The pre BpUGraph concept
authordeba
Thu, 26 Jan 2006 17:18:12 +0000
changeset 1911c925a077cf73
parent 1910 f95eea8c34b0
child 1912 d9205a711324
The pre BpUGraph concept
lemon/concept/bpugraph.h
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/concept/bpugraph.h	Thu Jan 26 17:18:12 2006 +0000
     1.3 @@ -0,0 +1,906 @@
     1.4 +/* -*- C++ -*-
     1.5 + *
     1.6 + * lemon/concept/ugraph_component.h - Part of LEMON, a generic
     1.7 + * C++ optimization library
     1.8 + *
     1.9 + * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi
    1.10 + * Kutatocsoport (Egervary Research Group on Combinatorial Optimization,
    1.11 + * EGRES).
    1.12 + *
    1.13 + * Permission to use, modify and distribute this software is granted
    1.14 + * provided that this copyright notice appears in all copies. For
    1.15 + * precise terms see the accompanying LICENSE file.
    1.16 + *
    1.17 + * This software is provided "AS IS" with no warranty of any kind,
    1.18 + * express or implied, and with no claim as to its suitability for any
    1.19 + * purpose.
    1.20 + *
    1.21 + */
    1.22 +
    1.23 +/// \ingroup graph_concepts
    1.24 +/// \file
    1.25 +/// \brief Undirected bipartite graphs and components of.
    1.26 +
    1.27 +
    1.28 +#ifndef LEMON_CONCEPT_BPUGRAPH_H
    1.29 +#define LEMON_CONCEPT_BPUGRAPH_H
    1.30 +
    1.31 +#include <lemon/concept/graph_component.h>
    1.32 +
    1.33 +#include <lemon/concept/graph.h>
    1.34 +#include <lemon/concept/ugraph.h>
    1.35 +
    1.36 +#include <lemon/utility.h>
    1.37 +
    1.38 +namespace lemon {
    1.39 +  namespace concept {
    1.40 +
    1.41 +    /// \addtogroup graph_concepts
    1.42 +    /// @{
    1.43 +
    1.44 +
    1.45 +    /// \brief Class describing the concept of Bipartite Undirected Graphs.
    1.46 +    ///
    1.47 +    /// This class describes the common interface of all 
    1.48 +    /// Undirected Bipartite Graphs.
    1.49 +    ///
    1.50 +    /// As all concept describing classes it provides only interface
    1.51 +    /// without any sensible implementation. So any algorithm for
    1.52 +    /// bipartite undirected graph should compile with this class, but it 
    1.53 +    /// will not run properly, of course.
    1.54 +    ///
    1.55 +    /// In LEMON bipartite undirected graphs also fulfill the concept of 
    1.56 +    /// the undirected graphs (\ref lemon::concept::UGraph "UGraph Concept"). 
    1.57 +    ///
    1.58 +    /// You can assume that all undirected bipartite graph can be handled
    1.59 +    /// as an undirected graph and consequently as a static graph.
    1.60 +    ///
    1.61 +    /// The bipartite graph stores two types of nodes which are named
    1.62 +    /// ANode and BNode. Even so the graph type does not contain ANode
    1.63 +    /// and BNode classes, becaue the nodes can be accessed just with the
    1.64 +    /// common Node class. 
    1.65 +    ///
    1.66 +    /// The iteration on the partition can be done with the ANodeIt and 
    1.67 +    /// BNodeIt classes. The node map can be used to map values to the nodes
    1.68 +    /// and similarly we can use to map values for just the ANodes and
    1.69 +    /// BNodes the ANodeMap and BNodeMap template classes.
    1.70 +
    1.71 +    class BpUGraph {
    1.72 +    public:
    1.73 +      /// \todo undocumented
    1.74 +      ///
    1.75 +      typedef True UTag;
    1.76 +
    1.77 +      /// \brief The base type of node iterators, 
    1.78 +      /// or in other words, the trivial node iterator.
    1.79 +      ///
    1.80 +      /// This is the base type of each node iterator,
    1.81 +      /// thus each kind of node iterator converts to this.
    1.82 +      /// More precisely each kind of node iterator should be inherited 
    1.83 +      /// from the trivial node iterator. The Node class represents
    1.84 +      /// both of two types of nodes. 
    1.85 +      class Node {
    1.86 +      public:
    1.87 +        /// Default constructor
    1.88 +
    1.89 +        /// @warning The default constructor sets the iterator
    1.90 +        /// to an undefined value.
    1.91 +        Node() { }
    1.92 +        /// Copy constructor.
    1.93 +
    1.94 +        /// Copy constructor.
    1.95 +        ///
    1.96 +        Node(const Node&) { }
    1.97 +
    1.98 +        /// Invalid constructor \& conversion.
    1.99 +
   1.100 +        /// This constructor initializes the iterator to be invalid.
   1.101 +        /// \sa Invalid for more details.
   1.102 +        Node(Invalid) { }
   1.103 +        /// Equality operator
   1.104 +
   1.105 +        /// Two iterators are equal if and only if they point to the
   1.106 +        /// same object or both are invalid.
