src/hugo/dfs.h
author marci
Mon, 13 Sep 2004 16:15:12 +0000
changeset 838 51dcd224455c
parent 781 d4d182ab75bd
child 906 17f31d280385
permissions -rw-r--r--
(none)
     1 // -*- C++ -*-
     2 #ifndef HUGO_DFS_H
     3 #define HUGO_DFS_H
     4 
     5 ///\ingroup flowalgs
     6 ///\file
     7 ///\brief %DFS algorithm.
     8 ///
     9 ///\todo Revise Manual.
    10 
    11 #include <hugo/bin_heap.h>
    12 #include <hugo/invalid.h>
    13 
    14 namespace hugo {
    15 
    16 /// \addtogroup flowalgs
    17 /// @{
    18 
    19   ///%DFS algorithm class.
    20 
    21   ///This class provides an efficient implementation of %DFS algorithm.
    22   ///
    23   ///\param GR The graph type the algorithm runs on.
    24   ///
    25   ///\author Alpar Juttner
    26 
    27 #ifdef DOXYGEN
    28   template <typename GR>
    29 #else
    30   template <typename GR>
    31 #endif
    32   class Dfs{
    33   public:
    34     ///The type of the underlying graph.
    35     typedef GR Graph;
    36     /// .
    37     typedef typename Graph::Node Node;
    38     /// .
    39     typedef typename Graph::NodeIt NodeIt;
    40     /// .
    41     typedef typename Graph::Edge Edge;
    42     /// .
    43     typedef typename Graph::OutEdgeIt OutEdgeIt;
    44     
    45     ///\brief The type of the map that stores the last
    46     ///edges of the paths on the %DFS tree.
    47     typedef typename Graph::template NodeMap<Edge> PredMap;
    48     ///\brief The type of the map that stores the last but one
    49     ///nodes of the paths on the %DFS tree.
    50     typedef typename Graph::template NodeMap<Node> PredNodeMap;
    51     ///The type of the map that stores the dists of the nodes on the %DFS tree.
    52     typedef typename Graph::template NodeMap<int> DistMap;
    53 
    54   private:
    55     /// Pointer to the underlying graph.
    56     const Graph *G;
    57     ///Pointer to the map of predecessors edges.
    58     PredMap *predecessor;
    59     ///Indicates if \ref predecessor is locally allocated (\c true) or not.
    60     bool local_predecessor;
    61     ///Pointer to the map of predecessors nodes.
    62     PredNodeMap *pred_node;
    63     ///Indicates if \ref pred_node is locally allocated (\c true) or not.
    64     bool local_pred_node;
    65     ///Pointer to the map of distances.
    66     DistMap *distance;
    67     ///Indicates if \ref distance is locally allocated (\c true) or not.
    68     bool local_distance;
    69 
    70     ///The source node of the last execution.
    71     Node source;
    72 
    73 
    74     ///Initializes the maps.
    75     void init_maps() 
    76     {
    77       if(!predecessor) {
    78 	local_predecessor = true;
    79 	predecessor = new PredMap(*G);
    80       }
    81       if(!pred_node) {
    82 	local_pred_node = true;
    83 	pred_node = new PredNodeMap(*G);
    84       }
    85       if(!distance) {
    86 	local_distance = true;
    87 	distance = new DistMap(*G);
    88       }
    89     }
    90     
    91   public :    
    92     ///Constructor.
    93     
    94     ///\param _G the graph the algorithm will run on.
    95     Dfs(const Graph& _G) :
    96       G(&_G),
    97       predecessor(NULL), local_predecessor(false),
    98       pred_node(NULL), local_pred_node(false),
    99       distance(NULL), local_distance(false)
   100     { }
   101     
   102     ///Destructor.
   103     ~Dfs() 
   104     {
   105       if(local_predecessor) delete predecessor;
   106       if(local_pred_node) delete pred_node;
   107       if(local_distance) delete distance;
   108     }
   109 
   110     ///Sets the map storing the predecessor edges.
   111 
   112     ///Sets the map storing the predecessor edges.
   113     ///If you don't use this function before calling \ref run(),
   114     ///it will allocate one. The destuctor deallocates this
   115     ///automatically allocated map, of course.
   116     ///\return <tt> (*this) </tt>
   117     Dfs &setPredMap(PredMap &m) 
   118     {
   119       if(local_predecessor) {
   120 	delete predecessor;
   121 	local_predecessor=false;
   122       }
   123       predecessor = &m;
   124       return *this;
   125     }
   126 
   127     ///Sets the map storing the predecessor nodes.
   128 
   129     ///Sets the map storing the predecessor nodes.
   130     ///If you don't use this function before calling \ref run(),
   131     ///it will allocate one. The destuctor deallocates this
   132     ///automatically allocated map, of course.
   133     ///\return <tt> (*this) </tt>
   134     Dfs &setPredNodeMap(PredNodeMap &m) 
   135     {
   136       if(local_pred_node) {
   137 	delete pred_node;
   138 	local_pred_node=false;
   139       }
   140       pred_node = &m;
   141       return *this;
   142     }
   143 
   144     ///Sets the map storing the distances calculated by the algorithm.
