preflow.f -> max_flow.h
authormarci
Thu, 29 Apr 2004 16:26:01 +0000
changeset 4788c74de352f80
parent 477 02b8ddcb207a
child 479 82b7894bed0c
preflow.f -> max_flow.h
src/work/jacint/max_flow.h
src/work/jacint/preflow.h
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/work/jacint/max_flow.h	Thu Apr 29 16:26:01 2004 +0000
     1.3 @@ -0,0 +1,1016 @@
     1.4 +// -*- C++ -*-
     1.5 +
     1.6 +/*
     1.7 +Heuristics: 
     1.8 + 2 phase
     1.9 + gap
    1.10 + list 'level_list' on the nodes on level i implemented by hand
    1.11 + stack 'active' on the active nodes on level i
    1.12 + runs heuristic 'highest label' for H1*n relabels
    1.13 + runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
    1.14 + 
    1.15 +Parameters H0 and H1 are initialized to 20 and 1.
    1.16 +
    1.17 +Constructors:
    1.18 +
    1.19 +Preflow(Graph, Node, Node, CapMap, FlowMap, bool) : bool must be false if 
    1.20 +     FlowMap is not constant zero, and should be true if it is
    1.21 +
    1.22 +Members:
    1.23 +
    1.24 +void run()
    1.25 +
    1.26 +Num flowValue() : returns the value of a maximum flow
    1.27 +
    1.28 +void minMinCut(CutMap& M) : sets M to the characteristic vector of the 
    1.29 +     minimum min cut. M should be a map of bools initialized to false. ??Is it OK?
    1.30 +
    1.31 +void maxMinCut(CutMap& M) : sets M to the characteristic vector of the 
    1.32 +     maximum min cut. M should be a map of bools initialized to false.
    1.33 +
    1.34 +void minCut(CutMap& M) : sets M to the characteristic vector of 
    1.35 +     a min cut. M should be a map of bools initialized to false.
    1.36 +
    1.37 +*/
    1.38 +
    1.39 +#ifndef HUGO_PREFLOW_H
    1.40 +#define HUGO_PREFLOW_H
    1.41 +
    1.42 +#define H0 20
    1.43 +#define H1 1
    1.44 +
    1.45 +#include <vector>
    1.46 +#include <queue>
    1.47 +#include <stack>
    1.48 +
    1.49 +#include <graph_wrapper.h>
    1.50 +#include <bfs_iterator.h>
    1.51 +#include <invalid.h>
    1.52 +#include <maps.h>
    1.53 +#include <for_each_macros.h>
    1.54 +
    1.55 +
    1.56 +namespace hugo {
    1.57 +
    1.58 +  template <typename Graph, typename Num, 
    1.59 +	    typename CapMap=typename Graph::template EdgeMap<Num>, 
    1.60 +            typename FlowMap=typename Graph::template EdgeMap<Num> >
    1.61 +  class MaxFlow {
    1.62 +    
    1.63 +    typedef typename Graph::Node Node;
    1.64 +    typedef typename Graph::NodeIt NodeIt;
    1.65 +    typedef typename Graph::OutEdgeIt OutEdgeIt;
    1.66 +    typedef typename Graph::InEdgeIt InEdgeIt;
    1.67 +
    1.68 +    typedef typename std::vector<std::stack<Node> > VecStack;
    1.69 +    typedef typename Graph::template NodeMap<Node> NNMap;
    1.70 +    typedef typename std::vector<Node> VecNode;
    1.71 +
    1.72 +    const Graph* g;
    1.73 +    Node s;
    1.74 +    Node t;
    1.75 +    const CapMap* capacity;  
    1.76 +    FlowMap* flow;
    1.77 +    int n;      //the number of nodes of G
    1.78 +    typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
    1.79 +    typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
    1.80 +    typedef typename ResGW::Edge ResGWEdge;
    1.81 +    //typedef typename ResGW::template NodeMap<bool> ReachedMap;
    1.82 +    typedef typename Graph::template NodeMap<int> ReachedMap;
    1.83 +    ReachedMap level;
    1.84 +    //level works as a bool map in augmenting path algorithms 
    1.85 +    //and is used by bfs for storing reached information.
    1.86 +    //In preflow, it shows levels of nodes.
    1.87 +    //typename Graph::template NodeMap<int> level;    
    1.88 +    typename Graph::template NodeMap<Num> excess; 
    1.89 +
    1.90 +  public:
    1.91 + 
    1.92 +    enum flowEnum{
    1.93 +      ZERO_FLOW=0,
    1.94 +      GEN_FLOW=1,
    1.95 +      PREFLOW=2
    1.96 +    };
    1.97 +
    1.98 +    MaxFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity, 
    1.99 +	    FlowMap& _flow) :
   1.100 +      g(&_G), s(_s), t(_t), capacity(&_capacity), 
   1.101 +      flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0) {}
   1.102 +
   1.103 +    void run() {
   1.104 +      preflow( ZERO_FLOW );
   1.105 +    }
   1.106 +    
   1.107 +    void preflow( flowEnum fe ) {
   1.108 +      preflowPhase0(fe);
   1.109 +      preflowPhase1();
   1.110 +    }
   1.111 +
   1.112 +    void preflowPhase0( flowEnum fe );
   1.113 +
   1.114 +    void preflowPhase1();
   1.115 +
   1.116 +    bool augmentOnShortestPath();
   1.117 +
   1.118 +    template<typename MutableGraph> bool augmentOnBlockingFlow();
   1.119 +
   1.120 +    bool augmentOnBlockingFlow2();
   1.121 +
   1.122 +    /// Returns the actual flow value.
   1.123 +    /// More precisely, it returns the negative excess of s, thus 
   1.124 +    /// this works also for preflows.
   1.125 +    Num flowValue() { 
   1.126 +      Num a=0;
   1.127 +      FOR_EACH_INC_LOC(OutEdgeIt, e, *g, s) a+=(*flow)[e];
   1.128 +      FOR_EACH_INC_LOC(InEdgeIt, e, *g, s) a-=(*flow)[e];
   1.129 +      return a;
   1.130 +    }
   1.131 +
   1.132 +    //should be used only between preflowPhase0 and preflowPhase1
   1.133 +    template<typename _CutMap>
   1.134 +    void actMinCut(_CutMap& M) {
   1.135 +      NodeIt v;
   1.136 +      for(g->first(v); g->valid(v); g->next(v)) 
   1.137 +      if ( level[v] < n ) {
   1.138 +	M.set(v,false);
   1.139 +      } else {
   1.140 +	M.set(v,true);
   1.141 +      }
   1.142 +    }
   1.143 +
   1.144 +
   1.145 +
   1.146 +    /*
   1.147 +      Returns the minimum min cut, by a bfs from s in the residual graph.
   1.148 +    */
   1.149 +    template<typename _CutMap>
   1.150 +    void minMinCut(_CutMap& M) {
   1.151 +    
   1.152 +      std::queue<Node> queue;
   1.153 +      
   1.154 +      M.set(s,true);      
   1.155 +      queue.push(s);
   1.156 +
   1.157 +      while (!queue.empty()) {
   1.158 +        Node w=queue.front();
   1.159 +	queue.pop();
   1.160 +
   1.161 +	OutEdgeIt e;
   1.162 +	for(g->first(e,w) ; g->valid(e); g->next(e)) {
   1.163 +	  Node v=g->head(e);
   1.164 +	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
   1.165 +	    queue.push(v);
   1.166 +	    M.set(v, true);
   1.167 +	  }
   1.168 +	} 
   1.169 +
   1.170 +	InEdgeIt f;
   1.171 +	for(g->first(f,w) ; g->valid(f); g->next(f)) {
   1.172 +	  Node v=g->tail(f);
   1.173 +	  if (!M[v] && (*flow)[f] > 0 ) {
   1.174 +	    queue.push(v);
   1.175 +	    M.set(v, true);
   1.176 +	  }
   1.177 +	} 
   1.178 +      }
   1.179 +    }
   1.180 +
   1.181 +
   1.182 +  
   1.183 +    /*
   1.184 +      Returns the maximum min cut, by a reverse bfs 
   1.185 +      from t in the residual graph.
   1.186 +    */
   1.187 +    
   1.188 +    template<typename _CutMap>
   1.189 +    void maxMinCut(_CutMap& M) {
   1.190 +
   1.191 +      NodeIt v;
   1.192 +      for(g->first(v) ; g->valid(v); g->next(v)) {
   1.193 +	M.set(v, true);
   1.194 +      }
   1.195 +
   1.196 +      std::queue<Node> queue;
   1.197 +      
   1.198 +      M.set(t,false);        
   1.199 +      queue.push(t);
   1.200 +
   1.201 +      while (!queue.empty()) {
   1.202 +        Node w=queue.front();
   1.203 +	queue.pop();
   1.204 +
   1.205 +
   1.206 +	InEdgeIt e;
   1.207 +	for(g->first(e,w) ; g->valid(e); g->next(e)) {
   1.208 +	  Node v=g->tail(e);
   1.209 +	  if (M[v] && (*flow)[e] < (*capacity)[e] ) {
   1.210 +	    queue.push(v);
   1.211 +	    M.set(v, false);
   1.212 +	  }
   1.213 +	}
   1.214 +	
   1.215 +	OutEdgeIt f;
   1.216 +	for(g->first(f,w) ; g->valid(f); g->next(f)) {
   1.217 +	  Node v=g->head(f);
   1.218 +	  if (M[v] && (*flow)[f] > 0 ) {
   1.219 +	    queue.push(v);
   1.220 +	    M.set(v, false);
   1.221 +	  }
   1.222 +	}
   1.223 +      }
   1.224 +    }
   1.225 +
   1.226 +
   1.227 +    template<typename CutMap>
   1.228 +    void minCut(CutMap& M) {
   1.229 +      minMinCut(M);
   1.230 +    }
   1.231 +
   1.232 +    void resetTarget(Node _t) {t=_t;}
   1.233 +    void resetSource(Node _s) {s=_s;}
   1.234 +   
   1.235 +    void resetCap(const CapMap& _cap) {
   1.236 +      capacity=&_cap;
   1.237 +    }
   1.238 +    
   1.239 +    void resetFlow(FlowMap& _flow) {
   1.240 +      flow=&_flow;
   1.241 +    }
   1.242 +
   1.243 +
   1.244 +  private:
   1.245 +
   1.246 +    int push(Node w, VecStack& active) {
   1.247 +      
   1.248 +      int lev=level[w];
   1.249 +      Num exc=excess[w];
   1.250 +      int newlevel=n;       //bound on the next level of w
   1.251 +	  
   1.252 +      OutEdgeIt e;
   1.253 +      for(g->first(e,w); g->valid(e); g->next(e)) {
   1.254 +	    
   1.255 +	if ( (*flow)[e] >= (*capacity)[e] ) continue; 
   1.256 +	Node v=g->head(e);            
   1.257 +	    
   1.258 +	if( lev > level[v] ) { //Push is allowed now
   1.259 +	  
   1.260 +	  if ( excess[v]<=0 && v!=t && v!=s ) {
   1.261 +	    int lev_v=level[v];
   1.262 +	    active[lev_v].push(v);
   1.263 +	  }
   1.264 +	  
   1.265 +	  Num cap=(*capacity)[e];
   1.266 +	  Num flo=(*flow)[e];
   1.267 +	  Num remcap=cap-flo;
   1.268 +	  
   1.269 +	  if ( remcap >= exc ) { //A nonsaturating push.