   1.107 +        bool operator==(Node) const { return true; }
   1.108 +
   1.109 +        /// Inequality operator
   1.110 +        
   1.111 +        /// \sa operator==(Node n)
   1.112 +        ///
   1.113 +        bool operator!=(Node) const { return true; }
   1.114 +
   1.115 +	/// Artificial ordering operator.
   1.116 +	
   1.117 +	/// To allow the use of graph descriptors as key type in std::map or
   1.118 +	/// similar associative container we require this.
   1.119 +	///
   1.120 +	/// \note This operator only have to define some strict ordering of
   1.121 +	/// the items; this order has nothing to do with the iteration
   1.122 +	/// ordering of the items.
   1.123 +	///
   1.124 +	/// \bug This is a technical requirement. Do we really need this?
   1.125 +	bool operator<(Node) const { return false; }
   1.126 +
   1.127 +      };
   1.128 +    
   1.129 +      /// This iterator goes through each node.
   1.130 +
   1.131 +      /// This iterator goes through each node.
   1.132 +      /// Its usage is quite simple, for example you can count the number
   1.133 +      /// of nodes in graph \c g of type \c Graph like this:
   1.134 +      /// \code
   1.135 +      /// int count=0;
   1.136 +      /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
   1.137 +      /// \endcode
   1.138 +      class NodeIt : public Node {
   1.139 +      public:
   1.140 +        /// Default constructor
   1.141 +
   1.142 +        /// @warning The default constructor sets the iterator
   1.143 +        /// to an undefined value.
   1.144 +        NodeIt() { }
   1.145 +        /// Copy constructor.
   1.146 +        
   1.147 +        /// Copy constructor.
   1.148 +        ///
   1.149 +        NodeIt(const NodeIt& n) : Node(n) { }
   1.150 +        /// Invalid constructor \& conversion.
   1.151 +
   1.152 +        /// Initialize the iterator to be invalid.
   1.153 +        /// \sa Invalid for more details.
   1.154 +        NodeIt(Invalid) { }
   1.155 +        /// Sets the iterator to the first node.
   1.156 +
   1.157 +        /// Sets the iterator to the first node of \c g.
   1.158 +        ///
   1.159 +        NodeIt(const BpUGraph&) { }
   1.160 +        /// Node -> NodeIt conversion.
   1.161 +
   1.162 +        /// Sets the iterator to the node of \c the graph pointed by 
   1.163 +	/// the trivial iterator.
   1.164 +        /// This feature necessitates that each time we 
   1.165 +        /// iterate the edge-set, the iteration order is the same.
   1.166 +        NodeIt(const BpUGraph&, const Node&) { }
   1.167 +        /// Next node.
   1.168 +
   1.169 +        /// Assign the iterator to the next node.
   1.170 +        ///
   1.171 +        NodeIt& operator++() { return *this; }
   1.172 +      };
   1.173 +
   1.174 +      /// This iterator goes through each ANode.
   1.175 +
   1.176 +      /// This iterator goes through each ANode.
   1.177 +      /// Its usage is quite simple, for example you can count the number
   1.178 +      /// of nodes in graph \c g of type \c Graph like this:
   1.179 +      /// \code
   1.180 +      /// int count=0;
   1.181 +      /// for (Graph::ANodeIt n(g); n!=INVALID; ++n) ++count;
   1.182 +      /// \endcode
   1.183 +      class ANodeIt : public Node {
   1.184 +      public:
   1.185 +        /// Default constructor
   1.186 +
   1.187 +        /// @warning The default constructor sets the iterator
   1.188 +        /// to an undefined value.
   1.189 +        ANodeIt() { }
   1.190 +        /// Copy constructor.
   1.191 +        
   1.192 +        /// Copy constructor.
   1.193 +        ///
   1.194 +        ANodeIt(const ANodeIt& n) : Node(n) { }
   1.195 +        /// Invalid constructor \& conversion.
   1.196 +
   1.197 +        /// Initialize the iterator to be invalid.
   1.198 +        /// \sa Invalid for more details.
   1.199 +        ANodeIt(Invalid) { }
   1.200 +        /// Sets the iterator to the first node.
   1.201 +
   1.202 +        /// Sets the iterator to the first node of \c g.
   1.203 +        ///
   1.204 +        ANodeIt(const BpUGraph&) { }
   1.205 +        /// Node -> ANodeIt conversion.
   1.206 +
   1.207 +        /// Sets the iterator to the node of \c the graph pointed by 
   1.208 +	/// the trivial iterator.
   1.209 +        /// This feature necessitates that each time we 
   1.210 +        /// iterate the edge-set, the iteration order is the same.
   1.211 +        ANodeIt(const BpUGraph&, const Node&) { }
   1.212 +        /// Next node.
   1.213 +
   1.214 +        /// Assign the iterator to the next node.
   1.215 +        ///
   1.216 +        ANodeIt& operator++() { return *this; }
   1.217 +      };
   1.218 +
   1.219 +      /// This iterator goes through each BNode.
   1.220 +
   1.221 +      /// This iterator goes through each BNode.
