src/hugo/preflow.h
author marci
Tue, 28 Sep 2004 13:45:39 +0000
changeset 915 751ed145bdae
parent 906 17f31d280385
child 920 2d6c8075d9d0
permissions -rw-r--r--
beginning of a modular, generic merge_graph_wrapper...
     1 /* -*- C++ -*-
     2  * src/hugo/preflow.h - Part of HUGOlib, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef HUGO_PREFLOW_H
    18 #define HUGO_PREFLOW_H
    19 
    20 #include <vector>
    21 #include <queue>
    22 
    23 #include <hugo/invalid.h>
    24 #include <hugo/maps.h>
    25 
    26 /// \file
    27 /// \ingroup flowalgs
    28 /// Implementation of the preflow algorithm.
    29 
    30 namespace hugo {
    31 
    32   /// \addtogroup flowalgs
    33   /// @{                                                   
    34 
    35   ///%Preflow algorithms class.
    36 
    37   ///This class provides an implementation of the \e preflow \e
    38   ///algorithm producing a flow of maximum value in a directed
    39   ///graph. The preflow algorithms are the fastest max flow algorithms
    40   ///up to now. The \e source node, the \e target node, the \e
    41   ///capacity of the edges and the \e starting \e flow value of the
    42   ///edges should be passed to the algorithm through the
    43   ///constructor. It is possible to change these quantities using the
    44   ///functions \ref setSource, \ref setTarget, \ref setCap and \ref
    45   ///setFlow.
    46   ///
    47   ///After running \ref hugo::Preflow::phase1() "phase1()"
    48   ///or \ref hugo::Preflow::run() "run()", the actual flow
    49   ///value can be obtained by calling \ref flowValue(). The minimum
    50   ///value cut can be written into a <tt>bool</tt> node map by
    51   ///calling \ref minCut(). (\ref minMinCut() and \ref maxMinCut() writes
    52   ///the inclusionwise minimum and maximum of the minimum value cuts,
    53   ///resp.)
    54   ///
    55   ///\param Graph The directed graph type the algorithm runs on.
    56   ///\param Num The number type of the capacities and the flow values.
    57   ///\param CapMap The capacity map type.
    58   ///\param FlowMap The flow map type.
    59   ///
    60   ///\author Jacint Szabo 
    61   template <typename Graph, typename Num,
    62 	    typename CapMap=typename Graph::template EdgeMap<Num>,
    63             typename FlowMap=typename Graph::template EdgeMap<Num> >
    64   class Preflow {
    65   protected:
    66     typedef typename Graph::Node Node;
    67     typedef typename Graph::NodeIt NodeIt;
    68     typedef typename Graph::EdgeIt EdgeIt;
    69     typedef typename Graph::OutEdgeIt OutEdgeIt;
    70     typedef typename Graph::InEdgeIt InEdgeIt;
    71 
    72     typedef typename Graph::template NodeMap<Node> NNMap;
    73     typedef typename std::vector<Node> VecNode;
    74 
    75     const Graph* g;
    76     Node s;
    77     Node t;
    78     const CapMap* capacity;
    79     FlowMap* flow;
    80     int n;      //the number of nodes of G
    81     
    82     typename Graph::template NodeMap<int> level;  
    83     typename Graph::template NodeMap<Num> excess;
    84 
    85     // constants used for heuristics
    86     static const int H0=20;
    87     static const int H1=1;
    88 
    89     public:
    90 
    91     ///Indicates the property of the starting flow map.
    92 
    93     ///Indicates the property of the starting flow map. The meanings are as follows:
    94     ///- \c ZERO_FLOW: constant zero flow
    95     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
    96     ///the sum of the out-flows in every node except the \e source and
    97     ///the \e target.
    98     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at 
    99     ///least the sum of the out-flows in every node except the \e source.
   100     ///- \c NO_FLOW: indicates an unspecified edge map. \c flow will be 
   101     ///set to the constant zero flow in the beginning of
   102     ///the algorithm in this case.
   103     ///
   104     enum FlowEnum{
   105       NO_FLOW,
   106       ZERO_FLOW,
   107       GEN_FLOW,
   108       PRE_FLOW
   109     };
   110 
   111     ///Indicates the state of the preflow algorithm.
   112 
   113     ///Indicates the state of the preflow algorithm. The meanings are as follows:
   114     ///- \c AFTER_NOTHING: before running the algorithm or at an unspecified state.
