lemon/matching.h
author Balazs Dezso <deba@inf.elte.hu>
Sun, 20 Sep 2009 21:38:24 +0200
changeset 868 0513ccfea967
parent 651 3adf5e2d1e62
child 870 61120524af27
permissions -rw-r--r--
General improvements in weighted matching algorithms (#314)

- Fix include guard
- Uniform handling of MATCHED and UNMATCHED blossoms
- Prefer operations which decrease the number of trees
- Fix improper use of '/='

The solved problems did not cause wrong solution.
deba@326
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
deba@326
     2
 *
deba@326
     3
 * This file is a part of LEMON, a generic C++ optimization library.
deba@326
     4
 *
alpar@440
     5
 * Copyright (C) 2003-2009
deba@326
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
deba@326
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
deba@326
     8
 *
deba@326
     9
 * Permission to use, modify and distribute this software is granted
deba@326
    10
 * provided that this copyright notice appears in all copies. For
deba@326
    11
 * precise terms see the accompanying LICENSE file.
deba@326
    12
 *
deba@326
    13
 * This software is provided "AS IS" with no warranty of any kind,
deba@326
    14
 * express or implied, and with no claim as to its suitability for any
deba@326
    15
 * purpose.
deba@326
    16
 *
deba@326
    17
 */
deba@326
    18
deba@868
    19
#ifndef LEMON_MATCHING_H
deba@868
    20
#define LEMON_MATCHING_H
deba@326
    21
deba@326
    22
#include <vector>
deba@326
    23
#include <queue>
deba@326
    24
#include <set>
deba@326
    25
#include <limits>
deba@326
    26
deba@326
    27
#include <lemon/core.h>
deba@326
    28
#include <lemon/unionfind.h>
deba@326
    29
#include <lemon/bin_heap.h>
deba@326
    30
#include <lemon/maps.h>
deba@326
    31
deba@326
    32
///\ingroup matching
deba@326
    33
///\file
deba@327
    34
///\brief Maximum matching algorithms in general graphs.
deba@326
    35
deba@326
    36
namespace lemon {
deba@326
    37
deba@327
    38
  /// \ingroup matching
deba@326
    39
  ///
kpeter@590
    40
  /// \brief Maximum cardinality matching in general graphs
deba@326
    41
  ///
kpeter@590
    42
  /// This class implements Edmonds' alternating forest matching algorithm
kpeter@593
    43
  /// for finding a maximum cardinality matching in a general undirected graph.
deba@868
    44
  /// It can be started from an arbitrary initial matching
kpeter@590
    45
  /// (the default is the empty one).
deba@326
    46
  ///
alpar@330
    47
  /// The dual solution of the problem is a map of the nodes to
kpeter@590
    48
  /// \ref MaxMatching::Status "Status", having values \c EVEN (or \c D),
kpeter@590
    49
  /// \c ODD (or \c A) and \c MATCHED (or \c C) defining the Gallai-Edmonds
kpeter@590
    50
  /// decomposition of the graph. The nodes in \c EVEN/D induce a subgraph
kpeter@590
    51
  /// with factor-critical components, the nodes in \c ODD/A form the
kpeter@590
    52
  /// canonical barrier, and the nodes in \c MATCHED/C induce a graph having
kpeter@590
    53
  /// a perfect matching. The number of the factor-critical components
deba@327
    54
  /// minus the number of barrier nodes is a lower bound on the
alpar@330
    55
  /// unmatched nodes, and the matching is optimal if and only if this bound is
kpeter@593
    56
  /// tight. This decomposition can be obtained using \ref status() or
kpeter@593
    57
  /// \ref statusMap() after running the algorithm.
deba@326
    58
  ///
kpeter@593
    59
  /// \tparam GR The undirected graph type the algorithm runs on.
kpeter@559
    60
  template <typename GR>
deba@326
    61
  class MaxMatching {
deba@327
    62
  public:
deba@327
    63
kpeter@590
    64
    /// The graph type of the algorithm
kpeter@559
    65
    typedef GR Graph;
kpeter@593
    66
    /// The type of the matching map
deba@327
    67
    typedef typename Graph::template NodeMap<typename Graph::Arc>
deba@327
    68
    MatchingMap;
deba@327
    69
kpeter@590
    70
    ///\brief Status constants for Gallai-Edmonds decomposition.
deba@327
    71
    ///
deba@868
    72
    ///These constants are used for indicating the Gallai-Edmonds
kpeter@590
    73
    ///decomposition of a graph. The nodes with status \c EVEN (or \c D)
kpeter@590
    74
    ///induce a subgraph with factor-critical components, the nodes with
kpeter@590
    75
    ///status \c ODD (or \c A) form the canonical barrier, and the nodes
deba@868
    76
    ///with status \c MATCHED (or \c C) induce a subgraph having a
kpeter@590
    77
    ///perfect matching.
deba@327
    78
    enum Status {
kpeter@590
    79
      EVEN = 1,       ///< = 1. (\c D is an alias for \c EVEN.)
kpeter@590
    80
      D = 1,
kpeter@590
    81
      MATCHED = 0,    ///< = 0. (\c C is an alias for \c MATCHED.)
kpeter@590
    82
      C = 0,
kpeter@590
    83
      ODD = -1,       ///< = -1. (\c A is an alias for \c ODD.)
kpeter@590
    84
      A = -1,
kpeter@590
    85
      UNMATCHED = -2  ///< = -2.
deba@327
    86
    };
deba@327
    87
kpeter@593
    88
    /// The type of the status map
deba@327
    89
    typedef typename Graph::template NodeMap<Status> StatusMap;
deba@327
    90
deba@327
    91
  private:
deba@326
    92
deba@326
    93
    TEMPLATE_GRAPH_TYPEDEFS(Graph);
deba@326
    94
deba@327
    95
    typedef UnionFindEnum<IntNodeMap> BlossomSet;
deba@327
    96
    typedef ExtendFindEnum<IntNodeMap> TreeSet;
deba@327
    97
    typedef RangeMap<Node> NodeIntMap;
deba@327
    98
    typedef MatchingMap EarMap;
deba@327
    99
    typedef std::vector<Node> NodeQueue;
deba@327
   100
deba@327
   101
    const Graph& _graph;
deba@327
   102
    MatchingMap* _matching;
deba@327
   103
    StatusMap* _status;
deba@327
   104
deba@327
   105
    EarMap* _ear;
deba@327
   106
deba@327
   107
    IntNodeMap* _blossom_set_index;
deba@327
   108
    BlossomSet* _blossom_set;
deba@327
   109
    NodeIntMap* _blossom_rep;
deba@327
   110
deba@327
   111
    IntNodeMap* _tree_set_index;
deba@327
   112
    TreeSet* _tree_set;
deba@327
   113
deba@327
   114
    NodeQueue _node_queue;
deba@327
   115
    int _process, _postpone, _last;
deba@327
   116
deba@327
   117
    int _node_num;
deba@327
   118
deba@327
   119
  private:
deba@327
   120
deba@327
   121
    void createStructures() {
deba@327
   122
      _node_num = countNodes(_graph);
deba@327
   123
      if (!_matching) {
deba@327
   124
        _matching = new MatchingMap(_graph);
deba@327
   125
      }
deba@327
   126
      if (!_status) {
deba@327
   127
        _status = new StatusMap(_graph);
deba@327
   128
      }
deba@327
   129
      if (!_ear) {
deba@327
   130
        _ear = new EarMap(_graph);
deba@327
   131
      }
deba@327
   132
      if (!_blossom_set) {
deba@327
   133
        _blossom_set_index = new IntNodeMap(_graph);
deba@327
   134
        _blossom_set = new BlossomSet(*_blossom_set_index);
deba@327
   135
      }
deba@327
   136
      if (!_blossom_rep) {
deba@327
   137
        _blossom_rep = new NodeIntMap(_node_num);
deba@327
   138
      }
deba@327
   139
      if (!_tree_set) {
deba@327
   140
        _tree_set_index = new IntNodeMap(_graph);
deba@327
   141
        _tree_set = new TreeSet(*_tree_set_index);
deba@327
   142
      }
deba@327
   143
      _node_queue.resize(_node_num);
deba@327
   144
    }
deba@327
   145
deba@327
   146
    void destroyStructures() {
deba@327
   147
      if (_matching) {
deba@327
   148
        delete _matching;
deba@327
   149
      }
deba@327
   150
      if (_status) {
deba@327
   151
        delete _status;
deba@327
   152
      }
deba@327
   153
      if (_ear) {
deba@327
   154
        delete _ear;
deba@327
   155
      }
deba@327
   156
      if (_blossom_set) {
deba@327
   157
        delete _blossom_set;
deba@327
   158
        delete _blossom_set_index;
deba@327
   159
      }
deba@327
   160
      if (_blossom_rep) {
deba@327
   161
        delete _blossom_rep;
deba@327
   162
      }
deba@327
   163
      if (_tree_set) {
deba@327
   164
        delete _tree_set_index;
deba@327
   165
        delete _tree_set;
deba@327
   166
      }
deba@327
   167
    }
deba@327
   168
deba@327
   169
    void processDense(const Node& n) {
deba@327
   170
      _process = _postpone = _last = 0;
deba@327
   171
      _node_queue[_last++] = n;
deba@327
   172
deba@327
   173
      while (_process != _last) {
deba@327
   174
        Node u = _node_queue[_process++];
deba@327
   175
        for (OutArcIt a(_graph, u); a != INVALID; ++a) {
deba@327
   176
          Node v = _graph.target(a);
deba@327
   177
          if ((*_status)[v] == MATCHED) {
deba@327
   178
            extendOnArc(a);
deba@327
   179
          } else if ((*_status)[v] == UNMATCHED) {
deba@327
   180
            augmentOnArc(a);
deba@327
   181
            return;
deba@327
   182
          }
deba@327
   183
        }
deba@327
   184
      }
deba@327
   185
deba@327
   186
      while (_postpone != _last) {
deba@327
   187
        Node u = _node_queue[_postpone++];
deba@327
   188
deba@327
   189
        for (OutArcIt a(_graph, u); a != INVALID ; ++a) {
deba@327
   190
          Node v = _graph.target(a);
deba@327
   191
deba@327
   192
          if ((*_status)[v] == EVEN) {
deba@327
   193
            if (_blossom_set->find(u) != _blossom_set->find(v)) {
deba@327
   194
              shrinkOnEdge(a);
deba@327
   195
            }
deba@327
   196
          }
deba@327
   197
deba@327
   198
          while (_process != _last) {
deba@327
   199
            Node w = _node_queue[_process++];
deba@327
   200
            for (OutArcIt b(_graph, w); b != INVALID; ++b) {
deba@327
   201
              Node x = _graph.target(b);
deba@327
   202
              if ((*_status)[x] == MATCHED) {
deba@327
   203
                extendOnArc(b);
deba@327
   204
              } else if ((*_status)[x] == UNMATCHED) {
deba@327
   205
                augmentOnArc(b);
deba@327
   206
                return;
deba@327
   207
              }
deba@327
   208
            }
deba@327
   209
          }
deba@327
   210
        }
deba@327
   211
      }
deba@327
   212
    }
deba@327
   213
deba@327
   214
    void processSparse(const Node& n) {
deba@327
   215
      _process = _last = 0;
deba@327
   216
      _node_queue[_last++] = n;
deba@327
   217
      while (_process != _last) {
deba@327
   218
        Node u = _node_queue[_process++];
deba@327
   219
        for (OutArcIt a(_graph, u); a != INVALID; ++a) {
deba@327
   220
          Node v = _graph.target(a);
deba@327
   221
deba@327
   222
          if ((*_status)[v] == EVEN) {
deba@327
   223
            if (_blossom_set->find(u) != _blossom_set->find(v)) {
deba@327
   224
              shrinkOnEdge(a);
deba@327
   225
            }
deba@327
   226
          } else if ((*_status)[v] == MATCHED) {
deba@327
   227
            extendOnArc(a);
deba@327
   228
          } else if ((*_status)[v] == UNMATCHED) {
deba@327
   229
            augmentOnArc(a);
deba@327
   230
            return;
deba@327
   231
          }
deba@327
   232
        }
deba@327
   233
      }
deba@327
   234
    }
deba@327
   235
deba@327
   236
    void shrinkOnEdge(const Edge& e) {
deba@327
   237
      Node nca = INVALID;
deba@327
   238
deba@327
   239
      {
deba@327
   240
        std::set<Node> left_set, right_set;
deba@327
   241
deba@327
   242
        Node left = (*_blossom_rep)[_blossom_set->find(_graph.u(e))];
deba@327
   243
        left_set.insert(left);
deba@327
   244
deba@327
   245
        Node right = (*_blossom_rep)[_blossom_set->find(_graph.v(e))];
deba@327
   246
        right_set.insert(right);
deba@327
   247
deba@327
   248
        while (true) {
deba@327
   249
          if ((*_matching)[left] == INVALID) break;
deba@327
   250
          left = _graph.target((*_matching)[left]);
deba@327
   251
          left = (*_blossom_rep)[_blossom_set->
deba@327
   252
                                 find(_graph.target((*_ear)[left]))];
deba@327
   253
          if (right_set.find(left) != right_set.end()) {
deba@327
   254
            nca = left;
deba@327
   255
            break;
deba@327
   256
          }
deba@327
   257
          left_set.insert(left);
deba@327
   258
deba@327
   259
          if ((*_matching)[right] == INVALID) break;
deba@327
   260
          right = _graph.target((*_matching)[right]);
deba@327
   261
          right = (*_blossom_rep)[_blossom_set->
deba@327
   262
                                  find(_graph.target((*_ear)[right]))];
deba@327
   263
          if (left_set.find(right) != left_set.end()) {
deba@327
   264
            nca = right;
deba@327
   265
            break;
deba@327
   266
          }
deba@327
   267
          right_set.insert(right);
deba@327
   268
        }
deba@327
   269
deba@327
   270
        if (nca == INVALID) {
deba@327
   271
          if ((*_matching)[left] == INVALID) {
deba@327
   272
            nca = right;
deba@327
   273
            while (left_set.find(nca) == left_set.end()) {
deba@327
   274
              nca = _graph.target((*_matching)[nca]);
deba@327
   275
              nca =(*_blossom_rep)[_blossom_set->
deba@327
   276
                                   find(_graph.target((*_ear)[nca]))];
deba@327
   277
            }
deba@327
   278
          } else {
deba@327
   279
            nca = left;
deba@327
   280
            while (right_set.find(nca) == right_set.end()) {
deba@327
   281
              nca = _graph.target((*_matching)[nca]);
deba@327
   282
              nca = (*_blossom_rep)[_blossom_set->
deba@327
   283
                                   find(_graph.target((*_ear)[nca]))];
deba@327
   284
            }
deba@327
   285
          }
deba@327
   286
        }
deba@327
   287
      }
deba@327
   288
deba@327
   289
      {
deba@327
   290
deba@327
   291
        Node node = _graph.u(e);
deba@327
   292
        Arc arc = _graph.direct(e, true);
deba@327
   293
        Node base = (*_blossom_rep)[_blossom_set->find(node)];
deba@327
   294
deba@327
   295
        while (base != nca) {
kpeter@581
   296
          (*_ear)[node] = arc;
deba@327
   297
deba@327
   298
          Node n = node;
deba@327
   299
          while (n != base) {
deba@327
   300
            n = _graph.target((*_matching)[n]);
deba@327
   301
            Arc a = (*_ear)[n];
deba@327
   302
            n = _graph.target(a);
kpeter@581
   303
            (*_ear)[n] = _graph.oppositeArc(a);
deba@327
   304
          }
deba@327
   305
          node = _graph.target((*_matching)[base]);
deba@327
   306
          _tree_set->erase(base);
deba@327
   307
          _tree_set->erase(node);
deba@327
   308
          _blossom_set->insert(node, _blossom_set->find(base));
kpeter@581
   309
          (*_status)[node] = EVEN;
deba@327
   310
          _node_queue[_last++] = node;
deba@327
   311
          arc = _graph.oppositeArc((*_ear)[node]);
deba@327
   312
          node = _graph.target((*_ear)[node]);
deba@327
   313
          base = (*_blossom_rep)[_blossom_set->find(node)];
deba@327
   314
          _blossom_set->join(_graph.target(arc), base);
deba@327
   315
        }
deba@327
   316
      }
deba@327
   317
kpeter@581
   318
      (*_blossom_rep)[_blossom_set->find(nca)] = nca;
deba@327
   319
deba@327
   320
      {
deba@327
   321
deba@327
   322
        Node node = _graph.v(e);
deba@327
   323
        Arc arc = _graph.direct(e, false);
deba@327
   324
        Node base = (*_blossom_rep)[_blossom_set->find(node)];
deba@327
   325
deba@327
   326
        while (base != nca) {
kpeter@581
   327
          (*_ear)[node] = arc;
deba@327
   328
deba@327
   329
          Node n = node;
deba@327
   330
          while (n != base) {
deba@327
   331
            n = _graph.target((*_matching)[n]);
deba@327
   332
            Arc a = (*_ear)[n];
deba@327
   333
            n = _graph.target(a);
kpeter@581
   334
            (*_ear)[n] = _graph.oppositeArc(a);
deba@327
   335
          }
deba@327
   336
          node = _graph.target((*_matching)[base]);
deba@327
   337
          _tree_set->erase(base);
deba@327
   338
          _tree_set->erase(node);
deba@327
   339
          _blossom_set->insert(node, _blossom_set->find(base));
kpeter@581
   340
          (*_status)[node] = EVEN;
deba@327
   341
          _node_queue[_last++] = node;
deba@327
   342
          arc = _graph.oppositeArc((*_ear)[node]);
deba@327
   343
          node = _graph.target((*_ear)[node]);
deba@327
   344
          base = (*_blossom_rep)[_blossom_set->find(node)];
deba@327
   345
          _blossom_set->join(_graph.target(arc), base);
deba@327
   346
        }
deba@327
   347
      }
deba@327
   348
kpeter@581
   349
      (*_blossom_rep)[_blossom_set->find(nca)] = nca;
deba@327
   350
    }
deba@327
   351
deba@327
   352
    void extendOnArc(const Arc& a) {
deba@327
   353
      Node base = _graph.source(a);
deba@327
   354
      Node odd = _graph.target(a);
deba@327
   355
kpeter@581
   356
      (*_ear)[odd] = _graph.oppositeArc(a);
deba@327
   357
      Node even = _graph.target((*_matching)[odd]);
kpeter@581
   358
      (*_blossom_rep)[_blossom_set->insert(even)] = even;
kpeter@581
   359
      (*_status)[odd] = ODD;
kpeter@581
   360
      (*_status)[even] = EVEN;
deba@327
   361
      int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(base)]);
deba@327
   362
      _tree_set->insert(odd, tree);
deba@327
   363
      _tree_set->insert(even, tree);
deba@327
   364
      _node_queue[_last++] = even;
deba@327
   365
deba@327
   366
    }
deba@327
   367
deba@327
   368
    void augmentOnArc(const Arc& a) {
deba@327
   369
      Node even = _graph.source(a);
deba@327
   370
      Node odd = _graph.target(a);
deba@327
   371
deba@327
   372
      int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(even)]);
deba@327
   373
kpeter@581
   374
      (*_matching)[odd] = _graph.oppositeArc(a);
kpeter@581
   375
      (*_status)[odd] = MATCHED;
deba@327
   376
deba@327
   377
      Arc arc = (*_matching)[even];
kpeter@581
   378
      (*_matching)[even] = a;
deba@327
   379
deba@327
   380
      while (arc != INVALID) {
deba@327
   381
        odd = _graph.target(arc);
deba@327
   382
        arc = (*_ear)[odd];
deba@327
   383
        even = _graph.target(arc);
kpeter@581
   384
        (*_matching)[odd] = arc;
deba@327
   385
        arc = (*_matching)[even];
kpeter@581
   386
        (*_matching)[even] = _graph.oppositeArc((*_matching)[odd]);
deba@327
   387
      }
deba@327
   388
deba@327
   389
      for (typename TreeSet::ItemIt it(*_tree_set, tree);
deba@327
   390
           it != INVALID; ++it) {
deba@327
   391
        if ((*_status)[it] == ODD) {
kpeter@581
   392
          (*_status)[it] = MATCHED;
deba@327
   393
        } else {
deba@327
   394
          int blossom = _blossom_set->find(it);
deba@327
   395
          for (typename BlossomSet::ItemIt jt(*_blossom_set, blossom);
deba@327
   396
               jt != INVALID; ++jt) {
kpeter@581
   397
            (*_status)[jt] = MATCHED;
deba@327
   398
          }
deba@327
   399
          _blossom_set->eraseClass(blossom);
deba@327
   400
        }
deba@327
   401
      }
deba@327
   402
      _tree_set->eraseClass(tree);
deba@327
   403
deba@327
   404
    }
deba@326
   405
deba@326
   406
  public:
deba@326
   407
deba@327
   408
    /// \brief Constructor
deba@326
   409
    ///
deba@327
   410
    /// Constructor.