   1.222 +      /// Its usage is quite simple, for example you can count the number
   1.223 +      /// of nodes in graph \c g of type \c Graph like this:
   1.224 +      /// \code
   1.225 +      /// int count=0;
   1.226 +      /// for (Graph::BNodeIt n(g); n!=INVALID; ++n) ++count;
   1.227 +      /// \endcode
   1.228 +      class BNodeIt : public Node {
   1.229 +      public:
   1.230 +        /// Default constructor
   1.231 +
   1.232 +        /// @warning The default constructor sets the iterator
   1.233 +        /// to an undefined value.
   1.234 +        BNodeIt() { }
   1.235 +        /// Copy constructor.
   1.236 +        
   1.237 +        /// Copy constructor.
   1.238 +        ///
   1.239 +        BNodeIt(const BNodeIt& n) : Node(n) { }
   1.240 +        /// Invalid constructor \& conversion.
   1.241 +
   1.242 +        /// Initialize the iterator to be invalid.
   1.243 +        /// \sa Invalid for more details.
   1.244 +        BNodeIt(Invalid) { }
   1.245 +        /// Sets the iterator to the first node.
   1.246 +
   1.247 +        /// Sets the iterator to the first node of \c g.
   1.248 +        ///
   1.249 +        BNodeIt(const BpUGraph&) { }
   1.250 +        /// Node -> BNodeIt conversion.
   1.251 +
   1.252 +        /// Sets the iterator to the node of \c the graph pointed by 
   1.253 +	/// the trivial iterator.
   1.254 +        /// This feature necessitates that each time we 
   1.255 +        /// iterate the edge-set, the iteration order is the same.
   1.256 +        BNodeIt(const BpUGraph&, const Node&) { }
   1.257 +        /// Next node.
   1.258 +
   1.259 +        /// Assign the iterator to the next node.
   1.260 +        ///
   1.261 +        BNodeIt& operator++() { return *this; }
   1.262 +      };
   1.263 +    
   1.264 +    
   1.265 +      /// The base type of the undirected edge iterators.
   1.266 +
   1.267 +      /// The base type of the undirected edge iterators.
   1.268 +      ///
   1.269 +      class UEdge {
   1.270 +      public:
   1.271 +        /// Default constructor
   1.272 +
   1.273 +        /// @warning The default constructor sets the iterator
   1.274 +        /// to an undefined value.
   1.275 +        UEdge() { }
   1.276 +        /// Copy constructor.
   1.277 +
   1.278 +        /// Copy constructor.
   1.279 +        ///
   1.280 +        UEdge(const UEdge&) { }
   1.281 +        /// Initialize the iterator to be invalid.
   1.282 +
   1.283 +        /// Initialize the iterator to be invalid.
   1.284 +        ///
   1.285 +        UEdge(Invalid) { }
   1.286 +        /// Equality operator
   1.287 +
   1.288 +        /// Two iterators are equal if and only if they point to the
   1.289 +        /// same object or both are invalid.
   1.290 +        bool operator==(UEdge) const { return true; }
   1.291 +        /// Inequality operator
   1.292 +
   1.293 +        /// \sa operator==(UEdge n)
   1.294 +        ///
   1.295 +        bool operator!=(UEdge) const { return true; }
   1.296 +
   1.297 +	/// Artificial ordering operator.
   1.298 +	
   1.299 +	/// To allow the use of graph descriptors as key type in std::map or
   1.300 +	/// similar associative container we require this.
   1.301 +	///
   1.302 +	/// \note This operator only have to define some strict ordering of
   1.303 +	/// the items; this order has nothing to do with the iteration
   1.304 +	/// ordering of the items.
   1.305 +	///
   1.306 +	/// \bug This is a technical requirement. Do we really need this?
   1.307 +	bool operator<(UEdge) const { return false; }
   1.308 +      };
   1.309 +
   1.310 +      /// This iterator goes through each undirected edge.
   1.311 +
   1.312 +      /// This iterator goes through each undirected edge of a graph.
   1.313 +      /// Its usage is quite simple, for example you can count the number
   1.314 +      /// of undirected edges in a graph \c g of type \c Graph as follows:
   1.315 +      /// \code
   1.316 +      /// int count=0;
   1.317 +      /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count;
   1.318 +      /// \endcode
   1.319 +      class UEdgeIt : public UEdge {
   1.320 +      public:
   1.321 +        /// Default constructor
   1.322 +
   1.323 +        /// @warning The default constructor sets the iterator
   1.324 +        /// to an undefined value.
   1.325 +        UEdgeIt() { }
   1.326 +        /// Copy constructor.
   1.327 +
   1.328 +        /// Copy constructor.
   1.329 +        ///
   1.330 +        UEdgeIt(const UEdgeIt& e) : UEdge(e) { }
   1.331 +        /// Initialize the iterator to be invalid.
   1.332 +
   1.333 +        /// Initialize the iterator to be invalid.
   1.334 +        ///
   1.335 +        UEdgeIt(Invalid) { }
   1.336 +        /// This constructor sets the iterator to the first undirected edge.
