Moved things into the include (hugo) directory.
authorathos
Tue, 11 May 2004 15:44:58 +0000
changeset 60884b04b70ad89
parent 607 327f7cf13843
child 609 0566ac97809b
Moved things into the include (hugo) directory.
src/work/athos/mincostflows.h
src/work/athos/minlengthpaths.h
src/work/athos/minlengthpaths_test.cc
     1.1 --- a/src/work/athos/mincostflows.h	Tue May 11 15:42:11 2004 +0000
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,254 +0,0 @@
     1.4 -// -*- c++ -*-
     1.5 -#ifndef HUGO_MINCOSTFLOWS_H
     1.6 -#define HUGO_MINCOSTFLOWS_H
     1.7 -
     1.8 -///\ingroup galgs
     1.9 -///\file
    1.10 -///\brief An algorithm for finding a flow of value \c k (for small values of \c k) having minimal total cost 
    1.11 -
    1.12 -#include <iostream>
    1.13 -#include <hugo/dijkstra.h>
    1.14 -#include <hugo/graph_wrapper.h>
    1.15 -#include <hugo/maps.h>
    1.16 -#include <vector>
    1.17 -#include <for_each_macros.h>
    1.18 -
    1.19 -namespace hugo {
    1.20 -
    1.21 -/// \addtogroup galgs
    1.22 -/// @{
    1.23 -
    1.24 -  ///\brief Implementation of an algorithm for finding a flow of value \c k 
    1.25 -  ///(for small values of \c k) having minimal total cost between 2 nodes 
    1.26 -  /// 
    1.27 -  ///
    1.28 -  /// The class \ref hugo::MinCostFlows "MinCostFlows" implements
    1.29 -  /// an algorithm for finding a flow of value \c k 
    1.30 -  ///(for small values of \c k) having minimal total cost  
    1.31 -  /// from a given source node to a given target node in an
    1.32 -  /// edge-weighted directed graph having nonnegative integer capacities.
    1.33 -  /// The range of the length (weight) function is nonnegative reals but 
    1.34 -  /// the range of capacity function is the set of nonnegative integers. 
    1.35 -  /// It is not a polinomial time algorithm for counting the minimum cost
    1.36 -  /// maximal flow, since it counts the minimum cost flow for every value 0..M
    1.37 -  /// where \c M is the value of the maximal flow.
    1.38 -  ///
    1.39 -  ///\author Attila Bernath
    1.40 -  template <typename Graph, typename LengthMap, typename CapacityMap>
    1.41 -  class MinCostFlows {
    1.42 -
    1.43 -    typedef typename LengthMap::ValueType Length;
    1.44 -
    1.45 -    //Warning: this should be integer type
    1.46 -    typedef typename CapacityMap::ValueType Capacity;
    1.47 -    
    1.48 -    typedef typename Graph::Node Node;
    1.49 -    typedef typename Graph::NodeIt NodeIt;
    1.50 -    typedef typename Graph::Edge Edge;
    1.51 -    typedef typename Graph::OutEdgeIt OutEdgeIt;
    1.52 -    typedef typename Graph::template EdgeMap<int> EdgeIntMap;
    1.53 -
    1.54 -    //    typedef ConstMap<Edge,int> ConstMap;
    1.55 -
    1.56 -    typedef ResGraphWrapper<const Graph,int,CapacityMap,EdgeIntMap> ResGraphType;
    1.57 -    typedef typename ResGraphType::Edge ResGraphEdge;
    1.58 -
    1.59 -    class ModLengthMap {   
    1.60 -      //typedef typename ResGraphType::template NodeMap<Length> NodeMap;
    1.61 -      typedef typename Graph::template NodeMap<Length> NodeMap;
    1.62 -      const ResGraphType& G;
    1.63 -      //      const EdgeIntMap& rev;
    1.64 -      const LengthMap &ol;
    1.65 -      const NodeMap &pot;
    1.66 -    public :
    1.67 -      typedef typename LengthMap::KeyType KeyType;
    1.68 -      typedef typename LengthMap::ValueType ValueType;
    1.69 -	
    1.70 -      ValueType operator[](typename ResGraphType::Edge e) const {     
    1.71 -	if (G.forward(e))
    1.72 -	  return  ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
    1.73 -	else
    1.74 -	  return -ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