   115     ///- \c AFTER_PREFLOW_PHASE_1: right after running \c phase1
   116     ///- \c AFTER_PREFLOW_PHASE_2: after running \ref phase2()
   117     ///
   118     enum StatusEnum {
   119       AFTER_NOTHING,
   120       AFTER_PREFLOW_PHASE_1,      
   121       AFTER_PREFLOW_PHASE_2
   122     };
   123     
   124     protected: 
   125       FlowEnum flow_prop;
   126     StatusEnum status; // Do not needle this flag only if necessary.
   127     
   128   public: 
   129     ///The constructor of the class.
   130 
   131     ///The constructor of the class. 
   132     ///\param _G The directed graph the algorithm runs on. 
   133     ///\param _s The source node.
   134     ///\param _t The target node.
   135     ///\param _capacity The capacity of the edges. 
   136     ///\param _flow The flow of the edges. 
   137     ///Except the graph, all of these parameters can be reset by
   138     ///calling \ref setSource, \ref setTarget, \ref setCap and \ref
   139     ///setFlow, resp.
   140       Preflow(const Graph& _G, Node _s, Node _t, 
   141 	      const CapMap& _capacity, FlowMap& _flow) :
   142 	g(&_G), s(_s), t(_t), capacity(&_capacity),
   143 	flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), 
   144 	flow_prop(NO_FLOW), status(AFTER_NOTHING) { }
   145 
   146 
   147                                                                               
   148     ///Runs the preflow algorithm.  
   149 
   150     ///Runs the preflow algorithm.
   151     ///
   152     void run() {
   153       phase1(flow_prop);
   154       phase2();
   155     }
   156     
   157     ///Runs the preflow algorithm.  
   158     
   159     ///Runs the preflow algorithm. 
   160     ///\pre The starting flow map must be
   161     /// - a constant zero flow if \c fp is \c ZERO_FLOW,
   162     /// - an arbitrary flow if \c fp is \c GEN_FLOW,
   163     /// - an arbitrary preflow if \c fp is \c PRE_FLOW,
   164     /// - any map if \c fp is NO_FLOW.
   165     ///If the starting flow map is a flow or a preflow then 
   166     ///the algorithm terminates faster.
   167     void run(FlowEnum fp) {
   168       flow_prop=fp;
   169       run();
   170     }
   171       
   172     ///Runs the first phase of the preflow algorithm.
   173 
   174     ///The preflow algorithm consists of two phases, this method runs the
   175     ///first phase. After the first phase the maximum flow value and a
   176     ///minimum value cut can already be computed, though a maximum flow
   177     ///is not yet obtained. So after calling this method \ref flowValue
   178     ///and \ref minCut gives proper results.
   179     ///\warning \ref minMinCut and \ref maxMinCut do not
   180     ///give minimum value cuts unless calling \ref phase2.
   181     ///\pre The starting flow must be
   182     /// - a constant zero flow if \c fp is \c ZERO_FLOW,
   183     /// - an arbitary flow if \c fp is \c GEN_FLOW,
   184     /// - an arbitary preflow if \c fp is \c PRE_FLOW,
   185     /// - any map if \c fp is NO_FLOW.
   186     void phase1(FlowEnum fp)
   187     {
   188       flow_prop=fp;
   189       phase1();
   190     }
   191 
   192     
   193     ///Runs the first phase of the preflow algorithm.
   194 
   195     ///The preflow algorithm consists of two phases, this method runs the
   196     ///first phase. After the first phase the maximum flow value and a
   197     ///minimum value cut can already be computed, though a maximum flow
   198     ///is not yet obtained. So after calling this method \ref flowValue
   199     ///and \ref MinCut() gives proper results.
   200     ///\warning \ref minCut(), \ref minMinCut() and \ref maxMinCut() do not
   201     ///give minimum value cuts unless calling \ref phase2().
   202     void phase1()
   203     {
   204       int heur0=(int)(H0*n);  //time while running 'bound decrease'
   205       int heur1=(int)(H1*n);  //time while running 'highest label'
   206       int heur=heur1;         //starting time interval (#of relabels)
   207       int numrelabel=0;
   208 
   209       bool what_heur=1;
   210       //It is 0 in case 'bound decrease' and 1 in case 'highest label'
   211 
   212       bool end=false;
   213       //Needed for 'bound decrease', true means no active 
   214       //nodes are above bound b.