   1.337 +    
   1.338 +        /// This constructor sets the iterator to the first undirected edge.
   1.339 +        UEdgeIt(const BpUGraph&) { }
   1.340 +        /// UEdge -> UEdgeIt conversion
   1.341 +
   1.342 +        /// Sets the iterator to the value of the trivial iterator.
   1.343 +        /// This feature necessitates that each time we
   1.344 +        /// iterate the undirected edge-set, the iteration order is the 
   1.345 +	/// same.
   1.346 +        UEdgeIt(const BpUGraph&, const UEdge&) { } 
   1.347 +        /// Next undirected edge
   1.348 +        
   1.349 +        /// Assign the iterator to the next undirected edge.
   1.350 +        UEdgeIt& operator++() { return *this; }
   1.351 +      };
   1.352 +
   1.353 +      /// \brief This iterator goes trough the incident undirected 
   1.354 +      /// edges of a node.
   1.355 +      ///
   1.356 +      /// This iterator goes trough the incident undirected edges
   1.357 +      /// of a certain node
   1.358 +      /// of a graph.
   1.359 +      /// Its usage is quite simple, for example you can compute the
   1.360 +      /// degree (i.e. count the number
   1.361 +      /// of incident edges of a node \c n
   1.362 +      /// in graph \c g of type \c Graph as follows.
   1.363 +      /// \code
   1.364 +      /// int count=0;
   1.365 +      /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   1.366 +      /// \endcode
   1.367 +      class IncEdgeIt : public UEdge {
   1.368 +      public:
   1.369 +        /// Default constructor
   1.370 +
   1.371 +        /// @warning The default constructor sets the iterator
   1.372 +        /// to an undefined value.
   1.373 +        IncEdgeIt() { }
   1.374 +        /// Copy constructor.
   1.375 +
   1.376 +        /// Copy constructor.
   1.377 +        ///
   1.378 +        IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { }
   1.379 +        /// Initialize the iterator to be invalid.
   1.380 +
   1.381 +        /// Initialize the iterator to be invalid.
   1.382 +        ///
   1.383 +        IncEdgeIt(Invalid) { }
   1.384 +        /// This constructor sets the iterator to first incident edge.
   1.385 +    
   1.386 +        /// This constructor set the iterator to the first incident edge of
   1.387 +        /// the node.
   1.388 +        IncEdgeIt(const BpUGraph&, const Node&) { }
   1.389 +        /// UEdge -> IncEdgeIt conversion
   1.390 +
   1.391 +        /// Sets the iterator to the value of the trivial iterator \c e.
   1.392 +        /// This feature necessitates that each time we 
   1.393 +        /// iterate the edge-set, the iteration order is the same.
   1.394 +        IncEdgeIt(const BpUGraph&, const UEdge&) { }
   1.395 +        /// Next incident edge
   1.396 +
   1.397 +        /// Assign the iterator to the next incident edge
   1.398 +	/// of the corresponding node.
   1.399 +        IncEdgeIt& operator++() { return *this; }
   1.400 +      };
   1.401 +
   1.402 +      /// The directed edge type.
   1.403 +
   1.404 +      /// The directed edge type. It can be converted to the
   1.405 +      /// undirected edge.
   1.406 +      class Edge : public UEdge {
   1.407 +      public:
   1.408 +        /// Default constructor
   1.409 +
   1.410 +        /// @warning The default constructor sets the iterator
   1.411 +        /// to an undefined value.
   1.412 +        Edge() { }
   1.413 +        /// Copy constructor.
   1.414 +
   1.415 +        /// Copy constructor.
   1.416 +        ///
   1.417 +        Edge(const Edge& e) : UEdge(e) { }
   1.418 +        /// Initialize the iterator to be invalid.
   1.419 +
   1.420 +        /// Initialize the iterator to be invalid.
   1.421 +        ///
   1.422 +        Edge(Invalid) { }
   1.423 +        /// Equality operator
   1.424 +
   1.425 +        /// Two iterators are equal if and only if they point to the
   1.426 +        /// same object or both are invalid.
   1.427 +        bool operator==(Edge) const { return true; }
   1.428 +        /// Inequality operator
   1.429 +
   1.430 +        /// \sa operator==(Edge n)
   1.431 +        ///
   1.432 +        bool operator!=(Edge) const { return true; }
   1.433 +
   1.434 +	/// Artificial ordering operator.
   1.435 +	
   1.436 +	/// To allow the use of graph descriptors as key type in std::map or
   1.437 +	/// similar associative container we require this.
   1.438 +	///
   1.439 +	/// \note This operator only have to define some strict ordering of
   1.440 +	/// the items; this order has nothing to do with the iteration
   1.441 +	/// ordering of the items.
   1.442 +	///
   1.443 +	/// \bug This is a technical requirement. Do we really need this?
   1.444 +	bool operator<(Edge) const { return false; }
   1.445 +	
   1.446 +      }; 
   1.447 +      /// This iterator goes through each directed edge.
   1.448 +
   1.449 +      /// This iterator goes through each edge of a graph.