    1.75 -      }     
    1.76 -	
    1.77 -      ModLengthMap(const ResGraphType& _G,
    1.78 -		   const LengthMap &o,  const NodeMap &p) : 
    1.79 -	G(_G), /*rev(_rev),*/ ol(o), pot(p){}; 
    1.80 -    };//ModLengthMap
    1.81 -
    1.82 -
    1.83 -  protected:
    1.84 -    
    1.85 -    //Input
    1.86 -    const Graph& G;
    1.87 -    const LengthMap& length;
    1.88 -    const CapacityMap& capacity;
    1.89 -
    1.90 -
    1.91 -    //auxiliary variables
    1.92 -
    1.93 -    //To store the flow
    1.94 -    EdgeIntMap flow; 
    1.95 -    //To store the potentila (dual variables)
    1.96 -    typename Graph::template NodeMap<Length> potential;
    1.97 -    
    1.98 -    //Container to store found paths
    1.99 -    //std::vector< std::vector<Edge> > paths;
   1.100 -    //typedef DirPath<Graph> DPath;
   1.101 -    //DPath paths;
   1.102 -
   1.103 -
   1.104 -    Length total_length;
   1.105 -
   1.106 -
   1.107 -  public :
   1.108 -
   1.109 -
   1.110 -    MinCostFlows(Graph& _G, LengthMap& _length, CapacityMap& _cap) : G(_G), 
   1.111 -      length(_length), capacity(_cap), flow(_G), potential(_G){ }
   1.112 -
   1.113 -    
   1.114 -    ///Runs the algorithm.
   1.115 -
   1.116 -    ///Runs the algorithm.
   1.117 -    ///Returns k if there are at least k edge-disjoint paths from s to t.
   1.118 -    ///Otherwise it returns the number of found edge-disjoint paths from s to t.
   1.119 -    ///\todo May be it does make sense to be able to start with a nonzero 
   1.120 -    /// feasible primal-dual solution pair as well.
   1.121 -    int run(Node s, Node t, int k) {
   1.122 -
   1.123 -      //Resetting variables from previous runs
   1.124 -      total_length = 0;
   1.125 -      
   1.126 -      FOR_EACH_LOC(typename Graph::EdgeIt, e, G){
   1.127 -	flow.set(e,0);
   1.128 -      }
   1.129 -      
   1.130 -      FOR_EACH_LOC(typename Graph::NodeIt, n, G){
   1.131 -	//cout << potential[n]<<endl;
   1.132 -	potential.set(n,0);
   1.133 -      }
   1.134 -      
   1.135 -
   1.136 -      
   1.137 -      //We need a residual graph
   1.138 -      ResGraphType res_graph(G, capacity, flow);
   1.139 -
   1.140 -      //Initialize the copy of the Dijkstra potential to zero
   1.141 -      
   1.142 -      //typename ResGraphType::template NodeMap<Length> potential(res_graph);
   1.143 -
   1.144 -
   1.145 -      ModLengthMap mod_length(res_graph, length, potential);
   1.146 -
   1.147 -      Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length);
   1.148 -
   1.149 -      int i;
   1.150 -      for (i=0; i<k; ++i){
   1.151 -	dijkstra.run(s);
   1.152 -	if (!dijkstra.reached(t)){
   1.153 -	  //There are no k paths from s to t
   1.154 -	  break;
   1.155 -	};
   1.156 -	
   1.157 -	{
   1.158 -	  //We have to copy the potential
   1.159 -	  typename ResGraphType::NodeIt n;
   1.160 -	  for ( res_graph.first(n) ; res_graph.valid(n) ; res_graph.next(n) ) {
   1.161 -	      potential[n] += dijkstra.distMap()[n];
   1.162 -	  }
   1.163 -	}
   1.164 -
   1.165 -
   1.166 -	//Augmenting on the sortest path
   1.167 -	Node n=t;
   1.168 -	ResGraphEdge e;
   1.169 -	while (n!=s){
   1.170 -	  e = dijkstra.pred(n);
   1.171 -	  n = dijkstra.predNode(n);
   1.172 -	  res_graph.augment(e,1);
   1.173 -	  //Let's update the total length
   1.174 -	  if (res_graph.forward(e))
   1.175 -	    total_length += length[e];
   1.176 -	  else 
   1.177 -	    total_length -= length[e];	    
   1.178 -	}
   1.179 -
   1.180 -	  
   1.181 -      }
   1.182 -      
   1.183 -
   1.184 -      return i;
   1.185 -    }
   1.186 -
   1.187 -
   1.188 -
   1.189 -
   1.190 -    ///This function gives back the total length of the found paths.
