DualExpr added.
authoralpar
Sat, 04 Jun 2005 12:50:15 +0000
changeset 14454635352e5524
parent 1444 5fcd69785959
child 1446 320f73c5cfc1
DualExpr added.
lemon/lp_base.h
test/lp_test.cc
     1.1 --- a/lemon/lp_base.h	Fri Jun 03 12:25:23 2005 +0000
     1.2 +++ b/lemon/lp_base.h	Sat Jun 04 12:50:15 2005 +0000
     1.3 @@ -410,6 +410,116 @@
     1.4        }
     1.5      };
     1.6      
     1.7 +    ///Linear expression of rows
     1.8 +    
     1.9 +    ///This data structure represents a column of the matrix,
    1.10 +    ///thas is it strores a linear expression of the dual variables
    1.11 +    ///(\ref Row "Row"s).
    1.12 +    ///
    1.13 +    ///There are several ways to access and modify the contents of this
    1.14 +    ///container.
    1.15 +    ///- Its it fully compatible with \c std::map<Row,double>, so for expamle
    1.16 +    ///if \c e is an DualExpr and \c v
    1.17 +    ///and \c w are of type \ref Row, then you can
    1.18 +    ///read and modify the coefficients like
    1.19 +    ///these.
    1.20 +    ///\code
    1.21 +    ///e[v]=5;
    1.22 +    ///e[v]+=12;
    1.23 +    ///e.erase(v);
    1.24 +    ///\endcode
    1.25 +    ///or you can also iterate through its elements.
    1.26 +    ///\code
    1.27 +    ///double s=0;
    1.28 +    ///for(LpSolverBase::DualExpr::iterator i=e.begin();i!=e.end();++i)
    1.29 +    ///  s+=i->second;
    1.30 +    ///\endcode
    1.31 +    ///(This code computes the sum of all coefficients).
    1.32 +    ///- Numbers (<tt>double</tt>'s)
    1.33 +    ///and variables (\ref Row "Row"s) directly convert to an
    1.34 +    ///\ref DualExpr and the usual linear operations are defined so  
    1.35 +    ///\code
    1.36 +    ///v+w
    1.37 +    ///2*v-3.12*(v-w/2)
    1.38 +    ///v*2.1+(3*v+(v*12+w)*3)/2
    1.39 +    ///\endcode
    1.40 +    ///are valid \ref DualExpr "DualExpr"essions.
    1.41 +    ///The usual assignment operations are also defined.
    1.42 +    ///\code
    1.43 +    ///e=v+w;
    1.44 +    ///e+=2*v-3.12*(v-w/2);
    1.45 +    ///e*=3.4;
    1.46 +    ///e/=5;
    1.47 +    ///\endcode
    1.48 +    ///
    1.49 +    ///\sa Expr
    1.50 +    ///
    1.51 +    class DualExpr : public std::map<Row,Value>
    1.52 +    {
    1.53 +    public:
    1.54 +      typedef LpSolverBase::Row Key; 
    1.55 +      typedef LpSolverBase::Value Value;
    1.56 +      
    1.57 +    protected:
    1.58 +      typedef std::map<Row,Value> Base;
    1.59 +      
    1.60 +    public:
    1.61 +      typedef True IsLinExpression;
    1.62 +      ///\e
    1.63 +      DualExpr() : Base() { }
    1.64 +      ///\e
    1.65 +      DualExpr(const Key &v) {
    1.66 +	Base::insert(std::make_pair(v, 1));
    1.67 +      }
    1.68 +      ///\e
    1.69 +      DualExpr(const Value &v) {}
    1.70 +      ///\e
    1.71 +      void set(const Key &v,const Value &c) {
    1.72 +	Base::insert(std::make_pair(v, c));
    1.73 +      }
    1.74 +      
    1.75 +      ///Removes the components with zero coefficient.
    1.76 +      void simplify() {
    1.77 +	for (Base::iterator i=Base::begin(); i!=Base::end();) {
    1.78 +	  Base::iterator j=i;
    1.79 +	  ++j;
    1.80 +	  if ((*i).second==0) Base::erase(i);
    1.81 +	  j=i;
    1.82 +	}
    1.83 +      }
    1.84 +
    1.85 +      ///Sets all coefficients to 0.