   215 
   216       int k=n-2;  //bound on the highest level under n containing a node
   217       int b=k;    //bound on the highest level under n of an active node
   218 
   219       VecNode first(n, INVALID);
   220       NNMap next(*g, INVALID);
   221 
   222       NNMap left(*g, INVALID);
   223       NNMap right(*g, INVALID);
   224       VecNode level_list(n,INVALID);
   225       //List of the nodes in level i<n, set to n.
   226 
   227       preflowPreproc(first, next, level_list, left, right);
   228 
   229       //Push/relabel on the highest level active nodes.
   230       while ( true ) {
   231 	if ( b == 0 ) {
   232 	  if ( !what_heur && !end && k > 0 ) {
   233 	    b=k;
   234 	    end=true;
   235 	  } else break;
   236 	}
   237 
   238 	if ( first[b]==INVALID ) --b;
   239 	else {
   240 	  end=false;
   241 	  Node w=first[b];
   242 	  first[b]=next[w];
   243 	  int newlevel=push(w, next, first);
   244 	  if ( excess[w] > 0 ) relabel(w, newlevel, first, next, level_list, 
   245 				       left, right, b, k, what_heur);
   246 
   247 	  ++numrelabel;
   248 	  if ( numrelabel >= heur ) {
   249 	    numrelabel=0;
   250 	    if ( what_heur ) {
   251 	      what_heur=0;
   252 	      heur=heur0;
   253 	      end=false;
   254 	    } else {
   255 	      what_heur=1;
   256 	      heur=heur1;
   257 	      b=k;
   258 	    }
   259 	  }
   260 	}
   261       }
   262       flow_prop=PRE_FLOW;
   263       status=AFTER_PREFLOW_PHASE_1;
   264     }
   265     // Heuristics:
   266     //   2 phase
   267     //   gap
   268     //   list 'level_list' on the nodes on level i implemented by hand
   269     //   stack 'active' on the active nodes on level i      
   270     //   runs heuristic 'highest label' for H1*n relabels
   271     //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
   272     //   Parameters H0 and H1 are initialized to 20 and 1.
   273 
   274 
   275     ///Runs the second phase of the preflow algorithm.
   276 
   277     ///The preflow algorithm consists of two phases, this method runs
   278     ///the second phase. After calling \ref phase1 and then
   279     ///\ref phase2 the methods \ref flowValue, \ref minCut,
   280     ///\ref minMinCut and \ref maxMinCut give proper results.
   281     ///\pre \ref phase1 must be called before.
   282     void phase2()
   283     {
   284 
   285       int k=n-2;  //bound on the highest level under n containing a node
   286       int b=k;    //bound on the highest level under n of an active node
   287 
   288     
   289       VecNode first(n, INVALID);
   290       NNMap next(*g, INVALID); 
   291       level.set(s,0);
   292       std::queue<Node> bfs_queue;
   293       bfs_queue.push(s);
   294 
   295       while ( !bfs_queue.empty() ) {
   296 
   297 	Node v=bfs_queue.front();
   298 	bfs_queue.pop();
   299 	int l=level[v]+1;
   300 
   301 	for(InEdgeIt e(*g,v); e!=INVALID; ++e) {
   302 	  if ( (*capacity)[e] <= (*flow)[e] ) continue;
   303 	  Node u=g->tail(e);
   304 	  if ( level[u] >= n ) {
   305 	    bfs_queue.push(u);
   306 	    level.set(u, l);
   307 	    if ( excess[u] > 0 ) {
   308 	      next.set(u,first[l]);
   309 	      first[l]=u;
   310 	    }
   311 	  }
   312 	}
   313 
   314 	for(OutEdgeIt e(*g,v); e!=INVALID; ++e) {
   315 	  if ( 0 >= (*flow)[e] ) continue;
   316 	  Node u=g->head(e);
   317 	  if ( level[u] >= n ) {
   318 	    bfs_queue.push(u);
   319 	    level.set(u, l);
   320 	    if ( excess[u] > 0 ) {
   321 	      next.set(u,first[l]);
   322 	      first[l]=u;
   323 	    }
   324 	  }
   325 	}
   326       }
   327       b=n-2;
   328 
   329       while ( true ) {
   330 
   331 	if ( b == 0 ) break;
   332 	if ( first[b]==INVALID ) --b;
   333 	else {
   334 	  Node w=first[b];
   335 	  first[b]=next[w];
   336 	  int newlevel=push(w,next, first);
   337 	  
   338 	  //relabel
   339 	  if ( excess[w] > 0 ) {
   340 	    level.set(w,++newlevel);
   341 	    next.set(w,first[newlevel]);
   342 	    first[newlevel]=w;
   343 	    b=newlevel;
   344 	  }
   345 	} 
   346       } // while(true)
   347       flow_prop=GEN_FLOW;
   348       status=AFTER_PREFLOW_PHASE_2;
   349     }
   350 
   351     /// Returns the value of the maximum flow.
