src/hugo/preflow.h
author marci
Mon, 20 Sep 2004 17:53:33 +0000
changeset 890 3a48bc350e0f
parent 851 209c9d53e195
child 906 17f31d280385
permissions -rw-r--r--
Specialized ConstMap for defining constant maps at compile time, by klao.
Time comparision of the generic and specialized maps.
     1 // -*- C++ -*-
     2 #ifndef HUGO_PREFLOW_H
     3 #define HUGO_PREFLOW_H
     4 
     5 #include <vector>
     6 #include <queue>
     7 
     8 #include <hugo/invalid.h>
     9 #include <hugo/maps.h>
    10 
    11 /// \file
    12 /// \ingroup flowalgs
    13 /// Implementation of the preflow algorithm.
    14 
    15 namespace hugo {
    16 
    17   /// \addtogroup flowalgs
    18   /// @{                                                   
    19 
    20   ///%Preflow algorithms class.
    21 
    22   ///This class provides an implementation of the \e preflow \e
    23   ///algorithm producing a flow of maximum value in a directed
    24   ///graph. The preflow algorithms are the fastest max flow algorithms
    25   ///up to now. The \e source node, the \e target node, the \e
    26   ///capacity of the edges and the \e starting \e flow value of the
    27   ///edges should be passed to the algorithm through the
    28   ///constructor. It is possible to change these quantities using the
    29   ///functions \ref setSource, \ref setTarget, \ref setCap and \ref
    30   ///setFlow.
    31   ///
    32   ///After running \ref phase1() or \ref preflow(), the actual flow
    33   ///value can be obtained by calling \ref flowValue(). The minimum
    34   ///value cut can be written into a <tt>bool</tt> node map by
    35   ///calling \ref minCut(). (\ref minMinCut() and \ref maxMinCut() writes
    36   ///the inclusionwise minimum and maximum of the minimum value cuts,
    37   ///resp.)
    38   ///
    39   ///\param Graph The directed graph type the algorithm runs on.
    40   ///\param Num The number type of the capacities and the flow values.
    41   ///\param CapMap The capacity map type.
    42   ///\param FlowMap The flow map type.
    43   ///
    44   ///\author Jacint Szabo 
    45   template <typename Graph, typename Num,
    46 	    typename CapMap=typename Graph::template EdgeMap<Num>,
    47             typename FlowMap=typename Graph::template EdgeMap<Num> >
    48   class Preflow {
    49   protected:
    50     typedef typename Graph::Node Node;
    51     typedef typename Graph::NodeIt NodeIt;
    52     typedef typename Graph::EdgeIt EdgeIt;
    53     typedef typename Graph::OutEdgeIt OutEdgeIt;
    54     typedef typename Graph::InEdgeIt InEdgeIt;
    55 
    56     typedef typename Graph::template NodeMap<Node> NNMap;
    57     typedef typename std::vector<Node> VecNode;
    58 
    59     const Graph* g;
    60     Node s;
    61     Node t;
    62     const CapMap* capacity;
    63     FlowMap* flow;
    64     int n;      //the number of nodes of G
    65     
    66     typename Graph::template NodeMap<int> level;  
    67     typename Graph::template NodeMap<Num> excess;
    68 
    69     // constants used for heuristics
    70     static const int H0=20;
    71     static const int H1=1;
    72 
    73     public:
    74 
    75     ///Indicates the property of the starting flow map.
    76 
    77     ///Indicates the property of the starting flow map. The meanings are as follows:
    78     ///- \c ZERO_FLOW: constant zero flow
    79     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
    80     ///the sum of the out-flows in every node except the \e source and
    81     ///the \e target.
    82     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at 
    83     ///least the sum of the out-flows in every node except the \e source.
    84     ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be 
    85     ///set to the constant zero flow in the beginning of the algorithm in this case.
    86     ///
    87     enum FlowEnum{
    88       NO_FLOW,
    89       ZERO_FLOW,
    90       GEN_FLOW,
    91       PRE_FLOW
    92     };
    93 
    94     ///Indicates the state of the preflow algorithm.
    95 
    96     ///Indicates the state of the preflow algorithm. The meanings are as follows:
    97     ///- \c AFTER_NOTHING: before running the algorithm or at an unspecified state.