   1.270 +	    
   1.271 +	    flow->set(e, flo+exc);
   1.272 +	    excess.set(v, excess[v]+exc);
   1.273 +	    exc=0;
   1.274 +	    break; 
   1.275 +	    
   1.276 +	  } else { //A saturating push.
   1.277 +	    flow->set(e, cap);
   1.278 +	    excess.set(v, excess[v]+remcap);
   1.279 +	    exc-=remcap;
   1.280 +	  }
   1.281 +	} else if ( newlevel > level[v] ) newlevel = level[v];
   1.282 +      } //for out edges wv 
   1.283 +      
   1.284 +      if ( exc > 0 ) {	
   1.285 +	InEdgeIt e;
   1.286 +	for(g->first(e,w); g->valid(e); g->next(e)) {
   1.287 +	  
   1.288 +	  if( (*flow)[e] <= 0 ) continue; 
   1.289 +	  Node v=g->tail(e); 
   1.290 +	  
   1.291 +	  if( lev > level[v] ) { //Push is allowed now
   1.292 +	    
   1.293 +	    if ( excess[v]<=0 && v!=t && v!=s ) {
   1.294 +	      int lev_v=level[v];
   1.295 +	      active[lev_v].push(v);
   1.296 +	    }
   1.297 +	    
   1.298 +	    Num flo=(*flow)[e];
   1.299 +	    
   1.300 +	    if ( flo >= exc ) { //A nonsaturating push.
   1.301 +	      
   1.302 +	      flow->set(e, flo-exc);
   1.303 +	      excess.set(v, excess[v]+exc);
   1.304 +	      exc=0;
   1.305 +	      break; 
   1.306 +	    } else {  //A saturating push.
   1.307 +	      
   1.308 +	      excess.set(v, excess[v]+flo);
   1.309 +	      exc-=flo;
   1.310 +	      flow->set(e,0);
   1.311 +	    }  
   1.312 +	  } else if ( newlevel > level[v] ) newlevel = level[v];
   1.313 +	} //for in edges vw
   1.314 +	
   1.315 +      } // if w still has excess after the out edge for cycle
   1.316 +      
   1.317 +      excess.set(w, exc);
   1.318 +      
   1.319 +      return newlevel;
   1.320 +     }
   1.321 +
   1.322 +
   1.323 +    void preflowPreproc ( flowEnum fe, VecStack& active, 
   1.324 +			  VecNode& level_list, NNMap& left, NNMap& right ) {
   1.325 +
   1.326 +      std::queue<Node> bfs_queue;
   1.327 +      
   1.328 +      switch ( fe ) {
   1.329 +      case ZERO_FLOW: 
   1.330 +	{
   1.331 +	  //Reverse_bfs from t, to find the starting level.
   1.332 +	  level.set(t,0);
   1.333 +	  bfs_queue.push(t);
   1.334 +	
   1.335 +	  while (!bfs_queue.empty()) {
   1.336 +	    
   1.337 +	    Node v=bfs_queue.front();	
   1.338 +	    bfs_queue.pop();
   1.339 +	    int l=level[v]+1;
   1.340 +	    
   1.341 +	    InEdgeIt e;
   1.342 +	    for(g->first(e,v); g->valid(e); g->next(e)) {
   1.343 +	      Node w=g->tail(e);
   1.344 +	      if ( level[w] == n && w != s ) {
   1.345 +		bfs_queue.push(w);
   1.346 +		Node first=level_list[l];
   1.347 +		if ( g->valid(first) ) left.set(first,w);
   1.348 +		right.set(w,first);
   1.349 +		level_list[l]=w;
   1.350 +		level.set(w, l);
   1.351 +	      }
   1.352 +	    }
   1.353 +	  }
   1.354 +	  
   1.355 +	  //the starting flow
   1.356 +	  OutEdgeIt e;
   1.357 +	  for(g->first(e,s); g->valid(e); g->next(e)) 
   1.358 +	    {
   1.359 +	      Num c=(*capacity)[e];
   1.360 +	      if ( c <= 0 ) continue;
   1.361 +	      Node w=g->head(e);
   1.362 +	      if ( level[w] < n ) {	  
   1.363 +		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
   1.364 +		flow->set(e, c); 
   1.365 +		excess.set(w, excess[w]+c);
   1.366 +	      }
   1.367 +	    }
   1.368 +	  break;
   1.369 +	}
   1.370 +	
   1.371 +      case GEN_FLOW:
   1.372 +      case PREFLOW:
   1.373 +	{
   1.374 +	  //Reverse_bfs from t in the residual graph, 
   1.375 +	  //to find the starting level.
   1.376 +	  level.set(t,0);
   1.377 +	  bfs_queue.push(t);
   1.378 +	  
   1.379 +	  while (!bfs_queue.empty()) {
   1.380 +	    
   1.381 +	    Node v=bfs_queue.front();	
   1.382 +	    bfs_queue.pop();
   1.383 +	    int l=level[v]+1;
   1.384 +	    
   1.385 +	    InEdgeIt e;
   1.386 +	    for(g->first(e,v); g->valid(e); g->next(e)) {
   1.387 +	      if ( (*capacity)[e] <= (*flow)[e] ) continue;
   1.388 +	      Node w=g->tail(e);
   1.389 +	      if ( level[w] == n && w != s ) {
   1.390 +		bfs_queue.push(w);
   1.391 +		Node first=level_list[l];
   1.392 +		if ( g->valid(first) ) left.set(first,w);
   1.393 +		right.set(w,first);
   1.394 +		level_list[l]=w;
   1.395 +		level.set(w, l);
   1.396 +	      }
   1.397 +	    }
   1.398 +	    
   1.399 +	    OutEdgeIt f;
   1.400 +	    for(g->first(f,v); g->valid(f); g->next(f)) {
   1.401 +	      if ( 0 >= (*flow)[f] ) continue;
   1.402 +	      Node w=g->head(f);
   1.403 +	      if ( level[w] == n && w != s ) {
   1.404 +		bfs_queue.push(w);
   1.405 +		Node first=level_list[l];
   1.406 +		if ( g->valid(first) ) left.set(first,w);
   1.407 +		right.set(w,first);
   1.408 +		level_list[l]=w;
   1.409 +		level.set(w, l);
   1.410 +	      }
   1.411 +	    }
   1.412 +	  }
   1.413 +	  
   1.414 +	  
   1.415 +	  //the starting flow
   1.416 +	  OutEdgeIt e;
   1.417 +	  for(g->first(e,s); g->valid(e); g->next(e)) 
   1.418 +	    {
   1.419 +	      Num rem=(*capacity)[e]-(*flow)[e];
   1.420 +	      if ( rem <= 0 ) continue;
   1.421 +	      Node w=g->head(e);
   1.422 +	      if ( level[w] < n ) {	  
   1.423 +		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
   1.424 +		flow->set(e, (*capacity)[e]); 
   1.425 +		excess.set(w, excess[w]+rem);
   1.426 +	      }
   1.427 +	    }
   1.428 +	  
   1.429 +	  InEdgeIt f;
   1.430 +	  for(g->first(f,s); g->valid(f); g->next(f)) 
   1.431 +	    {
   1.432 +	      if ( (*flow)[f] <= 0 ) continue;
   1.433 +	      Node w=g->tail(f);
   1.434 +	      if ( level[w] < n ) {	  
   1.435 +		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
   1.436 +		excess.set(w, excess[w]+(*flow)[f]);
   1.437 +		flow->set(f, 0); 
   1.438 +	      }
   1.439 +	    }  
   1.440 +	  break;
   1.441 +	} //case PREFLOW
   1.442 +      }
   1.443 +    } //preflowPreproc
   1.444 +
   1.445 +
   1.446 +
   1.447 +    void relabel(Node w, int newlevel, VecStack& active,  
   1.448 +		 VecNode& level_list, NNMap& left, 
   1.449 +		 NNMap& right, int& b, int& k, bool what_heur ) 
   1.450 +    {
   1.451 +
   1.452 +      Num lev=level[w];	
   1.453 +      
   1.454 +      Node right_n=right[w];
   1.455 +      Node left_n=left[w];
   1.456 +      
   1.457 +      //unlacing starts
   1.458 +      if ( g->valid(right_n) ) {
   1.459 +	if ( g->valid(left_n) ) {
   1.460 +	  right.set(left_n, right_n);
   1.461 +	  left.set(right_n, left_n);
   1.462 +	} else {
   1.463 +	  level_list[lev]=right_n;   
   1.464 +	  left.set(right_n, INVALID);
   1.465 +	} 
   1.466 +      } else {
   1.467 +	if ( g->valid(left_n) ) {
   1.468 +	  right.set(left_n, INVALID);
   1.469 +	} else { 
   1.470 +	  level_list[lev]=INVALID;   
   1.471 +	} 
   1.472 +      } 
   1.473 +      //unlacing ends
   1.474 +		
   1.475 +      if ( !g->valid(level_list[lev]) ) {
   1.476 +	      
   1.477 +	//gapping starts
   1.478 +	for (int i=lev; i!=k ; ) {
   1.479 +	  Node v=level_list[++i];
   1.480 +	  while ( g->valid(v) ) {
   1.481 +	    level.set(v,n);
   1.482 +	    v=right[v];
   1.483 +	  }
   1.484 +	  level_list[i]=INVALID;
   1.485 +	  if ( !what_heur ) {
   1.486 +	    while ( !active[i].empty() ) {
   1.487 +	      active[i].pop();    //FIXME: ezt szebben kene
   1.488 +	    }
   1.489 +	  }	     
   1.490 +	}
   1.491 +	
   1.492 +	level.set(w,n);
   1.493 +	b=lev-1;
   1.494 +	k=b;
   1.495 +	//gapping ends
   1.496 +	
   1.497 +      } else {
   1.498 +	
   1.499 +	if ( newlevel == n ) level.set(w,n); 
   1.500 +	else {
   1.501 +	  level.set(w,++newlevel);
   1.502 +	  active[newlevel].push(w);
   1.503 +	  if ( what_heur ) b=newlevel;
   1.504 +	  if ( k < newlevel ) ++k;      //now k=newlevel
   1.505 +	  Node first=level_list[newlevel];
   1.506 +	  if ( g->valid(first) ) left.set(first,w);
   1.507 +	  right.set(w,first);
   1.508 +	  left.set(w,INVALID);
   1.509 +	  level_list[newlevel]=w;
   1.510 +	}
   1.511 +      }
   1.512 +      
   1.513 +    } //relabel
   1.514 +
   1.515 +
   1.516 +    template<typename MapGraphWrapper> 
   1.517 +    class DistanceMap {
   1.518 +    protected:
   1.519 +      const MapGraphWrapper* g;
   1.520 +      typename MapGraphWrapper::template NodeMap<int> dist; 
   1.521 +    public:
   1.522 +      DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { }
   1.523 +      void set(const typename MapGraphWrapper::Node& n, int a) { 
   1.524 +	dist.set(n, a); 
   1.525 +      }
   1.526 +      int operator[](const typename MapGraphWrapper::Node& n) 
   1.527 +	{ return dist[n]; }
   1.528 +//       int get(const typename MapGraphWrapper::Node& n) const { 
   1.529 +// 	return dist[n]; }
   1.530 +//       bool get(const typename MapGraphWrapper::Edge& e) const { 
   1.531 +// 	return (dist.get(g->tail(e))<dist.get(g->head(e))); }
   1.532 +      bool operator[](const typename MapGraphWrapper::Edge& e) const { 
   1.533 +	return (dist[g->tail(e)]<dist[g->head(e)]); 
   1.534 +      }
   1.535 +    };
   1.536 +    
   1.537 +  };
   1.538 +
   1.539 +
   1.540 +  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   1.541 +  void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase0( flowEnum fe ) 
   1.542 +  {
   1.543 +      
   1.544 +      int heur0=(int)(H0*n);  //time while running 'bound decrease' 
   1.545 +      int heur1=(int)(H1*n);  //time while running 'highest label'
   1.546 +      int heur=heur1;         //starting time interval (#of relabels)
   1.547 +      int numrelabel=0;
   1.548 +     
   1.549 +      bool what_heur=1;       
   1.550 +      //It is 0 in case 'bound decrease' and 1 in case 'highest label'
   1.551 +
   1.552 +      bool end=false;     
   1.553 +      //Needed for 'bound decrease', true means no active nodes are above bound b.
