.190 +
   1.191 +    state_enum state(const Key &k) const {
   1.192 +      int s = kim[k];
   1.193 +      if( s>=0 )
   1.194 +	s=0;
   1.195 +      return state_enum(s);
   1.196 +    }
   1.197 +
   1.198 +  }; // class BinHeap
   1.199 +
   1.200 +  
   1.201 +  template <typename K, typename V, typename M, typename C>
   1.202 +  int BinHeap<K,V,M,C>::bubble_up(int hole, PairType p) {
   1.203 +    int par = parent(hole);
   1.204 +    while( hole>0 && less(p,data[par]) ) {
   1.205 +      move(data[par],hole);
   1.206 +      hole = par;
   1.207 +      par = parent(hole);
   1.208 +    }
   1.209 +    move(p, hole);
   1.210 +    return hole;
   1.211 +  }
   1.212 +
   1.213 +  template <typename K, typename V, typename M, typename C>
   1.214 +  int BinHeap<K,V,M,C>::bubble_down(int hole, PairType p, int length) {
   1.215 +    int child = second_child(hole);
   1.216 +    while(child < length) {
   1.217 +      if( less(data[child-1], data[child]) ) {
   1.218 +	--child;
   1.219 +      }
   1.220 +      if( !less(data[child], p) )
   1.221 +	goto ok;
   1.222 +      move(data[child], hole);
   1.223 +      hole = child;
   1.224 +      child = second_child(hole);
   1.225 +    }
   1.226 +    child--;
   1.227 +    if( child<length && less(data[child], p) ) {
   1.228 +      move(data[child], hole);
   1.229 +      hole=child;
   1.230 +    }
   1.231 +  ok:
   1.232 +    move(p, hole);
   1.233 +    return hole;
   1.234 +  }
   1.235 +
   1.236 +} // namespace hugo
   1.237 +
   1.238 +#endif // BIN_HEAP_HH
     2.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     2.2 +++ b/src/work/alpar/dijkstra/dijkstra.cc	Sat Mar 20 21:38:16 2004 +0000
     2.3 @@ -0,0 +1,114 @@
     2.4 +#include <iostream>
     2.5 +#include <fstream>
     2.6 +
     2.7 +#include <smart_graph.h>
     2.8 +#include <list_graph.h>
     2.9 +#include <dimacs.h>
    2.10 +#include <dijkstra.h>
    2.11 +#include <time_measure.h>
    2.12 +
    2.13 +#include <bin_heap.hh>
    2.14 +#include <fib_heap.h>
    2.15 +
    2.16 +using namespace hugo;
    2.17 +
    2.18 +int main(int, char **) {
    2.19 +  typedef SmartGraph::Node Node;
    2.20 +  typedef SmartGraph::NodeIt NodeIt;
    2.21 +  typedef SmartGraph::InEdgeIt InEdgeIt; 
    2.22 +
    2.23 +  SmartGraph G;
    2.24 +  Node s, t;
    2.25 +  SmartGraph::EdgeMap<int> cap(G);
    2.26 +  Timer tim;
    2.27 +  std::cout << "DIMACS load ..." << std::endl;
    2.28 +  readDimacsMaxFlow(std::cin, G, s, t, cap);
    2.29 +  std::cout << "               " << tim <<std::endl;
    2.30 +
    2.31 +  std::cout << "dijkstra demo ..." << std::endl;
    2.32 +  
    2.33 +  //double pre_time=currTime();
    2.34 +  tim.reset();
    2.35 +  Dijkstra <SmartGraph,
    2.36 +    SmartGraph::EdgeMap<int>,
    2.37 +    FibHeap<SmartGraph::Node, int, SmartGraph::NodeMap<int> >
    2.38 +    > dijkstra_test(G, cap); 
    2.39 +  
    2.40 +  dijkstra_test.run(s);
    2.41 +  //double post_time=currTime();
    2.42 +  
    2.43 +  std::cout << "running time with fib_heap: " 
    2.44 +    // << post_time-pre_time << " sec"
    2.45 +	    << tim
    2.46 +	    << std::endl; 
    2.47 + 