deba@327
   411
    MaxMatching(const Graph& graph)
deba@327
   412
      : _graph(graph), _matching(0), _status(0), _ear(0),
deba@327
   413
        _blossom_set_index(0), _blossom_set(0), _blossom_rep(0),
deba@327
   414
        _tree_set_index(0), _tree_set(0) {}
deba@327
   415
deba@327
   416
    ~MaxMatching() {
deba@327
   417
      destroyStructures();
deba@327
   418
    }
deba@327
   419
kpeter@590
   420
    /// \name Execution Control
alpar@330
   421
    /// The simplest way to execute the algorithm is to use the
kpeter@590
   422
    /// \c run() member function.\n
kpeter@590
   423
    /// If you need better control on the execution, you have to call
kpeter@590
   424
    /// one of the functions \ref init(), \ref greedyInit() or
kpeter@590
   425
    /// \ref matchingInit() first, then you can start the algorithm with
kpeter@590
   426
    /// \ref startSparse() or \ref startDense().
deba@327
   427
deba@327
   428
    ///@{
deba@327
   429
kpeter@590
   430
    /// \brief Set the initial matching to the empty matching.
deba@326
   431
    ///
kpeter@590
   432
    /// This function sets the initial matching to the empty matching.
deba@326
   433
    void init() {
deba@327
   434
      createStructures();
deba@327
   435
      for(NodeIt n(_graph); n != INVALID; ++n) {
kpeter@581
   436
        (*_matching)[n] = INVALID;
kpeter@581
   437
        (*_status)[n] = UNMATCHED;
deba@326
   438
      }
deba@326
   439
    }
deba@326
   440
kpeter@590
   441
    /// \brief Find an initial matching in a greedy way.
deba@326
   442
    ///
kpeter@590
   443
    /// This function finds an initial matching in a greedy way.
deba@326
   444
    void greedyInit() {
deba@327
   445
      createStructures();
deba@327
   446
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@581
   447
        (*_matching)[n] = INVALID;
kpeter@581
   448
        (*_status)[n] = UNMATCHED;
deba@326
   449
      }
deba@327
   450
      for (NodeIt n(_graph); n != INVALID; ++n) {
deba@327
   451
        if ((*_matching)[n] == INVALID) {
deba@327
   452
          for (OutArcIt a(_graph, n); a != INVALID ; ++a) {
deba@327
   453
            Node v = _graph.target(a);
deba@327
   454
            if ((*_matching)[v] == INVALID && v != n) {
kpeter@581
   455
              (*_matching)[n] = a;
kpeter@581
   456
              (*_status)[n] = MATCHED;
kpeter@581
   457
              (*_matching)[v] = _graph.oppositeArc(a);
kpeter@581
   458
              (*_status)[v] = MATCHED;
deba@326
   459
              break;
deba@326
   460
            }
deba@326
   461
          }
deba@326
   462
        }
deba@326
   463
      }
deba@326
   464
    }
deba@326
   465
deba@327
   466
kpeter@590
   467
    /// \brief Initialize the matching from a map.
deba@326
   468
    ///
kpeter@590
   469
    /// This function initializes the matching from a \c bool valued edge
kpeter@590
   470
    /// map. This map should have the property that there are no two incident
kpeter@590
   471
    /// edges with \c true value, i.e. it really contains a matching.
kpeter@559
   472
    /// \return \c true if the map contains a matching.
deba@327
   473
    template <typename MatchingMap>
deba@327
   474
    bool matchingInit(const MatchingMap& matching) {
deba@327
   475
      createStructures();
deba@327
   476
deba@327
   477
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@581
   478
        (*_matching)[n] = INVALID;
kpeter@581
   479
        (*_status)[n] = UNMATCHED;
deba@326
   480
      }
deba@327
   481
      for(EdgeIt e(_graph); e!=INVALID; ++e) {
deba@327
   482
        if (matching[e]) {
deba@327
   483
deba@327
   484
          Node u = _graph.u(e);
deba@327
   485
          if ((*_matching)[u] != INVALID) return false;
kpeter@581
   486
          (*_matching)[u] = _graph.direct(e, true);
kpeter@581
   487
          (*_status)[u] = MATCHED;
deba@327
   488
deba@327
   489
          Node v = _graph.v(e);
deba@327
   490
          if ((*_matching)[v] != INVALID) return false;
kpeter@581
   491
          (*_matching)[v] = _graph.direct(e, false);
kpeter@581
   492
          (*_status)[v] = MATCHED;
deba@327
   493
        }
deba@327
   494
      }
deba@327
   495
      return true;
deba@326
   496
    }
deba@326
   497
kpeter@590
   498
    /// \brief Start Edmonds' algorithm
deba@326
   499
    ///
kpeter@590
   500
    /// This function runs the original Edmonds' algorithm.
kpeter@590
   501
    ///
kpeter@651
   502
    /// \pre \ref init(), \ref greedyInit() or \ref matchingInit() must be
kpeter@590
   503
    /// called before using this function.
deba@327
   504
    void startSparse() {
deba@327
   505
      for(NodeIt n(_graph); n != INVALID; ++n) {
deba@327
   506
        if ((*_status)[n] == UNMATCHED) {
deba@327
   507
          (*_blossom_rep)[_blossom_set->insert(n)] = n;
deba@327
   508
          _tree_set->insert(n);
kpeter@581
   509
          (*_status)[n] = EVEN;
deba@327
   510
          processSparse(n);
deba@326
   511
        }
deba@326
   512
      }
deba@326
   513
    }
deba@326
   514
deba@868
   515
    /// \brief Start Edmonds' algorithm with a heuristic improvement
kpeter@590
   516
    /// for dense graphs
deba@326
   517
    ///
kpeter@590
   518
    /// This function runs Edmonds' algorithm with a heuristic of postponing
alpar@330
   519
    /// shrinks, therefore resulting in a faster algorithm for dense graphs.
kpeter@590
   520
    ///
kpeter@651
   521
    /// \pre \ref init(), \ref greedyInit() or \ref matchingInit() must be
kpeter@590
   522
    /// called before using this function.
deba@327
   523
    void startDense() {
deba@327
   524
      for(NodeIt n(_graph); n != INVALID; ++n) {
deba@327
   525
        if ((*_status)[n] == UNMATCHED) {
deba@327
   526
          (*_blossom_rep)[_blossom_set->insert(n)] = n;
deba@327
   527
          _tree_set->insert(n);
kpeter@581
   528
          (*_status)[n] = EVEN;
deba@327
   529
          processDense(n);
deba@327
   530
        }
deba@327
   531
      }
deba@327
   532
    }
deba@327
   533
deba@327
   534
kpeter@590
   535
    /// \brief Run Edmonds' algorithm
deba@327
   536
    ///
deba@868
   537
    /// This function runs Edmonds' algorithm. An additional heuristic of
deba@868
   538
    /// postponing shrinks is used for relatively dense graphs
kpeter@590
   539
    /// (for which <tt>m>=2*n</tt> holds).
deba@326
   540
    void run() {
deba@327
   541
      if (countEdges(_graph) < 2 * countNodes(_graph)) {
deba@326
   542
        greedyInit();
deba@326
   543
        startSparse();
deba@326
   544
      } else {
deba@326
   545
        init();
deba@326
   546
        startDense();
deba@326
   547
      }
deba@326
   548
    }
deba@326
   549
deba@327
   550
    /// @}
deba@327
   551
kpeter@590
   552
    /// \name Primal Solution
kpeter@590
   553
    /// Functions to get the primal solution, i.e. the maximum matching.
deba@327
   554
deba@327
   555
    /// @{
deba@326
   556
kpeter@590
   557
    /// \brief Return the size (cardinality) of the matching.
deba@326
   558
    ///
deba@868
   559
    /// This function returns the size (cardinality) of the current matching.
kpeter@590
   560
    /// After run() it returns the size of the maximum matching in the graph.
deba@327
   561
    int matchingSize() const {
deba@327
   562
      int size = 0;
deba@327
   563
      for (NodeIt n(_graph); n != INVALID; ++n) {
deba@327
   564
        if ((*_matching)[n] != INVALID) {
deba@327
   565
          ++size;
deba@326
   566
        }
deba@326
   567
      }
deba@327
   568
      return size / 2;
deba@326
   569
    }
deba@326
   570
kpeter@590
   571
    /// \brief Return \c true if the given edge is in the matching.
deba@327
   572
    ///
deba@868
   573
    /// This function returns \c true if the given edge is in the current
kpeter@590
   574
    /// matching.
deba@327
   575
    bool matching(const Edge& edge) const {
deba@327
   576
      return edge == (*_matching)[_graph.u(edge)];
deba@327
   577
    }
deba@327
   578
kpeter@590
   579
    /// \brief Return the matching arc (or edge) incident to the given node.
deba@327
   580
    ///
kpeter@590
   581
    /// This function returns the matching arc (or edge) incident to the
deba@868
   582
    /// given node in the current matching or \c INVALID if the node is
kpeter@590
   583
    /// not covered by the matching.
deba@327
   584
    Arc matching(const Node& n) const {
deba@327
   585
      return (*_matching)[n];
deba@327
   586
    }
deba@326
   587
kpeter@593
   588
    /// \brief Return a const reference to the matching map.
kpeter@593
   589
    ///
kpeter@593
   590
    /// This function returns a const reference to a node map that stores
kpeter@593
   591
    /// the matching arc (or edge) incident to each node.
kpeter@593
   592
    const MatchingMap& matchingMap() const {
kpeter@593
   593
      return *_matching;
kpeter@593
   594
    }
kpeter@593
   595
kpeter@590
   596
    /// \brief Return the mate of the given node.
deba@326
   597
    ///
deba@868
   598
    /// This function returns the mate of the given node in the current
kpeter@590
   599
    /// matching or \c INVALID if the node is not covered by the matching.
deba@327
   600
    Node mate(const Node& n) const {
deba@327
   601
      return (*_matching)[n] != INVALID ?
deba@327
   602
        _graph.target((*_matching)[n]) : INVALID;
deba@326
   603
    }
deba@326
   604
deba@327
   605
    /// @}
deba@327
   606
kpeter@590
   607
    /// \name Dual Solution
deba@868
   608
    /// Functions to get the dual solution, i.e. the Gallai-Edmonds
kpeter@590
   609
    /// decomposition.
deba@327
   610
deba@327
   611
    /// @{
deba@326
   612
kpeter@590
   613
    /// \brief Return the status of the given node in the Edmonds-Gallai
deba@326
   614
    /// decomposition.
deba@326
   615
    ///
kpeter@590
   616
    /// This function returns the \ref Status "status" of the given node
kpeter@590
   617
    /// in the Edmonds-Gallai decomposition.
kpeter@593
   618
    Status status(const Node& n) const {
deba@327
   619
      return (*_status)[n];
deba@326
   620
    }
deba@326
   621
kpeter@593
   622
    /// \brief Return a const reference to the status map, which stores
kpeter@593
   623
    /// the Edmonds-Gallai decomposition.
kpeter@593
   624
    ///
kpeter@593
   625
    /// This function returns a const reference to a node map that stores the
kpeter@593
   626
    /// \ref Status "status" of each node in the Edmonds-Gallai decomposition.
kpeter@593
   627
    const StatusMap& statusMap() const {
kpeter@593
   628
      return *_status;
kpeter@593
   629
    }
kpeter@593
   630
kpeter@590
   631
    /// \brief Return \c true if the given node is in the barrier.
deba@326
   632
    ///
kpeter@590
   633
    /// This function returns \c true if the given node is in the barrier.
deba@327
   634
    bool barrier(const Node& n) const {
deba@327
   635
      return (*_status)[n] == ODD;
deba@326
   636
    }
deba@326
   637
deba@327
   638
    /// @}
deba@326
   639
deba@326
   640
  };
deba@326
   641
deba@326
   642
  /// \ingroup matching
deba@326
   643
  ///
deba@326
   644
  /// \brief Weighted matching in general graphs
deba@326
   645
  ///
deba@326
   646
  /// This class provides an efficient implementation of Edmond's
deba@326
   647
  /// maximum weighted matching algorithm. The implementation is based
deba@326
   648
  /// on extensive use of priority queues and provides
kpeter@559
   649
  /// \f$O(nm\log n)\f$ time complexity.
deba@326
   650
  ///
deba@868
   651
  /// The maximum weighted matching problem is to find a subset of the
deba@868
   652
  /// edges in an undirected graph with maximum overall weight for which
kpeter@590
   653
  /// each node has at most one incident edge.
kpeter@590
   654
  /// It can be formulated with the following linear program.
deba@326
   655
  /// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f]
deba@327
   656
  /** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
deba@327
   657
      \quad \forall B\in\mathcal{O}\f] */
deba@326
   658
  /// \f[x_e \ge 0\quad \forall e\in E\f]
deba@326
   659
  /// \f[\max \sum_{e\in E}x_ew_e\f]
deba@327
   660
  /// where \f$\delta(X)\f$ is the set of edges incident to a node in
deba@327
   661
  /// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in
deba@327
   662
  /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality
deba@327
   663
  /// subsets of the nodes.
deba@326
   664
  ///
deba@326
   665
  /// The algorithm calculates an optimal matching and a proof of the
deba@326
   666
  /// optimality. The solution of the dual problem can be used to check
deba@327
   667
  /// the result of the algorithm. The dual linear problem is the
kpeter@590
   668
  /// following.
deba@327
   669
  /** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}
deba@327
   670
      z_B \ge w_{uv} \quad \forall uv\in E\f] */
deba@326
   671
  /// \f[y_u \ge 0 \quad \forall u \in V\f]
deba@326
   672
  /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
deba@327
   673
  /** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
deba@327
   674
      \frac{\vert B \vert - 1}{2}z_B\f] */
deba@326
   675
  ///
deba@868
   676
  /// The algorithm can be executed with the run() function.
kpeter@590
   677
  /// After it the matching (the primal solution) and the dual solution
deba@868
   678
  /// can be obtained using the query functions and the
deba@868
   679
  /// \ref MaxWeightedMatching::BlossomIt "BlossomIt" nested class,
deba@868
   680
  /// which is able to iterate on the nodes of a blossom.
kpeter@590
   681
  /// If the value type is integer, then the dual solution is multiplied
kpeter@590
   682
  /// by \ref MaxWeightedMatching::dualScale "4".
kpeter@590
   683
  ///
kpeter@593
   684
  /// \tparam GR The undirected graph type the algorithm runs on.
deba@868
   685
  /// \tparam WM The type edge weight map. The default type is
kpeter@590
   686
  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>".
kpeter@590
   687
#ifdef DOXYGEN
kpeter@590
   688
  template <typename GR, typename WM>
kpeter@590
   689
#else
kpeter@559
   690
  template <typename GR,
kpeter@559
   691
            typename WM = typename GR::template EdgeMap<int> >
kpeter@590
   692
#endif
deba@326
   693
  class MaxWeightedMatching {
deba@326
   694
  public:
deba@326
   695
kpeter@590
   696
    /// The graph type of the algorithm
kpeter@559
   697
    typedef GR Graph;
kpeter@590
   698
    /// The type of the edge weight map
kpeter@559
   699
    typedef WM WeightMap;
kpeter@590
   700
    /// The value type of the edge weights
deba@326
   701
    typedef typename WeightMap::Value Value;
deba@326
   702
kpeter@593
   703
    /// The type of the matching map
kpeter@590
   704
    typedef typename Graph::template NodeMap<typename Graph::Arc>
kpeter@590
   705
    MatchingMap;
kpeter@590
   706
deba@326
   707
    /// \brief Scaling factor for dual solution
deba@326
   708
    ///
kpeter@590
   709
    /// Scaling factor for dual solution. It is equal to 4 or 1
deba@326
   710
    /// according to the value type.