   1.554 +
   1.555 +      int k=n-2;  //bound on the highest level under n containing a node
   1.556 +      int b=k;    //bound on the highest level under n of an active node
   1.557 +      
   1.558 +      VecStack active(n);
   1.559 +      
   1.560 +      NNMap left(*g, INVALID);
   1.561 +      NNMap right(*g, INVALID);
   1.562 +      VecNode level_list(n,INVALID);
   1.563 +      //List of the nodes in level i<n, set to n.
   1.564 +
   1.565 +      NodeIt v;
   1.566 +      for(g->first(v); g->valid(v); g->next(v)) level.set(v,n);
   1.567 +      //setting each node to level n
   1.568 +      
   1.569 +      switch ( fe ) {
   1.570 +      case PREFLOW:
   1.571 +	{
   1.572 +	  //counting the excess
   1.573 +	  NodeIt v;
   1.574 +	  for(g->first(v); g->valid(v); g->next(v)) {
   1.575 +	    Num exc=0;
   1.576 +	  
   1.577 +	    InEdgeIt e;
   1.578 +	    for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e];
   1.579 +	    OutEdgeIt f;
   1.580 +	    for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f];
   1.581 +	    
   1.582 +	    excess.set(v,exc);	  
   1.583 +	    
   1.584 +	    //putting the active nodes into the stack
   1.585 +	    int lev=level[v];
   1.586 +	    if ( exc > 0 && lev < n && v != t ) active[lev].push(v);
   1.587 +	  }
   1.588 +	  break;
   1.589 +	}
   1.590 +      case GEN_FLOW:
   1.591 +	{
   1.592 +	  //Counting the excess of t
   1.593 +	  Num exc=0;
   1.594 +	  
   1.595 +	  InEdgeIt e;
   1.596 +	  for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e];
   1.597 +	  OutEdgeIt f;
   1.598 +	  for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f];
   1.599 +	  
   1.600 +	  excess.set(t,exc);	
   1.601 +	  
   1.602 +	  break;
   1.603 +	}
   1.604 +      default:
   1.605 +	break;
   1.606 +      }
   1.607 +      
   1.608 +      preflowPreproc( fe, active, level_list, left, right );
   1.609 +      //End of preprocessing 
   1.610 +      
   1.611 +      
   1.612 +      //Push/relabel on the highest level active nodes.
   1.613 +      while ( true ) {
   1.614 +	if ( b == 0 ) {
   1.615 +	  if ( !what_heur && !end && k > 0 ) {
   1.616 +	    b=k;
   1.617 +	    end=true;
   1.618 +	  } else break;
   1.619 +	}
   1.620 +	
   1.621 +	if ( active[b].empty() ) --b; 
   1.622 +	else {
   1.623 +	  end=false;  
   1.624 +	  Node w=active[b].top();
   1.625 +	  active[b].pop();
   1.626 +	  int newlevel=push(w,active);
   1.627 +	  if ( excess[w] > 0 ) relabel(w, newlevel, active, level_list, 
   1.628 +				       left, right, b, k, what_heur);
   1.629 +	  
   1.630 +	  ++numrelabel; 
   1.631 +	  if ( numrelabel >= heur ) {
   1.632 +	    numrelabel=0;
   1.633 +	    if ( what_heur ) {
   1.634 +	      what_heur=0;
   1.635 +	      heur=heur0;
   1.636 +	      end=false;
   1.637 +	    } else {
   1.638 +	      what_heur=1;
   1.639 +	      heur=heur1;
   1.640 +	      b=k; 
   1.641 +	    }
   1.642 +	  }
   1.643 +	} 
   1.644 +      } 
   1.645 +    }
   1.646 +
   1.647 +
   1.648 +
   1.649 +  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   1.650 +  void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase1() 
   1.651 +  {
   1.652 +      
   1.653 +      int k=n-2;  //bound on the highest level under n containing a node
   1.654 +      int b=k;    //bound on the highest level under n of an active node
   1.655 +      
   1.656 +      VecStack active(n);
   1.657 +      level.set(s,0);
   1.658 +      std::queue<Node> bfs_queue;
   1.659 +      bfs_queue.push(s);
   1.660 +	    
   1.661 +      while (!bfs_queue.empty()) {
   1.662 +	
   1.663 +	Node v=bfs_queue.front();	
   1.664 +	bfs_queue.pop();
   1.665 +	int l=level[v]+1;
   1.666 +	      
   1.667 +	InEdgeIt e;
   1.668 +	for(g->first(e,v); g->valid(e); g->next(e)) {
   1.669 +	  if ( (*capacity)[e] <= (*flow)[e] ) continue;
   1.670 +	  Node u=g->tail(e);
   1.671 +	  if ( level[u] >= n ) { 
   1.672 +	    bfs_queue.push(u);
   1.673 +	    level.set(u, l);
   1.674 +	    if ( excess[u] > 0 ) active[l].push(u);
   1.675 +	  }
   1.676 +	}
   1.677 +	
   1.678 +	OutEdgeIt f;
   1.679 +	for(g->first(f,v); g->valid(f); g->next(f)) {
   1.680 +	  if ( 0 >= (*flow)[f] ) continue;
   1.681 +	  Node u=g->head(f);
   1.682 +	  if ( level[u] >= n ) { 
   1.683 +	    bfs_queue.push(u);
   1.684 +	    level.set(u, l);
   1.685 +	    if ( excess[u] > 0 ) active[l].push(u);
   1.686 +	  }
   1.687 +	}
   1.688 +      }
   1.689 +      b=n-2;
   1.690 +
   1.691 +      while ( true ) {
   1.692 +	
   1.693 +	if ( b == 0 ) break;
   1.694 +
   1.695 +	if ( active[b].empty() ) --b; 
   1.696 +	else {
   1.697 +	  Node w=active[b].top();
   1.698 +	  active[b].pop();
   1.699 +	  int newlevel=push(w,active);	  
   1.700 +
   1.701 +	  //relabel
   1.702 +	  if ( excess[w] > 0 ) {
   1.703 +	    level.set(w,++newlevel);
   1.704 +	    active[newlevel].push(w);
   1.705 +	    b=newlevel;
   1.706 +	  }
   1.707 +	}  // if stack[b] is nonempty
   1.708 +      } // while(true)
   1.709 +    }
   1.710 +
   1.711 +
   1.712 +
   1.713 +  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   1.714 +  bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath() 
   1.715 +  {
   1.716 +      ResGW res_graph(*g, *capacity, *flow);
   1.717 +      bool _augment=false;
   1.718 +      
   1.719 +      //ReachedMap level(res_graph);
   1.720 +      FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
   1.721 +      BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
   1.722 +      bfs.pushAndSetReached(s);
   1.723 +	
   1.724 +      typename ResGW::template NodeMap<ResGWEdge> pred(res_graph); 
   1.725 +      pred.set(s, INVALID);
   1.726 +      
   1.727 +      typename ResGW::template NodeMap<Num> free(res_graph);
   1.728 +	
   1.729 +      //searching for augmenting path
   1.730 +      while ( !bfs.finished() ) { 
   1.731 +	ResGWOutEdgeIt e=bfs;
   1.732 +	if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
   1.733 +	  Node v=res_graph.tail(e);
   1.734 +	  Node w=res_graph.head(e);
   1.735 +	  pred.set(w, e);
   1.736 +	  if (res_graph.valid(pred[v])) {
   1.737 +	    free.set(w, std::min(free[v], res_graph.resCap(e)));
   1.738 +	  } else {
   1.739 +	    free.set(w, res_graph.resCap(e)); 
   1.740 +	  }
   1.741 +	  if (res_graph.head(e)==t) { _augment=true; break; }
   1.742 +	}
   1.743 +	
   1.744 +	++bfs;
   1.745 +      } //end of searching augmenting path
   1.746 +
   1.747 +      if (_augment) {
   1.748 +	Node n=t;
   1.749 +	Num augment_value=free[t];
   1.750 +	while (res_graph.valid(pred[n])) { 
   1.751 +	  ResGWEdge e=pred[n];
   1.752 +	  res_graph.augment(e, augment_value); 
   1.753 +	  n=res_graph.tail(e);
   1.754 +	}
   1.755 +      }
   1.756 +
   1.757 +      return _augment;
   1.758 +    }
   1.759 +
   1.760 +
   1.761 +
   1.762 +
   1.763 +
   1.764 +
   1.765 +
   1.766 +
   1.767 +
   1.768 +  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   1.769 +  template<typename MutableGraph> 
   1.770 +  bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow() 
   1.771 +  {      
   1.772 +      typedef MutableGraph MG;
   1.773 +      bool _augment=false;
   1.774 +
   1.775 +      ResGW res_graph(*g, *capacity, *flow);
   1.776 +
   1.777 +      //bfs for distances on the residual graph
   1.778 +      //ReachedMap level(res_graph);
   1.779 +      FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
   1.780 +      BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
   1.781 +      bfs.pushAndSetReached(s);
   1.782 +      typename ResGW::template NodeMap<int> 
   1.783 +	dist(res_graph); //filled up with 0's
   1.784 +
   1.785 +      //F will contain the physical copy of the residual graph
   1.786 +      //with the set of edges which are on shortest paths
   1.787 +      MG F;
   1.788 +      typename ResGW::template NodeMap<typename MG::Node> 
   1.789 +	res_graph_to_F(res_graph);
   1.790 +      {
   1.791 +	typename ResGW::NodeIt n;
   1.792 +	for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) {
   1.793 +	  res_graph_to_F.set(n, F.addNode());
   1.794 +	}
   1.795 +      }
   1.796 +
   1.797 +      typename MG::Node sF=res_graph_to_F[s];
   1.798 +      typename MG::Node tF=res_graph_to_F[t];
   1.799 +      typename MG::template EdgeMap<ResGWEdge> original_edge(F);
   1.800 +      typename MG::template EdgeMap<Num> residual_capacity(F);
   1.801 +
   1.802 +      while ( !bfs.finished() ) { 
   1.803 +	ResGWOutEdgeIt e=bfs;
   1.804 +	if (res_graph.valid(e)) {
   1.805 +	  if (bfs.isBNodeNewlyReached()) {
   1.806 +	    dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