    2.48 +  //pre_time=currTime();
    2.49 +  tim.reset();
    2.50 +  Dijkstra < SmartGraph,
    2.51 +    SmartGraph::EdgeMap<int>,
    2.52 +    BinHeap<SmartGraph::Node, int, SmartGraph::NodeMap<int> > > 
    2.53 +    dijkstra_test2(G, cap);
    2.54 +  
    2.55 +  dijkstra_test2.run(s);
    2.56 +  //post_time=currTime();
    2.57 +  
    2.58 +  std::cout << "running time with bin_heap: " 
    2.59 +    //    << post_time-pre_time << " sec"
    2.60 +	    << tim
    2.61 +	    << std::endl; 
    2.62 +  
    2.63 +
    2.64 +  int hiba_fib=0;
    2.65 +  int hiba_bin=0;
    2.66 +  NodeIt u;
    2.67 +  for ( G.first(u) ; G.valid(u); G.next(u) ) {
    2.68 +    InEdgeIt e;
    2.69 +    for ( G.first(e,u); G.valid(e); G.next(e) ) {
    2.70 +      Node v=G.tail(e);
    2.71 +      if ( dijkstra_test.dist(u) - dijkstra_test.dist(v) > cap[e] )
    2.72 +	{
    2.73 +	  std::cout<<"Hibas el a fibonaccis Dijkstraban: " 
    2.74 +		   << dijkstra_test.dist(u) - dijkstra_test.dist(v) - 
    2.75 +	    cap[e]<<std::endl;
    2.76 +	  ++hiba_fib;
    2.77 +	}
    2.78 +      if ( dijkstra_test2.dist(u) - dijkstra_test2.dist(v) > cap[e] )
    2.79 +	{
    2.80 +	  std::cout<<"Hibas el a binarisos Dijkstraban: " 
    2.81 +		   << dijkstra_test2.dist(u) - dijkstra_test2.dist(v) - 
    2.82 +	    cap[e]<<std::endl;
    2.83 +	  ++hiba_bin;
    2.84 +	}
    2.85 +      if ( e==dijkstra_test.pred(u) && 
    2.86 +	   dijkstra_test.dist(u) - dijkstra_test.dist(v) != cap[e] )
    2.87 +	{
    2.88 +	  std::cout<<"Hibas fael a fibonaccis Dijkstraban: "<<
    2.89 +	    dijkstra_test.dist(u) - dijkstra_test.dist(v)- cap[e]<<std::endl;
    2.90 +	  ++hiba_fib;
    2.91 +	}
    2.92 +      if ( e==dijkstra_test2.pred(u) && 
    2.93 +	   dijkstra_test2.dist(u) - dijkstra_test2.dist(v) != cap[e] )
    2.94 +	{
    2.95 +	  std::cout<<"Hibas fael a binarisos Dijkstraban: "<<
    2.96 +	    dijkstra_test2.dist(u) - dijkstra_test2.dist(v)- cap[e]<<std::endl;
    2.97 +	  ++hiba_bin;
    2.98 +	}
    2.99 +    }
   2.100 + 
   2.101 +    if ( dijkstra_test.dist(u) != dijkstra_test2.dist(u) ) 
   2.102 +      std::cout << "Nem egyezik meg a tavolsag!"<<std::endl;
   2.103 +
   2.104 +
   2.105 + }
   2.106 +
   2.107 +  std::cout << "Hibas elek szama a fibonaccis Dijkstraban: " 
   2.108 +	    << hiba_fib << " a " << G.edgeNum() <<"-bol."<< std::endl;
   2.109 +  
   2.110 +  std::cout << "Hibas elek szama a binarisos Dijkstraban: " 
   2.111 +	    << hiba_bin << " a " << G.edgeNum() <<"-bol."<< std::endl;
   2.112 +  
   2.113 +
   2.114 +
   2.115 +
   2.116 +  return 0;
   2.117 +}
     3.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     3.2 +++ b/src/work/alpar/dijkstra/dijkstra.h	Sat Mar 20 21:38:16 2004 +0000
     3.3 @@ -0,0 +1,150 @@
     3.4 +// -*- C++ -*-
     3.5 +/* 
     3.6 + *template <Graph, T, Heap=FibHeap, LengthMap=Graph::EdgeMap<T> >
     3.7 + *
     3.8 + *Constructor: 
     3.9 + *
    3.10 + *Dijkstra(Graph G, LengthMap length)
    3.11 + *
    3.12 + *
    3.13 + *Methods:
    3.14 + *
    3.15 + *void run(Node s)
    3.16 + *
    3.17 + *T dist(Node v) : After run(s) was run, it returns the distance from s to v. 