   1.450 +      /// Its usage is quite simple, for example you can count the number
   1.451 +      /// of edges in a graph \c g of type \c Graph as follows:
   1.452 +      /// \code
   1.453 +      /// int count=0;
   1.454 +      /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
   1.455 +      /// \endcode
   1.456 +      class EdgeIt : public Edge {
   1.457 +      public:
   1.458 +        /// Default constructor
   1.459 +
   1.460 +        /// @warning The default constructor sets the iterator
   1.461 +        /// to an undefined value.
   1.462 +        EdgeIt() { }
   1.463 +        /// Copy constructor.
   1.464 +
   1.465 +        /// Copy constructor.
   1.466 +        ///
   1.467 +        EdgeIt(const EdgeIt& e) : Edge(e) { }
   1.468 +        /// Initialize the iterator to be invalid.
   1.469 +
   1.470 +        /// Initialize the iterator to be invalid.
   1.471 +        ///
   1.472 +        EdgeIt(Invalid) { }
   1.473 +        /// This constructor sets the iterator to the first edge.
   1.474 +    
   1.475 +        /// This constructor sets the iterator to the first edge of \c g.
   1.476 +        ///@param g the graph
   1.477 +        EdgeIt(const BpUGraph &g) { ignore_unused_variable_warning(g); }
   1.478 +        /// Edge -> EdgeIt conversion
   1.479 +
   1.480 +        /// Sets the iterator to the value of the trivial iterator \c e.
   1.481 +        /// This feature necessitates that each time we 
   1.482 +        /// iterate the edge-set, the iteration order is the same.
   1.483 +        EdgeIt(const BpUGraph&, const Edge&) { } 
   1.484 +        ///Next edge
   1.485 +        
   1.486 +        /// Assign the iterator to the next edge.
   1.487 +        EdgeIt& operator++() { return *this; }
   1.488 +      };
   1.489 +   
   1.490 +      /// This iterator goes trough the outgoing directed edges of a node.
   1.491 +
   1.492 +      /// This iterator goes trough the \e outgoing edges of a certain node
   1.493 +      /// of a graph.
   1.494 +      /// Its usage is quite simple, for example you can count the number
   1.495 +      /// of outgoing edges of a node \c n
   1.496 +      /// in graph \c g of type \c Graph as follows.
   1.497 +      /// \code
   1.498 +      /// int count=0;
   1.499 +      /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   1.500 +      /// \endcode
   1.501 +    
   1.502 +      class OutEdgeIt : public Edge {
   1.503 +      public:
   1.504 +        /// Default constructor
   1.505 +
   1.506 +        /// @warning The default constructor sets the iterator
   1.507 +        /// to an undefined value.
   1.508 +        OutEdgeIt() { }
   1.509 +        /// Copy constructor.
   1.510 +
   1.511 +        /// Copy constructor.
   1.512 +        ///
   1.513 +        OutEdgeIt(const OutEdgeIt& e) : Edge(e) { }
   1.514 +        /// Initialize the iterator to be invalid.
   1.515 +
   1.516 +        /// Initialize the iterator to be invalid.
   1.517 +        ///
   1.518 +        OutEdgeIt(Invalid) { }
   1.519 +        /// This constructor sets the iterator to the first outgoing edge.
   1.520 +    
   1.521 +        /// This constructor sets the iterator to the first outgoing edge of
   1.522 +        /// the node.
   1.523 +        ///@param n the node
   1.524 +        ///@param g the graph
   1.525 +        OutEdgeIt(const BpUGraph& n, const Node& g) {
   1.526 +	  ignore_unused_variable_warning(n);
   1.527 +	  ignore_unused_variable_warning(g);
   1.528 +	}
   1.529 +        /// Edge -> OutEdgeIt conversion
   1.530 +
   1.531 +        /// Sets the iterator to the value of the trivial iterator.
   1.532 +	/// This feature necessitates that each time we 
   1.533 +        /// iterate the edge-set, the iteration order is the same.
   1.534 +        OutEdgeIt(const BpUGraph&, const Edge&) { }
   1.535 +        ///Next outgoing edge
   1.536 +        
   1.537 +        /// Assign the iterator to the next 
   1.538 +        /// outgoing edge of the corresponding node.
   1.539 +        OutEdgeIt& operator++() { return *this; }
   1.540 +      };
   1.541 +
   1.542 +      /// This iterator goes trough the incoming directed edges of a node.
   1.543 +
   1.544 +      /// This iterator goes trough the \e incoming edges of a certain node
   1.545 +      /// of a graph.
   1.546 +      /// Its usage is quite simple, for example you can count the number
   1.547 +      /// of outgoing edges of a node \c n
   1.548 +      /// in graph \c g of type \c Graph as follows.
   1.549 +      /// \code
   1.550 +      /// int count=0;
   1.551 +      /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   1.552 +      /// \endcode
   1.553 +
   1.554 +      class InEdgeIt : public Edge {
   1.555 +      public:
   1.556 +        /// Default constructor
   1.557 +
   1.558 +        /// @warning The default constructor sets the iterator
   1.559 +        /// to an undefined value.
   1.560 +        InEdgeIt() { }
   1.561 +        /// Copy constructor.
