lemon/lp_base.h
author athos
Thu, 26 May 2005 12:16:16 +0000
changeset 1436 e0beb94d08bf
parent 1435 8e85e6bbefdf
child 1439 2c43106bef85
permissions -rw-r--r--
_copyLp(), _newLp() implemented.
     1 /* -*- C++ -*-
     2  * lemon/lp_base.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_LP_BASE_H
    18 #define LEMON_LP_BASE_H
    19 
    20 #include<vector>
    21 #include<map>
    22 #include<limits>
    23 #include<cmath>
    24 
    25 #include<lemon/utility.h>
    26 #include<lemon/error.h>
    27 #include<lemon/invalid.h>
    28 
    29 //#include"lin_expr.h"
    30 
    31 ///\file
    32 ///\brief The interface of the LP solver interface.
    33 ///\ingroup gen_opt_group
    34 namespace lemon {
    35   
    36   ///Internal data structure to convert floating id's to fix one's
    37     
    38   ///\todo This might be implemented to be also usable in other places.
    39   class _FixId 
    40   {
    41     std::vector<int> index;
    42     std::vector<int> cross;
    43     int first_free;
    44   public:
    45     _FixId() : first_free(-1) {};
    46     ///Convert a floating id to a fix one
    47 
    48     ///\param n is a floating id
    49     ///\return the corresponding fix id
    50     int fixId(int n) {return cross[n];}
    51     ///Convert a fix id to a floating one
    52 
    53     ///\param n is a fix id
    54     ///\return the corresponding floating id
    55     int floatingId(int n) { return index[n];}
    56     ///Add a new floating id.
    57 
    58     ///\param n is a floating id
    59     ///\return the fix id of the new value
    60     ///\todo Multiple additions should also be handled.
    61     int insert(int n)
    62     {
    63       if(n>=int(cross.size())) {
    64 	cross.resize(n+1);
    65 	if(first_free==-1) {
    66 	  cross[n]=index.size();
    67 	  index.push_back(n);
    68 	}
    69 	else {
    70 	  cross[n]=first_free;
    71 	  int next=index[first_free];
    72 	  index[first_free]=n;
    73 	  first_free=next;
    74 	}
    75 	return cross[n];
    76       }
    77       ///\todo Create an own exception type.
    78       else throw LogicError(); //floatingId-s must form a continuous range;
    79     }
    80     ///Remove a fix id.
    81 
    82     ///\param n is a fix id
    83     ///
    84     void erase(int n) 
    85     {
    86       int fl=index[n];
    87       index[n]=first_free;
    88       first_free=n;
    89       for(int i=fl+1;i<int(cross.size());++i) {
    90 	cross[i-1]=cross[i];
    91 	index[cross[i]]--;
    92       }
    93       cross.pop_back();
    94     }
    95     ///An upper bound on the largest fix id.
    96 
    97     ///\todo Do we need this?
    98     ///
    99     std::size_t maxFixId() { return cross.size()-1; }
   100   
   101   };
   102     
   103   ///Common base class for LP solvers
   104   
   105   ///\todo Much more docs
   106   ///\ingroup gen_opt_group
   107   class LpSolverBase {
   108 
   109   public:
   110 
   111     ///\e
   112     enum SolveExitStatus {
   113       ///\e
   114       SOLVED = 0,
   115       ///\e
   116       UNSOLVED = 1
   117     };
   118       
   119     ///\e
   120     enum SolutionStatus {
   121       ///Feasible solution has'n been found (but may exist).
   122 
   123       ///\todo NOTFOUND might be a better name.
   124       ///
   125       UNDEFINED = 0,
   126       ///The problem has no feasible solution
   127       INFEASIBLE = 1,
   128       ///Feasible solution found
   129       FEASIBLE = 2,
   130       ///Optimal solution exists and found
   131       OPTIMAL = 3,
   132       ///The cost function is unbounded
   133 
   134       ///\todo Give a feasible solution and an infinite ray (and the
   135       ///corresponding bases)
   136       INFINITE = 4
   137     };
   138       
   139     ///The floating point type used by the solver
   140     typedef double Value;
   141     ///The infinity constant
   142     static const Value INF;
   143     ///The not a number constant
   144     static const Value NaN;
   145     
   146     ///Refer to a column of the LP.