    98     ///- \c AFTER_PREFLOW_PHASE_1: right after running \c phase1
    99     ///- \c AFTER_PREFLOW_PHASE_2: after running \ref phase2()
   100     ///
   101     enum StatusEnum {
   102       AFTER_NOTHING,
   103       AFTER_PREFLOW_PHASE_1,      
   104       AFTER_PREFLOW_PHASE_2
   105     };
   106     
   107     protected: 
   108       FlowEnum flow_prop;
   109     StatusEnum status; // Do not needle this flag only if necessary.
   110     
   111   public: 
   112     ///The constructor of the class.
   113 
   114     ///The constructor of the class. 
   115     ///\param _G The directed graph the algorithm runs on. 
   116     ///\param _s The source node.
   117     ///\param _t The target node.
   118     ///\param _capacity The capacity of the edges. 
   119     ///\param _flow The flow of the edges. 
   120     ///Except the graph, all of these parameters can be reset by
   121     ///calling \ref setSource, \ref setTarget, \ref setCap and \ref
   122     ///setFlow, resp.
   123       Preflow(const Graph& _G, Node _s, Node _t, 
   124 	      const CapMap& _capacity, FlowMap& _flow) :
   125 	g(&_G), s(_s), t(_t), capacity(&_capacity),
   126 	flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), 
   127 	flow_prop(NO_FLOW), status(AFTER_NOTHING) { }
   128 
   129 
   130                                                                               
   131     ///Runs the preflow algorithm.  
   132 
   133     ///Runs the preflow algorithm.
   134     ///
   135     void run() {
   136       phase1(flow_prop);
   137       phase2();
   138     }
   139     
   140     ///Runs the preflow algorithm.  
   141     
   142     ///Runs the preflow algorithm. 
   143     ///\pre The starting flow map must be
   144     /// - a constant zero flow if \c fp is \c ZERO_FLOW,
   145     /// - an arbitrary flow if \c fp is \c GEN_FLOW,
   146     /// - an arbitrary preflow if \c fp is \c PRE_FLOW,
   147     /// - any map if \c fp is NO_FLOW.
   148     ///If the starting flow map is a flow or a preflow then 
   149     ///the algorithm terminates faster.
   150     void run(FlowEnum fp) {
   151       flow_prop=fp;
   152       run();
   153     }
   154       
   155     ///Runs the first phase of the preflow algorithm.
   156 
   157     ///The preflow algorithm consists of two phases, this method runs the
   158     ///first phase. After the first phase the maximum flow value and a
   159     ///minimum value cut can already be computed, though a maximum flow
   160     ///is not yet obtained. So after calling this method \ref flowValue
   161     ///and \ref minCut gives proper results.
   162     ///\warning \ref minMinCut and \ref maxMinCut do not
   163     ///give minimum value cuts unless calling \ref phase2.
   164     ///\pre The starting flow must be
   165     /// - a constant zero flow if \c fp is \c ZERO_FLOW,
   166     /// - an arbitary flow if \c fp is \c GEN_FLOW,
   167     /// - an arbitary preflow if \c fp is \c PRE_FLOW,
   168     /// - any map if \c fp is NO_FLOW.
   169     void phase1(FlowEnum fp)
   170     {
   171       flow_prop=fp;
   172       phase1();
   173     }
   174 
   175     
   176     ///Runs the first phase of the preflow algorithm.
   177 
   178     ///The preflow algorithm consists of two phases, this method runs the
   179     ///first phase. After the first phase the maximum flow value and a
   180     ///minimum value cut can already be computed, though a maximum flow
   181     ///is not yet obtained. So after calling this method \ref flowValue
   182     ///and \ref actMinCut gives proper results.
   183     ///\warning \ref minCut, \ref minMinCut and \ref maxMinCut do not
   184     ///give minimum value cuts unless calling \ref phase2.
   185     void phase1()
   186     {
   187       int heur0=(int)(H0*n);  //time while running 'bound decrease'
   188       int heur1=(int)(H1*n);  //time while running 'highest label'
   189       int heur=heur1;         //starting time interval (#of relabels)
   190       int numrelabel=0;
   191 
   192       bool what_heur=1;
   193       //It is 0 in case 'bound decrease' and 1 in case 'highest label'
   194 
   195       bool end=false;
   196       //Needed for 'bound decrease', true means no active 
   197       //nodes are above bound b.