    3.18 + *   Returns T() if v is not reachable from s.
    3.19 + *
    3.20 + *Edge pred(Node v) : After run(s) was run, it returns the last 
    3.21 + *   edge of a shortest s-v path. It is INVALID for s and for 
    3.22 + *   the nodes not reachable from s.
    3.23 + *
    3.24 + *bool reached(Node v) : After run(s) was run, it is true iff v is 
    3.25 + *   reachable from s
    3.26 + *
    3.27 + */
    3.28 +
    3.29 +#ifndef HUGO_DIJKSTRA_H
    3.30 +#define HUGO_DIJKSTRA_H
    3.31 +
    3.32 +#include <fib_heap.h>
    3.33 +#include <invalid.h>
    3.34 +
    3.35 +namespace hugo {
    3.36 +  
    3.37 +  //Alpar: Changed the order of the parameters
    3.38 +  template <typename Graph,
    3.39 +	    typename LengthMap=typename Graph::EdgeMap<int>,
    3.40 +	    typename Heap=FibHeap<typename Graph::Node,
    3.41 +				  typename LengthMap::ValueType, 
    3.42 +				  typename Graph::NodeMap<int> > >
    3.43 +  class Dijkstra{
    3.44 +  public:
    3.45 +    typedef typename LengthMap::ValueType ValueType;
    3.46 +
    3.47 +  private:
    3.48 +    typedef typename Graph::Node Node;
    3.49 +    typedef typename Graph::NodeIt NodeIt;
    3.50 +    typedef typename Graph::Edge Edge;
    3.51 +    typedef typename Graph::OutEdgeIt OutEdgeIt;
    3.52 +    
    3.53 +    const Graph& G;
    3.54 +    const LengthMap& length;
    3.55 +    typedef typename Graph::NodeMap<Edge> PredMap;
    3.56 +    PredMap predecessor;
    3.57 +    //In place of reach:
    3.58 +    typedef typename Graph::NodeMap<Node> PredNodeMap;
    3.59 +    PredNodeMap pred_node;
    3.60 +    typedef typename Graph::NodeMap<ValueType> DistMap;
    3.61 +    DistMap distance;
    3.62 +    //I don't like this:
    3.63 +    //     //FIXME:
    3.64 +    //     typename Graph::NodeMap<bool> reach;
    3.65 +    //     //typename Graph::NodeMap<int> reach;
    3.66 +    
    3.67 +  public :
    3.68 +    
    3.69 +    /*
    3.70 +      The distance of the nodes is 0.
    3.71 +    */
    3.72 +    Dijkstra(Graph& _G, LengthMap& _length) :
    3.73 +      G(_G), length(_length), predecessor(_G), pred_node(_G), distance(_G) { }
    3.74 +    
    3.75 +
    3.76 +    void run(Node s);
    3.77 +    
    3.78 +    ValueType dist(Node v) const { return distance[v]; }
    3.79 +    Edge pred(Node v) const { return predecessor[v]; }
    3.80 +    Node predNode(Node v) const { return pred_node[v]; }
    3.81 +    
    3.82 +    const DistMap &distMap() const { return distance;}
    3.83 +    const PredMap &predMap() const { return predecessor;}
    3.84 +    const PredNodeMap &predNodeMap() const { return pred_node;}
    3.85 +
    3.86 +    //    bool reached(Node v) { return reach[v]; }
    3.87 +    ///\warning \c s is not reached!