    1.86 +      void clear() {
    1.87 +	Base::clear();
    1.88 +      }
    1.89 +
    1.90 +      ///\e
    1.91 +      DualExpr &operator+=(const DualExpr &e) {
    1.92 +	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
    1.93 +	  (*this)[j->first]+=j->second;
    1.94 +	///\todo it might be speeded up using "hints"
    1.95 +	return *this;
    1.96 +      }
    1.97 +      ///\e
    1.98 +      DualExpr &operator-=(const DualExpr &e) {
    1.99 +	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   1.100 +	  (*this)[j->first]-=j->second;
   1.101 +	return *this;
   1.102 +      }
   1.103 +      ///\e
   1.104 +      DualExpr &operator*=(const Value &c) {
   1.105 +	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   1.106 +	  j->second*=c;
   1.107 +	return *this;
   1.108 +      }
   1.109 +      ///\e
   1.110 +      DualExpr &operator/=(const Value &c) {
   1.111 +	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   1.112 +	  j->second/=c;
   1.113 +	return *this;
   1.114 +      }
   1.115 +    };
   1.116 +    
   1.117  
   1.118    protected:
   1.119      _FixId rows;
   1.120 @@ -547,13 +657,113 @@
   1.121      }
   1.122  #endif
   1.123  
   1.124 -    ///Add a new empty row (i.e a new constaint) to the LP
   1.125 +    ///Set a column (i.e a dual constraint) of the LP
   1.126  
   1.127 -    ///This function adds a new empty row (i.e a new constaint) to the LP.
   1.128 +    ///\param c is the column to be modified
   1.129 +    ///\param e is a dual linear expression (see \ref DualExpr)
   1.130 +    ///\bug This is a temportary function. The interface will change to
   1.131 +    ///a better one.
   1.132 +    void setCol(Col c,const DualExpr &e) {
   1.133 +      std::vector<int> indices;
   1.134 +      std::vector<Value> values;
   1.135 +      indices.push_back(0);
   1.136 +      values.push_back(0);
   1.137 +      for(DualExpr::const_iterator i=e.begin(); i!=e.end(); ++i)
   1.138 +	if((*i).second!=0) { ///\bug EPSILON would be necessary here!!!
   1.139 +	  indices.push_back(cols.floatingId((*i).first.id));
   1.140 +	  values.push_back((*i).second);
   1.141 +	}
   1.142 +      _setColCoeffs(cols.floatingId(c.id),indices.size()-1,
   1.143 +		    &indices[0],&values[0]);
   1.144 +    }
   1.145 +
   1.146 +    ///Add a new column to the LP
   1.147 +
   1.148 +    ///\param e is a dual linear expression (see \ref DualExpr)
   1.149 +    ///\param obj is the corresponding component of the objective
   1.150 +    ///function. It is 0 by default.
   1.151 +    ///\return The created column.
   1.152 +    ///\bug This is a temportary function. The interface will change to
   1.153 +    ///a better one.
   1.154 +    Col addCol(Value l,const DualExpr &e, Value obj=0) {
   1.155 +      Col c=addCol();
   1.156 +      setCol(c,e);
   1.157 +      objCoeff(c,0);
   1.158 +      return c;
   1.159 +    }
   1.160 +
   1.161 +    ///Add a new empty row (i.e a new constraint) to the LP
   1.162 +
   1.163 +    ///This function adds a new empty row (i.e a new constraint) to the LP.
   1.164      ///\return The created row
   1.165      Row addRow() { Row r; r.id=rows.insert(_addRow()); return r;}
   1.166  
   1.167 -    ///Set a row (i.e a constaint) of the LP
   1.168 +    ///\brief Adds several new row
   1.169 +    ///(i.e a variables) at once
   1.170 +    ///
   1.171 +    ///This magic function takes a container as its argument
   1.172 +    ///and fills its elements
   1.173 +    ///with new row (i.e. variables)
   1.174 +    ///\param t can be
   1.175 +    ///- a standard STL compatible iterable container with
   1.176 +    ///\ref Row as its \c values_type
   1.177 +    ///like
   1.178 +    ///\code
   1.179 +    ///std::vector<LpSolverBase::Row>
   1.180 +    ///std::list<LpSolverBase::Row>
   1.181 +    ///\endcode
   1.182 +    ///- a standard STL compatible iterable container with
   1.183 +    ///\ref Row as its \c mapped_type
   1.184 +    ///like
   1.185 +    ///\code
   1.186 +    ///std::map<AnyType,LpSolverBase::Row>
   1.187 +    ///\endcode
   1.188 +    ///- an iterable lemon \ref concept::WriteMap "write map" like 
   1.189 +    ///\code
   1.190 +    ///ListGraph::NodeMap<LpSolverBase::Row>
   1.191 +    ///ListGraph::EdgeMap<LpSolverBase::Row>
   1.192 +    ///\endcode
   1.193 +    ///\return The number of rows created.