   198 
   199       int k=n-2;  //bound on the highest level under n containing a node
   200       int b=k;    //bound on the highest level under n of an active node
   201 
   202       VecNode first(n, INVALID);
   203       NNMap next(*g, INVALID);
   204 
   205       NNMap left(*g, INVALID);
   206       NNMap right(*g, INVALID);
   207       VecNode level_list(n,INVALID);
   208       //List of the nodes in level i<n, set to n.
   209 
   210       preflowPreproc(first, next, level_list, left, right);
   211 
   212       //Push/relabel on the highest level active nodes.
   213       while ( true ) {
   214 	if ( b == 0 ) {
   215 	  if ( !what_heur && !end && k > 0 ) {
   216 	    b=k;
   217 	    end=true;
   218 	  } else break;
   219 	}
   220 
   221 	if ( first[b]==INVALID ) --b;
   222 	else {
   223 	  end=false;
   224 	  Node w=first[b];
   225 	  first[b]=next[w];
   226 	  int newlevel=push(w, next, first);
   227 	  if ( excess[w] > 0 ) relabel(w, newlevel, first, next, level_list, 
   228 				       left, right, b, k, what_heur);
   229 
   230 	  ++numrelabel;
   231 	  if ( numrelabel >= heur ) {
   232 	    numrelabel=0;
   233 	    if ( what_heur ) {
   234 	      what_heur=0;
   235 	      heur=heur0;
   236 	      end=false;
   237 	    } else {
   238 	      what_heur=1;
   239 	      heur=heur1;
   240 	      b=k;
   241 	    }
   242 	  }
   243 	}
   244       }
   245       flow_prop=PRE_FLOW;
   246       status=AFTER_PREFLOW_PHASE_1;
   247     }
   248     // Heuristics:
   249     //   2 phase
   250     //   gap
   251     //   list 'level_list' on the nodes on level i implemented by hand
   252     //   stack 'active' on the active nodes on level i      
   253     //   runs heuristic 'highest label' for H1*n relabels
   254     //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
   255     //   Parameters H0 and H1 are initialized to 20 and 1.
   256 
   257 
   258     ///Runs the second phase of the preflow algorithm.
   259 
   260     ///The preflow algorithm consists of two phases, this method runs
   261     ///the second phase. After calling \ref phase1 and then
   262     ///\ref phase2 the methods \ref flowValue, \ref minCut,
   263     ///\ref minMinCut and \ref maxMinCut give proper results.
   264     ///\pre \ref phase1 must be called before.
   265     void phase2()
   266     {
   267 
   268       int k=n-2;  //bound on the highest level under n containing a node
   269       int b=k;    //bound on the highest level under n of an active node
   270 
   271     
   272       VecNode first(n, INVALID);
   273       NNMap next(*g, INVALID); 
   274       level.set(s,0);
   275       std::queue<Node> bfs_queue;
   276       bfs_queue.push(s);
   277 
   278       while ( !bfs_queue.empty() ) {
   279 
   280 	Node v=bfs_queue.front();
   281 	bfs_queue.pop();
   282 	int l=level[v]+1;
   283 
   284 	for(InEdgeIt e(*g,v); e!=INVALID; ++e) {
   285 	  if ( (*capacity)[e] <= (*flow)[e] ) continue;
   286 	  Node u=g->tail(e);
   287 	  if ( level[u] >= n ) {
   288 	    bfs_queue.push(u);
   289 	    level.set(u, l);
   290 	    if ( excess[u] > 0 ) {
   291 	      next.set(u,first[l]);
   292 	      first[l]=u;
   293 	    }
   294 	  }
   295 	}
   296 
   297 	for(OutEdgeIt e(*g,v); e!=INVALID; ++e) {
   298 	  if ( 0 >= (*flow)[e] ) continue;
   299 	  Node u=g->head(e);
   300 	  if ( level[u] >= n ) {
   301 	    bfs_queue.push(u);
   302 	    level.set(u, l);
   303 	    if ( excess[u] > 0 ) {
   304 	      next.set(u,first[l]);
   305 	      first[l]=u;
   306 	    }
   307 	  }
   308 	}
   309       }
   310       b=n-2;
   311 
   312       while ( true ) {
   313 
   314 	if ( b == 0 ) break;
   315 	if ( first[b]==INVALID ) --b;
   316 	else {
   317 	  Node w=first[b];
   318 	  first[b]=next[w];
   319 	  int newlevel=push(w,next, first);
   320 	  
   321 	  //relabel
   322 	  if ( excess[w] > 0 ) {
   323 	    level.set(w,++newlevel);
   324 	    next.set(w,first[newlevel]);
   325 	    first[newlevel]=w;
   326 	    b=newlevel;
   327 	  }
   328 	} 
   329       } // while(true)
   330       flow_prop=GEN_FLOW;
   331       status=AFTER_PREFLOW_PHASE_2;
   332     }
   333 
   334     /// Returns the value of the maximum flow.