   147 
   148     ///This type is used to refer to a column of the LP.
   149     ///
   150     ///Its value remains valid and correct even after the addition or erase of
   151     ///other columns.
   152     ///
   153     ///\todo Document what can one do with a Col (INVALID, comparing,
   154     ///it is similar to Node/Edge)
   155     class Col {
   156     protected:
   157       int id;
   158       friend class LpSolverBase;
   159     public:
   160       typedef Value ExprValue;
   161       typedef True LpSolverCol;
   162       Col() {}
   163       Col(const Invalid&) : id(-1) {}
   164       bool operator<(Col c) const  {return id<c.id;}
   165       bool operator==(Col c) const  {return id==c.id;}
   166       bool operator!=(Col c) const  {return id==c.id;}
   167     };
   168 
   169     ///Refer to a row of the LP.
   170 
   171     ///This type is used to refer to a row of the LP.
   172     ///
   173     ///Its value remains valid and correct even after the addition or erase of
   174     ///other rows.
   175     ///
   176     ///\todo Document what can one do with a Row (INVALID, comparing,
   177     ///it is similar to Node/Edge)
   178     class Row {
   179     protected:
   180       int id;
   181       friend class LpSolverBase;
   182     public:
   183       typedef Value ExprValue;
   184       typedef True LpSolverRow;
   185       Row() {}
   186       Row(const Invalid&) : id(-1) {}
   187       typedef True LpSolverRow;
   188       bool operator<(Row c) const  {return id<c.id;}
   189       bool operator==(Row c) const  {return id==c.id;}
   190       bool operator!=(Row c) const  {return id==c.id;} 
   191    };
   192     
   193     ///Linear expression of variables and a constant component
   194     
   195     ///This data structure strores a linear expression of the variables
   196     ///(\ref Col "Col"s) and also has a constant component.
   197     ///
   198     ///There are several ways to access and modify the contents of this
   199     ///container.
   200     ///- Its it fully compatible with \c std::map<Col,double>, so for expamle
   201     ///if \c e is an Expr and \c v and \c w are of type \ref Col, then you can
   202     ///read and modify the coefficients like
   203     ///these.
   204     ///\code
   205     ///e[v]=5;
   206     ///e[v]+=12;
   207     ///e.erase(v);
   208     ///\endcode
   209     ///or you can also iterate through its elements.
   210     ///\code
   211     ///double s=0;
   212     ///for(LpSolverBase::Expr::iterator i=e.begin();i!=e.end();++i)
   213     ///  s+=i->second;
   214     ///\endcode
   215     ///(This code computes the sum of all coefficients).
   216     ///- Numbers (<tt>double</tt>'s)
   217     ///and variables (\ref Col "Col"s) directly convert to an
   218     ///\ref Expr and the usual linear operations are defined so  
   219     ///\code
   220     ///v+w
   221     ///2*v-3.12*(v-w/2)+2
   222     ///v*2.1+(3*v+(v*12+w+6)*3)/2
   223     ///\endcode
   224     ///are valid \ref Expr "Expr"essions.
   225     ///The usual assignment operations are also defined.
   226     ///\code
   227     ///e=v+w;
   228     ///e+=2*v-3.12*(v-w/2)+2;
   229     ///e*=3.4;
   230     ///e/=5;
   231     ///\endcode
   232     ///- The constant member can be set and read by \ref constComp()
   233     ///\code
   234     ///e.constComp()=12;
   235     ///double c=e.constComp();
   236     ///\endcode
   237     ///
   238     ///\note \ref clear() not only sets all coefficients to 0 but also
   239     ///clears the constant components.
