src/lemon/max_matching.h
author alpar
Fri, 14 Jan 2005 08:01:17 +0000
changeset 1079 81addddaf3d3
child 1090 9e9195331ea6
permissions -rwxr-xr-x
Serious buxfig in findEdge()
     1 /* -*- C++ -*-
     2  * src/lemon/max_matching.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_MAX_MATCHING_H
    18 #define LEMON_MAX_MATCHING_H
    19 
    20 #include <queue>
    21 #include <invalid.h>
    22 #include <unionfind.h>
    23 #include <lemon/graph_utils.h>
    24 
    25 ///\ingroup galgs
    26 ///\file
    27 ///\brief Maximum matching algorithm.
    28 
    29 namespace lemon {
    30 
    31   /// \addtogroup galgs
    32   /// @{
    33 
    34   ///Edmonds' alternating forest maximum matching algorithm.
    35 
    36   ///This class provides Edmonds' alternating forest matching
    37   ///algorithm. The starting matching (if any) can be passed to the
    38   ///algorithm using read-in functions \ref readNMapNode, \ref
    39   ///readNMapEdge or \ref readEMapBool depending on the container. The
    40   ///resulting maximum matching can be attained by write-out functions
    41   ///\ref writeNMapNode, \ref writeNMapEdge or \ref writeEMapBool
    42   ///depending on the preferred container. 
    43   ///
    44   ///The dual side of a matching is a map of the nodes to
    45   ///MaxMatching::pos_enum, having values D, A and C showing the
    46   ///Gallai-Edmonds decomposition of the graph. The nodes in D induce
    47   ///a graph with factor-critical components, the nodes in A form the
    48   ///barrier, and the nodes in C induce a graph having a perfect
    49   ///matching. This decomposition can be attained by calling \ref
    50   ///writePos after running the algorithm. Before subsequent runs,
    51   ///the function \ref resetPos() must be called.
    52   ///
    53   ///\param Graph The undirected graph type the algorithm runs on.
    54   ///
    55   ///\author Jacint Szabo  
    56   template <typename Graph>
    57   class MaxMatching {
    58     typedef typename Graph::Node Node;
    59     typedef typename Graph::Edge Edge;
    60     typedef typename Graph::UndirEdgeIt UndirEdgeIt;
    61     typedef typename Graph::NodeIt NodeIt;
    62     typedef typename Graph::IncEdgeIt IncEdgeIt;
    63 
    64     typedef UnionFindEnum<Node, Graph::template NodeMap> UFE;
    65 
    66   public:
    67     
    68     ///Indicates the Gallai-Edmonds decomposition of the graph.
    69 
    70     ///Indicates the Gallai-Edmonds decomposition of the graph, which
    71     ///shows an upper bound on the size of a maximum matching. The
    72     ///nodes with pos_enum \c D induce a graph with factor-critical
    73     ///components, the nodes in \c A form the canonical barrier, and the
    74     ///nodes in \c C induce a graph having a perfect matching. 
    75     enum pos_enum {
    76       D=0,
    77       A=1,
    78       C=2
    79     }; 
    80 
    81   private:
    82 
    83     static const int HEUR_density=2;
    84     const Graph& g;
    85     typename Graph::template NodeMap<Node> mate;
    86     typename Graph::template NodeMap<pos_enum> position;
    87      
    88   public:
    89     
    90     MaxMatching(const Graph& _g) : g(_g), mate(_g,INVALID), position(_g,C) {}
    91 
    92     ///Runs Edmonds' algorithm.
    93 
    94     ///Runs Edmonds' algorithm for sparse graphs (number of edges <
    95     ///2*number of nodes), and a heuristical Edmonds' algorithm with a
    96     ///heuristic of postponing shrinks for dense graphs. \pre Before
    97     ///the subsequent calls \ref resetPos must be called.
    98     inline void run();
    99 
   100     ///Runs Edmonds' algorithm.
   101     
   102     ///If heur=0 it runs Edmonds' algorithm. If heur=1 it runs
   103     ///Edmonds' algorithm with a heuristic of postponing shrinks,
   104     ///giving a faster algorithm for dense graphs.  \pre Before the
   105     ///subsequent calls \ref resetPos must be called.
   106     void runEdmonds( int heur );
   107 
   108     ///Finds a greedy matching starting from the actual matching.
   109     
   110     ///Starting form the actual matching stored, it finds a maximal
   111     ///greedy matching.
