src/lemon/max_matching.h
author deba
Mon, 07 Feb 2005 15:40:34 +0000
changeset 1139 f59038affc7e
parent 1090 9e9195331ea6
child 1158 29961fa390a3
permissions -rwxr-xr-x
Changing first to iterators.
     1 /* -*- C++ -*-
     2  * src/lemon/max_matching.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_MAX_MATCHING_H
    18 #define LEMON_MAX_MATCHING_H
    19 
    20 #include <queue>
    21 #include <lemon/invalid.h>
    22 #include <lemon/unionfind.h>
    23 #include <lemon/graph_utils.h>
    24 
    25 ///\ingroup galgs
    26 ///\file
    27 ///\brief Maximum matching algorithm.
    28 
    29 namespace lemon {
    30 
    31   /// \addtogroup galgs
    32   /// @{
    33 
    34   ///Edmonds' alternating forest maximum matching algorithm.
    35 
    36   ///This class provides Edmonds' alternating forest matching
    37   ///algorithm. The starting matching (if any) can be passed to the
    38   ///algorithm using read-in functions \ref readNMapNode, \ref
    39   ///readNMapEdge or \ref readEMapBool depending on the container. The
    40   ///resulting maximum matching can be attained by write-out functions
    41   ///\ref writeNMapNode, \ref writeNMapEdge or \ref writeEMapBool
    42   ///depending on the preferred container. 
    43   ///
    44   ///The dual side of a matching is a map of the nodes to
    45   ///MaxMatching::pos_enum, having values D, A and C showing the
    46   ///Gallai-Edmonds decomposition of the graph. The nodes in D induce
    47   ///a graph with factor-critical components, the nodes in A form the
    48   ///barrier, and the nodes in C induce a graph having a perfect
    49   ///matching. This decomposition can be attained by calling \ref
    50   ///writePos after running the algorithm. 
    51   ///
    52   ///\param Graph The undirected graph type the algorithm runs on.
    53   ///
    54   ///\author Jacint Szabo  
    55   template <typename Graph>
    56   class MaxMatching {
    57     typedef typename Graph::Node Node;
    58     typedef typename Graph::Edge Edge;
    59     typedef typename Graph::UndirEdgeIt UndirEdgeIt;
    60     typedef typename Graph::NodeIt NodeIt;
    61     typedef typename Graph::IncEdgeIt IncEdgeIt;
    62 
    63     typedef UnionFindEnum<Node, Graph::template NodeMap> UFE;
    64 
    65   public:
    66     
    67     ///Indicates the Gallai-Edmonds decomposition of the graph.
    68 
    69     ///Indicates the Gallai-Edmonds decomposition of the graph, which
    70     ///shows an upper bound on the size of a maximum matching. The
    71     ///nodes with pos_enum \c D induce a graph with factor-critical
    72     ///components, the nodes in \c A form the canonical barrier, and the
    73     ///nodes in \c C induce a graph having a perfect matching. 
    74     enum pos_enum {
    75       D=0,
    76       A=1,
    77       C=2
    78     }; 
    79 
    80   private:
    81 
    82     static const int HEUR_density=2;
    83     const Graph& g;
    84     typename Graph::template NodeMap<Node> _mate;
    85     typename Graph::template NodeMap<pos_enum> position;
    86      
    87   public:
    88     
    89     MaxMatching(const Graph& _g) : g(_g), _mate(_g,INVALID), position(_g) {}
    90 
    91     ///Runs Edmonds' algorithm.
    92 
    93     ///Runs Edmonds' algorithm for sparse graphs (number of edges <
    94     ///2*number of nodes), and a heuristical Edmonds' algorithm with a
    95     ///heuristic of postponing shrinks for dense graphs. 
    96     inline void run();
    97 
    98     ///Runs Edmonds' algorithm.
    99     
   100     ///If heur=0 it runs Edmonds' algorithm. If heur=1 it runs
   101     ///Edmonds' algorithm with a heuristic of postponing shrinks,
   102     ///giving a faster algorithm for dense graphs.  
   103     void runEdmonds( int heur );
   104 
   105     ///Finds a greedy matching starting from the actual matching.
   106     
   107     ///Starting form the actual matching stored, it finds a maximal
   108     ///greedy matching.
   109     void greedyMatching();
   110 
   111     ///Returns the size of the actual matching stored.