deba@326
   711
    static const int dualScale =
deba@326
   712
      std::numeric_limits<Value>::is_integer ? 4 : 1;
deba@326
   713
deba@326
   714
  private:
deba@326
   715
deba@326
   716
    TEMPLATE_GRAPH_TYPEDEFS(Graph);
deba@326
   717
deba@326
   718
    typedef typename Graph::template NodeMap<Value> NodePotential;
deba@326
   719
    typedef std::vector<Node> BlossomNodeList;
deba@326
   720
deba@326
   721
    struct BlossomVariable {
deba@326
   722
      int begin, end;
deba@326
   723
      Value value;
deba@326
   724
deba@326
   725
      BlossomVariable(int _begin, int _end, Value _value)
deba@326
   726
        : begin(_begin), end(_end), value(_value) {}
deba@326
   727
deba@326
   728
    };
deba@326
   729
deba@326
   730
    typedef std::vector<BlossomVariable> BlossomPotential;
deba@326
   731
deba@326
   732
    const Graph& _graph;
deba@326
   733
    const WeightMap& _weight;
deba@326
   734
deba@326
   735
    MatchingMap* _matching;
deba@326
   736
deba@326
   737
    NodePotential* _node_potential;
deba@326
   738
deba@326
   739
    BlossomPotential _blossom_potential;
deba@326
   740
    BlossomNodeList _blossom_node_list;
deba@326
   741
deba@326
   742
    int _node_num;
deba@326
   743
    int _blossom_num;
deba@326
   744
deba@326
   745
    typedef RangeMap<int> IntIntMap;
deba@326
   746
deba@326
   747
    enum Status {
deba@868
   748
      EVEN = -1, MATCHED = 0, ODD = 1
deba@326
   749
    };
deba@326
   750
deba@327
   751
    typedef HeapUnionFind<Value, IntNodeMap> BlossomSet;
deba@326
   752
    struct BlossomData {
deba@326
   753
      int tree;
deba@326
   754
      Status status;
deba@326
   755
      Arc pred, next;
deba@326
   756
      Value pot, offset;
deba@326
   757
      Node base;
deba@326
   758
    };
deba@326
   759
deba@327
   760
    IntNodeMap *_blossom_index;
deba@326
   761
    BlossomSet *_blossom_set;
deba@326
   762
    RangeMap<BlossomData>* _blossom_data;
deba@326
   763
deba@327
   764
    IntNodeMap *_node_index;
deba@327
   765
    IntArcMap *_node_heap_index;
deba@326
   766
deba@326
   767
    struct NodeData {
deba@326
   768
deba@327
   769
      NodeData(IntArcMap& node_heap_index)
deba@326
   770
        : heap(node_heap_index) {}
deba@326
   771
deba@326
   772
      int blossom;
deba@326
   773
      Value pot;
deba@327
   774
      BinHeap<Value, IntArcMap> heap;
deba@326
   775
      std::map<int, Arc> heap_index;
deba@326
   776
deba@326
   777
      int tree;
deba@326
   778
    };
deba@326
   779
deba@326
   780
    RangeMap<NodeData>* _node_data;
deba@326
   781
deba@326
   782
    typedef ExtendFindEnum<IntIntMap> TreeSet;
deba@326
   783
deba@326
   784
    IntIntMap *_tree_set_index;
deba@326
   785
    TreeSet *_tree_set;
deba@326
   786
deba@327
   787
    IntNodeMap *_delta1_index;
deba@327
   788
    BinHeap<Value, IntNodeMap> *_delta1;
deba@326
   789
deba@326
   790
    IntIntMap *_delta2_index;
deba@326
   791
    BinHeap<Value, IntIntMap> *_delta2;
deba@326
   792
deba@327
   793
    IntEdgeMap *_delta3_index;
deba@327
   794
    BinHeap<Value, IntEdgeMap> *_delta3;
deba@326
   795
deba@326
   796
    IntIntMap *_delta4_index;
deba@326
   797
    BinHeap<Value, IntIntMap> *_delta4;
deba@326
   798
deba@326
   799
    Value _delta_sum;
deba@326
   800
deba@326
   801
    void createStructures() {
deba@326
   802
      _node_num = countNodes(_graph);
deba@326
   803
      _blossom_num = _node_num * 3 / 2;
deba@326
   804
deba@326
   805
      if (!_matching) {
deba@326
   806
        _matching = new MatchingMap(_graph);
deba@326
   807
      }
deba@326
   808
      if (!_node_potential) {
deba@326
   809
        _node_potential = new NodePotential(_graph);
deba@326
   810
      }
deba@326
   811
      if (!_blossom_set) {
deba@327
   812
        _blossom_index = new IntNodeMap(_graph);
deba@326
   813
        _blossom_set = new BlossomSet(*_blossom_index);
deba@326
   814
        _blossom_data = new RangeMap<BlossomData>(_blossom_num);
deba@326
   815
      }
deba@326
   816
deba@326
   817
      if (!_node_index) {
deba@327
   818
        _node_index = new IntNodeMap(_graph);
deba@327
   819
        _node_heap_index = new IntArcMap(_graph);
deba@326
   820
        _node_data = new RangeMap<NodeData>(_node_num,
deba@326
   821
                                              NodeData(*_node_heap_index));
deba@326
   822
      }
deba@326
   823
deba@326
   824
      if (!_tree_set) {
deba@326
   825
        _tree_set_index = new IntIntMap(_blossom_num);
deba@326
   826
        _tree_set = new TreeSet(*_tree_set_index);
deba@326
   827
      }
deba@326
   828
      if (!_delta1) {
deba@327
   829
        _delta1_index = new IntNodeMap(_graph);
deba@327
   830
        _delta1 = new BinHeap<Value, IntNodeMap>(*_delta1_index);
deba@326
   831
      }
deba@326
   832
      if (!_delta2) {
deba@326
   833
        _delta2_index = new IntIntMap(_blossom_num);
deba@326
   834
        _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
deba@326
   835
      }
deba@326
   836
      if (!_delta3) {
deba@327
   837
        _delta3_index = new IntEdgeMap(_graph);
deba@327
   838
        _delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index);
deba@326
   839
      }
deba@326
   840
      if (!_delta4) {
deba@326
   841
        _delta4_index = new IntIntMap(_blossom_num);
deba@326
   842
        _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
deba@326
   843
      }
deba@326
   844
    }
deba@326
   845
deba@326
   846
    void destroyStructures() {
deba@326
   847
      if (_matching) {
deba@326
   848
        delete _matching;
deba@326
   849
      }
deba@326
   850
      if (_node_potential) {
deba@326
   851
        delete _node_potential;
deba@326
   852
      }
deba@326
   853
      if (_blossom_set) {
deba@326
   854
        delete _blossom_index;
deba@326
   855
        delete _blossom_set;
deba@326
   856
        delete _blossom_data;
deba@326
   857
      }
deba@326
   858
deba@326
   859
      if (_node_index) {
deba@326
   860
        delete _node_index;
deba@326
   861
        delete _node_heap_index;
deba@326
   862
        delete _node_data;
deba@326
   863
      }
deba@326
   864
deba@326
   865
      if (_tree_set) {
deba@326
   866
        delete _tree_set_index;
deba@326
   867
        delete _tree_set;
deba@326
   868
      }
deba@326
   869
      if (_delta1) {
deba@326
   870
        delete _delta1_index;
deba@326
   871
        delete _delta1;
deba@326
   872
      }
deba@326
   873
      if (_delta2) {
deba@326
   874
        delete _delta2_index;
deba@326
   875
        delete _delta2;
deba@326
   876
      }
deba@326
   877
      if (_delta3) {
deba@326
   878
        delete _delta3_index;
deba@326
   879
        delete _delta3;
deba@326
   880
      }
deba@326
   881
      if (_delta4) {
deba@326
   882
        delete _delta4_index;
deba@326
   883
        delete _delta4;
deba@326
   884
      }
deba@326
   885
    }
deba@326
   886
deba@326
   887
    void matchedToEven(int blossom, int tree) {
deba@326
   888
      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
deba@326
   889
        _delta2->erase(blossom);
deba@326
   890
      }
deba@326
   891
deba@326
   892
      if (!_blossom_set->trivial(blossom)) {
deba@326
   893
        (*_blossom_data)[blossom].pot -=
deba@326
   894
          2 * (_delta_sum - (*_blossom_data)[blossom].offset);
deba@326
   895
      }
deba@326
   896
deba@326
   897
      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
deba@326
   898
           n != INVALID; ++n) {
deba@326
   899
deba@326
   900
        _blossom_set->increase(n, std::numeric_limits<Value>::max());
deba@326
   901
        int ni = (*_node_index)[n];
deba@326
   902
deba@326
   903
        (*_node_data)[ni].heap.clear();
deba@326
   904
        (*_node_data)[ni].heap_index.clear();
deba@326
   905
deba@326
   906
        (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset;
deba@326
   907
deba@326
   908
        _delta1->push(n, (*_node_data)[ni].pot);
deba@326
   909
deba@326
   910
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
deba@326
   911
          Node v = _graph.source(e);
deba@326
   912
          int vb = _blossom_set->find(v);
deba@326
   913
          int vi = (*_node_index)[v];
deba@326
   914
deba@326
   915
          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
deba@326
   916
            dualScale * _weight[e];
deba@326
   917
deba@326
   918
          if ((*_blossom_data)[vb].status == EVEN) {
deba@326
   919
            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
deba@326
   920
              _delta3->push(e, rw / 2);
deba@326
   921
            }
deba@326
   922
          } else {
deba@326
   923
            typename std::map<int, Arc>::iterator it =
deba@326
   924
              (*_node_data)[vi].heap_index.find(tree);
deba@326
   925
deba@326
   926
            if (it != (*_node_data)[vi].heap_index.end()) {
deba@326
   927
              if ((*_node_data)[vi].heap[it->second] > rw) {
deba@326
   928
                (*_node_data)[vi].heap.replace(it->second, e);
deba@326
   929
                (*_node_data)[vi].heap.decrease(e, rw);
deba@326
   930
                it->second = e;
deba@326
   931
              }
deba@326
   932
            } else {
deba@326
   933
              (*_node_data)[vi].heap.push(e, rw);
deba@326
   934
              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
deba@326
   935
            }
deba@326
   936
deba@326
   937
            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
deba@326
   938
              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
deba@326
   939
deba@326
   940
              if ((*_blossom_data)[vb].status == MATCHED) {
deba@326
   941
                if (_delta2->state(vb) != _delta2->IN_HEAP) {
deba@326
   942
                  _delta2->push(vb, _blossom_set->classPrio(vb) -
deba@326
   943
                               (*_blossom_data)[vb].offset);
deba@326
   944
                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
deba@326
   945
                           (*_blossom_data)[vb].offset) {
deba@326
   946
                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
deba@326
   947
                                   (*_blossom_data)[vb].offset);
deba@326
   948
                }
deba@326
   949
              }
deba@326
   950
            }
deba@326
   951
          }
deba@326
   952
        }
deba@326
   953
      }
deba@326
   954
      (*_blossom_data)[blossom].offset = 0;
deba@326
   955
    }
deba@326
   956
deba@868
   957
    void matchedToOdd(int blossom) {
deba@326
   958
      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
deba@326
   959
        _delta2->erase(blossom);
deba@326
   960
      }
deba@868
   961
      (*_blossom_data)[blossom].offset += _delta_sum;
deba@868
   962
      if (!_blossom_set->trivial(blossom)) {
deba@868
   963
        _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 +
deba@868
   964
                      (*_blossom_data)[blossom].offset);
deba@868
   965
      }
deba@868
   966
    }
deba@868
   967
deba@868
   968
    void evenToMatched(int blossom, int tree) {
deba@868
   969
      if (!_blossom_set->trivial(blossom)) {
deba@868
   970
        (*_blossom_data)[blossom].pot += 2 * _delta_sum;
deba@868
   971
      }
deba@326
   972
deba@326
   973
      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
deba@326
   974
           n != INVALID; ++n) {
deba@326
   975
        int ni = (*_node_index)[n];
deba@868
   976
        (*_node_data)[ni].pot -= _delta_sum;
deba@868
   977
deba@868
   978
        _delta1->erase(n);
deba@868
   979
deba@868
   980
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
deba@868
   981
          Node v = _graph.source(e);
deba@326
   982
          int vb = _blossom_set->find(v);
deba@326
   983
          int vi = (*_node_index)[v];
deba@326
   984
deba@326
   985
          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
deba@326
   986
            dualScale * _weight[e];
deba@326
   987
deba@868
   988
          if (vb == blossom) {
deba@868
   989
            if (_delta3->state(e) == _delta3->IN_HEAP) {
deba@868
   990
              _delta3->erase(e);
deba@868
   991
            }
deba@868
   992
          } else if ((*_blossom_data)[vb].status == EVEN) {
deba@868
   993
deba@868
   994
            if (_delta3->state(e) == _delta3->IN_HEAP) {
deba@868
   995
              _delta3->erase(e);
deba@868
   996
            }
deba@868
   997
deba@868
   998
            int vt = _tree_set->find(vb);
deba@868
   999
deba@868
  1000
            if (vt != tree) {
deba@868
  1001
deba@868
  1002
              Arc r = _graph.oppositeArc(e);
deba@868
  1003
deba@868
  1004
              typename std::map<int, Arc>::iterator it =
deba@868
  1005
                (*_node_data)[ni].heap_index.find(vt);
deba@868
  1006
deba@868
  1007
              if (it != (*_node_data)[ni].heap_index.end()) {
deba@868
  1008
                if ((*_node_data)[ni].heap[it->second] > rw) {
deba@868
  1009
                  (*_node_data)[ni].heap.replace(it->second, r);
deba@868
  1010
                  (*_node_data)[ni].heap.decrease(r, rw);
deba@868
  1011
                  it->second = r;
deba@868
  1012
                }
deba@868
  1013
              } else {
deba@868
  1014
                (*_node_data)[ni].heap.push(r, rw);
deba@868
  1015
                (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
deba@868
  1016
              }
deba@868
  1017
deba@868
  1018
              if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
deba@868
  1019
                _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
deba@868
  1020
deba@868
  1021
                if (_delta2->state(blossom) != _delta2->IN_HEAP) {
deba@868
  1022
                  _delta2->push(blossom, _blossom_set->classPrio(blossom) -
deba@868
  1023
                               (*_blossom_data)[blossom].offset);
deba@868
  1024
                } else if ((*_delta2)[blossom] >
deba@868
  1025
                           _blossom_set->classPrio(blossom) -
deba@868
  1026
                           (*_blossom_data)[blossom].offset){
deba@868
  1027
                  _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
deba@868
  1028
                                   (*_blossom_data)[blossom].offset);
deba@868
  1029
                }
deba@868
  1030
              }
deba@868
  1031
            }
deba@868
  1032
          } else {
deba@868
  1033
deba@868
  1034
            typename std::map<int, Arc>::iterator it =
deba@868
  1035
              (*_node_data)[vi].heap_index.find(tree);
deba@868
  1036
deba@868
  1037
            if (it != (*_node_data)[vi].heap_index.end()) {
deba@868
  1038
              (*_node_data)[vi].heap.erase(it->second);
deba@868
  1039
              (*_node_data)[vi].heap_index.erase(it);
deba@868
  1040
              if ((*_node_data)[vi].heap.empty()) {
deba@868
  1041
                _blossom_set->increase(v, std::numeric_limits<Value>::max());
deba@868
  1042
              } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
deba@868
  1043
                _blossom_set->increase(v, (*_node_data)[vi].heap.prio());
deba@868
  1044
              }
deba@868
  1045
deba@868
  1046
              if ((*_blossom_data)[vb].status == MATCHED) {
deba@868
  1047
                if (_blossom_set->classPrio(vb) ==
deba@868
  1048
                    std::numeric_limits<Value>::max()) {
deba@868
  1049
                  _delta2->erase(vb);
deba@868
  1050
                } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
deba@868
  1051
                           (*_blossom_data)[vb].offset) {
deba@868
  1052
                  _delta2->increase(vb, _blossom_set->classPrio(vb) -
deba@868
  1053
                                   (*_blossom_data)[vb].offset);
deba@868
  1054
                }
deba@868
  1055
              }
deba@326
  1056
            }
deba@326
  1057
          }
deba@326
  1058
        }
deba@326
  1059
      }
deba@326
  1060
    }
deba@326
  1061
deba@868
  1062
    void oddToMatched(int blossom) {
deba@868
  1063
      (*_blossom_data)[blossom].offset -= _delta_sum;
deba@868
  1064
deba@868
  1065
      if (_blossom_set->classPrio(blossom) !=
deba@868
  1066
          std::numeric_limits<Value>::max()) {
deba@868
  1067
        _delta2->push(blossom, _blossom_set->classPrio(blossom) -
deba@868
  1068
                      (*_blossom_data)[blossom].offset);
deba@868
  1069
      }
deba@868
  1070
deba@868
  1071
      if (!_blossom_set->trivial(blossom)) {
deba@868
  1072
        _delta4->erase(blossom);
deba@868
  1073
      }
deba@868
  1074
    }
deba@868
  1075
deba@868
  1076
    void oddToEven(int blossom, int tree) {
deba@868
  1077
      if (!_blossom_set->trivial(blossom)) {
deba@868
  1078
        _delta4->erase(blossom);
deba@868
  1079
        (*_blossom_data)[blossom].pot -=
deba@868
  1080
          2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
deba@868
  1081
      }
deba@868
  1082
deba@326
  1083
      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
deba@326
  1084
           n != INVALID; ++n) {
deba@326
  1085
        int ni = (*_node_index)[n];
deba@326
  1086
deba@868
  1087
        _blossom_set->increase(n, std::numeric_limits<Value>::max());
deba@868
  1088
deba@868
  1089
        (*_node_data)[ni].heap.clear();
deba@868
  1090
        (*_node_data)[ni].heap_index.clear();
deba@868
  1091
        (*_node_data)[ni].pot +=
deba@868
  1092
          2 * _delta_sum - (*_blossom_data)[blossom].offset;
deba@868
  1093
deba@868
  1094
        _delta1->push(n, (*_node_data)[ni].pot);
deba@868
  1095
deba@326
  1096
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
deba@326
  1097
          Node v = _graph.source(e);
deba@326
  1098
          int vb = _blossom_set->find(v);
deba@326
  1099
          int vi = (*_node_index)[v];
deba@326
  1100
deba@326
  1101
          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
deba@326
  1102
            dualScale * _weight[e];
deba@326
  1103
deba@868
  1104
          if ((*_blossom_data)[vb].status == EVEN) {
deba@868
  1105
            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
deba@868
  1106
              _delta3->push(e, rw / 2);
deba@326
  1107
            }
deba@868
  1108
          } else {
deba@326
  1109
deba@326
  1110
            typename std::map<int, Arc>::iterator it =
deba@868
  1111
              (*_node_data)[vi].heap_index.find(tree);
deba@868
  1112
deba@868
  1113
            if (it != (*_node_data)[vi].heap_index.end()) {
deba@868
  1114
              if ((*_node_data)[vi].heap[it->second] > rw) {
deba@868
  1115
                (*_node_data)[vi].heap.replace(it->second, e);
deba@868
  1116
                (*_node_data)[vi].heap.decrease(e, rw);
deba@868
  1117
                it->second = e;
deba@326
  1118
              }
deba@326
  1119
            } else {
deba@868
  1120
              (*_node_data)[vi].heap.push(e, rw);
deba@868
  1121
              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
deba@326
  1122
            }
deba@326
  1123
deba@868
  1124
            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
deba@868
  1125
              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
deba@868
  1126
deba@868
  1127
              if ((*_blossom_data)[vb].status == MATCHED) {
deba@868
  1128
                if (_delta2->state(vb) != _delta2->IN_HEAP) {
deba@868
  1129
                  _delta2->push(vb, _blossom_set->classPrio(vb) -
deba@868
  1130
                               (*_blossom_data)[vb].offset);
deba@868
  1131
                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
deba@868
  1132
                           (*_blossom_data)[vb].offset) {
deba@868
  1133
                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
deba@868
  1134
                                   (*_blossom_data)[vb].offset);