   352 
   353     /// Returns the value of the maximum flow by returning the excess
   354     /// of the target node \c t. This value equals to the value of
   355     /// the maximum flow already after running \ref phase1.
   356     Num flowValue() const {
   357       return excess[t];
   358     }
   359 
   360 
   361     ///Returns a minimum value cut.
   362 
   363     ///Sets \c M to the characteristic vector of a minimum value
   364     ///cut. This method can be called both after running \ref
   365     ///phase1 and \ref phase2. It is much faster after
   366     ///\ref phase1.  \pre M should be a bool-valued node-map. \pre
   367     ///If \ref minCut() is called after \ref phase2() then M should
   368     ///be initialized to false.
   369     template<typename _CutMap>
   370     void minCut(_CutMap& M) const {
   371       switch ( status ) {
   372 	case AFTER_PREFLOW_PHASE_1:
   373 	for(NodeIt v(*g); v!=INVALID; ++v) {
   374 	  if (level[v] < n) {
   375 	    M.set(v, false);
   376 	  } else {
   377 	    M.set(v, true);
   378 	  }
   379 	}
   380 	break;
   381 	case AFTER_PREFLOW_PHASE_2:
   382 	minMinCut(M);
   383 	break;
   384 	case AFTER_NOTHING:
   385 	break;
   386       }
   387     }
   388 
   389     ///Returns the inclusionwise minimum of the minimum value cuts.
   390 
   391     ///Sets \c M to the characteristic vector of the minimum value cut
   392     ///which is inclusionwise minimum. It is computed by processing a
   393     ///bfs from the source node \c s in the residual graph.  \pre M
   394     ///should be a node map of bools initialized to false.  \pre \ref
   395     ///phase2 should already be run.
   396     template<typename _CutMap>
   397     void minMinCut(_CutMap& M) const {
   398 
   399       std::queue<Node> queue;
   400       M.set(s,true);
   401       queue.push(s);
   402       
   403       while (!queue.empty()) {
   404 	Node w=queue.front();
   405 	queue.pop();
   406 	
   407 	for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) {
   408 	  Node v=g->head(e);
   409 	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
   410 	    queue.push(v);
   411 	    M.set(v, true);
   412 	  }
   413 	}
   414 	
   415 	for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) {
   416 	  Node v=g->tail(e);
   417 	  if (!M[v] && (*flow)[e] > 0 ) {
   418 	    queue.push(v);
   419 	    M.set(v, true);
   420 	  }
   421 	}
   422       }
   423     }
   424     
   425     ///Returns the inclusionwise maximum of the minimum value cuts.
   426 
   427     ///Sets \c M to the characteristic vector of the minimum value cut
   428     ///which is inclusionwise maximum. It is computed by processing a
   429     ///backward bfs from the target node \c t in the residual graph.
   430     ///\pre \ref phase2() or run() should already be run.
   431     template<typename _CutMap>
   432     void maxMinCut(_CutMap& M) const {
   433 
   434       for(NodeIt v(*g) ; v!=INVALID; ++v) M.set(v, true);
   435 
   436       std::queue<Node> queue;
   437 
   438       M.set(t,false);
   439       queue.push(t);
   440 
   441       while (!queue.empty()) {
   442         Node w=queue.front();
   443 	queue.pop();
   444 
   445 	for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) {
   446 	  Node v=g->tail(e);
   447 	  if (M[v] && (*flow)[e] < (*capacity)[e] ) {
   448 	    queue.push(v);
   449 	    M.set(v, false);
   450 	  }
   451 	}
   452 
   453 	for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) {
   454 	  Node v=g->head(e);
   455 	  if (M[v] && (*flow)[e] > 0 ) {
   456 	    queue.push(v);
   457 	    M.set(v, false);
   458 	  }
   459 	}
   460       }
   461     }
   462 
   463     ///Sets the source node to \c _s.