   112 
   113     ///Returns the size of the actual matching stored. After \ref
   114     ///run() it returns the size of a maximum matching in the graph.
   115     int size() const;
   116 
   117     ///Resets the actual matching to the empty matching.
   118 
   119     ///Resets the actual matching to the empty matching.  
   120     ///
   121     void resetMatching();
   122 
   123     ///Returns the mate of a node in the actual matching.
   124 
   125     ///Returns the mate of a \c node in the actual matching. 
   126     ///Returns INVALID if the \c node is not covered by the actual matching. 
   127     Node mate(Node& node) const {
   128       return _mate[node];
   129     } 
   130 
   131     ///Reads a matching from a \c Node map of \c Nodes.
   132 
   133     ///Reads a matching from a \c Node map of \c Nodes. This map must be \e
   134     ///symmetric, i.e. if \c map[u]==v then \c map[v]==u must hold, and
   135     ///\c uv will be an edge of the matching.
   136     template<typename NMapN>
   137     void readNMapNode(NMapN& map) {
   138       for(NodeIt v(g); v!=INVALID; ++v) {
   139 	_mate.set(v,map[v]);   
   140       } 
   141     } 
   142     
   143     ///Writes the stored matching to a \c Node map of \c Nodes.
   144 
   145     ///Writes the stored matching to a \c Node map of \c Nodes. The
   146     ///resulting map will be \e symmetric, i.e. if \c map[u]==v then \c
   147     ///map[v]==u will hold, and now \c uv is an edge of the matching.
   148     template<typename NMapN>
   149     void writeNMapNode (NMapN& map) const {
   150       for(NodeIt v(g); v!=INVALID; ++v) {
   151 	map.set(v,_mate[v]);   
   152       } 
   153     } 
   154 
   155     ///Reads a matching from a \c Node map of \c Edges.
   156 
   157     ///Reads a matching from a \c Node map of incident \c Edges. This
   158     ///map must have the property that if \c G.target(map[u])==v then \c
   159     ///G.target(map[v])==u must hold, and now this edge is an edge of
   160     ///the matching.
   161     template<typename NMapE>
   162     void readNMapEdge(NMapE& map) {
   163      for(NodeIt v(g); v!=INVALID; ++v) {
   164 	Edge e=map[v];
   165 	if ( g.valid(e) )
   166 	  g.source(e) == v ? _mate.set(v,g.target(e)) : _mate.set(v,g.source(e)); 
   167       } 
   168     } 
   169     
   170     ///Writes the matching stored to a \c Node map of \c Edges.
   171 
   172     ///Writes the stored matching to a \c Node map of incident \c
   173     ///Edges. This map will have the property that if \c
   174     ///g.target(map[u])==v then \c g.target(map[v])==u holds, and now this
   175     ///edge is an edge of the matching.
   176     template<typename NMapE>
   177     void writeNMapEdge (NMapE& map)  const {
   178       typename Graph::template NodeMap<bool> todo(g,true); 
   179       for(NodeIt v(g); v!=INVALID; ++v) {
   180 	if ( todo[v] && _mate[v]!=INVALID ) {
   181 	  Node u=_mate[v];
   182 	  for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
   183 	    if ( g.target(e) == u ) {
   184 	      map.set(u,e);
   185 	      map.set(v,e);
   186 	      todo.set(u,false);
   187 	      todo.set(v,false);
   188 	      break;
   189 	    }
   190 	  }
   191 	}
   192       } 
   193     }
   194 
   195 
   196     ///Reads a matching from an \c Edge map of \c bools.
   197     
   198     ///Reads a matching from an \c Edge map of \c bools. This map must
   199     ///have the property that there are no two adjacent edges \c e, \c
   200     ///f with \c map[e]==map[f]==true. The edges \c e with \c
   201     ///map[e]==true form the matching.
   202     template<typename EMapB>
   203     void readEMapBool(EMapB& map) {
   204       for(UndirEdgeIt e(g); e!=INVALID; ++e) {
   205 	if ( map[e] ) {
   206 	  Node u=g.source(e);	  
   207 	  Node v=g.target(e);
   208 	  _mate.set(u,v);
   209 	  _mate.set(v,u);
   210 	} 
   211       } 
   212     }
   213 
   214 
   215     ///Writes the matching stored to an \c Edge map of \c bools.