   1.562 +
   1.563 +        /// Copy constructor.
   1.564 +        ///
   1.565 +        InEdgeIt(const InEdgeIt& e) : Edge(e) { }
   1.566 +        /// Initialize the iterator to be invalid.
   1.567 +
   1.568 +        /// Initialize the iterator to be invalid.
   1.569 +        ///
   1.570 +        InEdgeIt(Invalid) { }
   1.571 +        /// This constructor sets the iterator to first incoming edge.
   1.572 +    
   1.573 +        /// This constructor set the iterator to the first incoming edge of
   1.574 +        /// the node.
   1.575 +        ///@param n the node
   1.576 +        ///@param g the graph
   1.577 +        InEdgeIt(const BpUGraph& g, const Node& n) { 
   1.578 +	  ignore_unused_variable_warning(n);
   1.579 +	  ignore_unused_variable_warning(g);
   1.580 +	}
   1.581 +        /// Edge -> InEdgeIt conversion
   1.582 +
   1.583 +        /// Sets the iterator to the value of the trivial iterator \c e.
   1.584 +        /// This feature necessitates that each time we 
   1.585 +        /// iterate the edge-set, the iteration order is the same.
   1.586 +        InEdgeIt(const BpUGraph&, const Edge&) { }
   1.587 +        /// Next incoming edge
   1.588 +
   1.589 +        /// Assign the iterator to the next inedge of the corresponding node.
   1.590 +        ///
   1.591 +        InEdgeIt& operator++() { return *this; }
   1.592 +      };
   1.593 +
   1.594 +      /// \brief Read write map of the nodes to type \c T.
   1.595 +      /// 
   1.596 +      /// ReadWrite map of the nodes to type \c T.
   1.597 +      /// \sa Reference
   1.598 +      /// \warning Making maps that can handle bool type (NodeMap<bool>)
   1.599 +      /// needs some extra attention!
   1.600 +      /// \todo Wrong documentation
   1.601 +      template<class T> 
   1.602 +      class NodeMap : public ReadWriteMap< Node, T >
   1.603 +      {
   1.604 +      public:
   1.605 +
   1.606 +        ///\e
   1.607 +        NodeMap(const BpUGraph&) { }
   1.608 +        ///\e
   1.609 +        NodeMap(const BpUGraph&, T) { }
   1.610 +
   1.611 +        ///Copy constructor
   1.612 +        NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
   1.613 +        ///Assignment operator
   1.614 +        NodeMap& operator=(const NodeMap&) { return *this; }
   1.615 +        // \todo fix this concept
   1.616 +      };
   1.617 +
   1.618 +      /// \brief Read write map of the ANodes to type \c T.
   1.619 +      /// 
   1.620 +      /// ReadWrite map of the ANodes to type \c T.
   1.621 +      /// \sa Reference
   1.622 +      /// \warning Making maps that can handle bool type (NodeMap<bool>)
   1.623 +      /// needs some extra attention!
   1.624 +      /// \todo Wrong documentation
   1.625 +      template<class T> 
   1.626 +      class ANodeMap : public ReadWriteMap< Node, T >
   1.627 +      {
   1.628 +      public:
   1.629 +
   1.630 +        ///\e
   1.631 +        ANodeMap(const BpUGraph&) { }
   1.632 +        ///\e
   1.633 +        ANodeMap(const BpUGraph&, T) { }
   1.634 +
   1.635 +        ///Copy constructor
   1.636 +        ANodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
   1.637 +        ///Assignment operator
   1.638 +        ANodeMap& operator=(const NodeMap&) { return *this; }
   1.639 +        // \todo fix this concept
   1.640 +      };
   1.641 +
   1.642 +      /// \brief Read write map of the BNodes to type \c T.
   1.643 +      /// 
   1.644 +      /// ReadWrite map of the BNodes to type \c T.
   1.645 +      /// \sa Reference
   1.646 +      /// \warning Making maps that can handle bool type (NodeMap<bool>)
   1.647 +      /// needs some extra attention!
   1.648 +      /// \todo Wrong documentation
   1.649 +      template<class T> 
   1.650 +      class BNodeMap : public ReadWriteMap< Node, T >
   1.651 +      {
   1.652 +      public:
   1.653 +
   1.654 +        ///\e
   1.655 +        BNodeMap(const BpUGraph&) { }
   1.656 +        ///\e
   1.657 +        BNodeMap(const BpUGraph&, T) { }
   1.658 +
   1.659 +        ///Copy constructor
   1.660 +        BNodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
   1.661 +        ///Assignment operator
   1.662 +        BNodeMap& operator=(const NodeMap&) { return *this; }
   1.663 +        // \todo fix this concept
   1.664 +      };
   1.665 +
   1.666 +      /// \brief Read write map of the directed edges to type \c T.
   1.667 +      ///
   1.668 +      /// Reference map of the directed edges to type \c T.
   1.669 +      /// \sa Reference
   1.670 +      /// \warning Making maps that can handle bool type (EdgeMap<bool>)
   1.671 +      /// needs some extra attention!