   112     void greedyMatching();
   113 
   114     ///Returns the size of the actual matching stored.
   115 
   116     ///Returns the size of the actual matching stored. After \ref
   117     ///run() it returns the size of a maximum matching in the graph.
   118     int size() const;
   119 
   120     ///Resets the map storing the Gallai-Edmonds decomposition.
   121     
   122     ///Resets the map storing the Gallai-Edmonds decomposition of the
   123     ///graph, making it possible to run the algorithm. Must be called
   124     ///before all runs of the Edmonds algorithm, except for the first
   125     ///run.
   126     void resetPos();
   127 
   128     ///Resets the actual matching to the empty matching.
   129 
   130     ///Resets the actual matching to the empty matching.  
   131     ///
   132     void resetMatching();
   133 
   134     ///Reads a matching from a \c Node map of \c Nodes.
   135 
   136     ///Reads a matching from a \c Node map of \c Nodes. This map must be \e
   137     ///symmetric, i.e. if \c map[u]==v then \c map[v]==u must hold, and
   138     ///\c uv will be an edge of the matching.
   139     template<typename NMapN>
   140     void readNMapNode(NMapN& map) {
   141       for(NodeIt v(g); v!=INVALID; ++v) {
   142 	mate.set(v,map[v]);   
   143       } 
   144     } 
   145     
   146     ///Writes the stored matching to a \c Node map of \c Nodes.
   147 
   148     ///Writes the stored matching to a \c Node map of \c Nodes. The
   149     ///resulting map will be \e symmetric, i.e. if \c map[u]==v then \c
   150     ///map[v]==u will hold, and now \c uv is an edge of the matching.
   151     template<typename NMapN>
   152     void writeNMapNode (NMapN& map) const {
   153       for(NodeIt v(g); v!=INVALID; ++v) {
   154 	map.set(v,mate[v]);   
   155       } 
   156     } 
   157 
   158     ///Reads a matching from a \c Node map of \c Edges.
   159 
   160     ///Reads a matching from a \c Node map of incident \c Edges. This
   161     ///map must have the property that if \c G.target(map[u])==v then \c
   162     ///G.target(map[v])==u must hold, and now this edge is an edge of
   163     ///the matching.
   164     template<typename NMapE>
   165     void readNMapEdge(NMapE& map) {
   166      for(NodeIt v(g); v!=INVALID; ++v) {
   167 	Edge e=map[v];
   168 	if ( g.valid(e) )
   169 	  g.source(e) == v ? mate.set(v,g.target(e)) : mate.set(v,g.source(e)); 
   170       } 
   171     } 
   172     
   173     ///Writes the matching stored to a \c Node map of \c Edges.
   174 
   175     ///Writes the stored matching to a \c Node map of incident \c
   176     ///Edges. This map will have the property that if \c
   177     ///g.target(map[u])==v then \c g.target(map[v])==u holds, and now this
   178     ///edge is an edge of the matching.
   179     template<typename NMapE>
   180     void writeNMapEdge (NMapE& map)  const {
   181       typename Graph::template NodeMap<bool> todo(g,true); 
   182       for(NodeIt v(g); v!=INVALID; ++v) {
   183 	if ( todo[v] && mate[v]!=INVALID ) {
   184 	  Node u=mate[v];
   185 	  for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
   186 	    if ( g.target(e) == u ) {
   187 	      map.set(u,e);
   188 	      map.set(v,e);
   189 	      todo.set(u,false);
   190 	      todo.set(v,false);
   191 	      break;
   192 	    }
   193 	  }
   194 	}
   195       } 
   196     }
   197 
   198 
   199     ///Reads a matching from an \c Edge map of \c bools.
   200     
   201     ///Reads a matching from an \c Edge map of \c bools. This map must
   202     ///have the property that there are no two adjacent edges \c e, \c
   203     ///f with \c map[e]==map[f]==true. The edges \c e with \c
   204     ///map[e]==true form the matching.
   205     template<typename EMapB>
   206     void readEMapBool(EMapB& map) {
   207       for(UndirEdgeIt e(g); e!=INVALID; ++e) {
   208 	if ( map[e] ) {
   209 	  Node u=g.source(e);	  
   210 	  Node v=g.target(e);
   211 	  mate.set(u,v);
   212 	  mate.set(v,u);
   213 	} 
   214       } 
   215     }
   216 
   217 
   218     ///Writes the matching stored to an \c Edge map of \c bools.