   240     ///
   241     ///\sa Constr
   242     ///
   243     class Expr : public std::map<Col,Value>
   244     {
   245     public:
   246       typedef LpSolverBase::Col Key; 
   247       typedef LpSolverBase::Value Value;
   248       
   249     protected:
   250       typedef std::map<Col,Value> Base;
   251       
   252       Value const_comp;
   253   public:
   254       typedef True IsLinExpression;
   255       ///\e
   256       Expr() : Base(), const_comp(0) { }
   257       ///\e
   258       Expr(const Key &v) : const_comp(0) {
   259 	Base::insert(std::make_pair(v, 1));
   260       }
   261       ///\e
   262       Expr(const Value &v) : const_comp(v) {}
   263       ///\e
   264       void set(const Key &v,const Value &c) {
   265 	Base::insert(std::make_pair(v, c));
   266       }
   267       ///\e
   268       Value &constComp() { return const_comp; }
   269       ///\e
   270       const Value &constComp() const { return const_comp; }
   271       
   272       ///Removes the components with zero coefficient.
   273       void simplify() {
   274 	for (Base::iterator i=Base::begin(); i!=Base::end();) {
   275 	  Base::iterator j=i;
   276 	  ++j;
   277 	  if ((*i).second==0) Base::erase(i);
   278 	  j=i;
   279 	}
   280       }
   281 
   282       ///Sets all coefficients and the constant component to 0.
   283       void clear() {
   284 	Base::clear();
   285 	const_comp=0;
   286       }
   287 
   288       ///\e
   289       Expr &operator+=(const Expr &e) {
   290 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   291 	  (*this)[j->first]+=j->second;
   292 	///\todo it might be speeded up using "hints"
   293 	const_comp+=e.const_comp;
   294 	return *this;
   295       }
   296       ///\e
   297       Expr &operator-=(const Expr &e) {
   298 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   299 	  (*this)[j->first]-=j->second;
   300 	const_comp-=e.const_comp;
   301 	return *this;
   302       }
   303       ///\e
   304       Expr &operator*=(const Value &c) {
   305 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   306 	  j->second*=c;
   307 	const_comp*=c;
   308 	return *this;
   309       }
   310       ///\e
   311       Expr &operator/=(const Value &c) {
   312 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   313 	  j->second/=c;
   314 	const_comp/=c;
   315 	return *this;
   316       }
   317     };
   318     
   319     ///Linear constraint
   320 
   321     ///This data stucture represents a linear constraint in the LP.
   322     ///Basically it is a linear expression with a lower or an upper bound
   323     ///(or both). These parts of the constraint can be obtained by the member
   324     ///functions \ref expr(), \ref lowerBound() and \ref upperBound(),
   325     ///respectively.
   326     ///There are two ways to construct a constraint.
   327     ///- You can set the linear expression and the bounds directly
   328     ///  by the functions above.
   329     ///- The operators <tt>\<=</tt>, <tt>==</tt> and  <tt>\>=</tt>
   330     ///  are defined between expressions, or even between constraints whenever
   331     ///  it makes sense. Therefore if \c e and \c f are linear expressions and
   332     ///  \c s and \c t are numbers, then the followings are valid expressions
   333     ///  and thus they can be used directly e.g. in \ref addRow() whenever
   334     ///  it makes sense.
   335     ///  \code
   336     ///  e<=s
   337     ///  e<=f
   338     ///  s<=e<=t
   339     ///  e>=t
   340     ///  \endcode
   341     ///\warning The validity of a constraint is checked only at run time, so
   342     ///e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will compile, but will throw a
   343     ///\ref LogicError exception.
   344     class Constr
   345     {
   346     public:
   347       typedef LpSolverBase::Expr Expr;
   348       typedef Expr::Key Key;
   349       typedef Expr::Value Value;
   350       
   351 //       static const Value INF;
   352 //       static const Value NaN;
   353 
   354     protected:
   355       Expr _expr;
   356       Value _lb,_ub;
   357     public:
   358       ///\e
   359       Constr() : _expr(), _lb(NaN), _ub(NaN) {}
   360       ///\e
   361       Constr(Value lb,const Expr &e,Value ub) :
   362 	_expr(e), _lb(lb), _ub(ub) {}
   363       ///\e
   364       Constr(const Expr &e,Value ub) : 
   365 	_expr(e), _lb(NaN), _ub(ub) {}
   366       ///\e
   367       Constr(Value lb,const Expr &e) :
   368 	_expr(e), _lb(lb), _ub(NaN) {}
   369       ///\e
   370       Constr(const Expr &e) : 
   371 	_expr(e), _lb(NaN), _ub(NaN) {}
   372       ///\e
   373       void clear() 
   374       {
   375 	_expr.clear();
   376 	_lb=_ub=NaN;
   377       }
   378 
   379       ///Reference to the linear expression 
   380       Expr &expr() { return _expr; }
   381       ///Cont reference to the linear expression 
   382       const Expr &expr() const { return _expr; }
   383       ///Reference to the lower bound.