   1.191 -    ///Assumes that \c run() has been run and nothing changed since then.
   1.192 -    Length totalLength(){
   1.193 -      return total_length;
   1.194 -    }
   1.195 -
   1.196 -    ///Returns a const reference to the EdgeMap \c flow. \pre \ref run() must
   1.197 -    ///be called before using this function.
   1.198 -    const EdgeIntMap &getFlow() const { return flow;}
   1.199 -
   1.200 -  ///Returns a const reference to the NodeMap \c potential (the dual solution).
   1.201 -    /// \pre \ref run() must be called before using this function.
   1.202 -    const EdgeIntMap &getPotential() const { return potential;}
   1.203 -
   1.204 -    ///This function checks, whether the given solution is optimal
   1.205 -    ///Running after a \c run() should return with true
   1.206 -    ///In this "state of the art" this only check optimality, doesn't bother with feasibility
   1.207 -    ///
   1.208 -    ///\todo Is this OK here?
   1.209 -    bool checkComplementarySlackness(){
   1.210 -      Length mod_pot;
   1.211 -      Length fl_e;
   1.212 -      FOR_EACH_LOC(typename Graph::EdgeIt, e, G){
   1.213 -	//C^{\Pi}_{i,j}
   1.214 -	mod_pot = length[e]-potential[G.head(e)]+potential[G.tail(e)];
   1.215 -	fl_e = flow[e];
   1.216 -	//	std::cout << fl_e << std::endl;
   1.217 -	if (0<fl_e && fl_e<capacity[e]){
   1.218 -	  if (mod_pot != 0)
   1.219 -	    return false;
   1.220 -	}
   1.221 -	else{
   1.222 -	  if (mod_pot > 0 && fl_e != 0)
   1.223 -	    return false;
   1.224 -	  if (mod_pot < 0 && fl_e != capacity[e])
   1.225 -	    return false;
   1.226 -	}
   1.227 -      }
   1.228 -      return true;
   1.229 -    }
   1.230 -    
   1.231 -    /*
   1.232 -      ///\todo To be implemented later
   1.233 -
   1.234 -    ///This function gives back the \c j-th path in argument p.
   1.235 -    ///Assumes that \c run() has been run and nothing changed since then.
   1.236 -    /// \warning It is assumed that \c p is constructed to be a path of graph \c G. If \c j is greater than the result of previous \c run, then the result here will be an empty path.
   1.237 -    template<typename DirPath>
   1.238 -    void getPath(DirPath& p, int j){
   1.239 -      p.clear();
   1.240 -      typename DirPath::Builder B(p);
   1.241 -      for(typename std::vector<Edge>::iterator i=paths[j].begin(); 
   1.242 -	  i!=paths[j].end(); ++i ){
   1.243 -	B.pushBack(*i);
   1.244 -      }
   1.245 -
   1.246 -      B.commit();
   1.247 -    }
   1.248 -
   1.249 -    */
   1.250 -
   1.251 -  }; //class MinCostFlows
   1.252 -
   1.253 -  ///@}
   1.254 -
   1.255 -} //namespace hugo
   1.256 -
   1.257 -#endif //HUGO_MINCOSTFLOW_H
     2.1 --- a/src/work/athos/minlengthpaths.h	Tue May 11 15:42:11 2004 +0000
     2.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     2.3 @@ -1,164 +0,0 @@
     2.4 -// -*- c++ -*-
     2.5 -#ifndef HUGO_MINLENGTHPATHS_H
     2.6 -#define HUGO_MINLENGTHPATHS_H
     2.7 -
     2.8 -///\ingroup galgs
     2.9 -///\file
    2.10 -///\brief An algorithm for finding k paths of minimal total length.