   1.807 +	    typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], res_graph_to_F[res_graph.head(e)]);
   1.808 +	    original_edge.update();
   1.809 +	    original_edge.set(f, e);
   1.810 +	    residual_capacity.update();
   1.811 +	    residual_capacity.set(f, res_graph.resCap(e));
   1.812 +	  } else {
   1.813 +	    if (dist[res_graph.head(e)]==(dist[res_graph.tail(e)]+1)) {
   1.814 +	      typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], res_graph_to_F[res_graph.head(e)]);
   1.815 +	      original_edge.update();
   1.816 +	      original_edge.set(f, e);
   1.817 +	      residual_capacity.update();
   1.818 +	      residual_capacity.set(f, res_graph.resCap(e));
   1.819 +	    }
   1.820 +	  }
   1.821 +	}
   1.822 +	++bfs;
   1.823 +      } //computing distances from s in the residual graph
   1.824 +
   1.825 +      bool __augment=true;
   1.826 +
   1.827 +      while (__augment) {
   1.828 +	__augment=false;
   1.829 +	//computing blocking flow with dfs
   1.830 +	DfsIterator< MG, typename MG::template NodeMap<bool> > dfs(F);
   1.831 +	typename MG::template NodeMap<typename MG::Edge> pred(F);
   1.832 +	pred.set(sF, INVALID);
   1.833 +	//invalid iterators for sources
   1.834 +
   1.835 +	typename MG::template NodeMap<Num> free(F);
   1.836 +
   1.837 +	dfs.pushAndSetReached(sF);      
   1.838 +	while (!dfs.finished()) {
   1.839 +	  ++dfs;
   1.840 +	  if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) {
   1.841 +	    if (dfs.isBNodeNewlyReached()) {
   1.842 +	      typename MG::Node v=F.aNode(dfs);
   1.843 +	      typename MG::Node w=F.bNode(dfs);
   1.844 +	      pred.set(w, dfs);
   1.845 +	      if (F.valid(pred[v])) {
   1.846 +		free.set(w, std::min(free[v], residual_capacity[dfs]));
   1.847 +	      } else {
   1.848 +		free.set(w, residual_capacity[dfs]); 
   1.849 +	      }
   1.850 +	      if (w==tF) { 
   1.851 +		__augment=true; 
   1.852 +		_augment=true;
   1.853 +		break; 
   1.854 +	      }
   1.855 +	      
   1.856 +	    } else {
   1.857 +	      F.erase(/*typename MG::OutEdgeIt*/(dfs));
   1.858 +	    }
   1.859 +	  } 
   1.860 +	}
   1.861 +
   1.862 +	if (__augment) {
   1.863 +	  typename MG::Node n=tF;
   1.864 +	  Num augment_value=free[tF];
   1.865 +	  while (F.valid(pred[n])) { 
   1.866 +	    typename MG::Edge e=pred[n];
   1.867 +	    res_graph.augment(original_edge[e], augment_value); 
   1.868 +	    n=F.tail(e);
   1.869 +	    if (residual_capacity[e]==augment_value) 
   1.870 +	      F.erase(e); 
   1.871 +	    else 
   1.872 +	      residual_capacity.set(e, residual_capacity[e]-augment_value);
   1.873 +	  }
   1.874 +	}
   1.875 +	
   1.876 +      }
   1.877 +            
   1.878 +      return _augment;
   1.879 +    }
   1.880 +
   1.881 +
   1.882 +
   1.883 +
   1.884 +
   1.885 +
   1.886 +  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   1.887 +  bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow2() 
   1.888 +  {
   1.889 +      bool _augment=false;
   1.890 +
   1.891 +      ResGW res_graph(*g, *capacity, *flow);
   1.892 +      
   1.893 +      //ReachedMap level(res_graph);
   1.894 +      FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
   1.895 +      BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
   1.896 +
   1.897 +      bfs.pushAndSetReached(s);
   1.898 +      DistanceMap<ResGW> dist(res_graph);
   1.899 +      while ( !bfs.finished() ) { 
   1.900 + 	ResGWOutEdgeIt e=bfs;
   1.901 + 	if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
   1.902 + 	  dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
   1.903 + 	}
   1.904 +	++bfs;
   1.905 +      } //computing distances from s in the residual graph
   1.906 +
   1.907 +      //Subgraph containing the edges on some shortest paths
   1.908 +      ConstMap<typename ResGW::Node, bool> true_map(true);
   1.909 +      typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>, 
   1.910 +	DistanceMap<ResGW> > FilterResGW;
   1.911 +      FilterResGW filter_res_graph(res_graph, true_map, dist);
   1.912 +
   1.913 +      //Subgraph, which is able to delete edges which are already 
   1.914 +      //met by the dfs
   1.915 +      typename FilterResGW::template NodeMap<typename FilterResGW::OutEdgeIt> 
   1.916 + 	first_out_edges(filter_res_graph);
   1.917 +      typename FilterResGW::NodeIt v;
   1.918 +      for(filter_res_graph.first(v); filter_res_graph.valid(v); 
   1.919 + 	  filter_res_graph.next(v)) 
   1.920 +      {
   1.921 + 	typename FilterResGW::OutEdgeIt e;
   1.922 + 	filter_res_graph.first(e, v);
   1.923 + 	first_out_edges.set(v, e);
   1.924 +      }
   1.925 +      typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW::
   1.926 +	template NodeMap<typename FilterResGW::OutEdgeIt> > ErasingResGW;
   1.927 +      ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges);
   1.928 +
   1.929 +      bool __augment=true;
   1.930 +
   1.931 +      while (__augment) {
   1.932 +
   1.933 + 	__augment=false;
   1.934 +  	//computing blocking flow with dfs
   1.935 +  	DfsIterator< ErasingResGW, 
   1.936 +	  typename ErasingResGW::template NodeMap<bool> > 
   1.937 +  	  dfs(erasing_res_graph);
   1.938 + 	typename ErasingResGW::
   1.939 +	  template NodeMap<typename ErasingResGW::OutEdgeIt> 
   1.940 +	  pred(erasing_res_graph); 
   1.941 + 	pred.set(s, INVALID);
   1.942 +  	//invalid iterators for sources
   1.943 +
   1.944 +  	typename ErasingResGW::template NodeMap<Num> 
   1.945 +	  free1(erasing_res_graph);
   1.946 +
   1.947 + 	dfs.pushAndSetReached(
   1.948 +	  typename ErasingResGW::Node(
   1.949 +	    typename FilterResGW::Node(
   1.950 +	      typename ResGW::Node(s)
   1.951 +	      )
   1.952 +	    )
   1.953 +	  );
   1.954 + 	while (!dfs.finished()) {
   1.955 + 	  ++dfs;
   1.956 + 	  if (erasing_res_graph.valid(
   1.957 + 		typename ErasingResGW::OutEdgeIt(dfs))) 
   1.958 + 	  { 
   1.959 +  	    if (dfs.isBNodeNewlyReached()) {
   1.960 +	  
   1.961 + 	      typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs);
   1.962 + 	      typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs);
   1.963 +
   1.964 + 	      pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs));
   1.965 + 	      if (erasing_res_graph.valid(pred[v])) {
   1.966 + 		free1.set(w, std::min(free1[v], res_graph.resCap(
   1.967 +				       typename ErasingResGW::OutEdgeIt(dfs))));
   1.968 + 	      } else {
   1.969 + 		free1.set(w, res_graph.resCap(
   1.970 +			   typename ErasingResGW::OutEdgeIt(dfs))); 
   1.971 + 	      }
   1.972 +	      
   1.973 + 	      if (w==t) { 
   1.974 + 		__augment=true; 
   1.975 + 		_augment=true;
   1.976 + 		break; 
   1.977 + 	      }
   1.978 + 	    } else {
   1.979 + 	      erasing_res_graph.erase(dfs);
   1.980 +	    }
   1.981 +	  }
   1.982 +	}	
   1.983 +
   1.984 +  	if (__augment) {
   1.985 +   	  typename ErasingResGW::Node n=typename FilterResGW::Node(typename ResGW::Node(t));
   1.986 +// 	  typename ResGW::NodeMap<Num> a(res_graph);
   1.987 +// 	  typename ResGW::Node b;
   1.988 +// 	  Num j=a[b];
   1.989 +// 	  typename FilterResGW::NodeMap<Num> a1(filter_res_graph);
   1.990 +// 	  typename FilterResGW::Node b1;
   1.991 +// 	  Num j1=a1[b1];
   1.992 +// 	  typename ErasingResGW::NodeMap<Num> a2(erasing_res_graph);
   1.993 +// 	  typename ErasingResGW::Node b2;
   1.994 +// 	  Num j2=a2[b2];
   1.995 + 	  Num augment_value=free1[n];
   1.996 + 	  while (erasing_res_graph.valid(pred[n])) { 
   1.997 + 	    typename ErasingResGW::OutEdgeIt e=pred[n];
   1.998 + 	    res_graph.augment(e, augment_value);
   1.999 + 	    n=erasing_res_graph.tail(e);
  1.1000 + 	    if (res_graph.resCap(e)==0)
  1.1001 + 	      erasing_res_graph.erase(e);
  1.1002 +	}
  1.1003 +      }
  1.1004 +      
  1.1005 +      } //while (__augment) 
  1.1006 +            
  1.1007 +      return _augment;
  1.1008 +    }
  1.1009 +
  1.1010 +
  1.1011 +
  1.1012 +
  1.1013 +} //namespace hugo
  1.1014 +
  1.1015 +#endif //HUGO_PREFLOW_H
  1.1016 +
  1.1017 +
  1.1018 +
  1.1019 +
     2.1 --- a/src/work/jacint/preflow.h	Thu Apr 29 16:26:01 2004 +0000
     2.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     2.3 @@ -1,1016 +0,0 @@
     2.4 -// -*- C++ -*-
     2.5 -
     2.6 -/*
     2.7 -Heuristics: 
     2.8 - 2 phase
     2.9 - gap
    2.10 - list 'level_list' on the nodes on level i implemented by hand
    2.11 - stack 'active' on the active nodes on level i
    2.12 - runs heuristic 'highest label' for H1*n relabels
    2.13 - runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
    2.14 - 
    2.15 -Parameters H0 and H1 are initialized to 20 and 1.