   1.194 +#ifdef DOXYGEN
   1.195 +    template<class T>
   1.196 +    int addRowSet(T &t) { return 0;} 
   1.197 +#else
   1.198 +    template<class T>
   1.199 +    typename enable_if<typename T::value_type::LpSolverRow,int>::type
   1.200 +    addRowSet(T &t,dummy<0> = 0) {
   1.201 +      int s=0;
   1.202 +      for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addRow();s++;}
   1.203 +      return s;
   1.204 +    }
   1.205 +    template<class T>
   1.206 +    typename enable_if<typename T::value_type::second_type::LpSolverRow,
   1.207 +		       int>::type
   1.208 +    addRowSet(T &t,dummy<1> = 1) { 
   1.209 +      int s=0;
   1.210 +      for(typename T::iterator i=t.begin();i!=t.end();++i) {
   1.211 +	i->second=addRow();
   1.212 +	s++;
   1.213 +      }
   1.214 +      return s;
   1.215 +    }
   1.216 +    template<class T>
   1.217 +    typename enable_if<typename T::ValueSet::value_type::LpSolverRow,
   1.218 +		       int>::type
   1.219 +    addRowSet(T &t,dummy<2> = 2) { 
   1.220 +      ///\bug <tt>return addRowSet(t.valueSet());</tt> should also work.
   1.221 +      int s=0;
   1.222 +      for(typename T::ValueSet::iterator i=t.valueSet().begin();
   1.223 +	  i!=t.valueSet().end();
   1.224 +	  ++i)
   1.225 +	{
   1.226 +	  *i=addRow();
   1.227 +	  s++;
   1.228 +	}
   1.229 +      return s;
   1.230 +    }
   1.231 +#endif
   1.232 +
   1.233 +    ///Set a row (i.e a constraint) of the LP
   1.234  
   1.235      ///\param r is the row to be modified
   1.236      ///\param l is lower bound (-\ref INF means no bound)
   1.237 @@ -580,7 +790,7 @@
   1.238         _setRowBounds(rows.floatingId(r.id),l-e.constComp(),u-e.constComp());
   1.239      }
   1.240  
   1.241 -    ///Set a row (i.e a constaint) of the LP
   1.242 +    ///Set a row (i.e a constraint) of the LP
   1.243  
   1.244      ///\param r is the row to be modified
   1.245      ///\param c is a linear expression (see \ref Constr)
   1.246 @@ -591,7 +801,7 @@
   1.247  	     c.upperBounded()?c.upperBound():INF);
   1.248      }
   1.249  
   1.250 -    ///Add a new row (i.e a new constaint) to the LP
   1.251 +    ///Add a new row (i.e a new constraint) to the LP
   1.252  
   1.253      ///\param l is the lower bound (-\ref INF means no bound)
   1.254      ///\param e is a linear expression (see \ref Expr)
   1.255 @@ -605,7 +815,7 @@
   1.256        return r;
   1.257      }
   1.258  
   1.259 -    ///Add a new row (i.e a new constaint) to the LP
   1.260 +    ///Add a new row (i.e a new constraint) to the LP
   1.261  
   1.262      ///\param c is a linear expression (see \ref Constr)
   1.263      ///\return The created row.
   1.264 @@ -917,6 +1127,63 @@
   1.265      return tmp;
   1.266    }
   1.267  
   1.268 +  ///\e
   1.269 +  
   1.270 +  ///\relates LpSolverBase::DualExpr
   1.271 +  ///
   1.272 +  inline LpSolverBase::DualExpr operator+(const LpSolverBase::DualExpr &a,
   1.273 +				      const LpSolverBase::DualExpr &b) 
   1.274 +  {
   1.275 +    LpSolverBase::DualExpr tmp(a);
   1.276 +    tmp+=b; ///\todo Doesn't STL have some special 'merge' algorithm?