   219 
   220     ///Writes the matching stored to an \c Edge map of \c bools. This
   221     ///map will have the property that there are no two adjacent edges
   222     ///\c e, \c f with \c map[e]==map[f]==true. The edges \c e with \c
   223     ///map[e]==true form the matching.
   224     template<typename EMapB>
   225     void writeEMapBool (EMapB& map) const {
   226       for(UndirEdgeIt e(g); e!=INVALID; ++e) map.set(e,false);
   227 
   228       typename Graph::template NodeMap<bool> todo(g,true); 
   229       for(NodeIt v(g); v!=INVALID; ++v) {
   230 	if ( todo[v] && mate[v]!=INVALID ) {
   231 	  Node u=mate[v];
   232 	  for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
   233 	    if ( g.target(e) == u ) {
   234 	      map.set(e,true);
   235 	      todo.set(u,false);
   236 	      todo.set(v,false);
   237 	      break;
   238 	    }
   239 	  }
   240 	}
   241       } 
   242     }
   243 
   244 
   245     ///Writes the canonical decomposition of the graph after running
   246     ///the algorithm.
   247 
   248     ///After calling any run methods of the class, and before calling
   249     ///\ref resetPos(), it writes the Gallai-Edmonds canonical
   250     ///decomposition of the graph. \c map must be a node map
   251     ///of \ref pos_enum 's.
   252     template<typename NMapEnum>
   253     void writePos (NMapEnum& map) const {
   254       for(NodeIt v(g); v!=INVALID; ++v)  map.set(v,position[v]);
   255     }
   256 
   257   private: 
   258 
   259     void lateShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
   260 		    UFE& blossom, UFE& tree);
   261 
   262     void normShrink(Node v, typename Graph::NodeMap<Node>& ear,  
   263 		    UFE& blossom, UFE& tree);
   264 
   265     bool noShrinkStep(Node x, typename Graph::NodeMap<Node>& ear,  
   266 		      UFE& blossom, UFE& tree, std::queue<Node>& Q);
   267 
   268     void shrinkStep(Node& top, Node& middle, Node& bottom, typename Graph::NodeMap<Node>& ear,  
   269 		    UFE& blossom, UFE& tree, std::queue<Node>& Q);
   270 
   271     void augment(Node x, typename Graph::NodeMap<Node>& ear,  
   272 		 UFE& blossom, UFE& tree);
   273 
   274   };
   275 
   276 
   277   // **********************************************************************
   278   //  IMPLEMENTATIONS
   279   // **********************************************************************
   280 
   281 
   282   template <typename Graph>
   283   void MaxMatching<Graph>::run() {
   284     if ( countUndirEdges(g) < HEUR_density*countNodes(g) ) {
   285       greedyMatching();
   286       runEdmonds(0);
   287     } else runEdmonds(1);
   288   }
   289 
   290 
   291   template <typename Graph>
   292   void MaxMatching<Graph>::runEdmonds( int heur=1 ) {
   293       
   294     typename Graph::template NodeMap<Node> ear(g,INVALID); 
   295     //undefined for the base nodes of the blossoms (i.e. for the
   296     //representative elements of UFE blossom) and for the nodes in C
   297  
   298     typename UFE::MapType blossom_base(g);
   299     UFE blossom(blossom_base);
   300     typename UFE::MapType tree_base(g);
   301     UFE tree(tree_base);
   302 
   303     for(NodeIt v(g); v!=INVALID; ++v) {
   304       if ( position[v]==C && mate[v]==INVALID ) {
   305 	blossom.insert(v);
   306 	tree.insert(v); 
   307 	position.set(v,D);
   308 	if ( heur == 1 ) lateShrink( v, ear, blossom, tree );
   309 	else normShrink( v, ear, blossom, tree );
   310       }
   311     }
   312   }
   313 
   314     
   315   template <typename Graph>
   316   void MaxMatching<Graph>::lateShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
   317 				      UFE& blossom, UFE& tree) {
   318 
   319     std::queue<Node> Q;   //queue of the totally unscanned nodes
   320     Q.push(v);  