   464 
   465     ///Sets the source node to \c _s.
   466     /// 
   467     void setSource(Node _s) { 
   468       s=_s; 
   469       if ( flow_prop != ZERO_FLOW ) flow_prop=NO_FLOW;
   470       status=AFTER_NOTHING; 
   471     }
   472 
   473     ///Sets the target node to \c _t.
   474 
   475     ///Sets the target node to \c _t.
   476     ///
   477     void setTarget(Node _t) { 
   478       t=_t; 
   479       if ( flow_prop == GEN_FLOW ) flow_prop=PRE_FLOW;
   480       status=AFTER_NOTHING; 
   481     }
   482 
   483     /// Sets the edge map of the capacities to _cap.
   484 
   485     /// Sets the edge map of the capacities to _cap.
   486     /// 
   487     void setCap(const CapMap& _cap) { 
   488       capacity=&_cap; 
   489       status=AFTER_NOTHING; 
   490     }
   491 
   492     /// Sets the edge map of the flows to _flow.
   493 
   494     /// Sets the edge map of the flows to _flow.
   495     /// 
   496     void setFlow(FlowMap& _flow) { 
   497       flow=&_flow; 
   498       flow_prop=NO_FLOW;
   499       status=AFTER_NOTHING; 
   500     }
   501 
   502 
   503   private:
   504 
   505     int push(Node w, NNMap& next, VecNode& first) {
   506 
   507       int lev=level[w];
   508       Num exc=excess[w];
   509       int newlevel=n;       //bound on the next level of w
   510 
   511       for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) {
   512 	if ( (*flow)[e] >= (*capacity)[e] ) continue;
   513 	Node v=g->head(e);
   514 
   515 	if( lev > level[v] ) { //Push is allowed now
   516 	  
   517 	  if ( excess[v]<=0 && v!=t && v!=s ) {
   518 	    next.set(v,first[level[v]]);
   519 	    first[level[v]]=v;
   520 	  }
   521 
   522 	  Num cap=(*capacity)[e];
   523 	  Num flo=(*flow)[e];
   524 	  Num remcap=cap-flo;
   525 	  
   526 	  if ( remcap >= exc ) { //A nonsaturating push.
   527 	    
   528 	    flow->set(e, flo+exc);
   529 	    excess.set(v, excess[v]+exc);
   530 	    exc=0;
   531 	    break;
   532 
   533 	  } else { //A saturating push.
   534 	    flow->set(e, cap);
   535 	    excess.set(v, excess[v]+remcap);
   536 	    exc-=remcap;
   537 	  }
   538 	} else if ( newlevel > level[v] ) newlevel = level[v];
   539       } //for out edges wv
   540 
   541       if ( exc > 0 ) {
   542 	for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) {
   543 	  
   544 	  if( (*flow)[e] <= 0 ) continue;
   545 	  Node v=g->tail(e);
   546 
   547 	  if( lev > level[v] ) { //Push is allowed now
   548 
   549 	    if ( excess[v]<=0 && v!=t && v!=s ) {
   550 	      next.set(v,first[level[v]]);
   551 	      first[level[v]]=v;
   552 	    }
   553 
   554 	    Num flo=(*flow)[e];
   555 
   556 	    if ( flo >= exc ) { //A nonsaturating push.
   557 
   558 	      flow->set(e, flo-exc);
   559 	      excess.set(v, excess[v]+exc);
   560 	      exc=0;
   561 	      break;
   562 	    } else {  //A saturating push.
   563 
   564 	      excess.set(v, excess[v]+flo);
   565 	      exc-=flo;
   566 	      flow->set(e,0);
   567 	    }
   568 	  } else if ( newlevel > level[v] ) newlevel = level[v];
   569 	} //for in edges vw
   570 
   571       } // if w still has excess after the out edge for cycle
   572 
   573       excess.set(w, exc);
   574       
   575       return newlevel;
   576     }
   577     
   578     
   579     
   580     void preflowPreproc(VecNode& first, NNMap& next, 
   581 			VecNode& level_list, NNMap& left, NNMap& right)
   582     {
   583       for(NodeIt v(*g); v!=INVALID; ++v) level.set(v,n);
   584       std::queue<Node> bfs_queue;
   585       
   586       if ( flow_prop == GEN_FLOW || flow_prop == PRE_FLOW ) {
   587 	//Reverse_bfs from t in the residual graph,
   588 	//to find the starting level.