   1.672 +      /// \todo Wrong documentation
   1.673 +      template<class T> 
   1.674 +      class EdgeMap : public ReadWriteMap<Edge,T>
   1.675 +      {
   1.676 +      public:
   1.677 +
   1.678 +        ///\e
   1.679 +        EdgeMap(const BpUGraph&) { }
   1.680 +        ///\e
   1.681 +        EdgeMap(const BpUGraph&, T) { }
   1.682 +        ///Copy constructor
   1.683 +        EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { }
   1.684 +        ///Assignment operator
   1.685 +        EdgeMap& operator=(const EdgeMap&) { return *this; }
   1.686 +        // \todo fix this concept    
   1.687 +      };
   1.688 +
   1.689 +      /// Read write map of the undirected edges to type \c T.
   1.690 +
   1.691 +      /// Reference map of the edges to type \c T.
   1.692 +      /// \sa Reference
   1.693 +      /// \warning Making maps that can handle bool type (UEdgeMap<bool>)
   1.694 +      /// needs some extra attention!
   1.695 +      /// \todo Wrong documentation
   1.696 +      template<class T> 
   1.697 +      class UEdgeMap : public ReadWriteMap<UEdge,T>
   1.698 +      {
   1.699 +      public:
   1.700 +
   1.701 +        ///\e
   1.702 +        UEdgeMap(const BpUGraph&) { }
   1.703 +        ///\e
   1.704 +        UEdgeMap(const BpUGraph&, T) { }
   1.705 +        ///Copy constructor
   1.706 +        UEdgeMap(const UEdgeMap& em) : ReadWriteMap<UEdge,T>(em) {}
   1.707 +        ///Assignment operator
   1.708 +        UEdgeMap &operator=(const UEdgeMap&) { return *this; }
   1.709 +        // \todo fix this concept    
   1.710 +      };
   1.711 +
   1.712 +      /// \brief Direct the given undirected edge.
   1.713 +      ///
   1.714 +      /// Direct the given undirected edge. The returned edge source
   1.715 +      /// will be the given edge.
   1.716 +      Edge direct(const UEdge&, const Node&) const {
   1.717 +	return INVALID;
   1.718 +      }
   1.719 +
   1.720 +      /// \brief Direct the given undirected edge.
   1.721 +      ///
   1.722 +      /// Direct the given undirected edge. The returned edge source
   1.723 +      /// will be the source of the undirected edge if the given bool
   1.724 +      /// is true.
   1.725 +      Edge direct(const UEdge&, bool) const {
   1.726 +	return INVALID;
   1.727 +      }
   1.728 +
   1.729 +      /// \brief Returns true when the given node is an ANode.
   1.730 +      ///
   1.731 +      /// Returns true when the given node is an ANode.
   1.732 +      bool aNode(Node) const { return true;}
   1.733 +
   1.734 +      /// \brief Returns true when the given node is an BNode.
   1.735 +      ///
   1.736 +      /// Returns true when the given node is an BNode.
   1.737 +      bool bNode(Node) const { return true;}
   1.738 +
   1.739 +      /// \brief Returns the edge's end node which is in the ANode set.
   1.740 +      ///
   1.741 +      /// Returns the edge's end node which is in the ANode set.
   1.742 +      Node aNode(UEdge) const { return INVALID;}
   1.743 +
   1.744 +      /// \brief Returns the edge's end node which is in the BNode set.
   1.745 +      ///
   1.746 +      /// Returns the edge's end node which is in the BNode set.
   1.747 +      Node bNode(UEdge) const { return INVALID;}
   1.748 +
   1.749 +      /// \brief Returns true if the edge has default orientation.
   1.750 +      ///
   1.751 +      /// Returns whether the given directed edge is same orientation as
   1.752 +      /// the corresponding undirected edge.
   1.753 +      bool direction(Edge) const { return true; }
   1.754 +
   1.755 +      /// \brief Returns the opposite directed edge.
   1.756 +      ///
   1.757 +      /// Returns the opposite directed edge.
   1.758 +      Edge oppositeEdge(Edge) const { return INVALID; }
   1.759 +
   1.760 +      /// \brief Opposite node on an edge
   1.761 +      ///
   1.762 +      /// \return the opposite of the given Node on the given Edge
   1.763 +      Node oppositeNode(Node, UEdge) const { return INVALID; }
   1.764 +
   1.765 +      /// \brief First node of the undirected edge.
   1.766 +      ///
   1.767 +      /// \return the first node of the given UEdge.
   1.768 +      ///
   1.769 +      /// Naturally uectected edges don't have direction and thus
   1.770 +      /// don't have source and target node. But we use these two methods
   1.771 +      /// to query the two endnodes of the edge. The direction of the edge
   1.772 +      /// which arises this way is called the inherent direction of the
   1.773 +      /// undirected edge, and is used to define the "default" direction
   1.774 +      /// of the directed versions of the edges.
   1.775 +      /// \sa direction
   1.776 +      Node source(UEdge) const { return INVALID; }
   1.777 +
   1.778 +      /// \brief Second node of the undirected edge.