   1.277 +    return tmp;
   1.278 +  }
   1.279 +  ///\e
   1.280 +  
   1.281 +  ///\relates LpSolverBase::DualExpr
   1.282 +  ///
   1.283 +  inline LpSolverBase::DualExpr operator-(const LpSolverBase::DualExpr &a,
   1.284 +				      const LpSolverBase::DualExpr &b) 
   1.285 +  {
   1.286 +    LpSolverBase::DualExpr tmp(a);
   1.287 +    tmp-=b; ///\todo Doesn't STL have some special 'merge' algorithm?
   1.288 +    return tmp;
   1.289 +  }
   1.290 +  ///\e
   1.291 +  
   1.292 +  ///\relates LpSolverBase::DualExpr
   1.293 +  ///
   1.294 +  inline LpSolverBase::DualExpr operator*(const LpSolverBase::DualExpr &a,
   1.295 +				      const LpSolverBase::Value &b) 
   1.296 +  {
   1.297 +    LpSolverBase::DualExpr tmp(a);
   1.298 +    tmp*=b; ///\todo Doesn't STL have some special 'merge' algorithm?
   1.299 +    return tmp;
   1.300 +  }
   1.301 +  
   1.302 +  ///\e
   1.303 +  
   1.304 +  ///\relates LpSolverBase::DualExpr
   1.305 +  ///
   1.306 +  inline LpSolverBase::DualExpr operator*(const LpSolverBase::Value &a,
   1.307 +				      const LpSolverBase::DualExpr &b) 
   1.308 +  {
   1.309 +    LpSolverBase::DualExpr tmp(b);
   1.310 +    tmp*=a; ///\todo Doesn't STL have some special 'merge' algorithm?
   1.311 +    return tmp;
   1.312 +  }
   1.313 +  ///\e
   1.314 +  
   1.315 +  ///\relates LpSolverBase::DualExpr
   1.316 +  ///
   1.317 +  inline LpSolverBase::DualExpr operator/(const LpSolverBase::DualExpr &a,
   1.318 +				      const LpSolverBase::Value &b) 
   1.319 +  {
   1.320 +    LpSolverBase::DualExpr tmp(a);
   1.321 +    tmp/=b; ///\todo Doesn't STL have some special 'merge' algorithm?
   1.322 +    return tmp;
   1.323 +  }
   1.324 +  
   1.325  
   1.326  } //namespace lemon
   1.327  
     2.1 --- a/test/lp_test.cc	Fri Jun 03 12:25:23 2005 +0000
     2.2 +++ b/test/lp_test.cc	Sat Jun 04 12:50:15 2005 +0000
     2.3 @@ -34,108 +34,140 @@
     2.4    
     2.5    lp.addColSet(z);
     2.6  
     2.7 +  {
     2.8 +    LP::Expr e,f,g;
     2.9 +    LP::Col p1,p2,p3,p4,p5;
    2.10 +    LP::Constr c;
    2.11 +    
    2.12 +    e[p1]=2;
    2.13 +    e.constComp()=12;
    2.14 +    e[p1]+=2;
    2.15 +    e.constComp()+=12;
    2.16 +    e[p1]-=2;
    2.17 +    e.constComp()-=12;
    2.18 +    
    2.19 +    e=2;
    2.20 +    e=2.2;
    2.21 +    e=p1;
    2.22 +    e=f;
    2.23 +    
    2.24 +    e+=2;
    2.25 +    e+=2.2;
    2.26 +    e+=p1;
    2.27 +    e+=f;
    2.28 +    
    2.29 +    e-=2;
    2.30 +    e-=2.2;
    2.31 +    e-=p1;
    2.32 +    e-=f;
    2.33 +    
    2.34 +    e*=2;
    2.35 +    e*=2.2;
    2.36 +    e/=2;
    2.37 +    e/=2.2;
    2.38 +    
    2.39 +    e=((p1+p2)+(p1-p2)+(p1+12)+(12+p1)+(p1-12)+(12-p1)+