    2.16 -
    2.17 -Constructors:
    2.18 -
    2.19 -Preflow(Graph, Node, Node, CapMap, FlowMap, bool) : bool must be false if 
    2.20 -     FlowMap is not constant zero, and should be true if it is
    2.21 -
    2.22 -Members:
    2.23 -
    2.24 -void run()
    2.25 -
    2.26 -Num flowValue() : returns the value of a maximum flow
    2.27 -
    2.28 -void minMinCut(CutMap& M) : sets M to the characteristic vector of the 
    2.29 -     minimum min cut. M should be a map of bools initialized to false. ??Is it OK?
    2.30 -
    2.31 -void maxMinCut(CutMap& M) : sets M to the characteristic vector of the 
    2.32 -     maximum min cut. M should be a map of bools initialized to false.
    2.33 -
    2.34 -void minCut(CutMap& M) : sets M to the characteristic vector of 
    2.35 -     a min cut. M should be a map of bools initialized to false.
    2.36 -
    2.37 -*/
    2.38 -
    2.39 -#ifndef HUGO_PREFLOW_H
    2.40 -#define HUGO_PREFLOW_H
    2.41 -
    2.42 -#define H0 20
    2.43 -#define H1 1
    2.44 -
    2.45 -#include <vector>
    2.46 -#include <queue>
    2.47 -#include <stack>
    2.48 -
    2.49 -#include <graph_wrapper.h>
    2.50 -#include <bfs_iterator.h>
    2.51 -#include <invalid.h>
    2.52 -#include <maps.h>
    2.53 -#include <for_each_macros.h>
    2.54 -
    2.55 -
    2.56 -namespace hugo {
    2.57 -
    2.58 -  template <typename Graph, typename Num, 
    2.59 -	    typename CapMap=typename Graph::template EdgeMap<Num>, 
    2.60 -            typename FlowMap=typename Graph::template EdgeMap<Num> >
    2.61 -  class MaxFlow {
    2.62 -    
    2.63 -    typedef typename Graph::Node Node;
    2.64 -    typedef typename Graph::NodeIt NodeIt;
    2.65 -    typedef typename Graph::OutEdgeIt OutEdgeIt;
    2.66 -    typedef typename Graph::InEdgeIt InEdgeIt;
    2.67 -
    2.68 -    typedef typename std::vector<std::stack<Node> > VecStack;
    2.69 -    typedef typename Graph::template NodeMap<Node> NNMap;
    2.70 -    typedef typename std::vector<Node> VecNode;
    2.71 -
    2.72 -    const Graph* g;
    2.73 -    Node s;
    2.74 -    Node t;
    2.75 -    const CapMap* capacity;  
    2.76 -    FlowMap* flow;
    2.77 -    int n;      //the number of nodes of G
    2.78 -    typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
    2.79 -    typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
    2.80 -    typedef typename ResGW::Edge ResGWEdge;
    2.81 -    //typedef typename ResGW::template NodeMap<bool> ReachedMap;
    2.82 -    typedef typename Graph::template NodeMap<int> ReachedMap;
    2.83 -    ReachedMap level;
    2.84 -    //level works as a bool map in augmenting path algorithms 
    2.85 -    //and is used by bfs for storing reached information.
    2.86 -    //In preflow, it shows levels of nodes.
    2.87 -    //typename Graph::template NodeMap<int> level;    
    2.88 -    typename Graph::template NodeMap<Num> excess; 
    2.89 -
    2.90 -  public:
    2.91 - 
    2.92 -    enum flowEnum{
    2.93 -      ZERO_FLOW=0,
    2.94 -      GEN_FLOW=1,
    2.95 -      PREFLOW=2
    2.96 -    };
    2.97 -
    2.98 -    MaxFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity, 
    2.99 -	    FlowMap& _flow) :
   2.100 -      g(&_G), s(_s), t(_t), capacity(&_capacity), 
   2.101 -      flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0) {}
   2.102 -
   2.103 -    void run() {
   2.104 -      preflow( ZERO_FLOW );
   2.105 -    }
   2.106 -    
   2.107 -    void preflow( flowEnum fe ) {
   2.108 -      preflowPhase0(fe);
   2.109 -      preflowPhase1();
   2.110 -    }
   2.111 -
   2.112 -    void preflowPhase0( flowEnum fe );
   2.113 -
   2.114 -    void preflowPhase1();
   2.115 -
   2.116 -    bool augmentOnShortestPath();
   2.117 -
   2.118 -    template<typename MutableGraph> bool augmentOnBlockingFlow();
   2.119 -
   2.120 -    bool augmentOnBlockingFlow2();
   2.121 -
   2.122 -    /// Returns the actual flow value.
   2.123 -    /// More precisely, it returns the negative excess of s, thus 
   2.124 -    /// this works also for preflows.
   2.125 -    Num flowValue() { 
   2.126 -      Num a=0;
   2.127 -      FOR_EACH_INC_LOC(OutEdgeIt, e, *g, s) a+=(*flow)[e];
   2.128 -      FOR_EACH_INC_LOC(InEdgeIt, e, *g, s) a-=(*flow)[e];
   2.129 -      return a;
   2.130 -    }
   2.131 -
   2.132 -    //should be used only between preflowPhase0 and preflowPhase1
   2.133 -    template<typename _CutMap>
   2.134 -    void actMinCut(_CutMap& M) {
   2.135 -      NodeIt v;
   2.136 -      for(g->first(v); g->valid(v); g->next(v)) 
   2.137 -      if ( level[v] < n ) {
   2.138 -	M.set(v,false);
   2.139 -      } else {
   2.140 -	M.set(v,true);
   2.141 -      }
   2.142 -    }
   2.143 -
   2.144 -
   2.145 -
   2.146 -    /*
   2.147 -      Returns the minimum min cut, by a bfs from s in the residual graph.
   2.148 -    */
   2.149 -    template<typename _CutMap>
   2.150 -    void minMinCut(_CutMap& M) {
   2.151 -    
   2.152 -      std::queue<Node> queue;
   2.153 -      
   2.154 -      M.set(s,true);      
   2.155 -      queue.push(s);
   2.156 -
   2.157 -      while (!queue.empty()) {
   2.158 -        Node w=queue.front();
   2.159 -	queue.pop();
   2.160 -
   2.161 -	OutEdgeIt e;
   2.162 -	for(g->first(e,w) ; g->valid(e); g->next(e)) {
   2.163 -	  Node v=g->head(e);
   2.164 -	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
   2.165 -	    queue.push(v);
   2.166 -	    M.set(v, true);
   2.167 -	  }
   2.168 -	} 
   2.169 -
   2.170 -	InEdgeIt f;
   2.171 -	for(g->first(f,w) ; g->valid(f); g->next(f)) {
   2.172 -	  Node v=g->tail(f);
   2.173 -	  if (!M[v] && (*flow)[f] > 0 ) {
   2.174 -	    queue.push(v);
   2.175 -	    M.set(v, true);
   2.176 -	  }
   2.177 -	} 
   2.178 -      }
   2.179 -    }
   2.180 -
   2.181 -
   2.182 -  
   2.183 -    /*
   2.184 -      Returns the maximum min cut, by a reverse bfs 
   2.185 -      from t in the residual graph.
   2.186 -    */
   2.187 -    
   2.188 -    template<typename _CutMap>
   2.189 -    void maxMinCut(_CutMap& M) {
   2.190 -
   2.191 -      NodeIt v;
   2.192 -      for(g->first(v) ; g->valid(v); g->next(v)) {
   2.193 -	M.set(v, true);
   2.194 -      }
   2.195 -
   2.196 -      std::queue<Node> queue;
   2.197 -      
   2.198 -      M.set(t,false);        
   2.199 -      queue.push(t);
   2.200 -
   2.201 -      while (!queue.empty()) {
   2.202 -        Node w=queue.front();
   2.203 -	queue.pop();
   2.204 -
   2.205 -
   2.206 -	InEdgeIt e;
   2.207 -	for(g->first(e,w) ; g->valid(e); g->next(e)) {
   2.208 -	  Node v=g->tail(e);
   2.209 -	  if (M[v] && (*flow)[e] < (*capacity)[e] ) {
   2.210 -	    queue.push(v);
   2.211 -	    M.set(v, false);
   2.212 -	  }
   2.213 -	}
   2.214 -	
   2.215 -	OutEdgeIt f;
   2.216 -	for(g->first(f,w) ; g->valid(f); g->next(f)) {
   2.217 -	  Node v=g->head(f);
   2.218 -	  if (M[v] && (*flow)[f] > 0 ) {
   2.219 -	    queue.push(v);
   2.220 -	    M.set(v, false);
   2.221 -	  }
   2.222 -	}
   2.223 -      }
   2.224 -    }
   2.225 -
   2.226 -
   2.227 -    template<typename CutMap>
   2.228 -    void minCut(CutMap& M) {
   2.229 -      minMinCut(M);
   2.230 -    }
   2.231 -
   2.232 -    void resetTarget(Node _t) {t=_t;}
   2.233 -    void resetSource(Node _s) {s=_s;}
   2.234 -   
   2.235 -    void resetCap(const CapMap& _cap) {
   2.236 -      capacity=&_cap;
   2.237 -    }
   2.238 -    
   2.239 -    void resetFlow(FlowMap& _flow) {
   2.240 -      flow=&_flow;
   2.241 -    }
   2.242 -
   2.243 -
   2.244 -  private:
   2.245 -
   2.246 -    int push(Node w, VecStack& active) {
   2.247 -      
   2.248 -      int lev=level[w];
   2.249 -      Num exc=excess[w];
   2.250 -      int newlevel=n;       //bound on the next level of w
   2.251 -	  
   2.252 -      OutEdgeIt e;
   2.253 -      for(g->first(e,w); g->valid(e); g->next(e)) {
   2.254 -	    
   2.255 -	if ( (*flow)[e] >= (*capacity)[e] ) continue; 
   2.256 -	Node v=g->head(e);            
   2.257 -	    
   2.258 -	if( lev > level[v] ) { //Push is allowed now
   2.259 -	  
   2.260 -	  if ( excess[v]<=0 && v!=t && v!=s ) {
   2.261 -	    int lev_v=level[v];
   2.262 -	    active[lev_v].push(v);
   2.263 -	  }
   2.264 -	  
   2.265 -	  Num cap=(*capacity)[e];
   2.266 -	  Num flo=(*flow)[e];
   2.267 -	  Num remcap=cap-flo;
   2.268 -	  
   2.269 -	  if ( remcap >= exc ) { //A nonsaturating push.