   321     std::queue<Node> R;   
   322     //queue of the nodes which must be scanned for a possible shrink
   323       
   324     while ( !Q.empty() ) {
   325       Node x=Q.front();
   326       Q.pop();
   327       if ( noShrinkStep( x, ear, blossom, tree, Q ) ) return;
   328       else R.push(x);
   329     }
   330       
   331     while ( !R.empty() ) {
   332       Node x=R.front();
   333       R.pop();
   334 	
   335       for( IncEdgeIt e(g,x); e!=INVALID ; ++e ) {
   336 	Node y=g.target(e);
   337 
   338 	if ( position[y] == D && blossom.find(x) != blossom.find(y) ) { 
   339 	  //x and y must be in the same tree
   340 	
   341 	  typename Graph::template NodeMap<bool> path(g,false);
   342 
   343 	  Node b=blossom.find(x);
   344 	  path.set(b,true);
   345 	  b=mate[b];
   346 	  while ( b!=INVALID ) { 
   347 	    b=blossom.find(ear[b]);
   348 	    path.set(b,true);
   349 	    b=mate[b];
   350 	  } //going till the root
   351 	
   352 	  Node top=y;
   353 	  Node middle=blossom.find(top);
   354 	  Node bottom=x;
   355 	  while ( !path[middle] )
   356 	    shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   357 		  
   358 	  Node base=middle;
   359 	  top=x;
   360 	  middle=blossom.find(top);
   361 	  bottom=y;
   362 	  Node blossom_base=blossom.find(base);
   363 	  while ( middle!=blossom_base )
   364 	    shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   365 		  
   366 	  blossom.makeRep(base);
   367 	} // if shrink is needed
   368 
   369 	while ( !Q.empty() ) {
   370 	  Node x=Q.front();
   371 	  Q.pop();
   372 	  if ( noShrinkStep(x, ear, blossom, tree, Q) ) return;
   373 	  else R.push(x);
   374 	}
   375       } //for e
   376     } // while ( !R.empty() )
   377   }
   378 
   379 
   380   template <typename Graph>
   381   void MaxMatching<Graph>::normShrink(Node v, typename Graph::NodeMap<Node>& ear,  
   382 				      UFE& blossom, UFE& tree) {
   383 
   384     std::queue<Node> Q;   //queue of the unscanned nodes
   385     Q.push(v);  
   386     while ( !Q.empty() ) {
   387 
   388       Node x=Q.front();
   389       Q.pop();
   390 	
   391       for( IncEdgeIt e(g,x); e!=INVALID; ++e ) {
   392 	Node y=g.target(e);
   393 	      
   394 	switch ( position[y] ) {
   395 	case D:          //x and y must be in the same tree
   396 
   397 	  if ( blossom.find(x) != blossom.find(y) ) { //shrink
   398 	    typename Graph::template NodeMap<bool> path(g,false);
   399 	      
   400 	    Node b=blossom.find(x);
   401 	    path.set(b,true);
   402 	    b=mate[b];
   403 	    while ( b!=INVALID ) { 
   404 	      b=blossom.find(ear[b]);
   405 	      path.set(b,true);
   406 	      b=mate[b];
   407 	    } //going till the root
   408 	
   409 	    Node top=y;
   410 	    Node middle=blossom.find(top);
   411 	    Node bottom=x;
   412 	    while ( !path[middle] )
   413 	      shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   414 		
   415 	    Node base=middle;
   416 	    top=x;
   417 	    middle=blossom.find(top);
   418 	    bottom=y;
   419 	    Node blossom_base=blossom.find(base);
   420 	    while ( middle!=blossom_base )
   421 	      shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   422 		
   423 	    blossom.makeRep(base);
   424 	  }
   425 	  break;
   426 	case C:
   427 	  if ( mate[y]!=INVALID ) {   //grow
   428 
   429 	    ear.set(y,x);
   430 	    Node w=mate[y];
   431 	    blossom.insert(w);
   432 	    position.set(y,A); 
   433 	    position.set(w,D); 
   434 	    tree.insert(y);
   435 	    tree.insert(w);
   436 	    tree.join(y,blossom.find(x));  
   437 	    tree.join(w,y);  
   438 	    Q.push(w);
   439 	  } else {                 //augment  
   440 	    augment(x, ear, blossom, tree);
   441 	    mate.set(x,y);
   442 	    mate.set(y,x);
   443 	    return;