    2.40 +       (f+12)+(12+f)+(p1+f)+(f+p1)+(f+g)+
    2.41 +       (f-12)+(12-f)+(p1-f)+(f-p1)+(f-g)+
    2.42 +       2.2*f+f*2.2+f/2.2+
    2.43 +       2*f+f*2+f/2+
    2.44 +       2.2*p1+p1*2.2+p1/2.2+
    2.45 +       2*p1+p1*2+p1/2
    2.46 +       );
    2.47  
    2.48 -  LP::Expr e,f,g;
    2.49 -  LP::Col p1,p2,p3,p4,p5;
    2.50 -  LP::Constr c;
    2.51 +
    2.52 +    c = (e  <= f  );
    2.53 +    c = (e  <= 2.2);
    2.54 +    c = (e  <= 2  );
    2.55 +    c = (e  <= p1 );
    2.56 +    c = (2.2<= f  );
    2.57 +    c = (2  <= f  );
    2.58 +    c = (p1 <= f  );
    2.59 +    c = (p1 <= p2 );
    2.60 +    c = (p1 <= 2.2);
    2.61 +    c = (p1 <= 2  );
    2.62 +    c = (2.2<= p2 );
    2.63 +    c = (2  <= p2 );
    2.64 +    
    2.65 +    c = (e  >= f  );
    2.66 +    c = (e  >= 2.2);
    2.67 +    c = (e  >= 2  );
    2.68 +    c = (e  >= p1 );
    2.69 +    c = (2.2>= f  );
    2.70 +    c = (2  >= f  );
    2.71 +    c = (p1 >= f  );
    2.72 +    c = (p1 >= p2 );
    2.73 +    c = (p1 >= 2.2);
    2.74 +    c = (p1 >= 2  );
    2.75 +    c = (2.2>= p2 );
    2.76 +    c = (2  >= p2 );
    2.77 +    
    2.78 +    c = (e  == f  );
    2.79 +    c = (e  == 2.2);
    2.80 +    c = (e  == 2  );
    2.81 +    c = (e  == p1 );
    2.82 +    c = (2.2== f  );
    2.83 +    c = (2  == f  );
    2.84 +    c = (p1 == f  );
    2.85 +    //c = (p1 == p2 );
    2.86 +    c = (p1 == 2.2);
    2.87 +    c = (p1 == 2  );
    2.88 +    c = (2.2== p2 );
    2.89 +    c = (2  == p2 );
    2.90 +    
    2.91 +    c = (2 <= e <= 3);
    2.92 +    c = (2 <= p1<= 3);
    2.93 +    
    2.94 +    c = (2 >= e >= 3);
    2.95 +    c = (2 >= p1>= 3);
    2.96 +    
    2.97 +    e[x[3]]=2;
    2.98 +    e[x[3]]=4;
    2.99 +    e[x[3]]=1;
   2.100 +    e.constComp()=12;
   2.101 +    
   2.102 +    lp.addRow(LP::INF,e,23);
   2.103 +    lp.addRow(LP::INF,3.0*(x[1]+x[2]/2)-x[3],23);
   2.104 +    lp.addRow(LP::INF,3.0*(x[1]+x[2]*2-5*x[3]+12-x[4]/3)+2*x[4]-4,23);
   2.105 +    
   2.106 +    lp.addRow(x[1]+x[3]<=x[5]-3);
   2.107 +    lp.addRow(-7<=x[1]+x[3]-12<=3);
   2.108 +    lp.addRow(x[1]<=x[5]);
   2.109 +  }
   2.110    
   2.111 -  e[p1]=2;
   2.112 -  e.constComp()=12;
   2.113 -  e[p1]+=2;
   2.114 -  e.constComp()+=12;
   2.115 -  e[p1]-=2;
   2.116 -  e.constComp()-=12;
   2.117 -  
   2.118 -  e=2;
   2.119 -  e=2.2;
   2.120 -  e=p1;
   2.121 -  e=f;
   2.122 -
   2.123 -  e+=2;
   2.124 -  e+=2.2;
   2.125 -  e+=p1;
   2.126 -  e+=f;
   2.127 -
   2.128 -  e-=2;
   2.129 -  e-=2.2;
   2.130 -  e-=p1;
   2.131 -  e-=f;
   2.132 -
   2.133 -  e*=2;
   2.134 -  e*=2.2;
   2.135 -  e/=2;
   2.136 -  e/=2.2;
   2.137 -
   2.138 -  e=((p1+p2)+(p1-p2)+(p1+12)+(12+p1)+(p1-12)+(12-p1)+