   335 
   336     /// Returns the value of the maximum flow by returning the excess
   337     /// of the target node \ref t. This value equals to the value of
   338     /// the maximum flow already after running \ref phase1.
   339     Num flowValue() const {
   340       return excess[t];
   341     }
   342 
   343 
   344     ///Returns a minimum value cut.
   345 
   346     ///Sets \c M to the characteristic vector of a minimum value
   347     ///cut. This method can be called both after running \ref
   348     ///phase1 and \ref phase2. It is much faster after
   349     ///\ref phase1.  \pre M should be a bool-valued node-map. \pre
   350     ///If \ref mincut is called after \ref phase2 then M should
   351     ///be initialized to false.
   352     template<typename _CutMap>
   353     void minCut(_CutMap& M) const {
   354       switch ( status ) {
   355 	case AFTER_PREFLOW_PHASE_1:
   356 	for(NodeIt v(*g); v!=INVALID; ++v) {
   357 	  if (level[v] < n) {
   358 	    M.set(v, false);
   359 	  } else {
   360 	    M.set(v, true);
   361 	  }
   362 	}
   363 	break;
   364 	case AFTER_PREFLOW_PHASE_2:
   365 	minMinCut(M);
   366 	break;
   367 	case AFTER_NOTHING:
   368 	break;
   369       }
   370     }
   371 
   372     ///Returns the inclusionwise minimum of the minimum value cuts.
   373 
   374     ///Sets \c M to the characteristic vector of the minimum value cut
   375     ///which is inclusionwise minimum. It is computed by processing a
   376     ///bfs from the source node \c s in the residual graph.  \pre M
   377     ///should be a node map of bools initialized to false.  \pre \ref
   378     ///phase2 should already be run.
   379     template<typename _CutMap>
   380     void minMinCut(_CutMap& M) const {
   381 
   382       std::queue<Node> queue;
   383       M.set(s,true);
   384       queue.push(s);
   385       
   386       while (!queue.empty()) {
   387 	Node w=queue.front();
   388 	queue.pop();
   389 	
   390 	for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) {
   391 	  Node v=g->head(e);
   392 	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
   393 	    queue.push(v);
   394 	    M.set(v, true);
   395 	  }
   396 	}
   397 	
   398 	for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) {
   399 	  Node v=g->tail(e);
   400 	  if (!M[v] && (*flow)[e] > 0 ) {
   401 	    queue.push(v);
   402 	    M.set(v, true);
   403 	  }
   404 	}
   405       }
   406     }
   407     
   408     ///Returns the inclusionwise maximum of the minimum value cuts.
   409 
   410     ///Sets \c M to the characteristic vector of the minimum value cut
   411     ///which is inclusionwise maximum. It is computed by processing a
   412     ///backward bfs from the target node \c t in the residual graph.
   413     ///\pre \ref phase2() or preflow() should already be run.
   414     template<typename _CutMap>
   415     void maxMinCut(_CutMap& M) const {
   416 
   417       for(NodeIt v(*g) ; v!=INVALID; ++v) M.set(v, true);
   418 
   419       std::queue<Node> queue;
   420 
   421       M.set(t,false);
   422       queue.push(t);
   423 
   424       while (!queue.empty()) {
   425         Node w=queue.front();
   426 	queue.pop();
   427 
   428 	for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) {
   429 	  Node v=g->tail(e);
   430 	  if (M[v] && (*flow)[e] < (*capacity)[e] ) {
   431 	    queue.push(v);
   432 	    M.set(v, false);
   433 	  }
   434 	}
   435 
   436 	for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) {
   437 	  Node v=g->head(e);
   438 	  if (M[v] && (*flow)[e] > 0 ) {
   439 	    queue.push(v);
   440 	    M.set(v, false);
   441 	  }
   442 	}
   443       }
   444     }
   445 
   446     ///Sets the source node to \c _s.
