(none)
authorjacint
Thu, 22 Apr 2004 13:51:25 +0000 (2004-04-22)
changeset 3705eceadf9316c
parent 369 dc9c19f4ca9a
child 371 b2acba449222
(none)
src/work/jacint/preflowproba.h
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/work/jacint/preflowproba.h	Thu Apr 22 13:51:25 2004 +0000
     1.3 @@ -0,0 +1,685 @@
     1.4 +// -*- C++ -*-
     1.5 +
     1.6 +//run gyorsan tudna adni a minmincutot a 2 fazis elejen , ne vegyuk be konstruktorba egy cutmapet?
     1.7 +//constzero jo igy?
     1.8 +
     1.9 +//majd marci megmondja betegyem-e bfs-t meg resgraphot
    1.10 +
    1.11 +/*
    1.12 +Heuristics: 
    1.13 + 2 phase
    1.14 + gap
    1.15 + list 'level_list' on the nodes on level i implemented by hand
    1.16 + stack 'active' on the active nodes on level i implemented by hand
    1.17 + runs heuristic 'highest label' for H1*n relabels
    1.18 + runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
    1.19 + 
    1.20 +Parameters H0 and H1 are initialized to 20 and 10.
    1.21 +
    1.22 +Constructors:
    1.23 +
    1.24 +Preflow(Graph, Node, Node, CapMap, FlowMap, bool) : bool must be false if 
    1.25 +     FlowMap is not constant zero, and should be true if it is
    1.26 +
    1.27 +Members:
    1.28 +
    1.29 +void run()
    1.30 +
    1.31 +T flowValue() : returns the value of a maximum flow
    1.32 +
    1.33 +void minMinCut(CutMap& M) : sets M to the characteristic vector of the 
    1.34 +     minimum min cut. M should be a map of bools initialized to false.
    1.35 +
    1.36 +void maxMinCut(CutMap& M) : sets M to the characteristic vector of the 
    1.37 +     maximum min cut. M should be a map of bools initialized to false.
    1.38 +
    1.39 +void minCut(CutMap& M) : sets M to the characteristic vector of 
    1.40 +     a min cut. M should be a map of bools initialized to false.
    1.41 +
    1.42 +FIXME reset
    1.43 +
    1.44 +*/
    1.45 +
    1.46 +#ifndef HUGO_PREFLOW_H
    1.47 +#define HUGO_PREFLOW_H
    1.48 +
    1.49 +#define H0 20
    1.50 +#define H1 1
    1.51 +
    1.52 +#include <vector>
    1.53 +#include <queue>
    1.54 +#include<graph_wrapper.h>
    1.55 +
    1.56 +namespace hugo {
    1.57 +
    1.58 +  template <typename Graph, typename T, 
    1.59 +	    typename CapMap=typename Graph::EdgeMap<T>, 
    1.60 +            typename FlowMap=typename Graph::EdgeMap<T> >
    1.61 +  class Preflow {
    1.62 +    
    1.63 +    typedef typename Graph::Node Node;
    1.64 +    typedef typename Graph::Edge Edge;
    1.65 +    typedef typename Graph::NodeIt NodeIt;
    1.66 +    typedef typename Graph::OutEdgeIt OutEdgeIt;
    1.67 +    typedef typename Graph::InEdgeIt InEdgeIt;
    1.68 +    
    1.69 +    const Graph& G;
    1.70 +    Node s;
    1.71 +    Node t;
    1.72 +    const CapMap& capacity;  
    1.73 +    FlowMap& flow;
    1.74 +    T value;
    1.75 +    bool constzero;
    1.76 +
    1.77 +    typedef ResGraphWrapper<const Graph, T, CapMap, FlowMap> ResGW;
    1.78 +    typedef typename ResGW::OutEdgeIt ResOutEdgeIt;
    1.79 +    typedef typename ResGW::InEdgeIt ResInEdgeIt;
    1.80 +    typedef typename ResGW::Edge ResEdge;
    1.81 + 
    1.82 +  public:
    1.83 +    Preflow(Graph& _G, Node _s, Node _t, CapMap& _capacity, 
    1.84 +	    FlowMap& _flow, bool _constzero ) :
    1.85 +      G(_G), s(_s), t(_t), capacity(_capacity), flow(_flow), constzero(_constzero) {}
    1.86 +    
    1.87 +    
    1.88 +    void run() {
    1.89 +
    1.90 +      ResGW res_graph(G, capacity, flow);
    1.91 +
    1.92 +      value=0;                //for the subsequent runs
    1.93 +
    1.94 +      bool phase=0;        //phase 0 is the 1st phase, phase 1 is the 2nd
    1.95 +      int n=G.nodeNum(); 
    1.96 +      int heur0=(int)(H0*n);  //time while running 'bound decrease' 
    1.97 +      int heur1=(int)(H1*n);  //time while running 'highest label'
    1.98 +      int heur=heur1;         //starting time interval (#of relabels)
    1.99 +      bool what_heur=1;       
   1.100 +      /*
   1.101 +	what_heur is 0 in case 'bound decrease' 
   1.102 +	and 1 in case 'highest label'
   1.103 +      */
   1.104 +      bool end=false;     
   1.105 +      /*
   1.106 +	Needed for 'bound decrease', 'true'
   1.107 +	means no active nodes are above bound b.