   2.139 -      (f+12)+(12+f)+(p1+f)+(f+p1)+(f+g)+
   2.140 -      (f-12)+(12-f)+(p1-f)+(f-p1)+(f-g)+
   2.141 -      2.2*f+f*2.2+f/2.2+
   2.142 -      2*f+f*2+f/2+
   2.143 -      2.2*p1+p1*2.2+p1/2.2+
   2.144 -      2*p1+p1*2+p1/2
   2.145 -     );
   2.146 +  {
   2.147 +    LP::DualExpr e,f,g;
   2.148 +    LP::Row p1,p2,p3,p4,p5;
   2.149 +    
   2.150 +    e[p1]=2;
   2.151 +    e[p1]+=2;
   2.152 +    e[p1]-=2;
   2.153 +    
   2.154 +    e=p1;
   2.155 +    e=f;
   2.156 +    
   2.157 +    e+=p1;
   2.158 +    e+=f;
   2.159 +    
   2.160 +    e-=p1;
   2.161 +    e-=f;
   2.162 +    
   2.163 +    e*=2;
   2.164 +    e*=2.2;
   2.165 +    e/=2;
   2.166 +    e/=2.2;
   2.167 +    
   2.168 +    e=((p1+p2)+(p1-p2)+(p1+12)+(12+p1)+(p1-12)+(12-p1)+
   2.169 +       (p1+f)+(f+p1)+(f+g)+
   2.170 +       (p1-f)+(f-p1)+(f-g)+
   2.171 +       2.2*f+f*2.2+f/2.2+
   2.172 +       2*f+f*2+f/2+
   2.173 +       2.2*p1+p1*2.2+p1/2.2+
   2.174 +       2*p1+p1*2+p1/2
   2.175 +       );
   2.176 +  }
   2.177    
   2.178  
   2.179 -  c = (e  <= f  );
   2.180 -  c = (e  <= 2.2);
   2.181 -  c = (e  <= 2  );
   2.182 -  c = (e  <= p1 );
   2.183 -  c = (2.2<= f  );
   2.184 -  c = (2  <= f  );
   2.185 -  c = (p1 <= f  );
   2.186 -  c = (p1 <= p2 );
   2.187 -  c = (p1 <= 2.2);
   2.188 -  c = (p1 <= 2  );
   2.189 -  c = (2.2<= p2 );
   2.190 -  c = (2  <= p2 );
   2.191 -
   2.192 -  c = (e  >= f  );
   2.193 -  c = (e  >= 2.2);
   2.194 -  c = (e  >= 2  );
   2.195 -  c = (e  >= p1 );
   2.196 -  c = (2.2>= f  );
   2.197 -  c = (2  >= f  );
   2.198 -  c = (p1 >= f  );
   2.199 -  c = (p1 >= p2 );
   2.200 -  c = (p1 >= 2.2);
   2.201 -  c = (p1 >= 2  );
   2.202 -  c = (2.2>= p2 );
   2.203 -  c = (2  >= p2 );
   2.204 -
   2.205 -  c = (e  == f  );
   2.206 -  c = (e  == 2.2);
   2.207 -  c = (e  == 2  );
   2.208 -  c = (e  == p1 );
   2.209 -  c = (2.2== f  );
   2.210 -  c = (2  == f  );
   2.211 -  c = (p1 == f  );
   2.212 -  //c = (p1 == p2 );
   2.213 -  c = (p1 == 2.2);
   2.214 -  c = (p1 == 2  );
   2.215 -  c = (2.2== p2 );
   2.216 -  c = (2  == p2 );
   2.217 -
   2.218 -  c = (2 <= e <= 3);
   2.219 -  c = (2 <= p1<= 3);
   2.220 -
   2.221 -  c = (2 >= e >= 3);
   2.222 -  c = (2 >= p1>= 3);
   2.223 -
   2.224 -  e[x[3]]=2;
   2.225 -  e[x[3]]=4;
   2.226 -  e[x[3]]=1;
   2.227 -  e.constComp()=12;
   2.228 -  
   2.229 -  lp.addRow(LP::INF,e,23);
   2.230 -  lp.addRow(LP::INF,3.0*(x[1]+x[2]/2)-x[3],23);
   2.231 -  lp.addRow(LP::INF,3.0*(x[1]+x[2]*2-5*x[3]+12-x[4]/3)+2*x[4]-4,23);
   2.232 -
   2.233 -  lp.addRow(x[1]+x[3]<=x[5]-3);
   2.234 -  lp.addRow(-7<=x[1]+x[3]-12<=3);
   2.235 -  lp.addRow(x[1]<=x[5]);
   2.236 -
   2.237 -
   2.238 -  
   2.239  }
   2.240  
   2.241  int main()