   447 
   448     ///Sets the source node to \c _s.
   449     /// 
   450     void setSource(Node _s) { 
   451       s=_s; 
   452       if ( flow_prop != ZERO_FLOW ) flow_prop=NO_FLOW;
   453       status=AFTER_NOTHING; 
   454     }
   455 
   456     ///Sets the target node to \c _t.
   457 
   458     ///Sets the target node to \c _t.
   459     ///
   460     void setTarget(Node _t) { 
   461       t=_t; 
   462       if ( flow_prop == GEN_FLOW ) flow_prop=PRE_FLOW;
   463       status=AFTER_NOTHING; 
   464     }
   465 
   466     /// Sets the edge map of the capacities to _cap.
   467 
   468     /// Sets the edge map of the capacities to _cap.
   469     /// 
   470     void setCap(const CapMap& _cap) { 
   471       capacity=&_cap; 
   472       status=AFTER_NOTHING; 
   473     }
   474 
   475     /// Sets the edge map of the flows to _flow.
   476 
   477     /// Sets the edge map of the flows to _flow.
   478     /// 
   479     void setFlow(FlowMap& _flow) { 
   480       flow=&_flow; 
   481       flow_prop=NO_FLOW;
   482       status=AFTER_NOTHING; 
   483     }
   484 
   485 
   486   private:
   487 
   488     int push(Node w, NNMap& next, VecNode& first) {
   489 
   490       int lev=level[w];
   491       Num exc=excess[w];
   492       int newlevel=n;       //bound on the next level of w
   493 
   494       for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) {
   495 	if ( (*flow)[e] >= (*capacity)[e] ) continue;
   496 	Node v=g->head(e);
   497 
   498 	if( lev > level[v] ) { //Push is allowed now
   499 	  
   500 	  if ( excess[v]<=0 && v!=t && v!=s ) {
   501 	    next.set(v,first[level[v]]);
   502 	    first[level[v]]=v;
   503 	  }
   504 
   505 	  Num cap=(*capacity)[e];
   506 	  Num flo=(*flow)[e];
   507 	  Num remcap=cap-flo;
   508 	  
   509 	  if ( remcap >= exc ) { //A nonsaturating push.
   510 	    
   511 	    flow->set(e, flo+exc);
   512 	    excess.set(v, excess[v]+exc);
   513 	    exc=0;
   514 	    break;
   515 
   516 	  } else { //A saturating push.
   517 	    flow->set(e, cap);
   518 	    excess.set(v, excess[v]+remcap);
   519 	    exc-=remcap;
   520 	  }
   521 	} else if ( newlevel > level[v] ) newlevel = level[v];
   522       } //for out edges wv
   523 
   524       if ( exc > 0 ) {
   525 	for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) {
   526 	  
   527 	  if( (*flow)[e] <= 0 ) continue;
   528 	  Node v=g->tail(e);
   529 
   530 	  if( lev > level[v] ) { //Push is allowed now
   531 
   532 	    if ( excess[v]<=0 && v!=t && v!=s ) {
   533 	      next.set(v,first[level[v]]);
   534 	      first[level[v]]=v;
   535 	    }
   536 
   537 	    Num flo=(*flow)[e];
   538 
   539 	    if ( flo >= exc ) { //A nonsaturating push.
   540 
   541 	      flow->set(e, flo-exc);
   542 	      excess.set(v, excess[v]+exc);
   543 	      exc=0;
   544 	      break;
   545 	    } else {  //A saturating push.
   546 
   547 	      excess.set(v, excess[v]+flo);
   548 	      exc-=flo;
   549 	      flow->set(e,0);
   550 	    }
   551 	  } else if ( newlevel > level[v] ) newlevel = level[v];
   552 	} //for in edges vw
   553 
   554       } // if w still has excess after the out edge for cycle
   555 
   556       excess.set(w, exc);
   557       
   558       return newlevel;
   559     }
   560     
   561     
   562     
   563     void preflowPreproc(VecNode& first, NNMap& next, 
   564 			VecNode& level_list, NNMap& left, NNMap& right)
   565     {
   566       for(NodeIt v(*g); v!=INVALID; ++v) level.set(v,n);
   567       std::queue<Node> bfs_queue;
   568       
   569       if ( flow_prop == GEN_FLOW || flow_prop == PRE_FLOW ) {
   570 	//Reverse_bfs from t in the residual graph,
   571 	//to find the starting level.