   1.108 +      */
   1.109 +      int relabel=0;
   1.110 +      int k=n-2;  //bound on the highest level under n containing a node
   1.111 +      int b=k;    //bound on the highest level under n of an active node
   1.112 +      
   1.113 +      typename Graph::NodeMap<int> level(G,n);      
   1.114 +      typename Graph::NodeMap<T> excess(G); 
   1.115 +
   1.116 +      std::vector<Node> active(n-1,INVALID);
   1.117 +      typename Graph::NodeMap<Node> next(G,INVALID);
   1.118 +      //Stack of the active nodes in level i < n.
   1.119 +      //We use it in both phases.
   1.120 +
   1.121 +      typename Graph::NodeMap<Node> left(G,INVALID);
   1.122 +      typename Graph::NodeMap<Node> right(G,INVALID);
   1.123 +      std::vector<Node> level_list(n,INVALID);
   1.124 +      /*
   1.125 +	List of the nodes in level i<n.
   1.126 +      */
   1.127 +
   1.128 +
   1.129 +      if ( constzero ) {
   1.130 +     
   1.131 +	/*Reverse_bfs from t, to find the starting level.*/
   1.132 +	level.set(t,0);
   1.133 +	std::queue<Node> bfs_queue;
   1.134 +	bfs_queue.push(t);
   1.135 +	
   1.136 +	while (!bfs_queue.empty()) {
   1.137 +	  
   1.138 +	  Node v=bfs_queue.front();	
   1.139 +	  bfs_queue.pop();
   1.140 +	  int l=level[v]+1;
   1.141 +	  
   1.142 +	  InEdgeIt e;
   1.143 +	  for(G.first(e,v); G.valid(e); G.next(e)) {
   1.144 +	    Node w=G.tail(e);
   1.145 +	    if ( level[w] == n && w != s ) {
   1.146 +	      bfs_queue.push(w);
   1.147 +	      Node first=level_list[l];
   1.148 +	      if ( G.valid(first) ) left.set(first,w);
   1.149 +	      right.set(w,first);
   1.150 +	      level_list[l]=w;
   1.151 +	      level.set(w, l);
   1.152 +	    }
   1.153 +	  }
   1.154 +	}
   1.155 +
   1.156 +	//the starting flow
   1.157 +	OutEdgeIt e;
   1.158 +	for(G.first(e,s); G.valid(e); G.next(e)) 
   1.159 +	{
   1.160 +	  T c=capacity[e];
   1.161 +	  if ( c == 0 ) continue;
   1.162 +	  Node w=G.head(e);
   1.163 +	  if ( level[w] < n ) {	  
   1.164 +	    if ( excess[w] == 0 && w!=t ) {
   1.165 +	      next.set(w,active[level[w]]);
   1.166 +	      active[level[w]]=w;
   1.167 +	    }
   1.168 +	    flow.set(e, c); 
   1.169 +	    excess.set(w, excess[w]+c);
   1.170 +	  }
   1.171 +	}
   1.172 +      }
   1.173 +      else 
   1.174 +      {
   1.175 +	
   1.176 +	/*
   1.177 +	  Reverse_bfs from t in the residual graph, 
   1.178 +	  to find the starting level.