   384 
   385       ///\return
   386       ///- -\ref INF: the constraint is lower unbounded.
   387       ///- -\ref NaN: lower bound has not been set.
   388       ///- finite number: the lower bound
   389       Value &lowerBound() { return _lb; }
   390       ///The const version of \ref lowerBound()
   391       const Value &lowerBound() const { return _lb; }
   392       ///Reference to the upper bound.
   393 
   394       ///\return
   395       ///- -\ref INF: the constraint is upper unbounded.
   396       ///- -\ref NaN: upper bound has not been set.
   397       ///- finite number: the upper bound
   398       Value &upperBound() { return _ub; }
   399       ///The const version of \ref upperBound()
   400       const Value &upperBound() const { return _ub; }
   401       ///Is the constraint lower bounded?
   402       bool lowerBounded() const { 
   403 	using namespace std;
   404 	return finite(_lb);
   405       }
   406       ///Is the constraint upper bounded?
   407       bool upperBounded() const {
   408 	using namespace std;
   409 	return finite(_ub);
   410       }
   411     };
   412     
   413 
   414   protected:
   415     _FixId rows;
   416     _FixId cols;
   417 
   418     //Abstract virtual functions
   419     virtual LpSolverBase &_newLp() = 0;
   420     virtual LpSolverBase &_copyLp(){
   421       ///\todo This should be implemented here, too,  when we have problem retrieving routines. It can be overriden.
   422 
   423       //Starting:
   424       LpSolverBase & newlp(_newLp());
   425       return newlp;
   426       //return *(LpSolverBase*)0;
   427     };
   428 
   429     virtual int _addCol() = 0;
   430     virtual int _addRow() = 0;
   431     virtual void _setRowCoeffs(int i, 
   432 			       int length,
   433                                int  const * indices, 
   434                                Value  const * values ) = 0;
   435     virtual void _setColCoeffs(int i, 
   436 			       int length,
   437                                int  const * indices, 
   438                                Value  const * values ) = 0;
   439     virtual void _setCoeff(int row, int col, Value value) = 0;
   440     virtual void _setColLowerBound(int i, Value value) = 0;
   441     virtual void _setColUpperBound(int i, Value value) = 0;
   442 //     virtual void _setRowLowerBound(int i, Value value) = 0;
   443 //     virtual void _setRowUpperBound(int i, Value value) = 0;
   444     virtual void _setRowBounds(int i, Value lower, Value upper) = 0;
   445     virtual void _setObjCoeff(int i, Value obj_coef) = 0;
   446     virtual void _clearObj()=0;
   447 //     virtual void _setObj(int length,
   448 //                          int  const * indices, 
   449 //                          Value  const * values ) = 0;
   450     virtual SolveExitStatus _solve() = 0;
   451     virtual Value _getPrimal(int i) = 0;
   452     virtual Value _getPrimalValue() = 0;
   453     virtual SolutionStatus _getPrimalStatus() = 0;
   454     virtual void _setMax() = 0;
   455     virtual void _setMin() = 0;
   456     
   457     //Own protected stuff
   458     
   459     //Constant component of the objective function
   460     Value obj_const_comp;
   461     
   462 
   463 
   464     
   465   public:
   466 
   467     ///\e
   468     LpSolverBase() : obj_const_comp(0) {}
   469 
   470     ///\e
   471     virtual ~LpSolverBase() {}
   472 
   473     ///Creates a new LP problem
   474     LpSolverBase &newLp() {return _newLp();}
   475     ///Makes a copy of the LP problem
   476     LpSolverBase &copyLp() {return _copyLp();}
   477     