    2.11 -
    2.12 -#include <iostream>
    2.13 -//#include <hugo/dijkstra.h>
    2.14 -//#include <hugo/graph_wrapper.h>
    2.15 -#include <hugo/maps.h>
    2.16 -#include <vector>
    2.17 -#include <mincostflows.h>
    2.18 -#include <for_each_macros.h>
    2.19 -
    2.20 -namespace hugo {
    2.21 -
    2.22 -/// \addtogroup galgs
    2.23 -/// @{
    2.24 -
    2.25 -  ///\brief Implementation of an algorithm for finding k paths between 2 nodes 
    2.26 -  /// of minimal total length 
    2.27 -  ///
    2.28 -  /// The class \ref hugo::MinLengthPaths "MinLengthPaths" implements
    2.29 -  /// an algorithm for finding k edge-disjoint paths
    2.30 -  /// from a given source node to a given target node in an
    2.31 -  /// edge-weighted directed graph having minimal total weigth (length).
    2.32 -  ///
    2.33 -  ///\warning It is assumed that the lengths are positive, since the
    2.34 -  /// general flow-decomposition is not implemented yet.
    2.35 -  ///
    2.36 -  ///\author Attila Bernath
    2.37 -  template <typename Graph, typename LengthMap>
    2.38 -  class MinLengthPaths{
    2.39 -
    2.40 -
    2.41 -    typedef typename LengthMap::ValueType Length;
    2.42 -    
    2.43 -    typedef typename Graph::Node Node;
    2.44 -    typedef typename Graph::NodeIt NodeIt;
    2.45 -    typedef typename Graph::Edge Edge;
    2.46 -    typedef typename Graph::OutEdgeIt OutEdgeIt;
    2.47 -    typedef typename Graph::template EdgeMap<int> EdgeIntMap;
    2.48 -
    2.49 -    typedef ConstMap<Edge,int> ConstMap;
    2.50 -
    2.51 -    //Input
    2.52 -    const Graph& G;
    2.53 -
    2.54 -    //Auxiliary variables
    2.55 -    //This is the capacity map for the mincostflow problem
    2.56 -    ConstMap const1map;
    2.57 -    //This MinCostFlows instance will actually solve the problem
    2.58 -    MinCostFlows<Graph, LengthMap, ConstMap> mincost_flow;
    2.59 -
    2.60 -    //Container to store found paths
    2.61 -    std::vector< std::vector<Edge> > paths;
    2.62 -
    2.63 -  public :
    2.64 -
    2.65 -
    2.66 -    MinLengthPaths(Graph& _G, LengthMap& _length) : G(_G),
    2.67 -      const1map(1), mincost_flow(_G, _length, const1map){}
    2.68 -
    2.69 -    ///Runs the algorithm.
    2.70 -
    2.71 -    ///Runs the algorithm.
    2.72 -    ///Returns k if there are at least k edge-disjoint paths from s to t.
    2.73 -   ///Otherwise it returns the number of found edge-disjoint paths from s to t.
    2.74 -    int run(Node s, Node t, int k) {
    2.75 -
    2.76 -      int i = mincost_flow.run(s,t,k);
    2.77 -      
    2.78 -
    2.79 -
    2.80 -      //Let's find the paths
    2.81 -      //We put the paths into stl vectors (as an inner representation). 
    2.82 -      //In the meantime we lose the information stored in 'reversed'.
    2.83 -      //We suppose the lengths to be positive now.
    2.84 -
    2.85 -      //We don't want to change the flow of mincost_flow, so we make a copy
    2.86 -      //The name here suggests that the flow has only 0/1 values.