   1.179 +	*/
   1.180 +	level.set(t,0);
   1.181 +	std::queue<Node> bfs_queue;
   1.182 +	bfs_queue.push(t);
   1.183 +	
   1.184 +	while (!bfs_queue.empty()) {
   1.185 +	  
   1.186 +	  Node v=bfs_queue.front();	
   1.187 +	  bfs_queue.pop();
   1.188 +	  int l=level[v]+1;
   1.189 +	  
   1.190 +	  InEdgeIt e;
   1.191 +	  for(G.first(e,v); G.valid(e); G.next(e)) {
   1.192 +	    if ( capacity[e] == flow[e] ) continue;
   1.193 +	    Node w=G.tail(e);
   1.194 +	    if ( level[w] == n && w != s ) {
   1.195 +	      bfs_queue.push(w);
   1.196 +	      Node first=level_list[l];
   1.197 +	      if ( G.valid(first) ) left.set(first,w);
   1.198 +	      right.set(w,first);
   1.199 +	      level_list[l]=w;
   1.200 +	      level.set(w, l);
   1.201 +	    }
   1.202 +	  }
   1.203 +	    
   1.204 +	  OutEdgeIt f;
   1.205 +	  for(G.first(f,v); G.valid(f); G.next(f)) {
   1.206 +	    if ( 0 == flow[f] ) continue;
   1.207 +	    Node w=G.head(f);
   1.208 +	    if ( level[w] == n && w != s ) {
   1.209 +	      bfs_queue.push(w);
   1.210 +	      Node first=level_list[l];
   1.211 +	      if ( G.valid(first) ) left.set(first,w);
   1.212 +	      right.set(w,first);
   1.213 +	      level_list[l]=w;
   1.214 +	      level.set(w, l);
   1.215 +	    }
   1.216 +	    }
   1.217 +	}
   1.218 +      
   1.219 +	
   1.220 +	/*
   1.221 +	  Counting the excess
   1.222 +	*/
   1.223 +	NodeIt v;
   1.224 +	for(G.first(v); G.valid(v); G.next(v)) {
   1.225 +	  T exc=0;
   1.226 +
   1.227 +	  InEdgeIt e;
   1.228 +	  for(G.first(e,v); G.valid(e); G.next(e)) exc+=flow[e];
   1.229 +	  OutEdgeIt f;
   1.230 +	  for(G.first(f,v); G.valid(f); G.next(f)) exc-=flow[e];
   1.231 +
   1.232 +	  excess.set(v,exc);	  
   1.233 +
   1.234 +	  //putting the active nodes into the stack
   1.235 +	  int lev=level[v];
   1.236 +	  if ( exc > 0 && lev < n ) {
   1.237 +	    next.set(v,active[lev]);
   1.238 +	    active[lev]=v;
   1.239 +	  }
   1.240 +	}
   1.241 +
   1.242 +
   1.243 +	//the starting flow
   1.244 +	OutEdgeIt e;
   1.245 +	for(G.first(e,s); G.valid(e); G.next(e)) 
   1.246 +	{
   1.247 +	  T rem=capacity[e]-flow[e];
   1.248 +	  if ( rem == 0 ) continue;
   1.249 +	  Node w=G.head(e);
   1.250 +	  if ( level[w] < n ) {	  
   1.251 +	    if ( excess[w] == 0 && w!=t ) {
   1.252 +	      next.set(w,active[level[w]]);
   1.253 +	      active[level[w]]=w;
   1.254 +	    }
   1.255 +	    flow.set(e, capacity[e]); 
   1.256 +	    excess.set(w, excess[w]+rem);
   1.257 +	  }
   1.258 +	}
   1.259 +	
   1.260 +	InEdgeIt f;
   1.261 +	for(G.first(f,s); G.valid(f); G.next(f)) 
   1.262 +	{
   1.263 +	  if ( flow[f] == 0 ) continue;
   1.264 +	  Node w=G.head(f);
   1.265 +	  if ( level[w] < n ) {	  
   1.266 +	    if ( excess[w] == 0 && w!=t ) {
   1.267 +	      next.set(w,active[level[w]]);
   1.268 +	      active[level[w]]=w;
   1.269 +	    }
   1.270 +	    excess.set(w, excess[w]+flow[f]);
   1.271 +	    flow.set(f, 0); 
   1.272 +	  }
   1.273 +	}
   1.274 +      }
   1.275 +
   1.276 +
   1.277 +
   1.278 +
   1.279 +      /* 
   1.280 +	 End of preprocessing 
   1.281 +      */
   1.282 +
   1.283 +
   1.284 +
   1.285 +      /*
   1.286 +	Push/relabel on the highest level active nodes.