   2.270 -	    
   2.271 -	    flow->set(e, flo+exc);
   2.272 -	    excess.set(v, excess[v]+exc);
   2.273 -	    exc=0;
   2.274 -	    break; 
   2.275 -	    
   2.276 -	  } else { //A saturating push.
   2.277 -	    flow->set(e, cap);
   2.278 -	    excess.set(v, excess[v]+remcap);
   2.279 -	    exc-=remcap;
   2.280 -	  }
   2.281 -	} else if ( newlevel > level[v] ) newlevel = level[v];
   2.282 -      } //for out edges wv 
   2.283 -      
   2.284 -      if ( exc > 0 ) {	
   2.285 -	InEdgeIt e;
   2.286 -	for(g->first(e,w); g->valid(e); g->next(e)) {
   2.287 -	  
   2.288 -	  if( (*flow)[e] <= 0 ) continue; 
   2.289 -	  Node v=g->tail(e); 
   2.290 -	  
   2.291 -	  if( lev > level[v] ) { //Push is allowed now
   2.292 -	    
   2.293 -	    if ( excess[v]<=0 && v!=t && v!=s ) {
   2.294 -	      int lev_v=level[v];
   2.295 -	      active[lev_v].push(v);
   2.296 -	    }
   2.297 -	    
   2.298 -	    Num flo=(*flow)[e];
   2.299 -	    
   2.300 -	    if ( flo >= exc ) { //A nonsaturating push.
   2.301 -	      
   2.302 -	      flow->set(e, flo-exc);
   2.303 -	      excess.set(v, excess[v]+exc);
   2.304 -	      exc=0;
   2.305 -	      break; 
   2.306 -	    } else {  //A saturating push.
   2.307 -	      
   2.308 -	      excess.set(v, excess[v]+flo);
   2.309 -	      exc-=flo;
   2.310 -	      flow->set(e,0);
   2.311 -	    }  
   2.312 -	  } else if ( newlevel > level[v] ) newlevel = level[v];
   2.313 -	} //for in edges vw
   2.314 -	
   2.315 -      } // if w still has excess after the out edge for cycle
   2.316 -      
   2.317 -      excess.set(w, exc);
   2.318 -      
   2.319 -      return newlevel;
   2.320 -     }
   2.321 -
   2.322 -
   2.323 -    void preflowPreproc ( flowEnum fe, VecStack& active, 
   2.324 -			  VecNode& level_list, NNMap& left, NNMap& right ) {
   2.325 -
   2.326 -      std::queue<Node> bfs_queue;
   2.327 -      
   2.328 -      switch ( fe ) {
   2.329 -      case ZERO_FLOW: 
   2.330 -	{
   2.331 -	  //Reverse_bfs from t, to find the starting level.
   2.332 -	  level.set(t,0);
   2.333 -	  bfs_queue.push(t);
   2.334 -	
   2.335 -	  while (!bfs_queue.empty()) {
   2.336 -	    
   2.337 -	    Node v=bfs_queue.front();	
   2.338 -	    bfs_queue.pop();
   2.339 -	    int l=level[v]+1;
   2.340 -	    
   2.341 -	    InEdgeIt e;
   2.342 -	    for(g->first(e,v); g->valid(e); g->next(e)) {
   2.343 -	      Node w=g->tail(e);
   2.344 -	      if ( level[w] == n && w != s ) {
   2.345 -		bfs_queue.push(w);
   2.346 -		Node first=level_list[l];
   2.347 -		if ( g->valid(first) ) left.set(first,w);
   2.348 -		right.set(w,first);
   2.349 -		level_list[l]=w;
   2.350 -		level.set(w, l);
   2.351 -	      }
   2.352 -	    }
   2.353 -	  }
   2.354 -	  
   2.355 -	  //the starting flow
   2.356 -	  OutEdgeIt e;
   2.357 -	  for(g->first(e,s); g->valid(e); g->next(e)) 
   2.358 -	    {
   2.359 -	      Num c=(*capacity)[e];
   2.360 -	      if ( c <= 0 ) continue;
   2.361 -	      Node w=g->head(e);
   2.362 -	      if ( level[w] < n ) {	  
   2.363 -		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
   2.364 -		flow->set(e, c); 
   2.365 -		excess.set(w, excess[w]+c);
   2.366 -	      }
   2.367 -	    }
   2.368 -	  break;
   2.369 -	}
   2.370 -	
   2.371 -      case GEN_FLOW:
   2.372 -      case PREFLOW:
   2.373 -	{
   2.374 -	  //Reverse_bfs from t in the residual graph, 
   2.375 -	  //to find the starting level.
   2.376 -	  level.set(t,0);
   2.377 -	  bfs_queue.push(t);
   2.378 -	  
   2.379 -	  while (!bfs_queue.empty()) {
   2.380 -	    
   2.381 -	    Node v=bfs_queue.front();	
   2.382 -	    bfs_queue.pop();
   2.383 -	    int l=level[v]+1;
   2.384 -	    
   2.385 -	    InEdgeIt e;
   2.386 -	    for(g->first(e,v); g->valid(e); g->next(e)) {
   2.387 -	      if ( (*capacity)[e] <= (*flow)[e] ) continue;
   2.388 -	      Node w=g->tail(e);
   2.389 -	      if ( level[w] == n && w != s ) {
   2.390 -		bfs_queue.push(w);
   2.391 -		Node first=level_list[l];
   2.392 -		if ( g->valid(first) ) left.set(first,w);
   2.393 -		right.set(w,first);
   2.394 -		level_list[l]=w;
   2.395 -		level.set(w, l);
   2.396 -	      }
   2.397 -	    }
   2.398 -	    
   2.399 -	    OutEdgeIt f;
   2.400 -	    for(g->first(f,v); g->valid(f); g->next(f)) {
   2.401 -	      if ( 0 >= (*flow)[f] ) continue;
   2.402 -	      Node w=g->head(f);
   2.403 -	      if ( level[w] == n && w != s ) {
   2.404 -		bfs_queue.push(w);
   2.405 -		Node first=level_list[l];
   2.406 -		if ( g->valid(first) ) left.set(first,w);
   2.407 -		right.set(w,first);
   2.408 -		level_list[l]=w;
   2.409 -		level.set(w, l);
   2.410 -	      }
   2.411 -	    }
   2.412 -	  }
   2.413 -	  
   2.414 -	  
   2.415 -	  //the starting flow
   2.416 -	  OutEdgeIt e;
   2.417 -	  for(g->first(e,s); g->valid(e); g->next(e)) 
   2.418 -	    {
   2.419 -	      Num rem=(*capacity)[e]-(*flow)[e];
   2.420 -	      if ( rem <= 0 ) continue;
   2.421 -	      Node w=g->head(e);
   2.422 -	      if ( level[w] < n ) {	  
   2.423 -		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
   2.424 -		flow->set(e, (*capacity)[e]); 
   2.425 -		excess.set(w, excess[w]+rem);
   2.426 -	      }
   2.427 -	    }
   2.428 -	  
   2.429 -	  InEdgeIt f;
   2.430 -	  for(g->first(f,s); g->valid(f); g->next(f)) 
   2.431 -	    {
   2.432 -	      if ( (*flow)[f] <= 0 ) continue;
   2.433 -	      Node w=g->tail(f);
   2.434 -	      if ( level[w] < n ) {	  
   2.435 -		if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
   2.436 -		excess.set(w, excess[w]+(*flow)[f]);
   2.437 -		flow->set(f, 0); 
   2.438 -	      }
   2.439 -	    }  
   2.440 -	  break;
   2.441 -	} //case PREFLOW
   2.442 -      }
   2.443 -    } //preflowPreproc
   2.444 -
   2.445 -
   2.446 -
   2.447 -    void relabel(Node w, int newlevel, VecStack& active,  
   2.448 -		 VecNode& level_list, NNMap& left, 
   2.449 -		 NNMap& right, int& b, int& k, bool what_heur ) 
   2.450 -    {
   2.451 -
   2.452 -      Num lev=level[w];	
   2.453 -      
   2.454 -      Node right_n=right[w];
   2.455 -      Node left_n=left[w];
   2.456 -      
   2.457 -      //unlacing starts
   2.458 -      if ( g->valid(right_n) ) {
   2.459 -	if ( g->valid(left_n) ) {
   2.460 -	  right.set(left_n, right_n);
   2.461 -	  left.set(right_n, left_n);
   2.462 -	} else {
   2.463 -	  level_list[lev]=right_n;   
   2.464 -	  left.set(right_n, INVALID);
   2.465 -	} 
   2.466 -      } else {
   2.467 -	if ( g->valid(left_n) ) {
   2.468 -	  right.set(left_n, INVALID);
   2.469 -	} else { 
   2.470 -	  level_list[lev]=INVALID;   
   2.471 -	} 
   2.472 -      } 
   2.473 -      //unlacing ends
   2.474 -		
   2.475 -      if ( !g->valid(level_list[lev]) ) {
   2.476 -	      
   2.477 -	//gapping starts
   2.478 -	for (int i=lev; i!=k ; ) {
   2.479 -	  Node v=level_list[++i];
   2.480 -	  while ( g->valid(v) ) {
   2.481 -	    level.set(v,n);
   2.482 -	    v=right[v];
   2.483 -	  }
   2.484 -	  level_list[i]=INVALID;
   2.485 -	  if ( !what_heur ) {
   2.486 -	    while ( !active[i].empty() ) {
   2.487 -	      active[i].pop();    //FIXME: ezt szebben kene
   2.488 -	    }
   2.489 -	  }	     
   2.490 -	}
   2.491 -	
   2.492 -	level.set(w,n);
   2.493 -	b=lev-1;
   2.494 -	k=b;
   2.495 -	//gapping ends
   2.496 -	
   2.497 -      } else {
   2.498 -	
   2.499 -	if ( newlevel == n ) level.set(w,n); 
   2.500 -	else {
   2.501 -	  level.set(w,++newlevel);
   2.502 -	  active[newlevel].push(w);
   2.503 -	  if ( what_heur ) b=newlevel;
   2.504 -	  if ( k < newlevel ) ++k;      //now k=newlevel
   2.505 -	  Node first=level_list[newlevel];
   2.506 -	  if ( g->valid(first) ) left.set(first,w);
   2.507 -	  right.set(w,first);
   2.508 -	  left.set(w,INVALID);
   2.509 -	  level_list[newlevel]=w;
   2.510 -	}
   2.511 -      }
   2.512 -      
   2.513 -    } //relabel
   2.514 -
   2.515 -
   2.516 -    template<typename MapGraphWrapper> 
   2.517 -    class DistanceMap {
   2.518 -    protected:
   2.519 -      const MapGraphWrapper* g;
   2.520 -      typename MapGraphWrapper::template NodeMap<int> dist; 
   2.521 -    public:
   2.522 -      DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { }
   2.523 -      void set(const typename MapGraphWrapper::Node& n, int a) { 
   2.524 -	dist.set(n, a); 
   2.525 -      }
   2.526 -      int operator[](const typename MapGraphWrapper::Node& n) 
   2.527 -	{ return dist[n]; }
   2.528 -//       int get(const typename MapGraphWrapper::Node& n) const { 
   2.529 -// 	return dist[n]; }
   2.530 -//       bool get(const typename MapGraphWrapper::Edge& e) const { 
   2.531 -// 	return (dist.get(g->tail(e))<dist.get(g->head(e))); }
   2.532 -      bool operator[](const typename MapGraphWrapper::Edge& e) const { 
   2.533 -	return (dist[g->tail(e)]<dist[g->head(e)]); 
   2.534 -      }
   2.535 -    };
   2.536 -    
   2.537 -  };
   2.538 -
   2.539 -
   2.540 -  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   2.541 -  void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase0( flowEnum fe ) 
   2.542 -  {
   2.543 -      
   2.544 -      int heur0=(int)(H0*n);  //time while running 'bound decrease' 
   2.545 -      int heur1=(int)(H1*n);  //time while running 'highest label'
   2.546 -      int heur=heur1;         //starting time interval (#of relabels)
   2.547 -      int numrelabel=0;
   2.548 -     
   2.549 -      bool what_heur=1;       
   2.550 -      //It is 0 in case 'bound decrease' and 1 in case 'highest label'
   2.551 -
   2.552 -      bool end=false;     
   2.553 -      //Needed for 'bound decrease', true means no active nodes are above bound b.