   478     ///\name Build up and modify of the LP
   479 
   480     ///@{
   481 
   482     ///Add a new empty column (i.e a new variable) to the LP
   483     Col addCol() { Col c; c.id=cols.insert(_addCol()); return c;}
   484 
   485     ///\brief Adds several new columns
   486     ///(i.e a variables) at once
   487     ///
   488     ///This magic function takes a container as its argument
   489     ///and fills its elements
   490     ///with new columns (i.e. variables)
   491     ///\param t can be
   492     ///- a standard STL compatible iterable container with
   493     ///\ref Col as its \c values_type
   494     ///like
   495     ///\code
   496     ///std::vector<LpSolverBase::Col>
   497     ///std::list<LpSolverBase::Col>
   498     ///\endcode
   499     ///- a standard STL compatible iterable container with
   500     ///\ref Col as its \c mapped_type
   501     ///like
   502     ///\code
   503     ///std::map<AnyType,LpSolverBase::Col>
   504     ///\endcode
   505     ///- an iterable lemon \ref concept::WriteMap "write map" like 
   506     ///\code
   507     ///ListGraph::NodeMap<LpSolverBase::Col>
   508     ///ListGraph::EdgeMap<LpSolverBase::Col>
   509     ///\endcode
   510     ///\return The number of the created column.
   511 #ifdef DOXYGEN
   512     template<class T>
   513     int addColSet(T &t) { return 0;} 
   514 #else
   515     template<class T>
   516     typename enable_if<typename T::value_type::LpSolverCol,int>::type
   517     addColSet(T &t,dummy<0> = 0) {
   518       int s=0;
   519       for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;}
   520       return s;
   521     }
   522     template<class T>
   523     typename enable_if<typename T::value_type::second_type::LpSolverCol,
   524 		       int>::type
   525     addColSet(T &t,dummy<1> = 1) { 
   526       int s=0;
   527       for(typename T::iterator i=t.begin();i!=t.end();++i) {
   528 	i->second=addCol();
   529 	s++;
   530       }
   531       return s;
   532     }
   533     template<class T>
   534     typename enable_if<typename T::ValueSet::value_type::LpSolverCol,
   535 		       int>::type
   536     addColSet(T &t,dummy<2> = 2) { 
   537       ///\bug <tt>return addColSet(t.valueSet());</tt> should also work.
   538       int s=0;
   539       for(typename T::ValueSet::iterator i=t.valueSet().begin();
   540 	  i!=t.valueSet().end();
   541 	  ++i)
   542 	{
   543 	  *i=addCol();
   544 	  s++;
   545 	}
   546       return s;
   547     }
   548 #endif
   549 
   550     ///Add a new empty row (i.e a new constaint) to the LP
   551 
   552     ///This function adds a new empty row (i.e a new constaint) to the LP.
   553     ///\return The created row
   554     Row addRow() { Row r; r.id=rows.insert(_addRow()); return r;}
   555 
   556     ///Set a row (i.e a constaint) of the LP
   557 
   558     ///\param r is the row to be modified
   559     ///\param l is lower bound (-\ref INF means no bound)
   560     ///\param e is a linear expression (see \ref Expr)
   561     ///\param u is the upper bound (\ref INF means no bound)
   562     ///\bug This is a temportary function. The interface will change to
   563     ///a better one.
   564     ///\todo Option to control whether a constraint with a single variable is
   565     ///added or not.
   566     void setRow(Row r, Value l,const Expr &e, Value u) {
   567       std::vector<int> indices;
   568       std::vector<Value> values;
   569       indices.push_back(0);
   570       values.push_back(0);
   571       for(Expr::const_iterator i=e.begin(); i!=e.end(); ++i)
   572 	if((*i).second!=0) { ///\bug EPSILON would be necessary here!!!