   572 	level.set(t,0);
   573 	bfs_queue.push(t);
   574 	
   575 	while ( !bfs_queue.empty() ) {
   576 	  
   577 	  Node v=bfs_queue.front();
   578 	  bfs_queue.pop();
   579 	  int l=level[v]+1;
   580 	  
   581 	  for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) {
   582 	    if ( (*capacity)[e] <= (*flow)[e] ) continue;
   583 	    Node w=g->tail(e);
   584 	    if ( level[w] == n && w != s ) {
   585 	      bfs_queue.push(w);
   586 	      Node z=level_list[l];
   587 	      if ( z!=INVALID ) left.set(z,w);
   588 	      right.set(w,z);
   589 	      level_list[l]=w;
   590 	      level.set(w, l);
   591 	    }
   592 	  }
   593 	  
   594 	  for(OutEdgeIt e(*g,v) ; e!=INVALID; ++e) {
   595 	    if ( 0 >= (*flow)[e] ) continue;
   596 	    Node w=g->head(e);
   597 	    if ( level[w] == n && w != s ) {
   598 	      bfs_queue.push(w);
   599 	      Node z=level_list[l];
   600 	      if ( z!=INVALID ) left.set(z,w);
   601 	      right.set(w,z);
   602 	      level_list[l]=w;
   603 	      level.set(w, l);
   604 	    }
   605 	  }
   606 	} //while
   607       } //if
   608 
   609 
   610       switch (flow_prop) {
   611 	case NO_FLOW:  
   612 	for(EdgeIt e(*g); e!=INVALID; ++e) flow->set(e,0);
   613 	case ZERO_FLOW:
   614 	for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0);
   615 	
   616 	//Reverse_bfs from t, to find the starting level.
   617 	level.set(t,0);
   618 	bfs_queue.push(t);
   619 	
   620 	while ( !bfs_queue.empty() ) {
   621 	  
   622 	  Node v=bfs_queue.front();
   623 	  bfs_queue.pop();
   624 	  int l=level[v]+1;
   625 	  
   626 	  for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) {
   627 	    Node w=g->tail(e);
   628 	    if ( level[w] == n && w != s ) {
   629 	      bfs_queue.push(w);
   630 	      Node z=level_list[l];
   631 	      if ( z!=INVALID ) left.set(z,w);
   632 	      right.set(w,z);
   633 	      level_list[l]=w;
   634 	      level.set(w, l);
   635 	    }
   636 	  }
   637 	}
   638 	
   639 	//the starting flow
   640 	for(OutEdgeIt e(*g,s) ; e!=INVALID; ++e) {
   641 	  Num c=(*capacity)[e];
   642 	  if ( c <= 0 ) continue;
   643 	  Node w=g->head(e);
   644 	  if ( level[w] < n ) {
   645 	    if ( excess[w] <= 0 && w!=t ) { //putting into the stack
   646 	      next.set(w,first[level[w]]);
   647 	      first[level[w]]=w;
   648 	    }
   649 	    flow->set(e, c);
   650 	    excess.set(w, excess[w]+c);
   651 	  }
   652 	}
   653 	break;
   654 
   655 	case GEN_FLOW:
   656 	for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0);
   657 	{
   658 	  Num exc=0;
   659 	  for(InEdgeIt e(*g,t) ; e!=INVALID; ++e) exc+=(*flow)[e];
   660 	  for(OutEdgeIt e(*g,t) ; e!=INVALID; ++e) exc-=(*flow)[e];
   661 	  excess.set(t,exc);
   662 	}
   663 
   664 	//the starting flow
   665 	for(OutEdgeIt e(*g,s); e!=INVALID; ++e)	{
   666 	  Num rem=(*capacity)[e]-(*flow)[e];
   667 	  if ( rem <= 0 ) continue;
   668 	  Node w=g->head(e);
   669 	  if ( level[w] < n ) {
   670 	    if ( excess[w] <= 0 && w!=t ) { //putting into the stack
   671 	      next.set(w,first[level[w]]);
   672 	      first[level[w]]=w;
   673 	    }   
   674 	    flow->set(e, (*capacity)[e]);
   675 	    excess.set(w, excess[w]+rem);
   676 	  }
   677 	}
   678 	