   2.554 -
   2.555 -      int k=n-2;  //bound on the highest level under n containing a node
   2.556 -      int b=k;    //bound on the highest level under n of an active node
   2.557 -      
   2.558 -      VecStack active(n);
   2.559 -      
   2.560 -      NNMap left(*g, INVALID);
   2.561 -      NNMap right(*g, INVALID);
   2.562 -      VecNode level_list(n,INVALID);
   2.563 -      //List of the nodes in level i<n, set to n.
   2.564 -
   2.565 -      NodeIt v;
   2.566 -      for(g->first(v); g->valid(v); g->next(v)) level.set(v,n);
   2.567 -      //setting each node to level n
   2.568 -      
   2.569 -      switch ( fe ) {
   2.570 -      case PREFLOW:
   2.571 -	{
   2.572 -	  //counting the excess
   2.573 -	  NodeIt v;
   2.574 -	  for(g->first(v); g->valid(v); g->next(v)) {
   2.575 -	    Num exc=0;
   2.576 -	  
   2.577 -	    InEdgeIt e;
   2.578 -	    for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e];
   2.579 -	    OutEdgeIt f;
   2.580 -	    for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f];
   2.581 -	    
   2.582 -	    excess.set(v,exc);	  
   2.583 -	    
   2.584 -	    //putting the active nodes into the stack
   2.585 -	    int lev=level[v];
   2.586 -	    if ( exc > 0 && lev < n && v != t ) active[lev].push(v);
   2.587 -	  }
   2.588 -	  break;
   2.589 -	}
   2.590 -      case GEN_FLOW:
   2.591 -	{
   2.592 -	  //Counting the excess of t
   2.593 -	  Num exc=0;
   2.594 -	  
   2.595 -	  InEdgeIt e;
   2.596 -	  for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e];
   2.597 -	  OutEdgeIt f;
   2.598 -	  for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f];
   2.599 -	  
   2.600 -	  excess.set(t,exc);	
   2.601 -	  
   2.602 -	  break;
   2.603 -	}
   2.604 -      default:
   2.605 -	break;
   2.606 -      }
   2.607 -      
   2.608 -      preflowPreproc( fe, active, level_list, left, right );
   2.609 -      //End of preprocessing 
   2.610 -      
   2.611 -      
   2.612 -      //Push/relabel on the highest level active nodes.
   2.613 -      while ( true ) {
   2.614 -	if ( b == 0 ) {
   2.615 -	  if ( !what_heur && !end && k > 0 ) {
   2.616 -	    b=k;
   2.617 -	    end=true;
   2.618 -	  } else break;
   2.619 -	}
   2.620 -	
   2.621 -	if ( active[b].empty() ) --b; 
   2.622 -	else {
   2.623 -	  end=false;  
   2.624 -	  Node w=active[b].top();
   2.625 -	  active[b].pop();
   2.626 -	  int newlevel=push(w,active);
   2.627 -	  if ( excess[w] > 0 ) relabel(w, newlevel, active, level_list, 
   2.628 -				       left, right, b, k, what_heur);
   2.629 -	  
   2.630 -	  ++numrelabel; 
   2.631 -	  if ( numrelabel >= heur ) {
   2.632 -	    numrelabel=0;
   2.633 -	    if ( what_heur ) {
   2.634 -	      what_heur=0;
   2.635 -	      heur=heur0;
   2.636 -	      end=false;
   2.637 -	    } else {
   2.638 -	      what_heur=1;
   2.639 -	      heur=heur1;
   2.640 -	      b=k; 
   2.641 -	    }
   2.642 -	  }
   2.643 -	} 
   2.644 -      } 
   2.645 -    }
   2.646 -
   2.647 -
   2.648 -
   2.649 -  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   2.650 -  void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase1() 
   2.651 -  {
   2.652 -      
   2.653 -      int k=n-2;  //bound on the highest level under n containing a node
   2.654 -      int b=k;    //bound on the highest level under n of an active node
   2.655 -      
   2.656 -      VecStack active(n);
   2.657 -      level.set(s,0);
   2.658 -      std::queue<Node> bfs_queue;
   2.659 -      bfs_queue.push(s);
   2.660 -	    
   2.661 -      while (!bfs_queue.empty()) {
   2.662 -	
   2.663 -	Node v=bfs_queue.front();	
   2.664 -	bfs_queue.pop();
   2.665 -	int l=level[v]+1;
   2.666 -	      
   2.667 -	InEdgeIt e;
   2.668 -	for(g->first(e,v); g->valid(e); g->next(e)) {
   2.669 -	  if ( (*capacity)[e] <= (*flow)[e] ) continue;
   2.670 -	  Node u=g->tail(e);
   2.671 -	  if ( level[u] >= n ) { 
   2.672 -	    bfs_queue.push(u);
   2.673 -	    level.set(u, l);
   2.674 -	    if ( excess[u] > 0 ) active[l].push(u);
   2.675 -	  }
   2.676 -	}
   2.677 -	
   2.678 -	OutEdgeIt f;
   2.679 -	for(g->first(f,v); g->valid(f); g->next(f)) {
   2.680 -	  if ( 0 >= (*flow)[f] ) continue;
   2.681 -	  Node u=g->head(f);
   2.682 -	  if ( level[u] >= n ) { 
   2.683 -	    bfs_queue.push(u);
   2.684 -	    level.set(u, l);
   2.685 -	    if ( excess[u] > 0 ) active[l].push(u);
   2.686 -	  }
   2.687 -	}
   2.688 -      }
   2.689 -      b=n-2;
   2.690 -
   2.691 -      while ( true ) {
   2.692 -	
   2.693 -	if ( b == 0 ) break;
   2.694 -
   2.695 -	if ( active[b].empty() ) --b; 
   2.696 -	else {
   2.697 -	  Node w=active[b].top();
   2.698 -	  active[b].pop();
   2.699 -	  int newlevel=push(w,active);	  
   2.700 -
   2.701 -	  //relabel
   2.702 -	  if ( excess[w] > 0 ) {
   2.703 -	    level.set(w,++newlevel);
   2.704 -	    active[newlevel].push(w);
   2.705 -	    b=newlevel;
   2.706 -	  }
   2.707 -	}  // if stack[b] is nonempty
   2.708 -      } // while(true)
   2.709 -    }
   2.710 -
   2.711 -
   2.712 -
   2.713 -  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   2.714 -  bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath() 
   2.715 -  {
   2.716 -      ResGW res_graph(*g, *capacity, *flow);
   2.717 -      bool _augment=false;
   2.718 -      
   2.719 -      //ReachedMap level(res_graph);
   2.720 -      FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
   2.721 -      BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
   2.722 -      bfs.pushAndSetReached(s);
   2.723 -	
   2.724 -      typename ResGW::template NodeMap<ResGWEdge> pred(res_graph); 
   2.725 -      pred.set(s, INVALID);
   2.726 -      
   2.727 -      typename ResGW::template NodeMap<Num> free(res_graph);
   2.728 -	
   2.729 -      //searching for augmenting path
   2.730 -      while ( !bfs.finished() ) { 
   2.731 -	ResGWOutEdgeIt e=bfs;
   2.732 -	if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
   2.733 -	  Node v=res_graph.tail(e);
   2.734 -	  Node w=res_graph.head(e);
   2.735 -	  pred.set(w, e);
   2.736 -	  if (res_graph.valid(pred[v])) {
   2.737 -	    free.set(w, std::min(free[v], res_graph.resCap(e)));
   2.738 -	  } else {
   2.739 -	    free.set(w, res_graph.resCap(e)); 
   2.740 -	  }
   2.741 -	  if (res_graph.head(e)==t) { _augment=true; break; }
   2.742 -	}
   2.743 -	
   2.744 -	++bfs;
   2.745 -      } //end of searching augmenting path
   2.746 -
   2.747 -      if (_augment) {
   2.748 -	Node n=t;
   2.749 -	Num augment_value=free[t];
   2.750 -	while (res_graph.valid(pred[n])) { 
   2.751 -	  ResGWEdge e=pred[n];
   2.752 -	  res_graph.augment(e, augment_value); 
   2.753 -	  n=res_graph.tail(e);
   2.754 -	}
   2.755 -      }
   2.756 -
   2.757 -      return _augment;
   2.758 -    }
   2.759 -
   2.760 -
   2.761 -
   2.762 -
   2.763 -
   2.764 -
   2.765 -
   2.766 -
   2.767 -
   2.768 -  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   2.769 -  template<typename MutableGraph> 
   2.770 -  bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow() 
   2.771 -  {      
   2.772 -      typedef MutableGraph MG;
   2.773 -      bool _augment=false;
   2.774 -
   2.775 -      ResGW res_graph(*g, *capacity, *flow);
   2.776 -
   2.777 -      //bfs for distances on the residual graph
   2.778 -      //ReachedMap level(res_graph);
   2.779 -      FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
   2.780 -      BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
   2.781 -      bfs.pushAndSetReached(s);
   2.782 -      typename ResGW::template NodeMap<int> 
   2.783 -	dist(res_graph); //filled up with 0's
   2.784 -
   2.785 -      //F will contain the physical copy of the residual graph
   2.786 -      //with the set of edges which are on shortest paths
   2.787 -      MG F;
   2.788 -      typename ResGW::template NodeMap<typename MG::Node> 
   2.789 -	res_graph_to_F(res_graph);
   2.790 -      {
   2.791 -	typename ResGW::NodeIt n;
   2.792 -	for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) {
   2.793 -	  res_graph_to_F.set(n, F.addNode());
   2.794 -	}
   2.795 -      }
   2.796 -
   2.797 -      typename MG::Node sF=res_graph_to_F[s];
   2.798 -      typename MG::Node tF=res_graph_to_F[t];
   2.799 -      typename MG::template EdgeMap<ResGWEdge> original_edge(F);