deba@868
  1135
                }
deba@326
  1136
              }
deba@326
  1137
            }
deba@326
  1138
          }
deba@326
  1139
        }
deba@326
  1140
      }
deba@868
  1141
      (*_blossom_data)[blossom].offset = 0;
deba@326
  1142
    }
deba@326
  1143
deba@326
  1144
    void alternatePath(int even, int tree) {
deba@326
  1145
      int odd;
deba@326
  1146
deba@326
  1147
      evenToMatched(even, tree);
deba@326
  1148
      (*_blossom_data)[even].status = MATCHED;
deba@326
  1149
deba@326
  1150
      while ((*_blossom_data)[even].pred != INVALID) {
deba@326
  1151
        odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred));
deba@326
  1152
        (*_blossom_data)[odd].status = MATCHED;
deba@326
  1153
        oddToMatched(odd);
deba@326
  1154
        (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred;
deba@326
  1155
deba@326
  1156
        even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred));
deba@326
  1157
        (*_blossom_data)[even].status = MATCHED;
deba@326
  1158
        evenToMatched(even, tree);
deba@326
  1159
        (*_blossom_data)[even].next =
deba@326
  1160
          _graph.oppositeArc((*_blossom_data)[odd].pred);
deba@326
  1161
      }
deba@326
  1162
deba@326
  1163
    }
deba@326
  1164
deba@326
  1165
    void destroyTree(int tree) {
deba@326
  1166
      for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) {
deba@326
  1167
        if ((*_blossom_data)[b].status == EVEN) {
deba@326
  1168
          (*_blossom_data)[b].status = MATCHED;
deba@326
  1169
          evenToMatched(b, tree);
deba@326
  1170
        } else if ((*_blossom_data)[b].status == ODD) {
deba@326
  1171
          (*_blossom_data)[b].status = MATCHED;
deba@326
  1172
          oddToMatched(b);
deba@326
  1173
        }
deba@326
  1174
      }
deba@326
  1175
      _tree_set->eraseClass(tree);
deba@326
  1176
    }
deba@326
  1177
deba@326
  1178
deba@326
  1179
    void unmatchNode(const Node& node) {
deba@326
  1180
      int blossom = _blossom_set->find(node);
deba@326
  1181
      int tree = _tree_set->find(blossom);
deba@326
  1182
deba@326
  1183
      alternatePath(blossom, tree);
deba@326
  1184
      destroyTree(tree);
deba@326
  1185
deba@326
  1186
      (*_blossom_data)[blossom].base = node;
deba@868
  1187
      (*_blossom_data)[blossom].next = INVALID;
deba@326
  1188
    }
deba@326
  1189
deba@327
  1190
    void augmentOnEdge(const Edge& edge) {
deba@327
  1191
deba@327
  1192
      int left = _blossom_set->find(_graph.u(edge));
deba@327
  1193
      int right = _blossom_set->find(_graph.v(edge));
deba@326
  1194
deba@868
  1195
      int left_tree = _tree_set->find(left);
deba@868
  1196
      alternatePath(left, left_tree);
deba@868
  1197
      destroyTree(left_tree);
deba@868
  1198
deba@868
  1199
      int right_tree = _tree_set->find(right);
deba@868
  1200
      alternatePath(right, right_tree);
deba@868
  1201
      destroyTree(right_tree);
deba@326
  1202
deba@327
  1203
      (*_blossom_data)[left].next = _graph.direct(edge, true);
deba@327
  1204
      (*_blossom_data)[right].next = _graph.direct(edge, false);
deba@326
  1205
    }
deba@326
  1206
deba@868
  1207
    void augmentOnArc(const Arc& arc) {
deba@868
  1208
deba@868
  1209
      int left = _blossom_set->find(_graph.source(arc));
deba@868
  1210
      int right = _blossom_set->find(_graph.target(arc));
deba@868
  1211
deba@868
  1212
      (*_blossom_data)[left].status = MATCHED;
deba@868
  1213
deba@868
  1214
      int right_tree = _tree_set->find(right);
deba@868
  1215
      alternatePath(right, right_tree);
deba@868
  1216
      destroyTree(right_tree);
deba@868
  1217
deba@868
  1218
      (*_blossom_data)[left].next = arc;
deba@868
  1219
      (*_blossom_data)[right].next = _graph.oppositeArc(arc);
deba@868
  1220
    }
deba@868
  1221
deba@326
  1222
    void extendOnArc(const Arc& arc) {
deba@326
  1223
      int base = _blossom_set->find(_graph.target(arc));
deba@326
  1224
      int tree = _tree_set->find(base);
deba@326
  1225
deba@326
  1226
      int odd = _blossom_set->find(_graph.source(arc));
deba@326
  1227
      _tree_set->insert(odd, tree);
deba@326
  1228
      (*_blossom_data)[odd].status = ODD;
deba@326
  1229
      matchedToOdd(odd);
deba@326
  1230
      (*_blossom_data)[odd].pred = arc;
deba@326
  1231
deba@326
  1232
      int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next));
deba@326
  1233
      (*_blossom_data)[even].pred = (*_blossom_data)[even].next;
deba@326
  1234
      _tree_set->insert(even, tree);
deba@326
  1235
      (*_blossom_data)[even].status = EVEN;
deba@326
  1236
      matchedToEven(even, tree);
deba@326
  1237
    }
deba@326
  1238
deba@327
  1239
    void shrinkOnEdge(const Edge& edge, int tree) {
deba@326
  1240
      int nca = -1;
deba@326
  1241
      std::vector<int> left_path, right_path;
deba@326
  1242
deba@326
  1243
      {
deba@326
  1244
        std::set<int> left_set, right_set;
deba@326
  1245
        int left = _blossom_set->find(_graph.u(edge));
deba@326
  1246
        left_path.push_back(left);
deba@326
  1247
        left_set.insert(left);
deba@326
  1248
deba@326
  1249
        int right = _blossom_set->find(_graph.v(edge));
deba@326
  1250
        right_path.push_back(right);
deba@326
  1251
        right_set.insert(right);
deba@326
  1252
deba@326
  1253
        while (true) {
deba@326
  1254
deba@326
  1255
          if ((*_blossom_data)[left].pred == INVALID) break;
deba@326
  1256
deba@326
  1257
          left =
deba@326
  1258
            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
deba@326
  1259
          left_path.push_back(left);
deba@326
  1260
          left =
deba@326
  1261
            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
deba@326
  1262
          left_path.push_back(left);
deba@326
  1263
deba@326
  1264
          left_set.insert(left);
deba@326
  1265
deba@326
  1266
          if (right_set.find(left) != right_set.end()) {
deba@326
  1267
            nca = left;
deba@326
  1268
            break;
deba@326
  1269
          }
deba@326
  1270
deba@326
  1271
          if ((*_blossom_data)[right].pred == INVALID) break;
deba@326
  1272
deba@326
  1273
          right =
deba@326
  1274
            _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
deba@326
  1275
          right_path.push_back(right);
deba@326
  1276
          right =
deba@326
  1277
            _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
deba@326
  1278
          right_path.push_back(right);
deba@326
  1279
deba@326
  1280
          right_set.insert(right);
deba@326
  1281
deba@326
  1282
          if (left_set.find(right) != left_set.end()) {
deba@326
  1283
            nca = right;
deba@326
  1284
            break;
deba@326
  1285
          }
deba@326
  1286
deba@326
  1287
        }
deba@326
  1288
deba@326
  1289
        if (nca == -1) {
deba@326
  1290
          if ((*_blossom_data)[left].pred == INVALID) {
deba@326
  1291
            nca = right;
deba@326
  1292
            while (left_set.find(nca) == left_set.end()) {
deba@326
  1293
              nca =
deba@326
  1294
                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
deba@326
  1295
              right_path.push_back(nca);
deba@326
  1296
              nca =
deba@326
  1297
                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
deba@326
  1298
              right_path.push_back(nca);
deba@326
  1299
            }
deba@326
  1300
          } else {
deba@326
  1301
            nca = left;
deba@326
  1302
            while (right_set.find(nca) == right_set.end()) {
deba@326
  1303
              nca =
deba@326
  1304
                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
deba@326
  1305
              left_path.push_back(nca);
deba@326
  1306
              nca =
deba@326
  1307
                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
deba@326
  1308
              left_path.push_back(nca);
deba@326
  1309
            }
deba@326
  1310
          }
deba@326
  1311
        }
deba@326
  1312
      }
deba@326
  1313
deba@326
  1314
      std::vector<int> subblossoms;
deba@326
  1315
      Arc prev;
deba@326
  1316
deba@326
  1317
      prev = _graph.direct(edge, true);
deba@326
  1318
      for (int i = 0; left_path[i] != nca; i += 2) {
deba@326
  1319
        subblossoms.push_back(left_path[i]);
deba@326
  1320
        (*_blossom_data)[left_path[i]].next = prev;
deba@326
  1321
        _tree_set->erase(left_path[i]);
deba@326
  1322
deba@326
  1323
        subblossoms.push_back(left_path[i + 1]);
deba@326
  1324
        (*_blossom_data)[left_path[i + 1]].status = EVEN;
deba@326
  1325
        oddToEven(left_path[i + 1], tree);
deba@326
  1326
        _tree_set->erase(left_path[i + 1]);
deba@326
  1327
        prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred);
deba@326
  1328
      }
deba@326
  1329
deba@326
  1330
      int k = 0;
deba@326
  1331
      while (right_path[k] != nca) ++k;
deba@326
  1332
deba@326
  1333
      subblossoms.push_back(nca);
deba@326
  1334
      (*_blossom_data)[nca].next = prev;
deba@326
  1335
deba@326
  1336
      for (int i = k - 2; i >= 0; i -= 2) {
deba@326
  1337
        subblossoms.push_back(right_path[i + 1]);
deba@326
  1338
        (*_blossom_data)[right_path[i + 1]].status = EVEN;
deba@326
  1339
        oddToEven(right_path[i + 1], tree);
deba@326
  1340
        _tree_set->erase(right_path[i + 1]);
deba@326
  1341
deba@326
  1342
        (*_blossom_data)[right_path[i + 1]].next =
deba@326
  1343
          (*_blossom_data)[right_path[i + 1]].pred;
deba@326
  1344
deba@326
  1345
        subblossoms.push_back(right_path[i]);
deba@326
  1346
        _tree_set->erase(right_path[i]);
deba@326
  1347
      }
deba@326
  1348
deba@326
  1349
      int surface =
deba@326
  1350
        _blossom_set->join(subblossoms.begin(), subblossoms.end());
deba@326
  1351
deba@326
  1352
      for (int i = 0; i < int(subblossoms.size()); ++i) {
deba@326
  1353
        if (!_blossom_set->trivial(subblossoms[i])) {
deba@326
  1354
          (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum;
deba@326
  1355
        }
deba@326
  1356
        (*_blossom_data)[subblossoms[i]].status = MATCHED;
deba@326
  1357
      }
deba@326
  1358
deba@326
  1359
      (*_blossom_data)[surface].pot = -2 * _delta_sum;
deba@326
  1360
      (*_blossom_data)[surface].offset = 0;
deba@326
  1361
      (*_blossom_data)[surface].status = EVEN;
deba@326
  1362
      (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred;
deba@326
  1363
      (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred;
deba@326
  1364
deba@326
  1365
      _tree_set->insert(surface, tree);
deba@326
  1366
      _tree_set->erase(nca);
deba@326
  1367
    }
deba@326
  1368
deba@326
  1369
    void splitBlossom(int blossom) {
deba@326
  1370
      Arc next = (*_blossom_data)[blossom].next;
deba@326
  1371
      Arc pred = (*_blossom_data)[blossom].pred;
deba@326
  1372
deba@326
  1373
      int tree = _tree_set->find(blossom);
deba@326
  1374
deba@326
  1375
      (*_blossom_data)[blossom].status = MATCHED;
deba@326
  1376
      oddToMatched(blossom);
deba@326
  1377
      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
deba@326
  1378
        _delta2->erase(blossom);
deba@326
  1379
      }
deba@326
  1380
deba@326
  1381
      std::vector<int> subblossoms;
deba@326
  1382
      _blossom_set->split(blossom, std::back_inserter(subblossoms));
deba@326
  1383
deba@326
  1384
      Value offset = (*_blossom_data)[blossom].offset;
deba@326
  1385
      int b = _blossom_set->find(_graph.source(pred));
deba@326
  1386
      int d = _blossom_set->find(_graph.source(next));
deba@326
  1387
deba@326
  1388
      int ib = -1, id = -1;
deba@326
  1389
      for (int i = 0; i < int(subblossoms.size()); ++i) {
deba@326
  1390
        if (subblossoms[i] == b) ib = i;
deba@326
  1391
        if (subblossoms[i] == d) id = i;
deba@326
  1392
deba@326
  1393
        (*_blossom_data)[subblossoms[i]].offset = offset;
deba@326
  1394
        if (!_blossom_set->trivial(subblossoms[i])) {
deba@326
  1395
          (*_blossom_data)[subblossoms[i]].pot -= 2 * offset;
deba@326
  1396
        }
deba@326
  1397
        if (_blossom_set->classPrio(subblossoms[i]) !=
deba@326
  1398
            std::numeric_limits<Value>::max()) {
deba@326
  1399
          _delta2->push(subblossoms[i],
deba@326
  1400
                        _blossom_set->classPrio(subblossoms[i]) -
deba@326
  1401
                        (*_blossom_data)[subblossoms[i]].offset);
deba@326
  1402
        }
deba@326
  1403
      }
deba@326
  1404
deba@326
  1405
      if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) {
deba@326
  1406
        for (int i = (id + 1) % subblossoms.size();
deba@326
  1407
             i != ib; i = (i + 2) % subblossoms.size()) {
deba@326
  1408
          int sb = subblossoms[i];
deba@326
  1409
          int tb = subblossoms[(i + 1) % subblossoms.size()];
deba@326
  1410
          (*_blossom_data)[sb].next =
deba@326
  1411
            _graph.oppositeArc((*_blossom_data)[tb].next);
deba@326
  1412
        }
deba@326
  1413
deba@326
  1414
        for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
deba@326
  1415
          int sb = subblossoms[i];
deba@326
  1416
          int tb = subblossoms[(i + 1) % subblossoms.size()];
deba@326
  1417
          int ub = subblossoms[(i + 2) % subblossoms.size()];
deba@326
  1418
deba@326
  1419
          (*_blossom_data)[sb].status = ODD;
deba@326
  1420
          matchedToOdd(sb);
deba@326
  1421
          _tree_set->insert(sb, tree);
deba@326
  1422
          (*_blossom_data)[sb].pred = pred;
deba@326
  1423
          (*_blossom_data)[sb].next =
deba@868
  1424
            _graph.oppositeArc((*_blossom_data)[tb].next);
deba@326
  1425
deba@326
  1426
          pred = (*_blossom_data)[ub].next;
deba@326
  1427
deba@326
  1428
          (*_blossom_data)[tb].status = EVEN;
deba@326
  1429
          matchedToEven(tb, tree);
deba@326
  1430
          _tree_set->insert(tb, tree);
deba@326
  1431
          (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next;
deba@326
  1432
        }
deba@326
  1433
deba@326
  1434
        (*_blossom_data)[subblossoms[id]].status = ODD;
deba@326
  1435
        matchedToOdd(subblossoms[id]);
deba@326
  1436
        _tree_set->insert(subblossoms[id], tree);
deba@326
  1437
        (*_blossom_data)[subblossoms[id]].next = next;
deba@326
  1438
        (*_blossom_data)[subblossoms[id]].pred = pred;
deba@326
  1439
deba@326
  1440
      } else {
deba@326
  1441
deba@326
  1442
        for (int i = (ib + 1) % subblossoms.size();
deba@326
  1443
             i != id; i = (i + 2) % subblossoms.size()) {
deba@326
  1444
          int sb = subblossoms[i];
deba@326
  1445
          int tb = subblossoms[(i + 1) % subblossoms.size()];
deba@326
  1446
          (*_blossom_data)[sb].next =
deba@326
  1447
            _graph.oppositeArc((*_blossom_data)[tb].next);
deba@326
  1448
        }
deba@326
  1449
deba@326
  1450
        for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) {
deba@326
  1451
          int sb = subblossoms[i];
deba@326
  1452
          int tb = subblossoms[(i + 1) % subblossoms.size()];
deba@326
  1453
          int ub = subblossoms[(i + 2) % subblossoms.size()];
deba@326
  1454
deba@326
  1455
          (*_blossom_data)[sb].status = ODD;
deba@326
  1456
          matchedToOdd(sb);
deba@326
  1457
          _tree_set->insert(sb, tree);
deba@326
  1458
          (*_blossom_data)[sb].next = next;
deba@326
  1459
          (*_blossom_data)[sb].pred =
deba@326
  1460
            _graph.oppositeArc((*_blossom_data)[tb].next);
deba@326
  1461
deba@326
  1462
          (*_blossom_data)[tb].status = EVEN;
deba@326
  1463
          matchedToEven(tb, tree);
deba@326
  1464
          _tree_set->insert(tb, tree);
deba@326
  1465
          (*_blossom_data)[tb].pred =
deba@326
  1466
            (*_blossom_data)[tb].next =
deba@326
  1467
            _graph.oppositeArc((*_blossom_data)[ub].next);
deba@326
  1468
          next = (*_blossom_data)[ub].next;
deba@326
  1469
        }
deba@326
  1470
deba@326
  1471
        (*_blossom_data)[subblossoms[ib]].status = ODD;
deba@326
  1472
        matchedToOdd(subblossoms[ib]);
deba@326
  1473
        _tree_set->insert(subblossoms[ib], tree);
deba@326
  1474
        (*_blossom_data)[subblossoms[ib]].next = next;
deba@326
  1475
        (*_blossom_data)[subblossoms[ib]].pred = pred;
deba@326
  1476
      }
deba@326
  1477
      _tree_set->erase(blossom);
deba@326
  1478
    }
deba@326
  1479
deba@326
  1480
    void extractBlossom(int blossom, const Node& base, const Arc& matching) {
deba@326
  1481
      if (_blossom_set->trivial(blossom)) {
deba@326
  1482
        int bi = (*_node_index)[base];
deba@326
  1483
        Value pot = (*_node_data)[bi].pot;
deba@326
  1484
kpeter@581
  1485
        (*_matching)[base] = matching;
deba@326
  1486
        _blossom_node_list.push_back(base);
kpeter@581
  1487
        (*_node_potential)[base] = pot;
deba@326
  1488
      } else {
deba@326
  1489
deba@326
  1490
        Value pot = (*_blossom_data)[blossom].pot;
deba@326
  1491
        int bn = _blossom_node_list.size();
deba@326
  1492
deba@326
  1493
        std::vector<int> subblossoms;
deba@326
  1494
        _blossom_set->split(blossom, std::back_inserter(subblossoms));
deba@326
  1495
        int b = _blossom_set->find(base);
deba@326
  1496
        int ib = -1;
deba@326
  1497
        for (int i = 0; i < int(subblossoms.size()); ++i) {
deba@326
  1498
          if (subblossoms[i] == b) { ib = i; break; }
deba@326
  1499
        }
deba@326
  1500
deba@326
  1501
        for (int i = 1; i < int(subblossoms.size()); i += 2) {
deba@326
  1502
          int sb = subblossoms[(ib + i) % subblossoms.size()];
deba@326
  1503
          int tb = subblossoms[(ib + i + 1) % subblossoms.size()];
deba@326
  1504
deba@326
  1505
          Arc m = (*_blossom_data)[tb].next;
deba@326
  1506
          extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m));
deba@326
  1507
          extractBlossom(tb, _graph.source(m), m);
deba@326
  1508
        }
deba@326
  1509
        extractBlossom(subblossoms[ib], base, matching);
deba@326
  1510
deba@326
  1511
        int en = _blossom_node_list.size();
deba@326
  1512
deba@326
  1513
        _blossom_potential.push_back(BlossomVariable(bn, en, pot));
deba@326
  1514
      }
deba@326
  1515
    }
deba@326
  1516
deba@326
  1517
    void extractMatching() {
deba@326
  1518
      std::vector<int> blossoms;
deba@326
  1519
      for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
deba@326
  1520
        blossoms.push_back(c);
deba@326
  1521
      }
deba@326
  1522
deba@326
  1523
      for (int i = 0; i < int(blossoms.size()); ++i) {
deba@868
  1524
        if ((*_blossom_data)[blossoms[i]].next != INVALID) {
deba@326
  1525
deba@326
  1526
          Value offset = (*_blossom_data)[blossoms[i]].offset;
deba@326
  1527
          (*_blossom_data)[blossoms[i]].pot += 2 * offset;
deba@326
  1528
          for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]);
deba@326
  1529
               n != INVALID; ++n) {
deba@326
  1530
            (*_node_data)[(*_node_index)[n]].pot -= offset;
deba@326
  1531
          }
deba@326
  1532
deba@326
  1533
          Arc matching = (*_blossom_data)[blossoms[i]].next;
deba@326
  1534
          Node base = _graph.source(matching);
deba@326
  1535
          extractBlossom(blossoms[i], base, matching);
deba@326
  1536
        } else {
deba@326
  1537
          Node base = (*_blossom_data)[blossoms[i]].base;
deba@326
  1538
          extractBlossom(blossoms[i], base, INVALID);
deba@326
  1539
        }
deba@326
  1540
      }
deba@326
  1541
    }
deba@326
  1542
deba@326
  1543
  public:
deba@326
  1544
deba@326
  1545
    /// \brief Constructor
deba@326
  1546
    ///
deba@326
  1547
    /// Constructor.