   573 	  indices.push_back(cols.floatingId((*i).first.id));
   574 	  values.push_back((*i).second);
   575 	}
   576       _setRowCoeffs(rows.floatingId(r.id),indices.size()-1,
   577 		    &indices[0],&values[0]);
   578 //       _setRowLowerBound(rows.floatingId(r.id),l-e.constComp());
   579 //       _setRowUpperBound(rows.floatingId(r.id),u-e.constComp());
   580        _setRowBounds(rows.floatingId(r.id),l-e.constComp(),u-e.constComp());
   581     }
   582 
   583     ///Set a row (i.e a constaint) of the LP
   584 
   585     ///\param r is the row to be modified
   586     ///\param c is a linear expression (see \ref Constr)
   587     void setRow(Row r, const Constr &c) {
   588       setRow(r,
   589 	     c.lowerBounded()?c.lowerBound():-INF,
   590 	     c.expr(),
   591 	     c.upperBounded()?c.upperBound():INF);
   592     }
   593 
   594     ///Add a new row (i.e a new constaint) to the LP
   595 
   596     ///\param l is the lower bound (-\ref INF means no bound)
   597     ///\param e is a linear expression (see \ref Expr)
   598     ///\param u is the upper bound (\ref INF means no bound)
   599     ///\return The created row.
   600     ///\bug This is a temportary function. The interface will change to
   601     ///a better one.
   602     Row addRow(Value l,const Expr &e, Value u) {
   603       Row r=addRow();
   604       setRow(r,l,e,u);
   605       return r;
   606     }
   607 
   608     ///Add a new row (i.e a new constaint) to the LP
   609 
   610     ///\param c is a linear expression (see \ref Constr)
   611     ///\return The created row.
   612     Row addRow(const Constr &c) {
   613       Row r=addRow();
   614       setRow(r,c);
   615       return r;
   616     }
   617 
   618     ///Set an element of the coefficient matrix of the LP
   619 
   620     ///\param r is the row of the element to be modified
   621     ///\param c is the coloumn of the element to be modified
   622     ///\param val is the new value of the coefficient
   623     void setCoeff(Row r, Col c, Value val){
   624       _setCoeff(rows.floatingId(r.id),cols.floatingId(c.id), val);
   625     }
   626 
   627     /// Set the lower bound of a column (i.e a variable)
   628 
   629     /// The upper bound of a variable (column) has to be given by an 
   630     /// extended number of type Value, i.e. a finite number of type 
   631     /// Value or -\ref INF.
   632     void colLowerBound(Col c, Value value) {
   633       _setColLowerBound(cols.floatingId(c.id),value);
   634     }
   635     /// Set the upper bound of a column (i.e a variable)
   636 
   637     /// The upper bound of a variable (column) has to be given by an 
   638     /// extended number of type Value, i.e. a finite number of type 
   639     /// Value or \ref INF.
   640     void colUpperBound(Col c, Value value) {
   641       _setColUpperBound(cols.floatingId(c.id),value);
   642     };
   643     /// Set the lower and the upper bounds of a column (i.e a variable)
   644 
   645     /// The lower and the upper bounds of
   646     /// a variable (column) have to be given by an 
   647     /// extended number of type Value, i.e. a finite number of type 
   648     /// Value, -\ref INF or \ref INF.
   649     void colBounds(Col c, Value lower, Value upper) {
   650       _setColLowerBound(cols.floatingId(c.id),lower);
   651       _setColUpperBound(cols.floatingId(c.id),upper);
   652     }
   653     
   654 //     /// Set the lower bound of a row (i.e a constraint)
   655 
   656 //     /// The lower bound of a linear expression (row) has to be given by an 
   657 //     /// extended number of type Value, i.e. a finite number of type 
   658 //     /// Value or -\ref INF.
   659 //     void rowLowerBound(Row r, Value value) {
   660 //       _setRowLowerBound(rows.floatingId(r.id),value);
   661 //     };
   662 //     /// Set the upper bound of a row (i.e a constraint)
   663 
   664 //     /// The upper bound of a linear expression (row) has to be given by an 
   665 //     /// extended number of type Value, i.e. a finite number of type 
   666 //     /// Value or \ref INF.
   667 //     void rowUpperBound(Row r, Value value) {
   668 //       _setRowUpperBound(rows.floatingId(r.id),value);
   669 //     };
   670 
   671     /// Set the lower and the upper bounds of a row (i.e a constraint)
   672 
   673     /// The lower and the upper bounds of
   674     /// a constraint (row) have to be given by an 
   675     /// extended number of type Value, i.e. a finite number of type 
   676     /// Value, -\ref INF or \ref INF.