   1.779 +      Node target(UEdge) const { return INVALID; }
   1.780 +
   1.781 +      /// \brief Source node of the directed edge.
   1.782 +      Node source(Edge) const { return INVALID; }
   1.783 +
   1.784 +      /// \brief Target node of the directed edge.
   1.785 +      Node target(Edge) const { return INVALID; }
   1.786 +
   1.787 +      /// \brief Base node of the iterator
   1.788 +      ///
   1.789 +      /// Returns the base node (the source in this case) of the iterator
   1.790 +      Node baseNode(OutEdgeIt e) const {
   1.791 +	return source(e);
   1.792 +      }
   1.793 +
   1.794 +      /// \brief Running node of the iterator
   1.795 +      ///
   1.796 +      /// Returns the running node (the target in this case) of the
   1.797 +      /// iterator
   1.798 +      Node runningNode(OutEdgeIt e) const {
   1.799 +	return target(e);
   1.800 +      }
   1.801 +
   1.802 +      /// \brief Base node of the iterator
   1.803 +      ///
   1.804 +      /// Returns the base node (the target in this case) of the iterator
   1.805 +      Node baseNode(InEdgeIt e) const {
   1.806 +	return target(e);
   1.807 +      }
   1.808 +      /// \brief Running node of the iterator
   1.809 +      ///
   1.810 +      /// Returns the running node (the source in this case) of the
   1.811 +      /// iterator
   1.812 +      Node runningNode(InEdgeIt e) const {
   1.813 +	return source(e);
   1.814 +      }
   1.815 +
   1.816 +      /// \brief Base node of the iterator
   1.817 +      ///
   1.818 +      /// Returns the base node of the iterator
   1.819 +      Node baseNode(IncEdgeIt) const {
   1.820 +	return INVALID;
   1.821 +      }
   1.822 +      
   1.823 +      /// \brief Running node of the iterator
   1.824 +      ///
   1.825 +      /// Returns the running node of the iterator
   1.826 +      Node runningNode(IncEdgeIt) const {
   1.827 +	return INVALID;
   1.828 +      }
   1.829 +
   1.830 +      template <typename Graph>
   1.831 +      struct Constraints {
   1.832 +	void constraints() {
   1.833 +	}
   1.834 +      };
   1.835 +
   1.836 +    };
   1.837 +
   1.838 +    /// \brief An empty non-static undirected graph class.
   1.839 +    ///    
   1.840 +    /// This class provides everything that \ref BpUGraph does.
   1.841 +    /// Additionally it enables building graphs from scratch.
   1.842 +    class ExtendableBpUGraph : public BpUGraph {
   1.843 +    public:
   1.844 +      
   1.845 +      /// \brief Add a new ANode to the graph.
   1.846 +      ///
   1.847 +      /// Add a new ANode to the graph.
   1.848 +      /// \return the new node.
   1.849 +      Node addANode();
   1.850 +
   1.851 +      /// \brief Add a new ANode to the graph.
   1.852 +      ///
   1.853 +      /// Add a new ANode to the graph.
   1.854 +      /// \return the new node.
   1.855 +      Node addBNode();
   1.856 +
   1.857 +      /// \brief Add a new undirected edge to the graph.
   1.858 +      ///
   1.859 +      /// Add a new undirected edge to the graph. One of the nodes
   1.860 +      /// should be ANode and the other should be BNode.
   1.861 +      /// \pre The nodes are not in the same nodeset.
   1.862 +      /// \return the new edge.
   1.863 +      UEdge addEdge(const Node& from, const Node& to);
   1.864 +
   1.865 +      /// \brief Resets the graph.
   1.866 +      ///
   1.867 +      /// This function deletes all undirected edges and nodes of the graph.
   1.868 +      /// It also frees the memory allocated to store them.
   1.869 +      void clear() { }
   1.870 +
   1.871 +      template <typename Graph>
   1.872 +      struct Constraints {
   1.873 +	void constraints() {}
   1.874 +      };
   1.875 +
   1.876 +    };
   1.877 +
   1.878 +    /// \brief An empty erasable undirected graph class.
   1.879 +    ///
   1.880 +    /// This class is an extension of \ref ExtendableBpUGraph. It makes it
   1.881 +    /// possible to erase undirected edges or nodes.
   1.882 +    class ErasableBpUGraph : public ExtendableBpUGraph {
   1.883 +    public:
   1.884 +
   1.885 +      /// \brief Deletes a node.
   1.886 +      ///
   1.887 +      /// Deletes a node.
   1.888 +      ///
   1.889 +      void erase(Node) { }
   1.890 +      /// \brief Deletes an undirected edge.
   1.891 +      ///
   1.892 +      /// Deletes an undirected edge.
   1.893 +      ///
   1.894 +      void erase(UEdge) { }
   1.895 +
   1.896 +      template <typename Graph>
   1.897 +      struct Constraints {
   1.898 +	void constraints() {}
   1.899 +      };
   1.900 +
   1.901 +    };
   1.902 +
   1.903 +    /// @}
   1.904 +
   1.905 +  }
   1.906 +
   1.907 +}
   1.908 +
   1.909 +#endif