   2.800 -      typename MG::template EdgeMap<Num> residual_capacity(F);
   2.801 -
   2.802 -      while ( !bfs.finished() ) { 
   2.803 -	ResGWOutEdgeIt e=bfs;
   2.804 -	if (res_graph.valid(e)) {
   2.805 -	  if (bfs.isBNodeNewlyReached()) {
   2.806 -	    dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
   2.807 -	    typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], res_graph_to_F[res_graph.head(e)]);
   2.808 -	    original_edge.update();
   2.809 -	    original_edge.set(f, e);
   2.810 -	    residual_capacity.update();
   2.811 -	    residual_capacity.set(f, res_graph.resCap(e));
   2.812 -	  } else {
   2.813 -	    if (dist[res_graph.head(e)]==(dist[res_graph.tail(e)]+1)) {
   2.814 -	      typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], res_graph_to_F[res_graph.head(e)]);
   2.815 -	      original_edge.update();
   2.816 -	      original_edge.set(f, e);
   2.817 -	      residual_capacity.update();
   2.818 -	      residual_capacity.set(f, res_graph.resCap(e));
   2.819 -	    }
   2.820 -	  }
   2.821 -	}
   2.822 -	++bfs;
   2.823 -      } //computing distances from s in the residual graph
   2.824 -
   2.825 -      bool __augment=true;
   2.826 -
   2.827 -      while (__augment) {
   2.828 -	__augment=false;
   2.829 -	//computing blocking flow with dfs
   2.830 -	DfsIterator< MG, typename MG::template NodeMap<bool> > dfs(F);
   2.831 -	typename MG::template NodeMap<typename MG::Edge> pred(F);
   2.832 -	pred.set(sF, INVALID);
   2.833 -	//invalid iterators for sources
   2.834 -
   2.835 -	typename MG::template NodeMap<Num> free(F);
   2.836 -
   2.837 -	dfs.pushAndSetReached(sF);      
   2.838 -	while (!dfs.finished()) {
   2.839 -	  ++dfs;
   2.840 -	  if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) {
   2.841 -	    if (dfs.isBNodeNewlyReached()) {
   2.842 -	      typename MG::Node v=F.aNode(dfs);
   2.843 -	      typename MG::Node w=F.bNode(dfs);
   2.844 -	      pred.set(w, dfs);
   2.845 -	      if (F.valid(pred[v])) {
   2.846 -		free.set(w, std::min(free[v], residual_capacity[dfs]));
   2.847 -	      } else {
   2.848 -		free.set(w, residual_capacity[dfs]); 
   2.849 -	      }
   2.850 -	      if (w==tF) { 
   2.851 -		__augment=true; 
   2.852 -		_augment=true;
   2.853 -		break; 
   2.854 -	      }
   2.855 -	      
   2.856 -	    } else {
   2.857 -	      F.erase(/*typename MG::OutEdgeIt*/(dfs));
   2.858 -	    }
   2.859 -	  } 
   2.860 -	}
   2.861 -
   2.862 -	if (__augment) {
   2.863 -	  typename MG::Node n=tF;
   2.864 -	  Num augment_value=free[tF];
   2.865 -	  while (F.valid(pred[n])) { 
   2.866 -	    typename MG::Edge e=pred[n];
   2.867 -	    res_graph.augment(original_edge[e], augment_value); 
   2.868 -	    n=F.tail(e);
   2.869 -	    if (residual_capacity[e]==augment_value) 
   2.870 -	      F.erase(e); 
   2.871 -	    else 
   2.872 -	      residual_capacity.set(e, residual_capacity[e]-augment_value);
   2.873 -	  }
   2.874 -	}
   2.875 -	
   2.876 -      }
   2.877 -            
   2.878 -      return _augment;
   2.879 -    }
   2.880 -
   2.881 -
   2.882 -
   2.883 -
   2.884 -
   2.885 -
   2.886 -  template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   2.887 -  bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow2() 
   2.888 -  {
   2.889 -      bool _augment=false;
   2.890 -
   2.891 -      ResGW res_graph(*g, *capacity, *flow);
   2.892 -      
   2.893 -      //ReachedMap level(res_graph);
   2.894 -      FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
   2.895 -      BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
   2.896 -
   2.897 -      bfs.pushAndSetReached(s);
   2.898 -      DistanceMap<ResGW> dist(res_graph);
   2.899 -      while ( !bfs.finished() ) { 
   2.900 - 	ResGWOutEdgeIt e=bfs;
   2.901 - 	if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
   2.902 - 	  dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
   2.903 - 	}
   2.904 -	++bfs;
   2.905 -      } //computing distances from s in the residual graph
   2.906 -
   2.907 -      //Subgraph containing the edges on some shortest paths
   2.908 -      ConstMap<typename ResGW::Node, bool> true_map(true);
   2.909 -      typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>, 
   2.910 -	DistanceMap<ResGW> > FilterResGW;
   2.911 -      FilterResGW filter_res_graph(res_graph, true_map, dist);
   2.912 -
   2.913 -      //Subgraph, which is able to delete edges which are already 
   2.914 -      //met by the dfs
   2.915 -      typename FilterResGW::template NodeMap<typename FilterResGW::OutEdgeIt> 
   2.916 - 	first_out_edges(filter_res_graph);
   2.917 -      typename FilterResGW::NodeIt v;
   2.918 -      for(filter_res_graph.first(v); filter_res_graph.valid(v); 
   2.919 - 	  filter_res_graph.next(v)) 
   2.920 -      {
   2.921 - 	typename FilterResGW::OutEdgeIt e;
   2.922 - 	filter_res_graph.first(e, v);
   2.923 - 	first_out_edges.set(v, e);
   2.924 -      }
   2.925 -      typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW::
   2.926 -	template NodeMap<typename FilterResGW::OutEdgeIt> > ErasingResGW;
   2.927 -      ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges);
   2.928 -
   2.929 -      bool __augment=true;
   2.930 -
   2.931 -      while (__augment) {
   2.932 -
   2.933 - 	__augment=false;
   2.934 -  	//computing blocking flow with dfs
   2.935 -  	DfsIterator< ErasingResGW, 
   2.936 -	  typename ErasingResGW::template NodeMap<bool> > 
   2.937 -  	  dfs(erasing_res_graph);
   2.938 - 	typename ErasingResGW::
   2.939 -	  template NodeMap<typename ErasingResGW::OutEdgeIt> 
   2.940 -	  pred(erasing_res_graph); 
   2.941 - 	pred.set(s, INVALID);
   2.942 -  	//invalid iterators for sources
   2.943 -
   2.944 -  	typename ErasingResGW::template NodeMap<Num> 
   2.945 -	  free1(erasing_res_graph);
   2.946 -
   2.947 - 	dfs.pushAndSetReached(
   2.948 -	  typename ErasingResGW::Node(
   2.949 -	    typename FilterResGW::Node(
   2.950 -	      typename ResGW::Node(s)
   2.951 -	      )
   2.952 -	    )
   2.953 -	  );
   2.954 - 	while (!dfs.finished()) {
   2.955 - 	  ++dfs;
   2.956 - 	  if (erasing_res_graph.valid(
   2.957 - 		typename ErasingResGW::OutEdgeIt(dfs))) 
   2.958 - 	  { 
   2.959 -  	    if (dfs.isBNodeNewlyReached()) {
   2.960 -	  
   2.961 - 	      typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs);
   2.962 - 	      typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs);
   2.963 -
   2.964 - 	      pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs));
   2.965 - 	      if (erasing_res_graph.valid(pred[v])) {
   2.966 - 		free1.set(w, std::min(free1[v], res_graph.resCap(
   2.967 -				       typename ErasingResGW::OutEdgeIt(dfs))));
   2.968 - 	      } else {
   2.969 - 		free1.set(w, res_graph.resCap(
   2.970 -			   typename ErasingResGW::OutEdgeIt(dfs))); 
   2.971 - 	      }
   2.972 -	      
   2.973 - 	      if (w==t) { 
   2.974 - 		__augment=true; 
   2.975 - 		_augment=true;
   2.976 - 		break; 
   2.977 - 	      }
   2.978 - 	    } else {
   2.979 - 	      erasing_res_graph.erase(dfs);
   2.980 -	    }
   2.981 -	  }
   2.982 -	}	
   2.983 -
   2.984 -  	if (__augment) {
   2.985 -   	  typename ErasingResGW::Node n=typename FilterResGW::Node(typename ResGW::Node(t));
   2.986 -// 	  typename ResGW::NodeMap<Num> a(res_graph);
   2.987 -// 	  typename ResGW::Node b;
   2.988 -// 	  Num j=a[b];
   2.989 -// 	  typename FilterResGW::NodeMap<Num> a1(filter_res_graph);
   2.990 -// 	  typename FilterResGW::Node b1;
   2.991 -// 	  Num j1=a1[b1];
   2.992 -// 	  typename ErasingResGW::NodeMap<Num> a2(erasing_res_graph);
   2.993 -// 	  typename ErasingResGW::Node b2;
   2.994 -// 	  Num j2=a2[b2];
   2.995 - 	  Num augment_value=free1[n];
   2.996 - 	  while (erasing_res_graph.valid(pred[n])) { 
   2.997 - 	    typename ErasingResGW::OutEdgeIt e=pred[n];
   2.998 - 	    res_graph.augment(e, augment_value);
   2.999 - 	    n=erasing_res_graph.tail(e);
  2.1000 - 	    if (res_graph.resCap(e)==0)
  2.1001 - 	      erasing_res_graph.erase(e);
  2.1002 -	}
  2.1003 -      }
  2.1004 -      
  2.1005 -      } //while (__augment) 
  2.1006 -            
  2.1007 -      return _augment;
  2.1008 -    }
  2.1009 -
  2.1010 -
  2.1011 -
  2.1012 -
  2.1013 -} //namespace hugo
  2.1014 -
  2.1015 -#endif //HUGO_PREFLOW_H
  2.1016 -
  2.1017 -
  2.1018 -
  2.1019 -