   679 	for(InEdgeIt e(*g,s); e!=INVALID; ++e) {
   680 	  if ( (*flow)[e] <= 0 ) continue;
   681 	  Node w=g->tail(e);
   682 	  if ( level[w] < n ) {
   683 	    if ( excess[w] <= 0 && w!=t ) {
   684 	      next.set(w,first[level[w]]);
   685 	      first[level[w]]=w;
   686 	    }  
   687 	    excess.set(w, excess[w]+(*flow)[e]);
   688 	    flow->set(e, 0);
   689 	  }
   690 	}
   691 	break;
   692 
   693 	case PRE_FLOW:	
   694 	//the starting flow
   695 	for(OutEdgeIt e(*g,s) ; e!=INVALID; ++e) {
   696 	  Num rem=(*capacity)[e]-(*flow)[e];
   697 	  if ( rem <= 0 ) continue;
   698 	  Node w=g->head(e);
   699 	  if ( level[w] < n ) flow->set(e, (*capacity)[e]);
   700 	}
   701 	
   702 	for(InEdgeIt e(*g,s) ; e!=INVALID; ++e) {
   703 	  if ( (*flow)[e] <= 0 ) continue;
   704 	  Node w=g->tail(e);
   705 	  if ( level[w] < n ) flow->set(e, 0);
   706 	}
   707 	
   708 	//computing the excess
   709 	for(NodeIt w(*g); w!=INVALID; ++w) {
   710 	  Num exc=0;
   711 	  for(InEdgeIt e(*g,w); e!=INVALID; ++e) exc+=(*flow)[e];
   712 	  for(OutEdgeIt e(*g,w); e!=INVALID; ++e) exc-=(*flow)[e];
   713 	  excess.set(w,exc);
   714 	  
   715 	  //putting the active nodes into the stack
   716 	  int lev=level[w];
   717 	    if ( exc > 0 && lev < n && Node(w) != t ) {
   718 	      next.set(w,first[lev]);
   719 	      first[lev]=w;
   720 	    }
   721 	}
   722 	break;
   723       } //switch
   724     } //preflowPreproc
   725 
   726 
   727     void relabel(Node w, int newlevel, VecNode& first, NNMap& next, 
   728 		 VecNode& level_list, NNMap& left,
   729 		 NNMap& right, int& b, int& k, bool what_heur )
   730     {
   731 
   732       int lev=level[w];
   733 
   734       Node right_n=right[w];
   735       Node left_n=left[w];
   736 
   737       //unlacing starts
   738       if ( right_n!=INVALID ) {
   739 	if ( left_n!=INVALID ) {
   740 	  right.set(left_n, right_n);
   741 	  left.set(right_n, left_n);
   742 	} else {
   743 	  level_list[lev]=right_n;
   744 	  left.set(right_n, INVALID);
   745 	}
   746       } else {
   747 	if ( left_n!=INVALID ) {
   748 	  right.set(left_n, INVALID);
   749 	} else {
   750 	  level_list[lev]=INVALID;
   751 	}
   752       }
   753       //unlacing ends
   754 
   755       if ( level_list[lev]==INVALID ) {
   756 
   757 	//gapping starts
   758 	for (int i=lev; i!=k ; ) {
   759 	  Node v=level_list[++i];
   760 	  while ( v!=INVALID ) {
   761 	    level.set(v,n);
   762 	    v=right[v];
   763 	  }
   764 	  level_list[i]=INVALID;
   765 	  if ( !what_heur ) first[i]=INVALID;
   766 	}
   767 
   768 	level.set(w,n);
   769 	b=lev-1;
   770 	k=b;
   771 	//gapping ends
   772 
   773       } else {
   774 
   775 	if ( newlevel == n ) level.set(w,n);
   776 	else {
   777 	  level.set(w,++newlevel);
   778 	  next.set(w,first[newlevel]);
   779 	  first[newlevel]=w;
   780 	  if ( what_heur ) b=newlevel;
   781 	  if ( k < newlevel ) ++k;      //now k=newlevel
   782 	  Node z=level_list[newlevel];
   783 	  if ( z!=INVALID ) left.set(z,w);
   784 	  right.set(w,z);
   785 	  left.set(w,INVALID);
   786 	  level_list[newlevel]=w;
   787 	}
   788       }
   789     } //relabel
   790 
   791   }; 
   792 } //namespace hugo
   793 
   794 #endif //HUGO_PREFLOW_H
   795 
   796 
   797 
   798