    2.87 -      EdgeIntMap reversed(G); 
    2.88 -
    2.89 -      FOR_EACH_LOC(typename Graph::EdgeIt, e, G){
    2.90 -	reversed[e] = mincost_flow.getFlow()[e];
    2.91 -      }
    2.92 -      
    2.93 -      paths.clear();
    2.94 -      //total_length=0;
    2.95 -      paths.resize(k);
    2.96 -      for (int j=0; j<i; ++j){
    2.97 -	Node n=s;
    2.98 -	OutEdgeIt e;
    2.99 -
   2.100 -	while (n!=t){
   2.101 -
   2.102 -
   2.103 -	  G.first(e,n);
   2.104 -	  
   2.105 -	  while (!reversed[e]){
   2.106 -	    G.next(e);
   2.107 -	  }
   2.108 -	  n = G.head(e);
   2.109 -	  paths[j].push_back(e);
   2.110 -	  //total_length += length[e];
   2.111 -	  reversed[e] = 1-reversed[e];
   2.112 -	}
   2.113 -	
   2.114 -      }
   2.115 -      return i;
   2.116 -    }
   2.117 -
   2.118 -    
   2.119 -    ///This function gives back the total length of the found paths.
   2.120 -    ///Assumes that \c run() has been run and nothing changed since then.
   2.121 -    Length totalLength(){
   2.122 -      return mincost_flow.totalLength();
   2.123 -    }
   2.124 -
   2.125 -    ///Returns a const reference to the EdgeMap \c flow. \pre \ref run() must
   2.126 -    ///be called before using this function.
   2.127 -    const EdgeIntMap &getFlow() const { return mincost_flow.flow;}
   2.128 -
   2.129 -  ///Returns a const reference to the NodeMap \c potential (the dual solution).
   2.130 -    /// \pre \ref run() must be called before using this function.
   2.131 -    const EdgeIntMap &getPotential() const { return mincost_flow.potential;}
   2.132 -
   2.133 -    ///This function checks, whether the given solution is optimal
   2.134 -    ///Running after a \c run() should return with true
   2.135 -    ///In this "state of the art" this only checks optimality, doesn't bother with feasibility
   2.136 -    ///
   2.137 -    ///\todo Is this OK here?
   2.138 -    bool checkComplementarySlackness(){
   2.139 -      return mincost_flow.checkComplementarySlackness();
   2.140 -    }
   2.141 -
   2.142 -    ///This function gives back the \c j-th path in argument p.
   2.143 -    ///Assumes that \c run() has been run and nothing changed since then.
   2.144 -    /// \warning It is assumed that \c p is constructed to be a path of graph \c G. If \c j is not less than the result of previous \c run, then the result here will be an empty path (\c j can be 0 as well).
   2.145 -    template<typename DirPath>
   2.146 -    void getPath(DirPath& p, size_t j){
   2.147 -      
   2.148 -      p.clear();
   2.149 -      if (j>paths.size()-1){
   2.150 -	return;
   2.151 -      }
   2.152 -      typename DirPath::Builder B(p);
   2.153 -      for(typename std::vector<Edge>::iterator i=paths[j].begin(); 
   2.154 -	  i!=paths[j].end(); ++i ){
   2.155 -	B.pushBack(*i);
   2.156 -      }
   2.157 -
   2.158 -      B.commit();
   2.159 -    }
   2.160 -
   2.161 -  }; //class MinLengthPaths
   2.162 -
   2.163 -  ///@}
   2.164 -
   2.165 -} //namespace hugo
   2.166 -
   2.167 -#endif //HUGO_MINLENGTHPATHS_H
     3.1 --- a/src/work/athos/minlengthpaths_test.cc	Tue May 11 15:42:11 2004 +0000