deba@326
  1548
    MaxWeightedMatching(const Graph& graph, const WeightMap& weight)
deba@326
  1549
      : _graph(graph), _weight(weight), _matching(0),
deba@326
  1550
        _node_potential(0), _blossom_potential(), _blossom_node_list(),
deba@326
  1551
        _node_num(0), _blossom_num(0),
deba@326
  1552
deba@326
  1553
        _blossom_index(0), _blossom_set(0), _blossom_data(0),
deba@326
  1554
        _node_index(0), _node_heap_index(0), _node_data(0),
deba@326
  1555
        _tree_set_index(0), _tree_set(0),
deba@326
  1556
deba@326
  1557
        _delta1_index(0), _delta1(0),
deba@326
  1558
        _delta2_index(0), _delta2(0),
deba@326
  1559
        _delta3_index(0), _delta3(0),
deba@326
  1560
        _delta4_index(0), _delta4(0),
deba@326
  1561
deba@326
  1562
        _delta_sum() {}
deba@326
  1563
deba@326
  1564
    ~MaxWeightedMatching() {
deba@326
  1565
      destroyStructures();
deba@326
  1566
    }
deba@326
  1567
kpeter@590
  1568
    /// \name Execution Control
alpar@330
  1569
    /// The simplest way to execute the algorithm is to use the
kpeter@590
  1570
    /// \ref run() member function.
deba@326
  1571
deba@326
  1572
    ///@{
deba@326
  1573
deba@326
  1574
    /// \brief Initialize the algorithm
deba@326
  1575
    ///
kpeter@590
  1576
    /// This function initializes the algorithm.
deba@326
  1577
    void init() {
deba@326
  1578
      createStructures();
deba@326
  1579
deba@326
  1580
      for (ArcIt e(_graph); e != INVALID; ++e) {
kpeter@581
  1581
        (*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP;
deba@326
  1582
      }
deba@326
  1583
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@581
  1584
        (*_delta1_index)[n] = _delta1->PRE_HEAP;
deba@326
  1585
      }
deba@326
  1586
      for (EdgeIt e(_graph); e != INVALID; ++e) {
kpeter@581
  1587
        (*_delta3_index)[e] = _delta3->PRE_HEAP;
deba@326
  1588
      }
deba@326
  1589
      for (int i = 0; i < _blossom_num; ++i) {
kpeter@581
  1590
        (*_delta2_index)[i] = _delta2->PRE_HEAP;
kpeter@581
  1591
        (*_delta4_index)[i] = _delta4->PRE_HEAP;
deba@326
  1592
      }
deba@326
  1593
deba@326
  1594
      int index = 0;
deba@326
  1595
      for (NodeIt n(_graph); n != INVALID; ++n) {
deba@326
  1596
        Value max = 0;
deba@326
  1597
        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
deba@326
  1598
          if (_graph.target(e) == n) continue;
deba@326
  1599
          if ((dualScale * _weight[e]) / 2 > max) {
deba@326
  1600
            max = (dualScale * _weight[e]) / 2;
deba@326
  1601
          }
deba@326
  1602
        }
kpeter@581
  1603
        (*_node_index)[n] = index;
deba@326
  1604
        (*_node_data)[index].pot = max;
deba@326
  1605
        _delta1->push(n, max);
deba@326
  1606
        int blossom =
deba@326
  1607
          _blossom_set->insert(n, std::numeric_limits<Value>::max());
deba@326
  1608
deba@326
  1609
        _tree_set->insert(blossom);
deba@326
  1610
deba@326
  1611
        (*_blossom_data)[blossom].status = EVEN;
deba@326
  1612
        (*_blossom_data)[blossom].pred = INVALID;
deba@326
  1613
        (*_blossom_data)[blossom].next = INVALID;
deba@326
  1614
        (*_blossom_data)[blossom].pot = 0;
deba@326
  1615
        (*_blossom_data)[blossom].offset = 0;
deba@326
  1616
        ++index;
deba@326
  1617
      }
deba@326
  1618
      for (EdgeIt e(_graph); e != INVALID; ++e) {
deba@326
  1619
        int si = (*_node_index)[_graph.u(e)];
deba@326
  1620
        int ti = (*_node_index)[_graph.v(e)];
deba@326
  1621
        if (_graph.u(e) != _graph.v(e)) {
deba@326
  1622
          _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
deba@326
  1623
                            dualScale * _weight[e]) / 2);
deba@326
  1624
        }
deba@326
  1625
      }
deba@326
  1626
    }
deba@326
  1627
kpeter@590
  1628
    /// \brief Start the algorithm
deba@326
  1629
    ///
kpeter@590
  1630
    /// This function starts the algorithm.
kpeter@590
  1631
    ///
kpeter@590
  1632
    /// \pre \ref init() must be called before using this function.
deba@326
  1633
    void start() {
deba@326
  1634
      enum OpType {
deba@326
  1635
        D1, D2, D3, D4
deba@326
  1636
      };
deba@326
  1637
deba@326
  1638
      int unmatched = _node_num;
deba@326
  1639
      while (unmatched > 0) {
deba@326
  1640
        Value d1 = !_delta1->empty() ?
deba@326
  1641
          _delta1->prio() : std::numeric_limits<Value>::max();
deba@326
  1642
deba@326
  1643
        Value d2 = !_delta2->empty() ?
deba@326
  1644
          _delta2->prio() : std::numeric_limits<Value>::max();
deba@326
  1645
deba@326
  1646
        Value d3 = !_delta3->empty() ?
deba@326
  1647
          _delta3->prio() : std::numeric_limits<Value>::max();
deba@326
  1648
deba@326
  1649
        Value d4 = !_delta4->empty() ?
deba@326
  1650
          _delta4->prio() : std::numeric_limits<Value>::max();
deba@326
  1651
deba@868
  1652
        _delta_sum = d3; OpType ot = D3;
deba@868
  1653
        if (d1 < _delta_sum) { _delta_sum = d1; ot = D1; }
deba@326
  1654
        if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
deba@326
  1655
        if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
deba@326
  1656
deba@326
  1657
        switch (ot) {
deba@326
  1658
        case D1:
deba@326
  1659
          {
deba@326
  1660
            Node n = _delta1->top();
deba@326
  1661
            unmatchNode(n);
deba@326
  1662
            --unmatched;
deba@326
  1663
          }
deba@326
  1664
          break;
deba@326
  1665
        case D2:
deba@326
  1666
          {
deba@326
  1667
            int blossom = _delta2->top();
deba@326
  1668
            Node n = _blossom_set->classTop(blossom);
deba@868
  1669
            Arc a = (*_node_data)[(*_node_index)[n]].heap.top();
deba@868
  1670
            if ((*_blossom_data)[blossom].next == INVALID) {
deba@868
  1671
              augmentOnArc(a);
deba@868
  1672
              --unmatched;
deba@868
  1673
            } else {
deba@868
  1674
              extendOnArc(a);
deba@868
  1675
            }
deba@326
  1676
          }
deba@326
  1677
          break;
deba@326
  1678
        case D3:
deba@326
  1679
          {
deba@326
  1680
            Edge e = _delta3->top();
deba@326
  1681
deba@326
  1682
            int left_blossom = _blossom_set->find(_graph.u(e));
deba@326
  1683
            int right_blossom = _blossom_set->find(_graph.v(e));
deba@326
  1684
deba@326
  1685
            if (left_blossom == right_blossom) {
deba@326
  1686
              _delta3->pop();
deba@326
  1687
            } else {
deba@868
  1688
              int left_tree = _tree_set->find(left_blossom);
deba@868
  1689
              int right_tree = _tree_set->find(right_blossom);
deba@326
  1690
deba@326
  1691
              if (left_tree == right_tree) {
deba@327
  1692
                shrinkOnEdge(e, left_tree);
deba@326
  1693
              } else {
deba@327
  1694
                augmentOnEdge(e);
deba@326
  1695
                unmatched -= 2;
deba@326
  1696
              }
deba@326
  1697
            }
deba@326
  1698
          } break;
deba@326
  1699
        case D4:
deba@326
  1700
          splitBlossom(_delta4->top());
deba@326
  1701
          break;
deba@326
  1702
        }
deba@326
  1703
      }
deba@326
  1704
      extractMatching();
deba@326
  1705
    }
deba@326
  1706
kpeter@590
  1707
    /// \brief Run the algorithm.
deba@326
  1708
    ///
kpeter@590
  1709
    /// This method runs the \c %MaxWeightedMatching algorithm.
deba@326
  1710
    ///
deba@326
  1711
    /// \note mwm.run() is just a shortcut of the following code.
deba@326
  1712
    /// \code
deba@326
  1713
    ///   mwm.init();
deba@326
  1714
    ///   mwm.start();
deba@326
  1715
    /// \endcode
deba@326
  1716
    void run() {
deba@326
  1717
      init();
deba@326
  1718
      start();
deba@326
  1719
    }
deba@326
  1720
deba@326
  1721
    /// @}
deba@326
  1722
kpeter@590
  1723
    /// \name Primal Solution
deba@868
  1724
    /// Functions to get the primal solution, i.e. the maximum weighted
kpeter@590
  1725
    /// matching.\n
kpeter@590
  1726
    /// Either \ref run() or \ref start() function should be called before
kpeter@590
  1727
    /// using them.
deba@326
  1728
deba@326
  1729
    /// @{
deba@326
  1730
kpeter@590
  1731
    /// \brief Return the weight of the matching.
deba@326
  1732
    ///
kpeter@590
  1733
    /// This function returns the weight of the found matching.
kpeter@590
  1734
    ///
kpeter@590
  1735
    /// \pre Either run() or start() must be called before using this function.
kpeter@593
  1736
    Value matchingWeight() const {
deba@326
  1737
      Value sum = 0;
deba@326
  1738
      for (NodeIt n(_graph); n != INVALID; ++n) {
deba@326
  1739
        if ((*_matching)[n] != INVALID) {
deba@326
  1740
          sum += _weight[(*_matching)[n]];
deba@326
  1741
        }
deba@326
  1742
      }
deba@868
  1743
      return sum / 2;
deba@326
  1744
    }
deba@326
  1745
kpeter@590
  1746
    /// \brief Return the size (cardinality) of the matching.
deba@326
  1747
    ///
kpeter@590
  1748
    /// This function returns the size (cardinality) of the found matching.
kpeter@590
  1749
    ///
kpeter@590
  1750
    /// \pre Either run() or start() must be called before using this function.
deba@327
  1751
    int matchingSize() const {
deba@327
  1752
      int num = 0;
deba@327
  1753
      for (NodeIt n(_graph); n != INVALID; ++n) {
deba@327
  1754
        if ((*_matching)[n] != INVALID) {
deba@327
  1755
          ++num;
deba@327
  1756
        }
deba@327
  1757
      }
deba@327
  1758
      return num /= 2;
deba@327
  1759
    }
deba@327
  1760
kpeter@590
  1761
    /// \brief Return \c true if the given edge is in the matching.
deba@327
  1762
    ///
deba@868
  1763
    /// This function returns \c true if the given edge is in the found
kpeter@590
  1764
    /// matching.
kpeter@590
  1765
    ///
kpeter@590
  1766
    /// \pre Either run() or start() must be called before using this function.
deba@327
  1767
    bool matching(const Edge& edge) const {
deba@327
  1768
      return edge == (*_matching)[_graph.u(edge)];
deba@326
  1769
    }
deba@326
  1770
kpeter@590
  1771
    /// \brief Return the matching arc (or edge) incident to the given node.
deba@326
  1772
    ///
kpeter@590
  1773
    /// This function returns the matching arc (or edge) incident to the
deba@868
  1774
    /// given node in the found matching or \c INVALID if the node is
kpeter@590
  1775
    /// not covered by the matching.
kpeter@590
  1776
    ///
kpeter@590
  1777
    /// \pre Either run() or start() must be called before using this function.
deba@326
  1778
    Arc matching(const Node& node) const {
deba@326
  1779
      return (*_matching)[node];
deba@326
  1780
    }
deba@326
  1781
kpeter@593
  1782
    /// \brief Return a const reference to the matching map.
kpeter@593
  1783
    ///
kpeter@593
  1784
    /// This function returns a const reference to a node map that stores
kpeter@593
  1785
    /// the matching arc (or edge) incident to each node.
kpeter@593
  1786
    const MatchingMap& matchingMap() const {
kpeter@593
  1787
      return *_matching;
kpeter@593
  1788
    }
kpeter@593
  1789
kpeter@590
  1790
    /// \brief Return the mate of the given node.
deba@326
  1791
    ///
deba@868
  1792
    /// This function returns the mate of the given node in the found
kpeter@590
  1793
    /// matching or \c INVALID if the node is not covered by the matching.
kpeter@590
  1794
    ///
kpeter@590
  1795
    /// \pre Either run() or start() must be called before using this function.
deba@326
  1796
    Node mate(const Node& node) const {
deba@326
  1797
      return (*_matching)[node] != INVALID ?
deba@326
  1798
        _graph.target((*_matching)[node]) : INVALID;
deba@326
  1799
    }
deba@326
  1800
deba@326
  1801
    /// @}
deba@326
  1802
kpeter@590
  1803
    /// \name Dual Solution
kpeter@590
  1804
    /// Functions to get the dual solution.\n
kpeter@590
  1805
    /// Either \ref run() or \ref start() function should be called before
kpeter@590
  1806
    /// using them.
deba@326
  1807
deba@326
  1808
    /// @{
deba@326
  1809
kpeter@590
  1810
    /// \brief Return the value of the dual solution.
deba@326
  1811
    ///
deba@868
  1812
    /// This function returns the value of the dual solution.
deba@868
  1813
    /// It should be equal to the primal value scaled by \ref dualScale
kpeter@590
  1814
    /// "dual scale".
kpeter@590
  1815
    ///
kpeter@590
  1816
    /// \pre Either run() or start() must be called before using this function.
deba@326
  1817
    Value dualValue() const {
deba@326
  1818
      Value sum = 0;
deba@326
  1819
      for (NodeIt n(_graph); n != INVALID; ++n) {
deba@326
  1820
        sum += nodeValue(n);
deba@326
  1821
      }
deba@326
  1822
      for (int i = 0; i < blossomNum(); ++i) {
deba@326
  1823
        sum += blossomValue(i) * (blossomSize(i) / 2);
deba@326
  1824
      }
deba@326
  1825
      return sum;
deba@326
  1826
    }
deba@326
  1827
kpeter@590
  1828
    /// \brief Return the dual value (potential) of the given node.
deba@326
  1829
    ///
kpeter@590
  1830
    /// This function returns the dual value (potential) of the given node.
kpeter@590
  1831
    ///
kpeter@590
  1832
    /// \pre Either run() or start() must be called before using this function.
deba@326
  1833
    Value nodeValue(const Node& n) const {
deba@326
  1834
      return (*_node_potential)[n];
deba@326
  1835
    }
deba@326
  1836
kpeter@590
  1837
    /// \brief Return the number of the blossoms in the basis.
deba@326
  1838
    ///
kpeter@590
  1839
    /// This function returns the number of the blossoms in the basis.
kpeter@590
  1840
    ///
kpeter@590
  1841
    /// \pre Either run() or start() must be called before using this function.
deba@326
  1842
    /// \see BlossomIt
deba@326
  1843
    int blossomNum() const {
deba@326
  1844
      return _blossom_potential.size();
deba@326
  1845
    }
deba@326
  1846
kpeter@590
  1847
    /// \brief Return the number of the nodes in the given blossom.
deba@326
  1848
    ///
kpeter@590
  1849
    /// This function returns the number of the nodes in the given blossom.
kpeter@590
  1850
    ///
kpeter@590
  1851
    /// \pre Either run() or start() must be called before using this function.
kpeter@590
  1852
    /// \see BlossomIt
deba@326
  1853
    int blossomSize(int k) const {
deba@326
  1854
      return _blossom_potential[k].end - _blossom_potential[k].begin;
deba@326
  1855
    }
deba@326
  1856
kpeter@590
  1857
    /// \brief Return the dual value (ptential) of the given blossom.
deba@326
  1858
    ///
kpeter@590
  1859
    /// This function returns the dual value (ptential) of the given blossom.
kpeter@590
  1860
    ///
kpeter@590
  1861
    /// \pre Either run() or start() must be called before using this function.
deba@326
  1862
    Value blossomValue(int k) const {
deba@326
  1863
      return _blossom_potential[k].value;
deba@326
  1864
    }
deba@326
  1865
kpeter@590
  1866
    /// \brief Iterator for obtaining the nodes of a blossom.
deba@326
  1867
    ///
deba@868
  1868
    /// This class provides an iterator for obtaining the nodes of the
kpeter@590
  1869
    /// given blossom. It lists a subset of the nodes.
deba@868
  1870
    /// Before using this iterator, you must allocate a
kpeter@590
  1871
    /// MaxWeightedMatching class and execute it.
deba@326
  1872
    class BlossomIt {
deba@326
  1873
    public:
deba@326
  1874
deba@326
  1875
      /// \brief Constructor.
deba@326
  1876
      ///
kpeter@590
  1877
      /// Constructor to get the nodes of the given variable.
kpeter@590
  1878
      ///
deba@868
  1879
      /// \pre Either \ref MaxWeightedMatching::run() "algorithm.run()" or
deba@868
  1880
      /// \ref MaxWeightedMatching::start() "algorithm.start()" must be
kpeter@590
  1881
      /// called before initializing this iterator.
deba@326
  1882
      BlossomIt(const MaxWeightedMatching& algorithm, int variable)
deba@326
  1883
        : _algorithm(&algorithm)
deba@326
  1884
      {
deba@326
  1885
        _index = _algorithm->_blossom_potential[variable].begin;
deba@326
  1886
        _last = _algorithm->_blossom_potential[variable].end;
deba@326
  1887
      }
deba@326
  1888
kpeter@590
  1889
      /// \brief Conversion to \c Node.
deba@326
  1890
      ///
kpeter@590
  1891
      /// Conversion to \c Node.
deba@326
  1892
      operator Node() const {
deba@327
  1893
        return _algorithm->_blossom_node_list[_index];
deba@326
  1894
      }
deba@326
  1895
deba@326
  1896
      /// \brief Increment operator.
deba@326
  1897
      ///
deba@326
  1898
      /// Increment operator.
deba@326
  1899
      BlossomIt& operator++() {
deba@326
  1900
        ++_index;
deba@326
  1901
        return *this;
deba@326
  1902
      }
deba@326
  1903
deba@327
  1904
      /// \brief Validity checking
deba@327
  1905
      ///
deba@327
  1906
      /// Checks whether the iterator is invalid.
deba@327
  1907
      bool operator==(Invalid) const { return _index == _last; }
deba@327
  1908
deba@327
  1909
      /// \brief Validity checking
deba@327
  1910
      ///
deba@327
  1911
      /// Checks whether the iterator is valid.