   145 
   146     ///Sets the map storing the distances calculated by the algorithm.
   147     ///If you don't use this function before calling \ref run(),
   148     ///it will allocate one. The destuctor deallocates this
   149     ///automatically allocated map, of course.
   150     ///\return <tt> (*this) </tt>
   151     Dfs &setDistMap(DistMap &m) 
   152     {
   153       if(local_distance) {
   154 	delete distance;
   155 	local_distance=false;
   156       }
   157       distance = &m;
   158       return *this;
   159     }
   160     
   161   ///Runs %DFS algorithm from node \c s.
   162 
   163   ///This method runs the %DFS algorithm from a root node \c s
   164   ///in order to
   165   ///compute 
   166   ///- a %DFS tree and
   167   ///- the distance of each node from the root on this tree.
   168  
   169     void run(Node s) {
   170       
   171       init_maps();
   172       
   173       source = s;
   174       
   175       for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
   176 	predecessor->set(u,INVALID);
   177 	pred_node->set(u,INVALID);
   178       }
   179       
   180       int N=G->nodeNum();
   181       std::vector<typename Graph::OutEdgeIt> Q(N);
   182 
   183       int Qh=0;
   184       
   185       G->first(Q[Qh],s);
   186       distance->set(s, 0);
   187 
   188       Node n=s;
   189       Node m;
   190       OutEdgeIt e;
   191       do {
   192 	if((e=Q[Qh])!=INVALID)
   193 	  if((m=G->head(e))!=s && (*predecessor)[m=G->head(e)]==INVALID) {
   194 	    predecessor->set(m,e);
   195 	    pred_node->set(m,n);
   196 	    G->first(Q[++Qh],m);
   197 	    distance->set(m,Qh);
   198 	    n=m;
   199 	  }
   200 	  else ++Q[Qh];
   201 	else if(--Qh>=0) n=G->tail(Q[Qh]);
   202       } while(Qh>=0);
   203     }
   204     
   205     ///The distance of a node from the root on the %DFS tree.
   206 
   207     ///Returns the distance of a node from the root on the %DFS tree.
   208     ///\pre \ref run() must be called before using this function.
   209     ///\warning If node \c v in unreachable from the root the return value
   210     ///of this funcion is undefined.
   211     int dist(Node v) const { return (*distance)[v]; }
   212 
   213     ///Returns the 'previous edge' of the %DFS path tree.
   214 
   215     ///For a node \c v it returns the last edge of the path on the %DFS tree
   216     ///from the root to \c
   217     ///v. It is \ref INVALID
   218     ///if \c v is unreachable from the root or if \c v=s. The
   219     ///%DFS tree used here is equal to the %DFS tree used in
   220     ///\ref predNode(Node v).  \pre \ref run() must be called before using
   221     ///this function.
   222     Edge pred(Node v) const { return (*predecessor)[v]; }
   223 
   224     ///Returns the 'previous node' of the %DFS tree.
   225 
   226     ///For a node \c v it returns the 'previous node' on the %DFS tree,
   227     ///i.e. it returns the last but one node of the path from the
   228     ///root to \c /v on the %DFS tree.
   229     ///It is INVALID if \c v is unreachable from the root or if
   230     ///\c v=s.
   231     ///\pre \ref run() must be called before
   232     ///using this function.
   233     Node predNode(Node v) const { return (*pred_node)[v]; }
   234     
   235     ///Returns a reference to the NodeMap of distances on the %DFS tree.
   236     
   237     ///Returns a reference to the NodeMap of distances on the %DFS tree.
   238     ///\pre \ref run() must
   239     ///be called before using this function.
   240     const DistMap &distMap() const { return *distance;}
   241  
   242     ///Returns a reference to the %DFS tree map.
   243 
   244     ///Returns a reference to the NodeMap of the edges of the
   245     ///%DFS tree.
   246     ///\pre \ref run() must be called before using this function.
   247     const PredMap &predMap() const { return *predecessor;}
   248  
   249     ///Returns a reference to the map of last but one nodes of the %DFS tree.
   250 
   251     ///Returns a reference to the NodeMap of the last but one nodes of the paths
   252     ///on the
   253     ///%DFS tree.
   254     ///\pre \ref run() must be called before using this function.
   255     const PredNodeMap &predNodeMap() const { return *pred_node;}
   256 
   257     ///Checks if a node is reachable from the root.
   258 
   259     ///Returns \c true if \c v is reachable from the root.
   260     ///\note The root node is reported to be reached!
   261     ///
   262     ///\pre \ref run() must be called before using this function.
   263     ///
   264     bool reached(Node v) { return v==source || (*predecessor)[v]!=INVALID; }
   265     
   266   };
   267   
   268 /// @}
   269   
   270 } //END OF NAMESPACE HUGO
   271 
   272 #endif
   273 
   274