   216 
   217     ///Writes the matching stored to an \c Edge map of \c bools. This
   218     ///map will have the property that there are no two adjacent edges
   219     ///\c e, \c f with \c map[e]==map[f]==true. The edges \c e with \c
   220     ///map[e]==true form the matching.
   221     template<typename EMapB>
   222     void writeEMapBool (EMapB& map) const {
   223       for(UndirEdgeIt e(g); e!=INVALID; ++e) map.set(e,false);
   224 
   225       typename Graph::template NodeMap<bool> todo(g,true); 
   226       for(NodeIt v(g); v!=INVALID; ++v) {
   227 	if ( todo[v] && _mate[v]!=INVALID ) {
   228 	  Node u=_mate[v];
   229 	  for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
   230 	    if ( g.target(e) == u ) {
   231 	      map.set(e,true);
   232 	      todo.set(u,false);
   233 	      todo.set(v,false);
   234 	      break;
   235 	    }
   236 	  }
   237 	}
   238       } 
   239     }
   240 
   241 
   242     ///Writes the canonical decomposition of the graph after running
   243     ///the algorithm.
   244 
   245     ///After calling any run methods of the class, it writes the
   246     ///Gallai-Edmonds canonical decomposition of the graph. \c map
   247     ///must be a node map of \ref pos_enum 's.
   248     template<typename NMapEnum>
   249     void writePos (NMapEnum& map) const {
   250       for(NodeIt v(g); v!=INVALID; ++v)  map.set(v,position[v]);
   251     }
   252 
   253   private: 
   254 
   255     void lateShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
   256 		    UFE& blossom, UFE& tree);
   257 
   258     void normShrink(Node v, typename Graph::NodeMap<Node>& ear,  
   259 		    UFE& blossom, UFE& tree);
   260 
   261     bool noShrinkStep(Node x, typename Graph::NodeMap<Node>& ear,  
   262 		      UFE& blossom, UFE& tree, std::queue<Node>& Q);
   263 
   264     void shrinkStep(Node& top, Node& middle, Node& bottom, typename Graph::NodeMap<Node>& ear,  
   265 		    UFE& blossom, UFE& tree, std::queue<Node>& Q);
   266 
   267     void augment(Node x, typename Graph::NodeMap<Node>& ear,  
   268 		 UFE& blossom, UFE& tree);
   269 
   270   };
   271 
   272 
   273   // **********************************************************************
   274   //  IMPLEMENTATIONS
   275   // **********************************************************************
   276 
   277 
   278   template <typename Graph>
   279   void MaxMatching<Graph>::run() {
   280     if ( countUndirEdges(g) < HEUR_density*countNodes(g) ) {
   281       greedyMatching();
   282       runEdmonds(0);
   283     } else runEdmonds(1);
   284   }
   285 
   286 
   287   template <typename Graph>
   288   void MaxMatching<Graph>::runEdmonds( int heur=1 ) {
   289 
   290     for(NodeIt v(g); v!=INVALID; ++v)
   291       position.set(v,C);      
   292 
   293     typename Graph::template NodeMap<Node> ear(g,INVALID); 
   294     //undefined for the base nodes of the blossoms (i.e. for the
   295     //representative elements of UFE blossom) and for the nodes in C
   296  
   297     typename UFE::MapType blossom_base(g);
   298     UFE blossom(blossom_base);
   299     typename UFE::MapType tree_base(g);
   300     UFE tree(tree_base);
   301 
   302     for(NodeIt v(g); v!=INVALID; ++v) {
   303       if ( position[v]==C && _mate[v]==INVALID ) {
   304 	blossom.insert(v);
   305 	tree.insert(v); 
   306 	position.set(v,D);
   307 	if ( heur == 1 ) lateShrink( v, ear, blossom, tree );
   308 	else normShrink( v, ear, blossom, tree );
   309       }
   310     }
   311   }
   312 
   313     
   314   template <typename Graph>
   315   void MaxMatching<Graph>::lateShrink(Node v, typename Graph::template NodeMap<Node>& ear,  
   316 				      UFE& blossom, UFE& tree) {
   317 