   677     void rowBounds(Row c, Value lower, Value upper) {
   678       _setRowBounds(rows.floatingId(c.id),lower, upper);
   679       // _setRowUpperBound(rows.floatingId(c.id),upper);
   680     }
   681     
   682     ///Set an element of the objective function
   683     void objCoeff(Col c, Value v) {_setObjCoeff(cols.floatingId(c.id),v); };
   684     ///Set the objective function
   685     
   686     ///\param e is a linear expression of type \ref Expr.
   687     ///\bug The previous objective function is not cleared!
   688     void setObj(Expr e) {
   689       _clearObj();
   690       for (Expr::iterator i=e.begin(); i!=e.end(); ++i)
   691 	objCoeff((*i).first,(*i).second);
   692       obj_const_comp=e.constComp();
   693     }
   694 
   695     ///Maximize
   696     void max() { _setMax(); }
   697     ///Minimize
   698     void min() { _setMin(); }
   699 
   700     
   701     ///@}
   702 
   703 
   704     ///\name Solve the LP
   705 
   706     ///@{
   707 
   708     ///\e
   709     SolveExitStatus solve() { return _solve(); }
   710     
   711     ///@}
   712     
   713     ///\name Obtain the solution
   714 
   715     ///@{
   716 
   717     ///\e
   718     SolutionStatus primalStatus() {
   719       return _getPrimalStatus();
   720     }
   721 
   722     ///\e
   723     Value primal(Col c) { return _getPrimal(cols.floatingId(c.id)); }
   724 
   725     ///\e
   726 
   727     ///\return
   728     ///- \ref INF or -\ref INF means either infeasibility or unboundedness
   729     /// of the primal problem, depending on whether we minimize or maximize.
   730     ///- \ref NaN if no primal solution is found.
   731     ///- The (finite) objective value if an optimal solution is found.
   732     Value primalValue() { return _getPrimalValue()+obj_const_comp;}
   733     ///@}
   734     
   735   };  
   736 
   737   ///\e
   738   
   739   ///\relates LpSolverBase::Expr
   740   ///
   741   inline LpSolverBase::Expr operator+(const LpSolverBase::Expr &a,
   742 				      const LpSolverBase::Expr &b) 
   743   {
   744     LpSolverBase::Expr tmp(a);
   745     tmp+=b; ///\todo Doesn't STL have some special 'merge' algorithm?
   746     return tmp;
   747   }
   748   ///\e
   749   
   750   ///\relates LpSolverBase::Expr
   751   ///
   752   inline LpSolverBase::Expr operator-(const LpSolverBase::Expr &a,
   753 				      const LpSolverBase::Expr &b) 
   754   {
   755     LpSolverBase::Expr tmp(a);
   756     tmp-=b; ///\todo Doesn't STL have some special 'merge' algorithm?
   757     return tmp;
   758   }
   759   ///\e
   760   
   761   ///\relates LpSolverBase::Expr
   762   ///
   763   inline LpSolverBase::Expr operator*(const LpSolverBase::Expr &a,
   764 				      const LpSolverBase::Value &b) 
   765   {
   766     LpSolverBase::Expr tmp(a);
   767     tmp*=b; ///\todo Doesn't STL have some special 'merge' algorithm?
   768     return tmp;
   769   }
   770   
   771   ///\e
   772   
   773   ///\relates LpSolverBase::Expr
   774   ///
   775   inline LpSolverBase::Expr operator*(const LpSolverBase::Value &a,
   776 				      const LpSolverBase::Expr &b) 
   777   {
   778     LpSolverBase::Expr tmp(b);
   779     tmp*=a; ///\todo Doesn't STL have some special 'merge' algorithm?
   780     return tmp;
   781   }
   782   ///\e
   783   
   784   ///\relates LpSolverBase::Expr
   785   ///
   786   inline LpSolverBase::Expr operator/(const LpSolverBase::Expr &a,
   787 				      const LpSolverBase::Value &b) 
   788   {
   789     LpSolverBase::Expr tmp(a);
   790     tmp/=b; ///\todo Doesn't STL have some special 'merge' algorithm?