   589 	level.set(t,0);
   590 	bfs_queue.push(t);
   591 	
   592 	while ( !bfs_queue.empty() ) {
   593 	  
   594 	  Node v=bfs_queue.front();
   595 	  bfs_queue.pop();
   596 	  int l=level[v]+1;
   597 	  
   598 	  for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) {
   599 	    if ( (*capacity)[e] <= (*flow)[e] ) continue;
   600 	    Node w=g->tail(e);
   601 	    if ( level[w] == n && w != s ) {
   602 	      bfs_queue.push(w);
   603 	      Node z=level_list[l];
   604 	      if ( z!=INVALID ) left.set(z,w);
   605 	      right.set(w,z);
   606 	      level_list[l]=w;
   607 	      level.set(w, l);
   608 	    }
   609 	  }
   610 	  
   611 	  for(OutEdgeIt e(*g,v) ; e!=INVALID; ++e) {
   612 	    if ( 0 >= (*flow)[e] ) continue;
   613 	    Node w=g->head(e);
   614 	    if ( level[w] == n && w != s ) {
   615 	      bfs_queue.push(w);
   616 	      Node z=level_list[l];
   617 	      if ( z!=INVALID ) left.set(z,w);
   618 	      right.set(w,z);
   619 	      level_list[l]=w;
   620 	      level.set(w, l);
   621 	    }
   622 	  }
   623 	} //while
   624       } //if
   625 
   626 
   627       switch (flow_prop) {
   628 	case NO_FLOW:  
   629 	for(EdgeIt e(*g); e!=INVALID; ++e) flow->set(e,0);
   630 	case ZERO_FLOW:
   631 	for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0);
   632 	
   633 	//Reverse_bfs from t, to find the starting level.
   634 	level.set(t,0);
   635 	bfs_queue.push(t);
   636 	
   637 	while ( !bfs_queue.empty() ) {
   638 	  
   639 	  Node v=bfs_queue.front();
   640 	  bfs_queue.pop();
   641 	  int l=level[v]+1;
   642 	  
   643 	  for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) {
   644 	    Node w=g->tail(e);
   645 	    if ( level[w] == n && w != s ) {
   646 	      bfs_queue.push(w);
   647 	      Node z=level_list[l];
   648 	      if ( z!=INVALID ) left.set(z,w);
   649 	      right.set(w,z);
   650 	      level_list[l]=w;
   651 	      level.set(w, l);
   652 	    }
   653 	  }
   654 	}
   655 	
   656 	//the starting flow
   657 	for(OutEdgeIt e(*g,s) ; e!=INVALID; ++e) {
   658 	  Num c=(*capacity)[e];
   659 	  if ( c <= 0 ) continue;
   660 	  Node w=g->head(e);
   661 	  if ( level[w] < n ) {
   662 	    if ( excess[w] <= 0 && w!=t ) { //putting into the stack
   663 	      next.set(w,first[level[w]]);
   664 	      first[level[w]]=w;
   665 	    }
   666 	    flow->set(e, c);
   667 	    excess.set(w, excess[w]+c);
   668 	  }
   669 	}
   670 	break;
   671 
   672 	case GEN_FLOW:
   673 	for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0);
   674 	{
   675 	  Num exc=0;
   676 	  for(InEdgeIt e(*g,t) ; e!=INVALID; ++e) exc+=(*flow)[e];
   677 	  for(OutEdgeIt e(*g,t) ; e!=INVALID; ++e) exc-=(*flow)[e];
   678 	  excess.set(t,exc);
   679 	}
   680 
   681 	//the starting flow
   682 	for(OutEdgeIt e(*g,s); e!=INVALID; ++e)	{
   683 	  Num rem=(*capacity)[e]-(*flow)[e];
   684 	  if ( rem <= 0 ) continue;
   685 	  Node w=g->head(e);
   686 	  if ( level[w] < n ) {
   687 	    if ( excess[w] <= 0 && w!=t ) { //putting into the stack
   688 	      next.set(w,first[level[w]]);
   689 	      first[level[w]]=w;
   690 	    }   
   691 	    flow->set(e, (*capacity)[e]);
   692 	    excess.set(w, excess[w]+rem);
   693 	  }
   694 	}
   695 	