   318     std::queue<Node> Q;   //queue of the totally unscanned nodes
   319     Q.push(v);  
   320     std::queue<Node> R;   
   321     //queue of the nodes which must be scanned for a possible shrink
   322       
   323     while ( !Q.empty() ) {
   324       Node x=Q.front();
   325       Q.pop();
   326       if ( noShrinkStep( x, ear, blossom, tree, Q ) ) return;
   327       else R.push(x);
   328     }
   329       
   330     while ( !R.empty() ) {
   331       Node x=R.front();
   332       R.pop();
   333 	
   334       for( IncEdgeIt e(g,x); e!=INVALID ; ++e ) {
   335 	Node y=g.target(e);
   336 
   337 	if ( position[y] == D && blossom.find(x) != blossom.find(y) ) { 
   338 	  //x and y must be in the same tree
   339 	
   340 	  typename Graph::template NodeMap<bool> path(g,false);
   341 
   342 	  Node b=blossom.find(x);
   343 	  path.set(b,true);
   344 	  b=_mate[b];
   345 	  while ( b!=INVALID ) { 
   346 	    b=blossom.find(ear[b]);
   347 	    path.set(b,true);
   348 	    b=_mate[b];
   349 	  } //going till the root
   350 	
   351 	  Node top=y;
   352 	  Node middle=blossom.find(top);
   353 	  Node bottom=x;
   354 	  while ( !path[middle] )
   355 	    shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   356 		  
   357 	  Node base=middle;
   358 	  top=x;
   359 	  middle=blossom.find(top);
   360 	  bottom=y;
   361 	  Node blossom_base=blossom.find(base);
   362 	  while ( middle!=blossom_base )
   363 	    shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   364 		  
   365 	  blossom.makeRep(base);
   366 	} // if shrink is needed
   367 
   368 	while ( !Q.empty() ) {
   369 	  Node x=Q.front();
   370 	  Q.pop();
   371 	  if ( noShrinkStep(x, ear, blossom, tree, Q) ) return;
   372 	  else R.push(x);
   373 	}
   374       } //for e
   375     } // while ( !R.empty() )
   376   }
   377 
   378 
   379   template <typename Graph>
   380   void MaxMatching<Graph>::normShrink(Node v, typename Graph::NodeMap<Node>& ear,  
   381 				      UFE& blossom, UFE& tree) {
   382 
   383     std::queue<Node> Q;   //queue of the unscanned nodes
   384     Q.push(v);  
   385     while ( !Q.empty() ) {
   386 
   387       Node x=Q.front();
   388       Q.pop();
   389 	
   390       for( IncEdgeIt e(g,x); e!=INVALID; ++e ) {
   391 	Node y=g.target(e);
   392 	      
   393 	switch ( position[y] ) {
   394 	case D:          //x and y must be in the same tree
   395 
   396 	  if ( blossom.find(x) != blossom.find(y) ) { //shrink
   397 	    typename Graph::template NodeMap<bool> path(g,false);
   398 	      
   399 	    Node b=blossom.find(x);
   400 	    path.set(b,true);
   401 	    b=_mate[b];
   402 	    while ( b!=INVALID ) { 
   403 	      b=blossom.find(ear[b]);
   404 	      path.set(b,true);
   405 	      b=_mate[b];
   406 	    } //going till the root
   407 	
   408 	    Node top=y;
   409 	    Node middle=blossom.find(top);
   410 	    Node bottom=x;
   411 	    while ( !path[middle] )
   412 	      shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   413 		
   414 	    Node base=middle;
   415 	    top=x;
   416 	    middle=blossom.find(top);
   417 	    bottom=y;
   418 	    Node blossom_base=blossom.find(base);
   419 	    while ( middle!=blossom_base )
   420 	      shrinkStep(top, middle, bottom, ear, blossom, tree, Q);
   421 		
   422 	    blossom.makeRep(base);
   423 	  }
   424 	  break;
   425 	case C:
   426 	  if ( _mate[y]!=INVALID ) {   //grow
   427 
   428 	    ear.set(y,x);
   429 	    Node w=_mate[y];
   430 	    blossom.insert(w);
   431 	    position.set(y,A); 
   432 	    position.set(w,D); 
   433 	    tree.insert(y);
   434 	    tree.insert(w);
   435 	    tree.join(y,blossom.find(x));  
   436 	    tree.join(w,y);  
   437 	    Q.push(w);
   438 	  } else {                 //augment  