   1.287 +      */	
   1.288 +      while ( true ) {
   1.289 +	
   1.290 +	if ( b == 0 ) {
   1.291 +	  if ( phase ) break;
   1.292 +	  
   1.293 +	  if ( !what_heur && !end && k > 0 ) {
   1.294 +	    b=k;
   1.295 +	    end=true;
   1.296 +	  } else {
   1.297 +	    phase=1;
   1.298 +	    level.set(s,0);
   1.299 +	    std::queue<Node> bfs_queue;
   1.300 +	    bfs_queue.push(s);
   1.301 +	    
   1.302 +	    while (!bfs_queue.empty()) {
   1.303 +	      
   1.304 +	      Node v=bfs_queue.front();	
   1.305 +	      bfs_queue.pop();
   1.306 +	      int l=level[v]+1;
   1.307 +	      
   1.308 +	      ResInEdgeIt e;
   1.309 +	      for(res_graph.first(e,s); res_graph.valid(e); 
   1.310 +		  res_graph.next(e)) {
   1.311 +		Node u=res_graph.tail(e);
   1.312 +		if ( level[u] >= n ) { 
   1.313 +		  bfs_queue.push(u);
   1.314 +		  level.set(u, l);
   1.315 +		  if ( excess[u] > 0 ) {
   1.316 +		    next.set(u,active[l]);
   1.317 +		    active[l]=u;
   1.318 +		  }
   1.319 +		}
   1.320 +	      }
   1.321 +	      /*	      InEdgeIt e;
   1.322 +	      for(G.first(e,v); G.valid(e); G.next(e)) {
   1.323 +		if ( capacity[e] == flow[e] ) continue;
   1.324 +		Node u=G.tail(e);
   1.325 +		if ( level[u] >= n ) { 
   1.326 +		  bfs_queue.push(u);
   1.327 +		  level.set(u, l);
   1.328 +		  if ( excess[u] > 0 ) {
   1.329 +		    next.set(u,active[l]);
   1.330 +		    active[l]=u;
   1.331 +		  }
   1.332 +		}
   1.333 +	      }
   1.334 +	    
   1.335 +	      OutEdgeIt f;
   1.336 +	      for(G.first(f,v); G.valid(f); G.next(f)) {
   1.337 +		if ( 0 == flow[f] ) continue;
   1.338 +		Node u=G.head(f);
   1.339 +		if ( level[u] >= n ) { 
   1.340 +		  bfs_queue.push(u);
   1.341 +		  level.set(u, l);
   1.342 +		  if ( excess[u] > 0 ) {
   1.343 +		    next.set(u,active[l]);
   1.344 +		    active[l]=u;
   1.345 +		  }
   1.346 +		}
   1.347 +		}*/
   1.348 +	    }
   1.349 +	    b=n-2;
   1.350 +	    }
   1.351 +	    
   1.352 +	}
   1.353 +	  
   1.354 +	  
   1.355 +	if ( !G.valid(active[b]) ) --b; 
   1.356 +	else {
   1.357 +	  end=false;  
   1.358 +
   1.359 +	  Node w=active[b];
   1.360 +	  active[b]=next[w];
   1.361 +	  int lev=level[w];
   1.362 +	  T exc=excess[w];
   1.363 +	  int newlevel=n;       //bound on the next level of w
   1.364 +	  
   1.365 +	  OutEdgeIt e;
   1.366 +	  for(G.first(e,w); G.valid(e); G.next(e)) {
   1.367 +	    
   1.368 +	    if ( flow[e] == capacity[e] ) continue; 
   1.369 +	    Node v=G.head(e);            
   1.370 +	    //e=wv	    
   1.371 +	    
   1.372 +	    if( lev > level[v] ) {      
   1.373 +	      /*Push is allowed now*/
   1.374 +	      
   1.375 +	      if ( excess[v]==0 && v!=t && v!=s ) {
   1.376 +		int lev_v=level[v];
   1.377 +		next.set(v,active[lev_v]);