deba@327
  1912
      bool operator!=(Invalid) const { return _index != _last; }
deba@326
  1913
deba@326
  1914
    private:
deba@326
  1915
      const MaxWeightedMatching* _algorithm;
deba@326
  1916
      int _last;
deba@326
  1917
      int _index;
deba@326
  1918
    };
deba@326
  1919
deba@326
  1920
    /// @}
deba@326
  1921
deba@326
  1922
  };
deba@326
  1923
deba@326
  1924
  /// \ingroup matching
deba@326
  1925
  ///
deba@326
  1926
  /// \brief Weighted perfect matching in general graphs
deba@326
  1927
  ///
deba@326
  1928
  /// This class provides an efficient implementation of Edmond's
deba@327
  1929
  /// maximum weighted perfect matching algorithm. The implementation
deba@326
  1930
  /// is based on extensive use of priority queues and provides
kpeter@559
  1931
  /// \f$O(nm\log n)\f$ time complexity.
deba@326
  1932
  ///
deba@868
  1933
  /// The maximum weighted perfect matching problem is to find a subset of
deba@868
  1934
  /// the edges in an undirected graph with maximum overall weight for which
kpeter@590
  1935
  /// each node has exactly one incident edge.
kpeter@590
  1936
  /// It can be formulated with the following linear program.
deba@326
  1937
  /// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f]
deba@327
  1938
  /** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
deba@327
  1939
      \quad \forall B\in\mathcal{O}\f] */
deba@326
  1940
  /// \f[x_e \ge 0\quad \forall e\in E\f]
deba@326
  1941
  /// \f[\max \sum_{e\in E}x_ew_e\f]
deba@327
  1942
  /// where \f$\delta(X)\f$ is the set of edges incident to a node in
deba@327
  1943
  /// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in
deba@327
  1944
  /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality
deba@327
  1945
  /// subsets of the nodes.
deba@326
  1946
  ///
deba@326
  1947
  /// The algorithm calculates an optimal matching and a proof of the
deba@326
  1948
  /// optimality. The solution of the dual problem can be used to check
deba@327
  1949
  /// the result of the algorithm. The dual linear problem is the
kpeter@590
  1950
  /// following.
deba@327
  1951
  /** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge
deba@327
  1952
      w_{uv} \quad \forall uv\in E\f] */
deba@326
  1953
  /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
deba@327
  1954
  /** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
deba@327
  1955
      \frac{\vert B \vert - 1}{2}z_B\f] */
deba@326
  1956
  ///
deba@868
  1957
  /// The algorithm can be executed with the run() function.
kpeter@590
  1958
  /// After it the matching (the primal solution) and the dual solution
deba@868
  1959
  /// can be obtained using the query functions and the
deba@868
  1960
  /// \ref MaxWeightedPerfectMatching::BlossomIt "BlossomIt" nested class,
deba@868
  1961
  /// which is able to iterate on the nodes of a blossom.
kpeter@590
  1962
  /// If the value type is integer, then the dual solution is multiplied
kpeter@590
  1963
  /// by \ref MaxWeightedMatching::dualScale "4".
kpeter@590
  1964
  ///
kpeter@593
  1965
  /// \tparam GR The undirected graph type the algorithm runs on.
deba@868
  1966
  /// \tparam WM The type edge weight map. The default type is
kpeter@590
  1967
  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>".
kpeter@590
  1968
#ifdef DOXYGEN
kpeter@590
  1969
  template <typename GR, typename WM>
kpeter@590
  1970
#else
kpeter@559
  1971
  template <typename GR,
kpeter@559
  1972
            typename WM = typename GR::template EdgeMap<int> >
kpeter@590
  1973
#endif
deba@326
  1974
  class MaxWeightedPerfectMatching {
deba@326
  1975
  public:
deba@326
  1976
kpeter@590
  1977
    /// The graph type of the algorithm
kpeter@559
  1978
    typedef GR Graph;
kpeter@590
  1979
    /// The type of the edge weight map
kpeter@559
  1980
    typedef WM WeightMap;
kpeter@590
  1981
    /// The value type of the edge weights
deba@326
  1982
    typedef typename WeightMap::Value Value;
deba@326
  1983
deba@326
  1984
    /// \brief Scaling factor for dual solution
deba@326
  1985
    ///
deba@326
  1986
    /// Scaling factor for dual solution, it is equal to 4 or 1
deba@326
  1987
    /// according to the value type.
deba@326
  1988
    static const int dualScale =
deba@326
  1989
      std::numeric_limits<Value>::is_integer ? 4 : 1;
deba@326
  1990
kpeter@593
  1991
    /// The type of the matching map
deba@326
  1992
    typedef typename Graph::template NodeMap<typename Graph::Arc>
deba@326
  1993
    MatchingMap;
deba@326
  1994
deba@326
  1995
  private:
deba@326
  1996
deba@326
  1997
    TEMPLATE_GRAPH_TYPEDEFS(Graph);
deba@326
  1998
deba@326
  1999
    typedef typename Graph::template NodeMap<Value> NodePotential;
deba@326
  2000
    typedef std::vector<Node> BlossomNodeList;
deba@326
  2001
deba@326
  2002
    struct BlossomVariable {
deba@326
  2003
      int begin, end;
deba@326
  2004
      Value value;
deba@326
  2005
deba@326
  2006
      BlossomVariable(int _begin, int _end, Value _value)
deba@326
  2007
        : begin(_begin), end(_end), value(_value) {}
deba@326
  2008
deba@326
  2009
    };
deba@326
  2010
deba@326
  2011
    typedef std::vector<BlossomVariable> BlossomPotential;
deba@326
  2012
deba@326
  2013
    const Graph& _graph;
deba@326
  2014
    const WeightMap& _weight;
deba@326
  2015
deba@326
  2016
    MatchingMap* _matching;
deba@326
  2017
deba@326
  2018
    NodePotential* _node_potential;
deba@326
  2019
deba@326
  2020
    BlossomPotential _blossom_potential;
deba@326
  2021
    BlossomNodeList _blossom_node_list;
deba@326
  2022
deba@326
  2023
    int _node_num;
deba@326
  2024
    int _blossom_num;
deba@326
  2025
deba@326
  2026
    typedef RangeMap<int> IntIntMap;
deba@326
  2027
deba@326
  2028
    enum Status {
deba@326
  2029
      EVEN = -1, MATCHED = 0, ODD = 1
deba@326
  2030
    };
deba@326
  2031
deba@327
  2032
    typedef HeapUnionFind<Value, IntNodeMap> BlossomSet;
deba@326
  2033
    struct BlossomData {
deba@326
  2034
      int tree;
deba@326
  2035
      Status status;
deba@326
  2036
      Arc pred, next;
deba@326
  2037
      Value pot, offset;
deba@326
  2038
    };
deba@326
  2039
deba@327
  2040
    IntNodeMap *_blossom_index;
deba@326
  2041
    BlossomSet *_blossom_set;
deba@326
  2042
    RangeMap<BlossomData>* _blossom_data;
deba@326
  2043
deba@327
  2044
    IntNodeMap *_node_index;
deba@327
  2045
    IntArcMap *_node_heap_index;
deba@326
  2046
deba@326
  2047
    struct NodeData {
deba@326
  2048
deba@327
  2049
      NodeData(IntArcMap& node_heap_index)
deba@326
  2050
        : heap(node_heap_index) {}
deba@326
  2051
deba@326
  2052
      int blossom;
deba@326
  2053
      Value pot;
deba@327
  2054
      BinHeap<Value, IntArcMap> heap;
deba@326
  2055
      std::map<int, Arc> heap_index;
deba@326
  2056
deba@326
  2057
      int tree;
deba@326
  2058
    };
deba@326
  2059
deba@326
  2060
    RangeMap<NodeData>* _node_data;
deba@326
  2061
deba@326
  2062
    typedef ExtendFindEnum<IntIntMap> TreeSet;
deba@326
  2063
deba@326
  2064
    IntIntMap *_tree_set_index;
deba@326
  2065
    TreeSet *_tree_set;
deba@326
  2066
deba@326
  2067
    IntIntMap *_delta2_index;
deba@326
  2068
    BinHeap<Value, IntIntMap> *_delta2;
deba@326
  2069
deba@327
  2070
    IntEdgeMap *_delta3_index;
deba@327
  2071
    BinHeap<Value, IntEdgeMap> *_delta3;
deba@326
  2072
deba@326
  2073
    IntIntMap *_delta4_index;
deba@326
  2074
    BinHeap<Value, IntIntMap> *_delta4;
deba@326
  2075
deba@326
  2076
    Value _delta_sum;
deba@326
  2077
deba@326
  2078
    void createStructures() {
deba@326
  2079
      _node_num = countNodes(_graph);
deba@326
  2080
      _blossom_num = _node_num * 3 / 2;
deba@326
  2081
deba@326
  2082
      if (!_matching) {
deba@326
  2083
        _matching = new MatchingMap(_graph);
deba@326
  2084
      }
deba@326
  2085
      if (!_node_potential) {
deba@326
  2086
        _node_potential = new NodePotential(_graph);
deba@326
  2087
      }
deba@326
  2088
      if (!_blossom_set) {
deba@327
  2089
        _blossom_index = new IntNodeMap(_graph);
deba@326
  2090
        _blossom_set = new BlossomSet(*_blossom_index);
deba@326
  2091
        _blossom_data = new RangeMap<BlossomData>(_blossom_num);
deba@326
  2092
      }
deba@326
  2093
deba@326
  2094
      if (!_node_index) {
deba@327
  2095
        _node_index = new IntNodeMap(_graph);
deba@327
  2096
        _node_heap_index = new IntArcMap(_graph);
deba@326
  2097
        _node_data = new RangeMap<NodeData>(_node_num,
deba@327
  2098
                                            NodeData(*_node_heap_index));
deba@326
  2099
      }
deba@326
  2100
deba@326
  2101
      if (!_tree_set) {
deba@326
  2102
        _tree_set_index = new IntIntMap(_blossom_num);
deba@326
  2103
        _tree_set = new TreeSet(*_tree_set_index);
deba@326
  2104
      }
deba@326
  2105
      if (!_delta2) {
deba@326
  2106
        _delta2_index = new IntIntMap(_blossom_num);
deba@326
  2107
        _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
deba@326
  2108
      }
deba@326
  2109
      if (!_delta3) {
deba@327
  2110
        _delta3_index = new IntEdgeMap(_graph);
deba@327
  2111
        _delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index);
deba@326
  2112
      }
deba@326
  2113
      if (!_delta4) {
deba@326
  2114
        _delta4_index = new IntIntMap(_blossom_num);
deba@326
  2115
        _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
deba@326
  2116
      }
deba@326
  2117
    }
deba@326
  2118
deba@326
  2119
    void destroyStructures() {
deba@326
  2120
      if (_matching) {
deba@326
  2121
        delete _matching;
deba@326
  2122
      }
deba@326
  2123
      if (_node_potential) {
deba@326
  2124
        delete _node_potential;
deba@326
  2125
      }
deba@326
  2126
      if (_blossom_set) {
deba@326
  2127
        delete _blossom_index;
deba@326
  2128
        delete _blossom_set;
deba@326
  2129
        delete _blossom_data;
deba@326
  2130
      }
deba@326
  2131
deba@326
  2132
      if (_node_index) {
deba@326
  2133
        delete _node_index;
deba@326
  2134
        delete _node_heap_index;
deba@326
  2135
        delete _node_data;
deba@326
  2136
      }
deba@326
  2137
deba@326
  2138
      if (_tree_set) {
deba@326
  2139
        delete _tree_set_index;
deba@326
  2140
        delete _tree_set;
deba@326
  2141
      }
deba@326
  2142
      if (_delta2) {
deba@326
  2143
        delete _delta2_index;
deba@326
  2144
        delete _delta2;
deba@326
  2145
      }
deba@326
  2146
      if (_delta3) {
deba@326
  2147
        delete _delta3_index;
deba@326
  2148
        delete _delta3;
deba@326
  2149
      }
deba@326
  2150
      if (_delta4) {
deba@326
  2151
        delete _delta4_index;
deba@326
  2152
        delete _delta4;
deba@326
  2153
      }
deba@326
  2154
    }
deba@326
  2155
deba@326
  2156
    void matchedToEven(int blossom, int tree) {
deba@326
  2157
      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
deba@326
  2158
        _delta2->erase(blossom);
deba@326
  2159
      }
deba@326
  2160
deba@326
  2161
      if (!_blossom_set->trivial(blossom)) {
deba@326
  2162
        (*_blossom_data)[blossom].pot -=
deba@326
  2163
          2 * (_delta_sum - (*_blossom_data)[blossom].offset);
deba@326
  2164
      }
deba@326
  2165
deba@326
  2166
      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
deba@326
  2167
           n != INVALID; ++n) {
deba@326
  2168
deba@326
  2169
        _blossom_set->increase(n, std::numeric_limits<Value>::max());
deba@326
  2170
        int ni = (*_node_index)[n];
deba@326
  2171
deba@326
  2172
        (*_node_data)[ni].heap.clear();
deba@326
  2173
        (*_node_data)[ni].heap_index.clear();
deba@326
  2174
deba@326
  2175
        (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset;
deba@326
  2176
deba@326
  2177
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
deba@326
  2178
          Node v = _graph.source(e);
deba@326
  2179
          int vb = _blossom_set->find(v);
deba@326
  2180
          int vi = (*_node_index)[v];
deba@326
  2181
deba@326
  2182
          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
deba@326
  2183
            dualScale * _weight[e];
deba@326
  2184
deba@326
  2185
          if ((*_blossom_data)[vb].status == EVEN) {
deba@326
  2186
            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
deba@326
  2187
              _delta3->push(e, rw / 2);
deba@326
  2188
            }
deba@326
  2189
          } else {
deba@326
  2190
            typename std::map<int, Arc>::iterator it =
deba@326
  2191
              (*_node_data)[vi].heap_index.find(tree);
deba@326
  2192
deba@326
  2193
            if (it != (*_node_data)[vi].heap_index.end()) {
deba@326
  2194
              if ((*_node_data)[vi].heap[it->second] > rw) {
deba@326
  2195
                (*_node_data)[vi].heap.replace(it->second, e);
deba@326
  2196
                (*_node_data)[vi].heap.decrease(e, rw);
deba@326
  2197
                it->second = e;
deba@326
  2198
              }
deba@326
  2199
            } else {
deba@326
  2200
              (*_node_data)[vi].heap.push(e, rw);
deba@326
  2201
              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
deba@326
  2202
            }
deba@326
  2203
deba@326
  2204
            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
deba@326
  2205
              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
deba@326
  2206
deba@326
  2207
              if ((*_blossom_data)[vb].status == MATCHED) {
deba@326
  2208
                if (_delta2->state(vb) != _delta2->IN_HEAP) {
deba@326
  2209
                  _delta2->push(vb, _blossom_set->classPrio(vb) -
deba@326
  2210
                               (*_blossom_data)[vb].offset);
deba@326
  2211
                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
deba@326
  2212
                           (*_blossom_data)[vb].offset){
deba@326
  2213
                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
deba@326
  2214
                                   (*_blossom_data)[vb].offset);
deba@326
  2215
                }
deba@326
  2216
              }
deba@326
  2217
            }
deba@326
  2218
          }
deba@326
  2219
        }
deba@326
  2220
      }
deba@326
  2221
      (*_blossom_data)[blossom].offset = 0;
deba@326
  2222
    }
deba@326
  2223
deba@326
  2224
    void matchedToOdd(int blossom) {
deba@326
  2225
      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
deba@326
  2226
        _delta2->erase(blossom);
deba@326
  2227
      }
deba@326
  2228
      (*_blossom_data)[blossom].offset += _delta_sum;
deba@326
  2229
      if (!_blossom_set->trivial(blossom)) {
deba@326
  2230
        _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 +
deba@326
  2231
                     (*_blossom_data)[blossom].offset);
deba@326
  2232
      }
deba@326
  2233
    }
deba@326
  2234
deba@326
  2235
    void evenToMatched(int blossom, int tree) {
deba@326
  2236
      if (!_blossom_set->trivial(blossom)) {
deba@326
  2237
        (*_blossom_data)[blossom].pot += 2 * _delta_sum;
deba@326
  2238
      }
deba@326
  2239
deba@326
  2240
      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
deba@326
  2241
           n != INVALID; ++n) {
deba@326
  2242
        int ni = (*_node_index)[n];
deba@326
  2243
        (*_node_data)[ni].pot -= _delta_sum;
deba@326
  2244
deba@326
  2245
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
deba@326
  2246
          Node v = _graph.source(e);
deba@326
  2247
          int vb = _blossom_set->find(v);
deba@326
  2248
          int vi = (*_node_index)[v];
deba@326
  2249
deba@326
  2250
          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
deba@326
  2251
            dualScale * _weight[e];
deba@326
  2252
deba@326
  2253
          if (vb == blossom) {
deba@326
  2254
            if (_delta3->state(e) == _delta3->IN_HEAP) {
deba@326
  2255
              _delta3->erase(e);
deba@326
  2256
            }
deba@326
  2257
          } else if ((*_blossom_data)[vb].status == EVEN) {
deba@326
  2258
deba@326
  2259
            if (_delta3->state(e) == _delta3->IN_HEAP) {
deba@326
  2260
              _delta3->erase(e);
deba@326
  2261
            }
deba@326
  2262
deba@326
  2263
            int vt = _tree_set->find(vb);
deba@326
  2264
deba@326
  2265
            if (vt != tree) {
deba@326
  2266
deba@326
  2267
              Arc r = _graph.oppositeArc(e);
deba@326
  2268
deba@326
  2269
              typename std::map<int, Arc>::iterator it =
deba@326
  2270
                (*_node_data)[ni].heap_index.find(vt);
deba@326
  2271
deba@326
  2272
              if (it != (*_node_data)[ni].heap_index.end()) {
deba@326
  2273
                if ((*_node_data)[ni].heap[it->second] > rw) {
deba@326
  2274
                  (*_node_data)[ni].heap.replace(it->second, r);
deba@326
  2275
                  (*_node_data)[ni].heap.decrease(r, rw);
deba@326
  2276
                  it->second = r;
deba@326
  2277
                }
deba@326
  2278
              } else {
deba@326
  2279
                (*_node_data)[ni].heap.push(r, rw);
deba@326
  2280
                (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
deba@326
  2281
              }
deba@326
  2282
deba@326
  2283
              if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
deba@326
  2284
                _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
deba@326
  2285
deba@326
  2286
                if (_delta2->state(blossom) != _delta2->IN_HEAP) {
deba@326
  2287
                  _delta2->push(blossom, _blossom_set->classPrio(blossom) -
deba@326
  2288
                               (*_blossom_data)[blossom].offset);
deba@326
  2289
                } else if ((*_delta2)[blossom] >
deba@326
  2290
                           _blossom_set->classPrio(blossom) -
deba@326
  2291
                           (*_blossom_data)[blossom].offset){
deba@326
  2292
                  _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
deba@326
  2293
                                   (*_blossom_data)[blossom].offset);
deba@326
  2294
                }
deba@326
  2295
              }
deba@326
  2296
            }
deba@326
  2297
          } else {
deba@326
  2298
deba@326
  2299
            typename std::map<int, Arc>::iterator it =
deba@326
  2300
              (*_node_data)[vi].heap_index.find(tree);
deba@326
  2301
deba@326
  2302
            if (it != (*_node_data)[vi].heap_index.end()) {
deba@326
  2303
              (*_node_data)[vi].heap.erase(it->second);
deba@326
  2304
              (*_node_data)[vi].heap_index.erase(it);
deba@326
  2305
              if ((*_node_data)[vi].heap.empty()) {
deba@326
  2306
                _blossom_set->increase(v, std::numeric_limits<Value>::max());
deba@326
  2307
              } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
deba@326
  2308
                _blossom_set->increase(v, (*_node_data)[vi].heap.prio());
deba@326
  2309
              }
deba@326
  2310
deba@326
  2311
              if ((*_blossom_data)[vb].status == MATCHED) {
deba@326
  2312
                if (_blossom_set->classPrio(vb) ==
deba@326
  2313
                    std::numeric_limits<Value>::max()) {
deba@326
  2314
                  _delta2->erase(vb);
deba@326
  2315
                } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
deba@326
  2316
                           (*_blossom_data)[vb].offset) {
deba@326
  2317
                  _delta2->increase(vb, _blossom_set->classPrio(vb) -
deba@326
  2318
                                   (*_blossom_data)[vb].offset);
deba@326
  2319
                }
deba@326
  2320
              }
deba@326
  2321
            }
deba@326
  2322
          }
deba@326
  2323
        }
deba@326
  2324
      }
deba@326
  2325
    }
deba@326
  2326
deba@326
  2327
    void oddToMatched(int blossom) {
deba@326
  2328
      (*_blossom_data)[blossom].offset -= _delta_sum;
deba@326
  2329
deba@326
  2330
      if (_blossom_set->classPrio(blossom) !=
deba@326
  2331
          std::numeric_limits<Value>::max()) {
deba@326
  2332
        _delta2->push(blossom, _blossom_set->classPrio(blossom) -
deba@326
  2333
                       (*_blossom_data)[blossom].offset);
deba@326
  2334
      }
deba@326
  2335
deba@326
  2336
      if (!_blossom_set->trivial(blossom)) {
deba@326
  2337
        _delta4->erase(blossom);
deba@326
  2338
      }
deba@326
  2339
    }
deba@326
  2340
deba@326
  2341
    void oddToEven(int blossom, int tree) {
deba@326
  2342
      if (!_blossom_set->trivial(blossom)) {
deba@326
  2343
        _delta4->erase(blossom);
deba@326
  2344
        (*_blossom_data)[blossom].pot -=
deba@326
  2345
          2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
deba@326
  2346
      }
deba@326
  2347
deba@326
  2348
      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
deba@326
  2349
           n != INVALID; ++n) {
deba@326
  2350
        int ni = (*_node_index)[n];
deba@326
  2351
deba@326
  2352
        _blossom_set->increase(n, std::numeric_limits<Value>::max());