   439 	    augment(x, ear, blossom, tree);
   440 	    _mate.set(x,y);
   441 	    _mate.set(y,x);
   442 	    return;
   443 	  } //if 
   444 	  break;
   445 	default: break;
   446 	}
   447       }
   448     }
   449   }
   450 
   451   template <typename Graph>
   452   void MaxMatching<Graph>::greedyMatching() {
   453     for(NodeIt v(g); v!=INVALID; ++v)
   454       if ( _mate[v]==INVALID ) {
   455 	for( IncEdgeIt e(g,v); e!=INVALID ; ++e ) {
   456 	  Node y=g.target(e);
   457 	  if ( _mate[y]==INVALID && y!=v ) {
   458 	    _mate.set(v,y);
   459 	    _mate.set(y,v);
   460 	    break;
   461 	  }
   462 	}
   463       } 
   464   }
   465    
   466   template <typename Graph>
   467   int MaxMatching<Graph>::size() const {
   468     int s=0;
   469     for(NodeIt v(g); v!=INVALID; ++v) {
   470       if ( _mate[v]!=INVALID ) {
   471 	++s;
   472       }
   473     }
   474     return (int)s/2;
   475   }
   476 
   477   template <typename Graph>
   478   void MaxMatching<Graph>::resetMatching() {
   479     for(NodeIt v(g); v!=INVALID; ++v)
   480       _mate.set(v,INVALID);      
   481   }
   482 
   483   template <typename Graph>
   484   bool MaxMatching<Graph>::noShrinkStep(Node x, typename Graph::NodeMap<Node>& ear,  
   485 					UFE& blossom, UFE& tree, std::queue<Node>& Q) {
   486     for( IncEdgeIt e(g,x); e!= INVALID; ++e ) {
   487       Node y=g.target(e);
   488 	
   489       if ( position[y]==C ) {
   490 	if ( _mate[y]!=INVALID ) {       //grow
   491 	  ear.set(y,x);
   492 	  Node w=_mate[y];
   493 	  blossom.insert(w);
   494 	  position.set(y,A);
   495 	  position.set(w,D);
   496 	  tree.insert(y);
   497 	  tree.insert(w);
   498 	  tree.join(y,blossom.find(x));  
   499 	  tree.join(w,y);  
   500 	  Q.push(w);
   501 	} else {                      //augment 
   502 	  augment(x, ear, blossom, tree);
   503 	  _mate.set(x,y);
   504 	  _mate.set(y,x);
   505 	  return true;
   506 	}
   507       }
   508     }
   509     return false;
   510   }
   511 
   512   template <typename Graph>
   513   void MaxMatching<Graph>::shrinkStep(Node& top, Node& middle, Node& bottom, typename Graph::NodeMap<Node>& ear,  
   514 				      UFE& blossom, UFE& tree, std::queue<Node>& Q) {
   515     ear.set(top,bottom);
   516     Node t=top;
   517     while ( t!=middle ) {
   518       Node u=_mate[t];
   519       t=ear[u];
   520       ear.set(t,u);
   521     } 
   522     bottom=_mate[middle];
   523     position.set(bottom,D);
   524     Q.push(bottom);
   525     top=ear[bottom];		
   526     Node oldmiddle=middle;
   527     middle=blossom.find(top);
   528     tree.erase(bottom);
   529     tree.erase(oldmiddle);
   530     blossom.insert(bottom);
   531     blossom.join(bottom, oldmiddle);
   532     blossom.join(top, oldmiddle);
   533   }
   534 
   535   template <typename Graph>
   536   void MaxMatching<Graph>::augment(Node x, typename Graph::NodeMap<Node>& ear,  
   537 				   UFE& blossom, UFE& tree) { 
   538     Node v=_mate[x];
   539     while ( v!=INVALID ) {
   540 	
   541       Node u=ear[v];
   542       _mate.set(v,u);
   543       Node tmp=v;
   544       v=_mate[u];
   545       _mate.set(u,tmp);
   546     }
   547     typename UFE::ItemIt it;
   548     for (tree.first(it,blossom.find(x)); tree.valid(it); tree.next(it)) {   
   549       if ( position[it] == D ) {
   550 	typename UFE::ItemIt b_it;
   551 	for (blossom.first(b_it,it); blossom.valid(b_it); blossom.next(b_it)) {  
   552 	  position.set( b_it ,C);
   553 	}
   554 	blossom.eraseClass(it);
   555       } else position.set( it ,C);
   556     }
   557     tree.eraseClass(x);
   558 
   559   }
   560 
   561   /// @}
   562   
   563 } //END OF NAMESPACE LEMON
   564 
   565 #endif //EDMONDS_H