    3.88 +    ///
    3.89 +    bool reached(Node v) { return G.valid(predecessor[v]); }
    3.90 +    
    3.91 +  };
    3.92 +  
    3.93 +
    3.94 +  // IMPLEMENTATIONS
    3.95 +
    3.96 +  template <typename Graph, typename LengthMap, typename Heap >
    3.97 +  void Dijkstra<Graph,LengthMap,Heap>::run(Node s) {
    3.98 +    
    3.99 +    NodeIt u;
   3.100 +    for ( G.first(u) ; G.valid(u) ; G.next(u) ) {
   3.101 +      predecessor.set(u,INVALID);
   3.102 +      // If a node is unreacheable, then why should be the dist=0?
   3.103 +      // distance.set(u,0);
   3.104 +      //      reach.set(u,false);
   3.105 +    }
   3.106 +    
   3.107 +    //We don't need it at all.
   3.108 +    //     //FIXME:
   3.109 +    //     typename Graph::NodeMap<bool> scanned(G,false);
   3.110 +    //     //typename Graph::NodeMap<int> scanned(G,false);
   3.111 +    typename Graph::NodeMap<int> heap_map(G,-1);
   3.112 +    
   3.113 +    Heap heap(heap_map);
   3.114 +    
   3.115 +    heap.push(s,0); 
   3.116 +    //    reach.set(s, true);
   3.117 +    
   3.118 +      while ( !heap.empty() ) {
   3.119 +	
   3.120 +	Node v=heap.top(); 
   3.121 +	ValueType oldvalue=heap[v];
   3.122 +	heap.pop();
   3.123 +	distance.set(v, oldvalue);
   3.124 +	
   3.125 +	for(OutEdgeIt e(G,v); G.valid(e); G.next(e)) {
   3.126 +	  Node w=G.head(e); 
   3.127 +	  
   3.128 +	  switch(heap.state(w)) {
   3.129 +	  case Heap::PRE_HEAP:
   3.130 +	    //	    reach.set(w,true);
   3.131 +	    heap.push(w,oldvalue+length[e]); 
   3.132 +	    predecessor.set(w,e);
   3.133 +	    pred_node.set(w,v);
   3.134 +	    break;
   3.135 +	  case Heap::IN_HEAP:
   3.136 +	    if ( oldvalue+length[e] < heap[w] ) {
   3.137 +	      heap.decrease(w, oldvalue+length[e]); 
   3.138 +	      predecessor.set(w,e);
   3.139 +	      pred_node.set(w,v);
   3.140 +	    }
   3.141 +	    break;
   3.142 +	  case Heap::POST_HEAP:
   3.143 +	    break;
   3.144 +	  }
   3.145 +	}
   3.146 +      }
   3.147 +  }
   3.148 +  
   3.149 +} //END OF NAMESPACE HUGO
   3.150 +
   3.151 +#endif
   3.152 +
   3.153 +
     4.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     4.2 +++ b/src/work/alpar/dijkstra/fib_heap.h	Sat Mar 20 21:38:16 2004 +0000
     4.3 @@ -0,0 +1,389 @@
     4.4 +// -*- C++ -*-
     4.5 +/*
     4.6 + *template <typename Item, 
     4.7 + *          typename Prio, 
     4.8 + *          typename ItemIntMap, 
     4.9 + *          typename Compare = std::less<Prio> >
    4.10 + * 
    4.11 + *constructors:
    4.12 + *
    4.13 + *FibHeap(ItemIntMap),   FibHeap(ItemIntMap, Compare)
    4.14 + *
    4.15 + *Member functions:
    4.16 + *
    4.17 + *int size() : returns the number of elements in the heap
    4.18 + *
    4.19 + *bool empty() : true iff size()=0
    4.20 + *
    4.21 + *void set(Item, Prio) : calls push(Item, Prio) if Item is not
    4.22 + *     in the heap, and calls decrease/increase(Item, Prio) otherwise
    4.23 + *
    4.24 + *void push(Item, Prio) : pushes Item to the heap with priority Prio. Item
    4.25 + *     mustn't be in the heap.