deba@326
  2353
deba@326
  2354
        (*_node_data)[ni].heap.clear();
deba@326
  2355
        (*_node_data)[ni].heap_index.clear();
deba@326
  2356
        (*_node_data)[ni].pot +=
deba@326
  2357
          2 * _delta_sum - (*_blossom_data)[blossom].offset;
deba@326
  2358
deba@326
  2359
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
deba@326
  2360
          Node v = _graph.source(e);
deba@326
  2361
          int vb = _blossom_set->find(v);
deba@326
  2362
          int vi = (*_node_index)[v];
deba@326
  2363
deba@326
  2364
          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
deba@326
  2365
            dualScale * _weight[e];
deba@326
  2366
deba@326
  2367
          if ((*_blossom_data)[vb].status == EVEN) {
deba@326
  2368
            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
deba@326
  2369
              _delta3->push(e, rw / 2);
deba@326
  2370
            }
deba@326
  2371
          } else {
deba@326
  2372
deba@326
  2373
            typename std::map<int, Arc>::iterator it =
deba@326
  2374
              (*_node_data)[vi].heap_index.find(tree);
deba@326
  2375
deba@326
  2376
            if (it != (*_node_data)[vi].heap_index.end()) {
deba@326
  2377
              if ((*_node_data)[vi].heap[it->second] > rw) {
deba@326
  2378
                (*_node_data)[vi].heap.replace(it->second, e);
deba@326
  2379
                (*_node_data)[vi].heap.decrease(e, rw);
deba@326
  2380
                it->second = e;
deba@326
  2381
              }
deba@326
  2382
            } else {
deba@326
  2383
              (*_node_data)[vi].heap.push(e, rw);
deba@326
  2384
              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
deba@326
  2385
            }
deba@326
  2386
deba@326
  2387
            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
deba@326
  2388
              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
deba@326
  2389
deba@326
  2390
              if ((*_blossom_data)[vb].status == MATCHED) {
deba@326
  2391
                if (_delta2->state(vb) != _delta2->IN_HEAP) {
deba@326
  2392
                  _delta2->push(vb, _blossom_set->classPrio(vb) -
deba@326
  2393
                               (*_blossom_data)[vb].offset);
deba@326
  2394
                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
deba@326
  2395
                           (*_blossom_data)[vb].offset) {
deba@326
  2396
                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
deba@326
  2397
                                   (*_blossom_data)[vb].offset);
deba@326
  2398
                }
deba@326
  2399
              }
deba@326
  2400
            }
deba@326
  2401
          }
deba@326
  2402
        }
deba@326
  2403
      }
deba@326
  2404
      (*_blossom_data)[blossom].offset = 0;
deba@326
  2405
    }
deba@326
  2406
deba@326
  2407
    void alternatePath(int even, int tree) {
deba@326
  2408
      int odd;
deba@326
  2409
deba@326
  2410
      evenToMatched(even, tree);
deba@326
  2411
      (*_blossom_data)[even].status = MATCHED;
deba@326
  2412
deba@326
  2413
      while ((*_blossom_data)[even].pred != INVALID) {
deba@326
  2414
        odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred));
deba@326
  2415
        (*_blossom_data)[odd].status = MATCHED;
deba@326
  2416
        oddToMatched(odd);
deba@326
  2417
        (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred;
deba@326
  2418
deba@326
  2419
        even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred));
deba@326
  2420
        (*_blossom_data)[even].status = MATCHED;
deba@326
  2421
        evenToMatched(even, tree);
deba@326
  2422
        (*_blossom_data)[even].next =
deba@326
  2423
          _graph.oppositeArc((*_blossom_data)[odd].pred);
deba@326
  2424
      }
deba@326
  2425
deba@326
  2426
    }
deba@326
  2427
deba@326
  2428
    void destroyTree(int tree) {
deba@326
  2429
      for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) {
deba@326
  2430
        if ((*_blossom_data)[b].status == EVEN) {
deba@326
  2431
          (*_blossom_data)[b].status = MATCHED;
deba@326
  2432
          evenToMatched(b, tree);
deba@326
  2433
        } else if ((*_blossom_data)[b].status == ODD) {
deba@326
  2434
          (*_blossom_data)[b].status = MATCHED;
deba@326
  2435
          oddToMatched(b);
deba@326
  2436
        }
deba@326
  2437
      }
deba@326
  2438
      _tree_set->eraseClass(tree);
deba@326
  2439
    }
deba@326
  2440
deba@327
  2441
    void augmentOnEdge(const Edge& edge) {
deba@327
  2442
deba@327
  2443
      int left = _blossom_set->find(_graph.u(edge));
deba@327
  2444
      int right = _blossom_set->find(_graph.v(edge));
deba@326
  2445
deba@326
  2446
      int left_tree = _tree_set->find(left);
deba@326
  2447
      alternatePath(left, left_tree);
deba@326
  2448
      destroyTree(left_tree);
deba@326
  2449
deba@326
  2450
      int right_tree = _tree_set->find(right);
deba@326
  2451
      alternatePath(right, right_tree);
deba@326
  2452
      destroyTree(right_tree);
deba@326
  2453
deba@327
  2454
      (*_blossom_data)[left].next = _graph.direct(edge, true);
deba@327
  2455
      (*_blossom_data)[right].next = _graph.direct(edge, false);
deba@326
  2456
    }
deba@326
  2457
deba@326
  2458
    void extendOnArc(const Arc& arc) {
deba@326
  2459
      int base = _blossom_set->find(_graph.target(arc));
deba@326
  2460
      int tree = _tree_set->find(base);
deba@326
  2461
deba@326
  2462
      int odd = _blossom_set->find(_graph.source(arc));
deba@326
  2463
      _tree_set->insert(odd, tree);
deba@326
  2464
      (*_blossom_data)[odd].status = ODD;
deba@326
  2465
      matchedToOdd(odd);
deba@326
  2466
      (*_blossom_data)[odd].pred = arc;
deba@326
  2467
deba@326
  2468
      int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next));
deba@326
  2469
      (*_blossom_data)[even].pred = (*_blossom_data)[even].next;
deba@326
  2470
      _tree_set->insert(even, tree);
deba@326
  2471
      (*_blossom_data)[even].status = EVEN;
deba@326
  2472
      matchedToEven(even, tree);
deba@326
  2473
    }
deba@326
  2474
deba@327
  2475
    void shrinkOnEdge(const Edge& edge, int tree) {
deba@326
  2476
      int nca = -1;
deba@326
  2477
      std::vector<int> left_path, right_path;
deba@326
  2478
deba@326
  2479
      {
deba@326
  2480
        std::set<int> left_set, right_set;
deba@326
  2481
        int left = _blossom_set->find(_graph.u(edge));
deba@326
  2482
        left_path.push_back(left);
deba@326
  2483
        left_set.insert(left);
deba@326
  2484
deba@326
  2485
        int right = _blossom_set->find(_graph.v(edge));
deba@326
  2486
        right_path.push_back(right);
deba@326
  2487
        right_set.insert(right);
deba@326
  2488
deba@326
  2489
        while (true) {
deba@326
  2490
deba@326
  2491
          if ((*_blossom_data)[left].pred == INVALID) break;
deba@326
  2492
deba@326
  2493
          left =
deba@326
  2494
            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
deba@326
  2495
          left_path.push_back(left);
deba@326
  2496
          left =
deba@326
  2497
            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
deba@326
  2498
          left_path.push_back(left);
deba@326
  2499
deba@326
  2500
          left_set.insert(left);
deba@326
  2501
deba@326
  2502
          if (right_set.find(left) != right_set.end()) {
deba@326
  2503
            nca = left;
deba@326
  2504
            break;
deba@326
  2505
          }
deba@326
  2506
deba@326
  2507
          if ((*_blossom_data)[right].pred == INVALID) break;
deba@326
  2508
deba@326
  2509
          right =
deba@326
  2510
            _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
deba@326
  2511
          right_path.push_back(right);
deba@326
  2512
          right =
deba@326
  2513
            _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
deba@326
  2514
          right_path.push_back(right);
deba@326
  2515
deba@326
  2516
          right_set.insert(right);
deba@326
  2517
deba@326
  2518
          if (left_set.find(right) != left_set.end()) {
deba@326
  2519
            nca = right;
deba@326
  2520
            break;
deba@326
  2521
          }
deba@326
  2522
deba@326
  2523
        }
deba@326
  2524
deba@326
  2525
        if (nca == -1) {
deba@326
  2526
          if ((*_blossom_data)[left].pred == INVALID) {
deba@326
  2527
            nca = right;
deba@326
  2528
            while (left_set.find(nca) == left_set.end()) {
deba@326
  2529
              nca =
deba@326
  2530
                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
deba@326
  2531
              right_path.push_back(nca);
deba@326
  2532
              nca =
deba@326
  2533
                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
deba@326
  2534
              right_path.push_back(nca);
deba@326
  2535
            }
deba@326
  2536
          } else {
deba@326
  2537
            nca = left;
deba@326
  2538
            while (right_set.find(nca) == right_set.end()) {
deba@326
  2539
              nca =
deba@326
  2540
                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
deba@326
  2541
              left_path.push_back(nca);
deba@326
  2542
              nca =
deba@326
  2543
                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
deba@326
  2544
              left_path.push_back(nca);
deba@326
  2545
            }
deba@326
  2546
          }
deba@326
  2547
        }
deba@326
  2548
      }
deba@326
  2549
deba@326
  2550
      std::vector<int> subblossoms;
deba@326
  2551
      Arc prev;
deba@326
  2552
deba@326
  2553
      prev = _graph.direct(edge, true);
deba@326
  2554
      for (int i = 0; left_path[i] != nca; i += 2) {
deba@326
  2555
        subblossoms.push_back(left_path[i]);
deba@326
  2556
        (*_blossom_data)[left_path[i]].next = prev;
deba@326
  2557
        _tree_set->erase(left_path[i]);
deba@326
  2558
deba@326
  2559
        subblossoms.push_back(left_path[i + 1]);
deba@326
  2560
        (*_blossom_data)[left_path[i + 1]].status = EVEN;
deba@326
  2561
        oddToEven(left_path[i + 1], tree);
deba@326
  2562
        _tree_set->erase(left_path[i + 1]);
deba@326
  2563
        prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred);
deba@326
  2564
      }
deba@326
  2565
deba@326
  2566
      int k = 0;
deba@326
  2567
      while (right_path[k] != nca) ++k;
deba@326
  2568
deba@326
  2569
      subblossoms.push_back(nca);
deba@326
  2570
      (*_blossom_data)[nca].next = prev;
deba@326
  2571
deba@326
  2572
      for (int i = k - 2; i >= 0; i -= 2) {
deba@326
  2573
        subblossoms.push_back(right_path[i + 1]);
deba@326
  2574
        (*_blossom_data)[right_path[i + 1]].status = EVEN;
deba@326
  2575
        oddToEven(right_path[i + 1], tree);
deba@326
  2576
        _tree_set->erase(right_path[i + 1]);
deba@326
  2577
deba@326
  2578
        (*_blossom_data)[right_path[i + 1]].next =
deba@326
  2579
          (*_blossom_data)[right_path[i + 1]].pred;
deba@326
  2580
deba@326
  2581
        subblossoms.push_back(right_path[i]);
deba@326
  2582
        _tree_set->erase(right_path[i]);
deba@326
  2583
      }
deba@326
  2584
deba@326
  2585
      int surface =
deba@326
  2586
        _blossom_set->join(subblossoms.begin(), subblossoms.end());
deba@326
  2587
deba@326
  2588
      for (int i = 0; i < int(subblossoms.size()); ++i) {
deba@326
  2589
        if (!_blossom_set->trivial(subblossoms[i])) {
deba@326
  2590
          (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum;
deba@326
  2591
        }
deba@326
  2592
        (*_blossom_data)[subblossoms[i]].status = MATCHED;
deba@326
  2593
      }
deba@326
  2594
deba@326
  2595
      (*_blossom_data)[surface].pot = -2 * _delta_sum;
deba@326
  2596
      (*_blossom_data)[surface].offset = 0;
deba@326
  2597
      (*_blossom_data)[surface].status = EVEN;
deba@326
  2598
      (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred;
deba@326
  2599
      (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred;
deba@326
  2600
deba@326
  2601
      _tree_set->insert(surface, tree);
deba@326
  2602
      _tree_set->erase(nca);
deba@326
  2603
    }
deba@326
  2604
deba@326
  2605
    void splitBlossom(int blossom) {
deba@326
  2606
      Arc next = (*_blossom_data)[blossom].next;
deba@326
  2607
      Arc pred = (*_blossom_data)[blossom].pred;
deba@326
  2608
deba@326
  2609
      int tree = _tree_set->find(blossom);
deba@326
  2610
deba@326
  2611
      (*_blossom_data)[blossom].status = MATCHED;
deba@326
  2612
      oddToMatched(blossom);
deba@326
  2613
      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
deba@326
  2614
        _delta2->erase(blossom);
deba@326
  2615
      }
deba@326
  2616
deba@326
  2617
      std::vector<int> subblossoms;
deba@326
  2618
      _blossom_set->split(blossom, std::back_inserter(subblossoms));
deba@326
  2619
deba@326
  2620
      Value offset = (*_blossom_data)[blossom].offset;
deba@326
  2621
      int b = _blossom_set->find(_graph.source(pred));
deba@326
  2622
      int d = _blossom_set->find(_graph.source(next));
deba@326
  2623
deba@326
  2624
      int ib = -1, id = -1;
deba@326
  2625
      for (int i = 0; i < int(subblossoms.size()); ++i) {
deba@326
  2626
        if (subblossoms[i] == b) ib = i;
deba@326
  2627
        if (subblossoms[i] == d) id = i;
deba@326
  2628
deba@326
  2629
        (*_blossom_data)[subblossoms[i]].offset = offset;
deba@326
  2630
        if (!_blossom_set->trivial(subblossoms[i])) {
deba@326
  2631
          (*_blossom_data)[subblossoms[i]].pot -= 2 * offset;
deba@326
  2632
        }
deba@326
  2633
        if (_blossom_set->classPrio(subblossoms[i]) !=
deba@326
  2634
            std::numeric_limits<Value>::max()) {
deba@326
  2635
          _delta2->push(subblossoms[i],
deba@326
  2636
                        _blossom_set->classPrio(subblossoms[i]) -
deba@326
  2637
                        (*_blossom_data)[subblossoms[i]].offset);
deba@326
  2638
        }
deba@326
  2639
      }
deba@326
  2640
deba@326
  2641
      if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) {
deba@326
  2642
        for (int i = (id + 1) % subblossoms.size();
deba@326
  2643
             i != ib; i = (i + 2) % subblossoms.size()) {
deba@326
  2644
          int sb = subblossoms[i];
deba@326
  2645
          int tb = subblossoms[(i + 1) % subblossoms.size()];
deba@326
  2646
          (*_blossom_data)[sb].next =
deba@326
  2647
            _graph.oppositeArc((*_blossom_data)[tb].next);
deba@326
  2648
        }
deba@326
  2649
deba@326
  2650
        for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
deba@326
  2651
          int sb = subblossoms[i];
deba@326
  2652
          int tb = subblossoms[(i + 1) % subblossoms.size()];
deba@326
  2653
          int ub = subblossoms[(i + 2) % subblossoms.size()];
deba@326
  2654
deba@326
  2655
          (*_blossom_data)[sb].status = ODD;
deba@326
  2656
          matchedToOdd(sb);
deba@326
  2657
          _tree_set->insert(sb, tree);
deba@326
  2658
          (*_blossom_data)[sb].pred = pred;
deba@326
  2659
          (*_blossom_data)[sb].next =
deba@326
  2660
                           _graph.oppositeArc((*_blossom_data)[tb].next);
deba@326
  2661
deba@326
  2662
          pred = (*_blossom_data)[ub].next;
deba@326
  2663
deba@326
  2664
          (*_blossom_data)[tb].status = EVEN;
deba@326
  2665
          matchedToEven(tb, tree);
deba@326
  2666
          _tree_set->insert(tb, tree);
deba@326
  2667
          (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next;
deba@326
  2668
        }
deba@326
  2669
deba@326
  2670
        (*_blossom_data)[subblossoms[id]].status = ODD;
deba@326
  2671
        matchedToOdd(subblossoms[id]);
deba@326
  2672
        _tree_set->insert(subblossoms[id], tree);
deba@326
  2673
        (*_blossom_data)[subblossoms[id]].next = next;
deba@326
  2674
        (*_blossom_data)[subblossoms[id]].pred = pred;
deba@326
  2675
deba@326
  2676
      } else {
deba@326
  2677
deba@326
  2678
        for (int i = (ib + 1) % subblossoms.size();
deba@326
  2679
             i != id; i = (i + 2) % subblossoms.size()) {
deba@326
  2680
          int sb = subblossoms[i];
deba@326
  2681
          int tb = subblossoms[(i + 1) % subblossoms.size()];
deba@326
  2682
          (*_blossom_data)[sb].next =
deba@326
  2683
            _graph.oppositeArc((*_blossom_data)[tb].next);
deba@326
  2684
        }
deba@326
  2685
deba@326
  2686
        for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) {
deba@326
  2687
          int sb = subblossoms[i];
deba@326
  2688
          int tb = subblossoms[(i + 1) % subblossoms.size()];
deba@326
  2689
          int ub = subblossoms[(i + 2) % subblossoms.size()];
deba@326
  2690
deba@326
  2691
          (*_blossom_data)[sb].status = ODD;
deba@326
  2692
          matchedToOdd(sb);
deba@326
  2693
          _tree_set->insert(sb, tree);
deba@326
  2694
          (*_blossom_data)[sb].next = next;
deba@326
  2695
          (*_blossom_data)[sb].pred =
deba@326
  2696
            _graph.oppositeArc((*_blossom_data)[tb].next);
deba@326
  2697
deba@326
  2698
          (*_blossom_data)[tb].status = EVEN;
deba@326
  2699
          matchedToEven(tb, tree);
deba@326
  2700
          _tree_set->insert(tb, tree);
deba@326
  2701
          (*_blossom_data)[tb].pred =
deba@326
  2702
            (*_blossom_data)[tb].next =
deba@326
  2703
            _graph.oppositeArc((*_blossom_data)[ub].next);
deba@326
  2704
          next = (*_blossom_data)[ub].next;
deba@326
  2705
        }
deba@326
  2706
deba@326
  2707
        (*_blossom_data)[subblossoms[ib]].status = ODD;
deba@326
  2708
        matchedToOdd(subblossoms[ib]);
deba@326
  2709
        _tree_set->insert(subblossoms[ib], tree);
deba@326
  2710
        (*_blossom_data)[subblossoms[ib]].next = next;
deba@326
  2711
        (*_blossom_data)[subblossoms[ib]].pred = pred;
deba@326
  2712
      }
deba@326
  2713
      _tree_set->erase(blossom);
deba@326
  2714
    }
deba@326
  2715
deba@326
  2716
    void extractBlossom(int blossom, const Node& base, const Arc& matching) {
deba@326
  2717
      if (_blossom_set->trivial(blossom)) {
deba@326
  2718
        int bi = (*_node_index)[base];
deba@326
  2719
        Value pot = (*_node_data)[bi].pot;
deba@326
  2720
kpeter@581
  2721
        (*_matching)[base] = matching;
deba@326
  2722
        _blossom_node_list.push_back(base);
kpeter@581
  2723
        (*_node_potential)[base] = pot;
deba@326
  2724
      } else {
deba@326
  2725
deba@326
  2726
        Value pot = (*_blossom_data)[blossom].pot;
deba@326
  2727
        int bn = _blossom_node_list.size();
deba@326
  2728
deba@326
  2729
        std::vector<int> subblossoms;
deba@326
  2730
        _blossom_set->split(blossom, std::back_inserter(subblossoms));
deba@326
  2731
        int b = _blossom_set->find(base);
deba@326
  2732
        int ib = -1;
deba@326
  2733
        for (int i = 0; i < int(subblossoms.size()); ++i) {
deba@326
  2734
          if (subblossoms[i] == b) { ib = i; break; }
deba@326
  2735
        }
deba@326
  2736
deba@326
  2737
        for (int i = 1; i < int(subblossoms.size()); i += 2) {
deba@326
  2738
          int sb = subblossoms[(ib + i) % subblossoms.size()];
deba@326
  2739
          int tb = subblossoms[(ib + i + 1) % subblossoms.size()];
deba@326
  2740
deba@326
  2741
          Arc m = (*_blossom_data)[tb].next;
deba@326
  2742
          extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m));
deba@326
  2743
          extractBlossom(tb, _graph.source(m), m);
deba@326
  2744
        }
deba@326
  2745
        extractBlossom(subblossoms[ib], base, matching);
deba@326
  2746
deba@326
  2747
        int en = _blossom_node_list.size();
deba@326
  2748
deba@326
  2749
        _blossom_potential.push_back(BlossomVariable(bn, en, pot));
deba@326
  2750
      }
deba@326
  2751
    }
deba@326
  2752
deba@326
  2753
    void extractMatching() {
deba@326
  2754
      std::vector<int> blossoms;
deba@326
  2755
      for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
deba@326
  2756
        blossoms.push_back(c);
deba@326
  2757
      }
deba@326
  2758
deba@326
  2759
      for (int i = 0; i < int(blossoms.size()); ++i) {
deba@326
  2760
deba@326
  2761
        Value offset = (*_blossom_data)[blossoms[i]].offset;
deba@326
  2762
        (*_blossom_data)[blossoms[i]].pot += 2 * offset;
deba@326
  2763
        for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]);
deba@326
  2764
             n != INVALID; ++n) {
deba@326
  2765
          (*_node_data)[(*_node_index)[n]].pot -= offset;
deba@326
  2766
        }
deba@326
  2767
deba@326
  2768
        Arc matching = (*_blossom_data)[blossoms[i]].next;
deba@326
  2769
        Node base = _graph.source(matching);
deba@326
  2770
        extractBlossom(blossoms[i], base, matching);
deba@326
  2771
      }
deba@326
  2772
    }
deba@326
  2773
deba@326
  2774
  public:
deba@326
  2775
deba@326
  2776
    /// \brief Constructor
deba@326
  2777
    ///
deba@326
  2778
    /// Constructor.