   696 	for(InEdgeIt e(*g,s); e!=INVALID; ++e) {
   697 	  if ( (*flow)[e] <= 0 ) continue;
   698 	  Node w=g->tail(e);
   699 	  if ( level[w] < n ) {
   700 	    if ( excess[w] <= 0 && w!=t ) {
   701 	      next.set(w,first[level[w]]);
   702 	      first[level[w]]=w;
   703 	    }  
   704 	    excess.set(w, excess[w]+(*flow)[e]);
   705 	    flow->set(e, 0);
   706 	  }
   707 	}
   708 	break;
   709 
   710 	case PRE_FLOW:	
   711 	//the starting flow
   712 	for(OutEdgeIt e(*g,s) ; e!=INVALID; ++e) {
   713 	  Num rem=(*capacity)[e]-(*flow)[e];
   714 	  if ( rem <= 0 ) continue;
   715 	  Node w=g->head(e);
   716 	  if ( level[w] < n ) flow->set(e, (*capacity)[e]);
   717 	}
   718 	
   719 	for(InEdgeIt e(*g,s) ; e!=INVALID; ++e) {
   720 	  if ( (*flow)[e] <= 0 ) continue;
   721 	  Node w=g->tail(e);
   722 	  if ( level[w] < n ) flow->set(e, 0);
   723 	}
   724 	
   725 	//computing the excess
   726 	for(NodeIt w(*g); w!=INVALID; ++w) {
   727 	  Num exc=0;
   728 	  for(InEdgeIt e(*g,w); e!=INVALID; ++e) exc+=(*flow)[e];
   729 	  for(OutEdgeIt e(*g,w); e!=INVALID; ++e) exc-=(*flow)[e];
   730 	  excess.set(w,exc);
   731 	  
   732 	  //putting the active nodes into the stack
   733 	  int lev=level[w];
   734 	    if ( exc > 0 && lev < n && Node(w) != t ) {
   735 	      next.set(w,first[lev]);
   736 	      first[lev]=w;
   737 	    }
   738 	}
   739 	break;
   740       } //switch
   741     } //preflowPreproc
   742 
   743 
   744     void relabel(Node w, int newlevel, VecNode& first, NNMap& next, 
   745 		 VecNode& level_list, NNMap& left,
   746 		 NNMap& right, int& b, int& k, bool what_heur )
   747     {
   748 
   749       int lev=level[w];
   750 
   751       Node right_n=right[w];
   752       Node left_n=left[w];
   753 
   754       //unlacing starts
   755       if ( right_n!=INVALID ) {
   756 	if ( left_n!=INVALID ) {
   757 	  right.set(left_n, right_n);
   758 	  left.set(right_n, left_n);
   759 	} else {
   760 	  level_list[lev]=right_n;
   761 	  left.set(right_n, INVALID);
   762 	}
   763       } else {
   764 	if ( left_n!=INVALID ) {
   765 	  right.set(left_n, INVALID);
   766 	} else {
   767 	  level_list[lev]=INVALID;
   768 	}
   769       }
   770       //unlacing ends
   771 
   772       if ( level_list[lev]==INVALID ) {
   773 
   774 	//gapping starts
   775 	for (int i=lev; i!=k ; ) {
   776 	  Node v=level_list[++i];
   777 	  while ( v!=INVALID ) {
   778 	    level.set(v,n);
   779 	    v=right[v];
   780 	  }
   781 	  level_list[i]=INVALID;
   782 	  if ( !what_heur ) first[i]=INVALID;
   783 	}
   784 
   785 	level.set(w,n);
   786 	b=lev-1;
   787 	k=b;
   788 	//gapping ends
   789 
   790       } else {
   791 
   792 	if ( newlevel == n ) level.set(w,n);
   793 	else {
   794 	  level.set(w,++newlevel);
   795 	  next.set(w,first[newlevel]);
   796 	  first[newlevel]=w;
   797 	  if ( what_heur ) b=newlevel;
   798 	  if ( k < newlevel ) ++k;      //now k=newlevel
   799 	  Node z=level_list[newlevel];
   800 	  if ( z!=INVALID ) left.set(z,w);
   801 	  right.set(w,z);
   802 	  left.set(w,INVALID);
   803 	  level_list[newlevel]=w;
   804 	}
   805       }
   806     } //relabel
   807 
   808   }; 
   809 } //namespace hugo
   810 
   811 #endif //HUGO_PREFLOW_H
   812 
   813 
   814 
   815