   1.378 +		active[lev_v]=v;
   1.379 +	      }
   1.380 +	      
   1.381 +	      T cap=capacity[e];
   1.382 +	      T flo=flow[e];
   1.383 +	      T remcap=cap-flo;
   1.384 +	      
   1.385 +	      if ( remcap >= exc ) {       
   1.386 +		/*A nonsaturating push.*/
   1.387 +		
   1.388 +		flow.set(e, flo+exc);
   1.389 +		excess.set(v, excess[v]+exc);
   1.390 +		exc=0;
   1.391 +		break; 
   1.392 +		
   1.393 +	      } else { 
   1.394 +		/*A saturating push.*/
   1.395 +		
   1.396 +		flow.set(e, cap);
   1.397 +		excess.set(v, excess[v]+remcap);
   1.398 +		exc-=remcap;
   1.399 +	      }
   1.400 +	    } else if ( newlevel > level[v] ){
   1.401 +	      newlevel = level[v];
   1.402 +	    }	    
   1.403 +	    
   1.404 +	  } //for out edges wv 
   1.405 +	
   1.406 +	
   1.407 +	if ( exc > 0 ) {	
   1.408 +	  InEdgeIt e;
   1.409 +	  for(G.first(e,w); G.valid(e); G.next(e)) {
   1.410 +	    
   1.411 +	    if( flow[e] == 0 ) continue; 
   1.412 +	    Node v=G.tail(e);  
   1.413 +	    //e=vw
   1.414 +	    
   1.415 +	    if( lev > level[v] ) {  
   1.416 +	      /*Push is allowed now*/
   1.417 +	      
   1.418 +	      if ( excess[v]==0 && v!=t && v!=s ) {
   1.419 +		int lev_v=level[v];
   1.420 +		next.set(v,active[lev_v]);
   1.421 +		active[lev_v]=v;
   1.422 +	      }
   1.423 +	      
   1.424 +	      T flo=flow[e];
   1.425 +	      
   1.426 +	      if ( flo >= exc ) { 
   1.427 +		/*A nonsaturating push.*/
   1.428 +		
   1.429 +		flow.set(e, flo-exc);
   1.430 +		excess.set(v, excess[v]+exc);
   1.431 +		exc=0;
   1.432 +		break; 
   1.433 +	      } else {                                               
   1.434 +		/*A saturating push.*/
   1.435 +		
   1.436 +		excess.set(v, excess[v]+flo);
   1.437 +		exc-=flo;
   1.438 +		flow.set(e,0);
   1.439 +	      }  
   1.440 +	    } else if ( newlevel > level[v] ) {
   1.441 +	      newlevel = level[v];
   1.442 +	    }	    
   1.443 +	  } //for in edges vw
   1.444 +	  
   1.445 +	} // if w still has excess after the out edge for cycle
   1.446 +	
   1.447 +	excess.set(w, exc);
   1.448 +	 
   1.449 +	/*
   1.450 +	  Relabel
   1.451 +	*/
   1.452 +	
   1.453 +
   1.454 +	if ( exc > 0 ) {
   1.455 +	  //now 'lev' is the old level of w
   1.456 +	
   1.457 +	  if ( phase ) {
   1.458 +	    level.set(w,++newlevel);
   1.459 +	    next.set(w,active[newlevel]);
   1.460 +	    active[newlevel]=w;
   1.461 +	    b=newlevel;
   1.462 +	  } else {
   1.463 +	    //unlacing starts
   1.464 +	    Node right_n=right[w];
   1.465 +	    Node left_n=left[w];
   1.466 +
   1.467 +	    if ( G.valid(right_n) ) {
   1.468 +	      if ( G.valid(left_n) ) {
   1.469 +		right.set(left_n, right_n);
   1.470 +		left.set(right_n, left_n);
   1.471 +	      } else {
   1.472 +		level_list[lev]=right_n;   