     3.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     3.3 @@ -1,96 +0,0 @@
     3.4 -#include <iostream>
     3.5 -#include <list_graph.h>
     3.6 -#include <minlengthpaths.h>
     3.7 -#include <path.h>
     3.8 -
     3.9 -using namespace std;
    3.10 -using namespace hugo;
    3.11 -
    3.12 -
    3.13 -
    3.14 -bool passed = true;
    3.15 -
    3.16 -void check(bool rc, char *msg="") {
    3.17 -  passed = passed && rc;
    3.18 -  if(!rc) {
    3.19 -    std::cerr << "Test failed! ("<< msg << ")" << std::endl; \
    3.20 - 
    3.21 -
    3.22 -  }
    3.23 -}
    3.24 -
    3.25 -
    3.26 -
    3.27 -int main()
    3.28 -{
    3.29 -
    3.30 -  typedef ListGraph::Node Node;
    3.31 -  typedef ListGraph::Edge Edge;
    3.32 -
    3.33 -  ListGraph graph;
    3.34 -
    3.35 -  //Ahuja könyv példája
    3.36 -
    3.37 -  Node s=graph.addNode();
    3.38 -  Node v1=graph.addNode();  
    3.39 -  Node v2=graph.addNode();
    3.40 -  Node v3=graph.addNode();
    3.41 -  Node v4=graph.addNode();
    3.42 -  Node v5=graph.addNode();
    3.43 -  Node t=graph.addNode();
    3.44 -
    3.45 -  Edge s_v1=graph.addEdge(s, v1);
    3.46 -  Edge v1_v2=graph.addEdge(v1, v2);
    3.47 -  Edge s_v3=graph.addEdge(s, v3);
    3.48 -  Edge v2_v4=graph.addEdge(v2, v4);
    3.49 -  Edge v2_v5=graph.addEdge(v2, v5);
    3.50 -  Edge v3_v5=graph.addEdge(v3, v5);
    3.51 -  Edge v4_t=graph.addEdge(v4, t);
    3.52 -  Edge v5_t=graph.addEdge(v5, t);
    3.53 -  
    3.54 -
    3.55 -  ListGraph::EdgeMap<int> length(graph);
    3.56 -
    3.57 -  length.set(s_v1, 6);
    3.58 -  length.set(v1_v2, 4);
    3.59 -  length.set(s_v3, 10);
    3.60 -  length.set(v2_v4, 5);
    3.61 -  length.set(v2_v5, 1);
    3.62 -  length.set(v3_v5, 5);
    3.63 -  length.set(v4_t, 8);
    3.64 -  length.set(v5_t, 8);
    3.65 -
    3.66 -  std::cout << "Minlengthpaths algorithm test..." << std::endl;
    3.67 -
    3.68 -  
    3.69 -  int k=3;
    3.70 -  MinLengthPaths< ListGraph, ListGraph::EdgeMap<int> >
    3.71 -    surb_test(graph, length);
    3.72 -
    3.73 -  check(  surb_test.run(s,t,k) == 2 && surb_test.totalLength() == 46,"Two paths, total length should be 46");
    3.74 -
    3.75 -  check(  surb_test.checkComplementarySlackness(), "Complementary slackness conditions are not met.");
    3.76 -
    3.77 -  typedef DirPath<ListGraph> DPath;
    3.78 -  DPath P(graph);
    3.79 -
    3.80 -  surb_test.getPath(P,0);
    3.81 -  check(P.length() == 4, "First path should contain 4 edges.");  
    3.82 -
    3.83 -  surb_test.getPath(P,1);
    3.84 -  check(P.length() == 3, "Second path: 3 edges.");
    3.85 -  
    3.86 -  k=1;
    3.87 -  check(  surb_test.run(s,t,k) == 1 && surb_test.totalLength() == 19,"One path, total length should be 19");
    3.88 -
    3.89 -  check(  surb_test.checkComplementarySlackness(), "Complementary slackness conditions are not met.");
    3.90 - 
    3.91 -  surb_test.getPath(P,0);
    3.92 -  check(P.length() == 4, "First path should contain 4 edges.");  
    3.93 -
    3.94 -  cout << (passed ? "All tests passed." : "Some of the tests failed!!!")
    3.95 -       << endl;
    3.96 -
    3.97 -  return passed ? 0 : 1;
    3.98 -
    3.99 -}