    4.26 + *
    4.27 + *Item top() : returns the Item with least Prio. 
    4.28 + *     Must be called only if heap is nonempty.
    4.29 + *
    4.30 + *Prio prio() : returns the least Prio
    4.31 + *     Must be called only if heap is nonempty.
    4.32 + *
    4.33 + *Prio get(Item) : returns Prio of Item
    4.34 + *     Must be called only if Item is in heap.
    4.35 + *
    4.36 + *void pop() : deletes the Item with least Prio
    4.37 + *
    4.38 + *void erase(Item) : deletes Item from the heap if it was already there
    4.39 + *
    4.40 + *void decrease(Item, P) : decreases prio of Item to P. 
    4.41 + *     Item must be in the heap with prio at least P.
    4.42 + *
    4.43 + *void increase(Item, P) : sets prio of Item to P. 
    4.44 + *
    4.45 + *state_enum state(Item) : returns PRE_HEAP if Item has not been in the 
    4.46 + *     heap until now, IN_HEAP if it is in the heap at the moment, and 
    4.47 + *     POST_HEAP otherwise. In the latter case it is possible that Item
    4.48 + *     will get back to the heap again. 
    4.49 + *
    4.50 + *In Fibonacci heaps, increase and erase are not efficient, in case of
    4.51 + *many calls to these operations, it is better to use bin_heap.
    4.52 + */
    4.53 +
    4.54 +#ifndef FIB_HEAP_H
    4.55 +#define FIB_HEAP_H
    4.56 +
    4.57 +#include <vector>
    4.58 +#include <functional>
    4.59 +#include <math.h>
    4.60 +
    4.61 +namespace hugo {
    4.62 +  
    4.63 +  template <typename Item, typename Prio, typename ItemIntMap, 
    4.64 +    typename Compare = std::less<Prio> >
    4.65 + 
    4.66 +  class FibHeap {
    4.67 +  
    4.68 +    typedef Prio PrioType;
    4.69 +    
    4.70 +    class store;
    4.71 +    
    4.72 +    std::vector<store> container;
    4.73 +    int minimum;
    4.74 +    ItemIntMap &iimap;
    4.75 +    Compare comp;
    4.76 +    int num_items;
    4.77 +
    4.78 +    ///\todo It is use nowhere
    4.79 +    ///\todo It doesn't conforms to the naming conventions.
    4.80 +  public:
    4.81 +    enum state_enum {
    4.82 +      IN_HEAP = 0,
    4.83 +      PRE_HEAP = -1,
    4.84 +      POST_HEAP = -2
    4.85 +    };
    4.86 +    
    4.87 +  public :
    4.88 +    
    4.89 +    FibHeap(ItemIntMap &_iimap) : minimum(), iimap(_iimap), num_items() {} 
    4.90 +    FibHeap(ItemIntMap &_iimap, const Compare &_comp) : minimum(), 
    4.91 +      iimap(_iimap), comp(_comp), num_items() {}
    4.92 +    
    4.93 +    
    4.94 +    int size() const {
    4.95 +      return num_items; 
    4.96 +    }
    4.97 +
    4.98 +
    4.99 +    bool empty() const { return num_items==0; }
   4.100 +
   4.101 +
   4.102 +    void set (Item const it, PrioType const value) {
   4.103 +      int i=iimap[it];
   4.104 +      if ( i >= 0 && container[i].in ) {
   4.105 +	if ( comp(value, container[i].prio) ) decrease(it, value); 
   4.106 +	if ( comp(container[i].prio, value) ) increase(it, value); 
   4.107 +      } else push(it, value);
   4.108 +    }
   4.109 +    
   4.110 +
   4.111 +    void push (Item const it, PrioType const value) {