   1.473 +		left.set(right_n, INVALID);
   1.474 +	      } 
   1.475 +	    } else {
   1.476 +	      if ( G.valid(left_n) ) {
   1.477 +		right.set(left_n, INVALID);
   1.478 +	      } else { 
   1.479 +		level_list[lev]=INVALID;   
   1.480 +	      } 
   1.481 +	    } 
   1.482 +	    //unlacing ends
   1.483 +		
   1.484 +	    if ( !G.valid(level_list[lev]) ) {
   1.485 +	      
   1.486 +	       //gapping starts
   1.487 +	      for (int i=lev; i!=k ; ) {
   1.488 +		Node v=level_list[++i];
   1.489 +		while ( G.valid(v) ) {
   1.490 +		  level.set(v,n);
   1.491 +		  v=right[v];
   1.492 +		}
   1.493 +		level_list[i]=INVALID;
   1.494 +		if ( !what_heur ) active[i]=INVALID;
   1.495 +	      }	     
   1.496 +
   1.497 +	      level.set(w,n);
   1.498 +	      b=lev-1;
   1.499 +	      k=b;
   1.500 +	      //gapping ends
   1.501 +	    
   1.502 +	    } else {
   1.503 +	      
   1.504 +	      if ( newlevel == n ) level.set(w,n); 
   1.505 +	      else {
   1.506 +		level.set(w,++newlevel);
   1.507 +		next.set(w,active[newlevel]);
   1.508 +		active[newlevel]=w;
   1.509 +		if ( what_heur ) b=newlevel;
   1.510 +		if ( k < newlevel ) ++k;      //now k=newlevel
   1.511 +		Node first=level_list[newlevel];
   1.512 +		if ( G.valid(first) ) left.set(first,w);
   1.513 +		right.set(w,first);
   1.514 +		left.set(w,INVALID);
   1.515 +		level_list[newlevel]=w;
   1.516 +	      }
   1.517 +	    }
   1.518 +
   1.519 +
   1.520 +	    ++relabel; 
   1.521 +	    if ( relabel >= heur ) {
   1.522 +	      relabel=0;
   1.523 +	      if ( what_heur ) {
   1.524 +		what_heur=0;
   1.525 +		heur=heur0;
   1.526 +		end=false;
   1.527 +	      } else {
   1.528 +		what_heur=1;
   1.529 +		heur=heur1;
   1.530 +		b=k; 
   1.531 +	      }
   1.532 +	    }
   1.533 +	  } //phase 0
   1.534 +	  
   1.535 +	  
   1.536 +	} // if ( exc > 0 )
   1.537 +	  
   1.538 +	
   1.539 +	}  // if stack[b] is nonempty
   1.540 +	
   1.541 +      } // while(true)
   1.542 +
   1.543 +
   1.544 +      value = excess[t];
   1.545 +      /*Max flow value.*/
   1.546 +     
   1.547 +    } //void run()
   1.548 +
   1.549 +
   1.550 +
   1.551 +
   1.552 +
   1.553 +    /*
   1.554 +      Returns the maximum value of a flow.
   1.555 +     */
   1.556 +
   1.557 +    T flowValue() {
   1.558 +      return value;
   1.559 +    }
   1.560 +
   1.561 +
   1.562 +    FlowMap Flow() {
   1.563 +      return flow;
   1.564 +      }
   1.565 +
   1.566 +
   1.567 +    
   1.568 +    void Flow(FlowMap& _flow ) {
   1.569 +      NodeIt v;
   1.570 +      for(G.first(v) ; G.valid(v); G.next(v))
   1.571 +	_flow.set(v,flow[v]);
   1.572 +    }
   1.573 +
   1.574 +
   1.575 +
   1.576 +    /*
   1.577 +      Returns the minimum min cut, by a bfs from s in the residual graph.