   444 	  } //if 
   445 	  break;
   446 	default: break;
   447 	}
   448       }
   449     }
   450   }
   451 
   452   template <typename Graph>
   453   void MaxMatching<Graph>::greedyMatching() {
   454     for(NodeIt v(g); v!=INVALID; ++v)
   455       if ( mate[v]==INVALID ) {
   456 	for( IncEdgeIt e(g,v); e!=INVALID ; ++e ) {
   457 	  Node y=g.target(e);
   458 	  if ( mate[y]==INVALID && y!=v ) {
   459 	    mate.set(v,y);
   460 	    mate.set(y,v);
   461 	    break;
   462 	  }
   463 	}
   464       } 
   465   }
   466    
   467   template <typename Graph>
   468   int MaxMatching<Graph>::size() const {
   469     int s=0;
   470     for(NodeIt v(g); v!=INVALID; ++v) {
   471       if ( mate[v]!=INVALID ) {
   472 	++s;
   473       }
   474     }
   475     return (int)s/2;
   476   }
   477 
   478   template <typename Graph>
   479   void MaxMatching<Graph>::resetPos() {
   480     for(NodeIt v(g); v!=INVALID; ++v)
   481       position.set(v,C);      
   482   }
   483 
   484   template <typename Graph>
   485   void MaxMatching<Graph>::resetMatching() {
   486     for(NodeIt v(g); v!=INVALID; ++v)
   487       mate.set(v,INVALID);      
   488   }
   489 
   490   template <typename Graph>
   491   bool MaxMatching<Graph>::noShrinkStep(Node x, typename Graph::NodeMap<Node>& ear,  
   492 					UFE& blossom, UFE& tree, std::queue<Node>& Q) {
   493     for( IncEdgeIt e(g,x); e!= INVALID; ++e ) {
   494       Node y=g.target(e);
   495 	
   496       if ( position[y]==C ) {
   497 	if ( mate[y]!=INVALID ) {       //grow
   498 	  ear.set(y,x);
   499 	  Node w=mate[y];
   500 	  blossom.insert(w);
   501 	  position.set(y,A);
   502 	  position.set(w,D);
   503 	  tree.insert(y);
   504 	  tree.insert(w);
   505 	  tree.join(y,blossom.find(x));  
   506 	  tree.join(w,y);  
   507 	  Q.push(w);
   508 	} else {                      //augment 
   509 	  augment(x, ear, blossom, tree);
   510 	  mate.set(x,y);
   511 	  mate.set(y,x);
   512 	  return true;
   513 	}
   514       }
   515     }
   516     return false;
   517   }
   518 
   519   template <typename Graph>
   520   void MaxMatching<Graph>::shrinkStep(Node& top, Node& middle, Node& bottom, typename Graph::NodeMap<Node>& ear,  
   521 				      UFE& blossom, UFE& tree, std::queue<Node>& Q) {
   522     ear.set(top,bottom);
   523     Node t=top;
   524     while ( t!=middle ) {
   525       Node u=mate[t];
   526       t=ear[u];
   527       ear.set(t,u);
   528     } 
   529     bottom=mate[middle];
   530     position.set(bottom,D);
   531     Q.push(bottom);
   532     top=ear[bottom];		
   533     Node oldmiddle=middle;
   534     middle=blossom.find(top);
   535     tree.erase(bottom);
   536     tree.erase(oldmiddle);
   537     blossom.insert(bottom);
   538     blossom.join(bottom, oldmiddle);
   539     blossom.join(top, oldmiddle);
   540   }
   541 
   542   template <typename Graph>
   543   void MaxMatching<Graph>::augment(Node x, typename Graph::NodeMap<Node>& ear,  
   544 				   UFE& blossom, UFE& tree) { 
   545     Node v=mate[x];
   546     while ( v!=INVALID ) {
   547 	
   548       Node u=ear[v];
   549       mate.set(v,u);
   550       Node tmp=v;
   551       v=mate[u];
   552       mate.set(u,tmp);
   553     }
   554     typename UFE::ItemIt it;
   555     for (tree.first(it,blossom.find(x)); tree.valid(it); tree.next(it)) {   
   556       if ( position[it] == D ) {
   557 	typename UFE::ItemIt b_it;
   558 	for (blossom.first(b_it,it); blossom.valid(b_it); blossom.next(b_it)) {  
   559 	  position.set( b_it ,C);
   560 	}
   561 	blossom.eraseClass(it);
   562       } else position.set( it ,C);
   563     }
   564     tree.eraseClass(x);
   565 
   566   }
   567 
   568   /// @}
   569   
   570 } //END OF NAMESPACE LEMON
   571 
   572 #endif //EDMONDS_H