   4.112 +      int i=iimap[it];      
   4.113 +      if ( i < 0 ) {
   4.114 +	int s=container.size();
   4.115 +	iimap.set( it, s );	
   4.116 +	store st;
   4.117 +	st.name=it;
   4.118 +	container.push_back(st);
   4.119 +	i=s;
   4.120 +      } else {
   4.121 +	container[i].parent=container[i].child=-1;
   4.122 +	container[i].degree=0;
   4.123 +	container[i].in=true;
   4.124 +	container[i].marked=false;
   4.125 +      }
   4.126 +
   4.127 +      if ( num_items ) {
   4.128 +	container[container[minimum].right_neighbor].left_neighbor=i;
   4.129 +	container[i].right_neighbor=container[minimum].right_neighbor;
   4.130 +	container[minimum].right_neighbor=i;
   4.131 +	container[i].left_neighbor=minimum;
   4.132 +	if ( comp( value, container[minimum].prio) ) minimum=i; 
   4.133 +      } else {
   4.134 +	container[i].right_neighbor=container[i].left_neighbor=i;
   4.135 +	minimum=i;	
   4.136 +      }
   4.137 +      container[i].prio=value;
   4.138 +      ++num_items;
   4.139 +    }
   4.140 +    
   4.141 +
   4.142 +    Item top() const {
   4.143 +      return container[minimum].name;
   4.144 +    }
   4.145 +    
   4.146 +    
   4.147 +    PrioType prio() const {
   4.148 +      return container[minimum].prio;
   4.149 +    }
   4.150 +    
   4.151 +
   4.152 +
   4.153 +
   4.154 +    PrioType& operator[](const Item& it) {
   4.155 +      return container[iimap[it]].prio;
   4.156 +    }
   4.157 +    
   4.158 +    const PrioType& operator[](const Item& it) const {
   4.159 +      return container[iimap[it]].prio;
   4.160 +    }
   4.161 +
   4.162 +//     const PrioType get(const Item& it) const {
   4.163 +//       return container[iimap[it]].prio;
   4.164 +//     }
   4.165 +
   4.166 +    void pop() {
   4.167 +      /*The first case is that there are only one root.*/
   4.168 +      if ( container[minimum].left_neighbor==minimum ) {
   4.169 +	container[minimum].in=false;
   4.170 +	if ( container[minimum].degree!=0 ) { 
   4.171 +	  makeroot(container[minimum].child);
   4.172 +	  minimum=container[minimum].child;
   4.173 +	  balance();
   4.174 +	}
   4.175 +      } else {
   4.176 +	int right=container[minimum].right_neighbor;
   4.177 +	unlace(minimum);
   4.178 +	container[minimum].in=false;
   4.179 +	if ( container[minimum].degree > 0 ) {
   4.180 +	  int left=container[minimum].left_neighbor;
   4.181 +	  int child=container[minimum].child;
   4.182 +	  int last_child=container[child].left_neighbor;
   4.183 +	
   4.184 +	  makeroot(child);
   4.185 +	  
   4.186 +	  container[left].right_neighbor=child;
   4.187 +	  container[child].left_neighbor=left;
   4.188 +	  container[right].left_neighbor=last_child;
   4.189 +	  container[last_child].right_neighbor=right;
   4.190 +	}
   4.191 +	minimum=right;
   4.192 +	balance();
   4.193 +      } // the case where there are more roots
   4.194 +      --num_items;   
   4.195 +    }
   4.196 +
   4.197 +    
   4.198 +    void erase (const Item& it) {
   4.199 +      int i=iimap[it];
   4.200 +      