   1.578 +    */
   1.579 +   
   1.580 +    template<typename _CutMap>
   1.581 +    void minMinCut(_CutMap& M) {
   1.582 +    
   1.583 +      std::queue<Node> queue;
   1.584 +      
   1.585 +      M.set(s,true);      
   1.586 +      queue.push(s);
   1.587 +
   1.588 +      while (!queue.empty()) {
   1.589 +        Node w=queue.front();
   1.590 +	queue.pop();
   1.591 +
   1.592 +	OutEdgeIt e;
   1.593 +	for(G.first(e,w) ; G.valid(e); G.next(e)) {
   1.594 +	  Node v=G.head(e);
   1.595 +	  if (!M[v] && flow[e] < capacity[e] ) {
   1.596 +	    queue.push(v);
   1.597 +	    M.set(v, true);
   1.598 +	  }
   1.599 +	} 
   1.600 +
   1.601 +	InEdgeIt f;
   1.602 +	for(G.first(f,w) ; G.valid(f); G.next(f)) {
   1.603 +	  Node v=G.tail(f);
   1.604 +	  if (!M[v] && flow[f] > 0 ) {
   1.605 +	    queue.push(v);
   1.606 +	    M.set(v, true);
   1.607 +	  }
   1.608 +	} 
   1.609 +      }
   1.610 +    }
   1.611 +
   1.612 +
   1.613 +  
   1.614 +    /*
   1.615 +      Returns the maximum min cut, by a reverse bfs 
   1.616 +      from t in the residual graph.
   1.617 +    */
   1.618 +    
   1.619 +    template<typename _CutMap>
   1.620 +    void maxMinCut(_CutMap& M) {
   1.621 +    
   1.622 +      std::queue<Node> queue;
   1.623 +      
   1.624 +      M.set(t,true);        
   1.625 +      queue.push(t);
   1.626 +
   1.627 +      while (!queue.empty()) {
   1.628 +        Node w=queue.front();
   1.629 +	queue.pop();
   1.630 +
   1.631 +
   1.632 +	InEdgeIt e;
   1.633 +	for(G.first(e,w) ; G.valid(e); G.next(e)) {
   1.634 +	  Node v=G.tail(e);
   1.635 +	  if (!M[v] && flow[e] < capacity[e] ) {
   1.636 +	    queue.push(v);
   1.637 +	    M.set(v, true);
   1.638 +	  }
   1.639 +	}
   1.640 +	
   1.641 +	OutEdgeIt f;
   1.642 +	for(G.first(f,w) ; G.valid(f); G.next(f)) {
   1.643 +	  Node v=G.head(f);
   1.644 +	  if (!M[v] && flow[f] > 0 ) {
   1.645 +	    queue.push(v);
   1.646 +	    M.set(v, true);
   1.647 +	  }
   1.648 +	}
   1.649 +      }
   1.650 +
   1.651 +      NodeIt v;
   1.652 +      for(G.first(v) ; G.valid(v); G.next(v)) {
   1.653 +	M.set(v, !M[v]);
   1.654 +      }
   1.655 +
   1.656 +    }
   1.657 +
   1.658 +
   1.659 +
   1.660 +    template<typename CutMap>
   1.661 +    void minCut(CutMap& M) {
   1.662 +      minMinCut(M);
   1.663 +    }
   1.664 +
   1.665 +    
   1.666 +    void reset_target (Node _t) {t=_t;}
   1.667 +    void reset_source (Node _s) {s=_s;}
   1.668 +   
   1.669 +    template<typename _CapMap>   
   1.670 +    void reset_cap (_CapMap _cap) {capacity=_cap;}
   1.671 +
   1.672 +    template<typename _FlowMap>   
   1.673 +    void reset_cap (_FlowMap _flow, bool _constzero) {
   1.674 +      flow=_flow;
   1.675 +      constzero=_constzero;
   1.676 +    }
   1.677 +
   1.678 +
   1.679 +
   1.680 +  };
   1.681 +
   1.682 +} //namespace hugo
   1.683 +
   1.684 +#endif //PREFLOW_H
   1.685 +
   1.686 +
   1.687 +
   1.688 +