   791     return tmp;
   792   }
   793   
   794   ///\e
   795   
   796   ///\relates LpSolverBase::Constr
   797   ///
   798   inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
   799 					 const LpSolverBase::Expr &f) 
   800   {
   801     return LpSolverBase::Constr(-LpSolverBase::INF,e-f,0);
   802   }
   803 
   804   ///\e
   805   
   806   ///\relates LpSolverBase::Constr
   807   ///
   808   inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &e,
   809 					 const LpSolverBase::Expr &f) 
   810   {
   811     return LpSolverBase::Constr(e,f);
   812   }
   813 
   814   ///\e
   815   
   816   ///\relates LpSolverBase::Constr
   817   ///
   818   inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
   819 					 const LpSolverBase::Value &f) 
   820   {
   821     return LpSolverBase::Constr(e,f);
   822   }
   823 
   824   ///\e
   825   
   826   ///\relates LpSolverBase::Constr
   827   ///
   828   inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
   829 					 const LpSolverBase::Expr &f) 
   830   {
   831     return LpSolverBase::Constr(-LpSolverBase::INF,f-e,0);
   832   }
   833 
   834 
   835   ///\e
   836   
   837   ///\relates LpSolverBase::Constr
   838   ///
   839   inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &e,
   840 					 const LpSolverBase::Expr &f) 
   841   {
   842     return LpSolverBase::Constr(f,e);
   843   }
   844 
   845 
   846   ///\e
   847   
   848   ///\relates LpSolverBase::Constr
   849   ///
   850   inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
   851 					 const LpSolverBase::Value &f) 
   852   {
   853     return LpSolverBase::Constr(f,e);
   854   }
   855 
   856   ///\e
   857   
   858   ///\relates LpSolverBase::Constr
   859   ///
   860   inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e,
   861 					 const LpSolverBase::Expr &f) 
   862   {
   863     return LpSolverBase::Constr(0,e-f,0);
   864   }
   865 
   866   ///\e
   867   
   868   ///\relates LpSolverBase::Constr
   869   ///
   870   inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &n,
   871 					 const LpSolverBase::Constr&c) 
   872   {
   873     LpSolverBase::Constr tmp(c);
   874     ///\todo Create an own exception type.
   875     if(!isnan(tmp.lowerBound())) throw LogicError();
   876     else tmp.lowerBound()=n;
   877     return tmp;
   878   }
   879   ///\e
   880   
   881   ///\relates LpSolverBase::Constr
   882   ///
   883   inline LpSolverBase::Constr operator<=(const LpSolverBase::Constr& c,
   884 					 const LpSolverBase::Value &n)
   885   {
   886     LpSolverBase::Constr tmp(c);
   887     ///\todo Create an own exception type.
   888     if(!isnan(tmp.upperBound())) throw LogicError();
   889     else tmp.upperBound()=n;
   890     return tmp;
   891   }
   892 
   893   ///\e
   894   
   895   ///\relates LpSolverBase::Constr
   896   ///
   897   inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &n,
   898 					 const LpSolverBase::Constr&c) 
   899   {
   900     LpSolverBase::Constr tmp(c);
   901     ///\todo Create an own exception type.
   902     if(!isnan(tmp.upperBound())) throw LogicError();
   903     else tmp.upperBound()=n;
   904     return tmp;
   905   }
   906   ///\e
   907   
   908   ///\relates LpSolverBase::Constr
   909   ///
   910   inline LpSolverBase::Constr operator>=(const LpSolverBase::Constr& c,
   911 					 const LpSolverBase::Value &n)
   912   {
   913     LpSolverBase::Constr tmp(c);
   914     ///\todo Create an own exception type.
   915     if(!isnan(tmp.lowerBound())) throw LogicError();
   916     else tmp.lowerBound()=n;
   917     return tmp;
   918   }
   919 
   920 
   921 } //namespace lemon
   922 
   923 #endif //LEMON_LP_BASE_H