   4.201 +      if ( i >= 0 && container[i].in ) { 	
   4.202 +	if ( container[i].parent!=-1 ) {
   4.203 +	  int p=container[i].parent;
   4.204 +	  cut(i,p);	    
   4.205 +	  cascade(p);
   4.206 +	}
   4.207 +	minimum=i;     //As if its prio would be -infinity
   4.208 +	pop();
   4.209 +      }
   4.210 +    }
   4.211 +    
   4.212 +
   4.213 +    void decrease (Item it, PrioType const value) {
   4.214 +      int i=iimap[it];
   4.215 +      container[i].prio=value;
   4.216 +      int p=container[i].parent;
   4.217 +      
   4.218 +      if ( p!=-1 && comp(value, container[p].prio) ) {
   4.219 +	cut(i,p);	    
   4.220 +	cascade(p);
   4.221 +      }      
   4.222 +      if ( comp(value, container[minimum].prio) ) minimum=i; 
   4.223 +    }
   4.224 +   
   4.225 +
   4.226 +    void increase (Item it, PrioType const value) {
   4.227 +      erase(it);
   4.228 +      push(it, value);
   4.229 +    }
   4.230 +
   4.231 +
   4.232 +    state_enum state(const Item &it) const {
   4.233 +      int i=iimap[it];
   4.234 +      if( i>=0 ) {
   4.235 +	if ( container[i].in ) i=0;
   4.236 +	else i=-2; 
   4.237 +      }
   4.238 +      return state_enum(i);
   4.239 +    }
   4.240 +
   4.241 +
   4.242 +  private:
   4.243 +    
   4.244 +    void balance() {      
   4.245 +
   4.246 +    int maxdeg=int( floor( 2.08*log(double(container.size()))))+1;
   4.247 +  
   4.248 +    std::vector<int> A(maxdeg,-1); 
   4.249 +    
   4.250 +    /*
   4.251 +     *Recall that now minimum does not point to the minimum prio element.
   4.252 +     *We set minimum to this during balance().
   4.253 +     */
   4.254 +    int anchor=container[minimum].left_neighbor; 
   4.255 +    int next=minimum; 
   4.256 +    bool end=false; 
   4.257 +    	
   4.258 +       do {
   4.259 +	int active=next;
   4.260 +	if ( anchor==active ) end=true;
   4.261 +	int d=container[active].degree;
   4.262 +	next=container[active].right_neighbor;
   4.263 +
   4.264 +	while (A[d]!=-1) {	  
   4.265 +	  if( comp(container[active].prio, container[A[d]].prio) ) {
   4.266 +	    fuse(active,A[d]); 
   4.267 +	  } else { 
   4.268 +	    fuse(A[d],active);
   4.269 +	    active=A[d];
   4.270 +	  } 
   4.271 +	  A[d]=-1;
   4.272 +	  ++d;
   4.273 +	}	
   4.274 +	A[d]=active;
   4.275 +       } while ( !end );
   4.276 +
   4.277 +
   4.278 +       while ( container[minimum].parent >=0 ) minimum=container[minimum].parent;
   4.279 +       int s=minimum;
   4.280 +       int m=minimum;
   4.281 +       do {  
   4.282 +	 if ( comp(container[s].prio, container[minimum].prio) ) minimum=s;
   4.283 +	 s=container[s].right_neighbor;
   4.284 +       } while ( s != m );
   4.285 +    }
   4.286 +
   4.287 +
   4.288 +    void makeroot (int c) {
   4.289 +      int s=c;
   4.290 +      do {  
   4.291 +	container[s].parent=-1;
   4.292 +	s=container[s].right_neighbor;
   4.293 +      } while ( s != c );
   4.294 +    }
   4.295 +    
   4.296 +
   4.297 +    void cut (int a, int b) {    
   4.298 +      /*
   4.299 +       *Replacing a from the children of b.
   4.300 +       */
   4.301 +      --container[b].degree;
   4.302 +      
   4.303 +      if ( container[b].degree !=0 ) {
   4.304 +	int child=container[b].child;
   4.305 +	if ( child==a ) 
   4.306 +	  container[b].child=container[child].right_neighbor;
   4.307 +	unlace(a);
   4.308 +      }
   4.309 +      
   4.310 +      
   4.311 +      /*Lacing a to the roots.*/
   4.312 +      int right=container[minimum].right_neighbor;
   4.313 +      container[minimum].right_neighbor=a;
   4.314 +      container[a].left_neighbor=minimum;
   4.315 +      container[a].right_neighbor=right;
   4.316 +      container[right].left_neighbor=a;
   4.317 +
   4.318 +      container[a].parent=-1;
   4.319 +      container[a].marked=false;
   4.320 +    }
   4.321 +
   4.322 +
   4.323 +    void cascade (int a) 
   4.324 +    {
   4.325 +      if ( container[a].parent!=-1 ) {
   4.326 +	int p=container[a].parent;
   4.327 +	
   4.328 +	if ( container[a].marked==false ) container[a].marked=true;
   4.329 +	else {
   4.330 +	  cut(a,p);
   4.331 +	  cascade(p);
   4.332 +	}
   4.333 +      }
   4.334 +    }
   4.335 +
   4.336 +
   4.337 +    void fuse (int a, int b) {
   4.338 +      unlace(b);
   4.339 +      
   4.340 +      /*Lacing b under a.*/
   4.341 +      container[b].parent=a;
   4.342 +
   4.343 +      if (container[a].degree==0) {
   4.344 +	container[b].left_neighbor=b;
   4.345 +	container[b].right_neighbor=b;
   4.346 +	container[a].child=b;	
   4.347 +      } else {
   4.348 +	int child=container[a].child;
   4.349 +	int last_child=container[child].left_neighbor;
   4.350 +	container[child].left_neighbor=b;
   4.351 +	container[b].right_neighbor=child;
   4.352 +	container[last_child].right_neighbor=b;
   4.353 +	container[b].left_neighbor=last_child;
   4.354 +      }
   4.355 +
   4.356 +      ++container[a].degree;
   4.357 +      
   4.358 +      container[b].marked=false;
   4.359 +    }
   4.360 +
   4.361 +
   4.362 +    /*
   4.363 +     *It is invoked only if a has siblings.
   4.364 +     */
   4.365 +    void unlace (int a) {      
   4.366 +      int leftn=container[a].left_neighbor;
   4.367 +      int rightn=container[a].right_neighbor;
   4.368 +      container[leftn].right_neighbor=rightn;
   4.369 +      container[rightn].left_neighbor=leftn;
   4.370 +    }
   4.371 +
   4.372 +
   4.373 +    class store {
   4.374 +      friend class FibHeap;
   4.375 +      
   4.376 +      Item name;
   4.377 +      int parent;
   4.378 +      int left_neighbor;
   4.379 +      int right_neighbor;
   4.380 +      int child;
   4.381 +      int degree;  
   4.382 +      bool marked;
   4.383 +      bool in;
   4.384 +      PrioType prio;
   4.385 +
   4.386 +      store() : parent(-1), child(-1), degree(), marked(false), in(true) {} 
   4.387 +    };
   4.388 +    
   4.389 +  };
   4.390 +  
   4.391 +} //namespace hugo
   4.392 +#endif 
     5.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     5.2 +++ b/src/work/alpar/dijkstra/makefile	Sat Mar 20 21:38:16 2004 +0000
     5.3 @@ -0,0 +1,19 @@
     5.4 +CXX3 := $(shell type -p g++-3.3 || type -p g++-3.2 || type -p g++-3.0 || type -p g++-3 || echo g++)
     5.5 +CXX2 = g++-2.95
     5.6 +CXXFLAGS = -W -Wall -ansi -pedantic
     5.7 +LEDAROOT ?= /ledasrc/LEDA-4.1
     5.8 +
     5.9 +BINARIES = dijkstra prim preflow
    5.10 +
    5.11 +all: $(BINARIES)
    5.12 +
    5.13 +makefile: .depend
    5.14 +sinclude .depend
    5.15 +
    5.16 +dijkstra: 
    5.17 +	$(CXX3) $(CXXFLAGS) -O3 -I. -I../../jacint -I../.. -I../../marci -I../../alpar  -o dijkstra dijkstra.cc
    5.18 +
    5.19 +clean:
    5.20 +	$(RM) *.o $(BINARIES) .depend
    5.21 +
    5.22 +.PHONY: all clean dep depend