deba@326
  2779
    MaxWeightedPerfectMatching(const Graph& graph, const WeightMap& weight)
deba@326
  2780
      : _graph(graph), _weight(weight), _matching(0),
deba@326
  2781
        _node_potential(0), _blossom_potential(), _blossom_node_list(),
deba@326
  2782
        _node_num(0), _blossom_num(0),
deba@326
  2783
deba@326
  2784
        _blossom_index(0), _blossom_set(0), _blossom_data(0),
deba@326
  2785
        _node_index(0), _node_heap_index(0), _node_data(0),
deba@326
  2786
        _tree_set_index(0), _tree_set(0),
deba@326
  2787
deba@326
  2788
        _delta2_index(0), _delta2(0),
deba@326
  2789
        _delta3_index(0), _delta3(0),
deba@326
  2790
        _delta4_index(0), _delta4(0),
deba@326
  2791
deba@326
  2792
        _delta_sum() {}
deba@326
  2793
deba@326
  2794
    ~MaxWeightedPerfectMatching() {
deba@326
  2795
      destroyStructures();
deba@326
  2796
    }
deba@326
  2797
kpeter@590
  2798
    /// \name Execution Control
alpar@330
  2799
    /// The simplest way to execute the algorithm is to use the
kpeter@590
  2800
    /// \ref run() member function.
deba@326
  2801
deba@326
  2802
    ///@{
deba@326
  2803
deba@326
  2804
    /// \brief Initialize the algorithm
deba@326
  2805
    ///
kpeter@590
  2806
    /// This function initializes the algorithm.
deba@326
  2807
    void init() {
deba@326
  2808
      createStructures();
deba@326
  2809
deba@326
  2810
      for (ArcIt e(_graph); e != INVALID; ++e) {
kpeter@581
  2811
        (*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP;
deba@326
  2812
      }
deba@326
  2813
      for (EdgeIt e(_graph); e != INVALID; ++e) {
kpeter@581
  2814
        (*_delta3_index)[e] = _delta3->PRE_HEAP;
deba@326
  2815
      }
deba@326
  2816
      for (int i = 0; i < _blossom_num; ++i) {
kpeter@581
  2817
        (*_delta2_index)[i] = _delta2->PRE_HEAP;
kpeter@581
  2818
        (*_delta4_index)[i] = _delta4->PRE_HEAP;
deba@326
  2819
      }
deba@326
  2820
deba@326
  2821
      int index = 0;
deba@326
  2822
      for (NodeIt n(_graph); n != INVALID; ++n) {
deba@326
  2823
        Value max = - std::numeric_limits<Value>::max();
deba@326
  2824
        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
deba@326
  2825
          if (_graph.target(e) == n) continue;
deba@326
  2826
          if ((dualScale * _weight[e]) / 2 > max) {
deba@326
  2827
            max = (dualScale * _weight[e]) / 2;
deba@326
  2828
          }
deba@326
  2829
        }
kpeter@581
  2830
        (*_node_index)[n] = index;
deba@326
  2831
        (*_node_data)[index].pot = max;
deba@326
  2832
        int blossom =
deba@326
  2833
          _blossom_set->insert(n, std::numeric_limits<Value>::max());
deba@326
  2834
deba@326
  2835
        _tree_set->insert(blossom);
deba@326
  2836
deba@326
  2837
        (*_blossom_data)[blossom].status = EVEN;
deba@326
  2838
        (*_blossom_data)[blossom].pred = INVALID;
deba@326
  2839
        (*_blossom_data)[blossom].next = INVALID;
deba@326
  2840
        (*_blossom_data)[blossom].pot = 0;
deba@326
  2841
        (*_blossom_data)[blossom].offset = 0;
deba@326
  2842
        ++index;
deba@326
  2843
      }
deba@326
  2844
      for (EdgeIt e(_graph); e != INVALID; ++e) {
deba@326
  2845
        int si = (*_node_index)[_graph.u(e)];
deba@326
  2846
        int ti = (*_node_index)[_graph.v(e)];
deba@326
  2847
        if (_graph.u(e) != _graph.v(e)) {
deba@326
  2848
          _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
deba@326
  2849
                            dualScale * _weight[e]) / 2);
deba@326
  2850
        }
deba@326
  2851
      }
deba@326
  2852
    }
deba@326
  2853
kpeter@590
  2854
    /// \brief Start the algorithm
deba@326
  2855
    ///
kpeter@590
  2856
    /// This function starts the algorithm.
kpeter@590
  2857
    ///
kpeter@590
  2858
    /// \pre \ref init() must be called before using this function.
deba@326
  2859
    bool start() {
deba@326
  2860
      enum OpType {
deba@326
  2861
        D2, D3, D4
deba@326
  2862
      };
deba@326
  2863
deba@326
  2864
      int unmatched = _node_num;
deba@326
  2865
      while (unmatched > 0) {
deba@326
  2866
        Value d2 = !_delta2->empty() ?
deba@326
  2867
          _delta2->prio() : std::numeric_limits<Value>::max();
deba@326
  2868
deba@326
  2869
        Value d3 = !_delta3->empty() ?
deba@326
  2870
          _delta3->prio() : std::numeric_limits<Value>::max();
deba@326
  2871
deba@326
  2872
        Value d4 = !_delta4->empty() ?
deba@326
  2873
          _delta4->prio() : std::numeric_limits<Value>::max();
deba@326
  2874
deba@868
  2875
        _delta_sum = d3; OpType ot = D3;
deba@868
  2876
        if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
deba@326
  2877
        if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
deba@326
  2878
deba@326
  2879
        if (_delta_sum == std::numeric_limits<Value>::max()) {
deba@326
  2880
          return false;
deba@326
  2881
        }
deba@326
  2882
deba@326
  2883
        switch (ot) {
deba@326
  2884
        case D2:
deba@326
  2885
          {
deba@326
  2886
            int blossom = _delta2->top();
deba@326
  2887
            Node n = _blossom_set->classTop(blossom);
deba@326
  2888
            Arc e = (*_node_data)[(*_node_index)[n]].heap.top();
deba@326
  2889
            extendOnArc(e);
deba@326
  2890
          }
deba@326
  2891
          break;
deba@326
  2892
        case D3:
deba@326
  2893
          {
deba@326
  2894
            Edge e = _delta3->top();
deba@326
  2895
deba@326
  2896
            int left_blossom = _blossom_set->find(_graph.u(e));
deba@326
  2897
            int right_blossom = _blossom_set->find(_graph.v(e));
deba@326
  2898
deba@326
  2899
            if (left_blossom == right_blossom) {
deba@326
  2900
              _delta3->pop();
deba@326
  2901
            } else {
deba@326
  2902
              int left_tree = _tree_set->find(left_blossom);
deba@326
  2903
              int right_tree = _tree_set->find(right_blossom);
deba@326
  2904
deba@326
  2905
              if (left_tree == right_tree) {
deba@327
  2906
                shrinkOnEdge(e, left_tree);
deba@326
  2907
              } else {
deba@327
  2908
                augmentOnEdge(e);
deba@326
  2909
                unmatched -= 2;
deba@326
  2910
              }
deba@326
  2911
            }
deba@326
  2912
          } break;
deba@326
  2913
        case D4:
deba@326
  2914
          splitBlossom(_delta4->top());
deba@326
  2915
          break;
deba@326
  2916
        }
deba@326
  2917
      }
deba@326
  2918
      extractMatching();
deba@326
  2919
      return true;
deba@326
  2920
    }
deba@326
  2921
kpeter@590
  2922
    /// \brief Run the algorithm.
deba@326
  2923
    ///
kpeter@590
  2924
    /// This method runs the \c %MaxWeightedPerfectMatching algorithm.
deba@326
  2925
    ///
kpeter@590
  2926
    /// \note mwpm.run() is just a shortcut of the following code.
deba@326
  2927
    /// \code
kpeter@590
  2928
    ///   mwpm.init();
kpeter@590
  2929
    ///   mwpm.start();
deba@326
  2930
    /// \endcode
deba@326
  2931
    bool run() {
deba@326
  2932
      init();
deba@326
  2933
      return start();
deba@326
  2934
    }
deba@326
  2935
deba@326
  2936
    /// @}
deba@326
  2937
kpeter@590
  2938
    /// \name Primal Solution
deba@868
  2939
    /// Functions to get the primal solution, i.e. the maximum weighted
kpeter@590
  2940
    /// perfect matching.\n
kpeter@590
  2941
    /// Either \ref run() or \ref start() function should be called before
kpeter@590
  2942
    /// using them.
deba@326
  2943
deba@326
  2944
    /// @{
deba@326
  2945
kpeter@590
  2946
    /// \brief Return the weight of the matching.
deba@326
  2947
    ///
kpeter@590
  2948
    /// This function returns the weight of the found matching.
kpeter@590
  2949
    ///
kpeter@590
  2950
    /// \pre Either run() or start() must be called before using this function.
kpeter@593
  2951
    Value matchingWeight() const {
deba@326
  2952
      Value sum = 0;
deba@326
  2953
      for (NodeIt n(_graph); n != INVALID; ++n) {
deba@326
  2954
        if ((*_matching)[n] != INVALID) {
deba@326
  2955
          sum += _weight[(*_matching)[n]];
deba@326
  2956
        }
deba@326
  2957
      }
deba@868
  2958
      return sum / 2;
deba@326
  2959
    }
deba@326
  2960
kpeter@590
  2961
    /// \brief Return \c true if the given edge is in the matching.
deba@326
  2962
    ///
deba@868
  2963
    /// This function returns \c true if the given edge is in the found
kpeter@590
  2964
    /// matching.
kpeter@590
  2965
    ///
kpeter@590
  2966
    /// \pre Either run() or start() must be called before using this function.
deba@327
  2967
    bool matching(const Edge& edge) const {
deba@327
  2968
      return static_cast<const Edge&>((*_matching)[_graph.u(edge)]) == edge;
deba@326
  2969
    }
deba@326
  2970
kpeter@590
  2971
    /// \brief Return the matching arc (or edge) incident to the given node.
deba@326
  2972
    ///
kpeter@590
  2973
    /// This function returns the matching arc (or edge) incident to the
deba@868
  2974
    /// given node in the found matching or \c INVALID if the node is
kpeter@590
  2975
    /// not covered by the matching.
kpeter@590
  2976
    ///
kpeter@590
  2977
    /// \pre Either run() or start() must be called before using this function.
deba@326
  2978
    Arc matching(const Node& node) const {
deba@326
  2979
      return (*_matching)[node];
deba@326
  2980
    }
deba@326
  2981
kpeter@593
  2982
    /// \brief Return a const reference to the matching map.
kpeter@593
  2983
    ///
kpeter@593
  2984
    /// This function returns a const reference to a node map that stores
kpeter@593
  2985
    /// the matching arc (or edge) incident to each node.
kpeter@593
  2986
    const MatchingMap& matchingMap() const {
kpeter@593
  2987
      return *_matching;
kpeter@593
  2988
    }
kpeter@593
  2989
kpeter@590
  2990
    /// \brief Return the mate of the given node.
deba@326
  2991
    ///
deba@868
  2992
    /// This function returns the mate of the given node in the found
kpeter@590
  2993
    /// matching or \c INVALID if the node is not covered by the matching.
kpeter@590
  2994
    ///
kpeter@590
  2995
    /// \pre Either run() or start() must be called before using this function.
deba@326
  2996
    Node mate(const Node& node) const {
deba@326
  2997
      return _graph.target((*_matching)[node]);
deba@326
  2998
    }
deba@326
  2999
deba@326
  3000
    /// @}
deba@326
  3001
kpeter@590
  3002
    /// \name Dual Solution
kpeter@590
  3003
    /// Functions to get the dual solution.\n
kpeter@590
  3004
    /// Either \ref run() or \ref start() function should be called before
kpeter@590
  3005
    /// using them.
deba@326
  3006
deba@326
  3007
    /// @{
deba@326
  3008
kpeter@590
  3009
    /// \brief Return the value of the dual solution.
deba@326
  3010
    ///
deba@868
  3011
    /// This function returns the value of the dual solution.
deba@868
  3012
    /// It should be equal to the primal value scaled by \ref dualScale
kpeter@590
  3013
    /// "dual scale".
kpeter@590
  3014
    ///
kpeter@590
  3015
    /// \pre Either run() or start() must be called before using this function.
deba@326
  3016
    Value dualValue() const {
deba@326
  3017
      Value sum = 0;
deba@326
  3018
      for (NodeIt n(_graph); n != INVALID; ++n) {
deba@326
  3019
        sum += nodeValue(n);
deba@326
  3020
      }
deba@326
  3021
      for (int i = 0; i < blossomNum(); ++i) {
deba@326
  3022
        sum += blossomValue(i) * (blossomSize(i) / 2);
deba@326
  3023
      }
deba@326
  3024
      return sum;
deba@326
  3025
    }
deba@326
  3026
kpeter@590
  3027
    /// \brief Return the dual value (potential) of the given node.
deba@326
  3028
    ///
kpeter@590
  3029
    /// This function returns the dual value (potential) of the given node.
kpeter@590
  3030
    ///
kpeter@590
  3031
    /// \pre Either run() or start() must be called before using this function.
deba@326
  3032
    Value nodeValue(const Node& n) const {
deba@326
  3033
      return (*_node_potential)[n];
deba@326
  3034
    }
deba@326
  3035
kpeter@590
  3036
    /// \brief Return the number of the blossoms in the basis.
deba@326
  3037
    ///
kpeter@590
  3038
    /// This function returns the number of the blossoms in the basis.
kpeter@590
  3039
    ///
kpeter@590
  3040
    /// \pre Either run() or start() must be called before using this function.
deba@326
  3041
    /// \see BlossomIt
deba@326
  3042
    int blossomNum() const {
deba@326
  3043
      return _blossom_potential.size();
deba@326
  3044
    }
deba@326
  3045
kpeter@590
  3046
    /// \brief Return the number of the nodes in the given blossom.
deba@326
  3047
    ///
kpeter@590
  3048
    /// This function returns the number of the nodes in the given blossom.
kpeter@590
  3049
    ///
kpeter@590
  3050
    /// \pre Either run() or start() must be called before using this function.
kpeter@590
  3051
    /// \see BlossomIt
deba@326
  3052
    int blossomSize(int k) const {
deba@326
  3053
      return _blossom_potential[k].end - _blossom_potential[k].begin;
deba@326
  3054
    }
deba@326
  3055
kpeter@590
  3056
    /// \brief Return the dual value (ptential) of the given blossom.
deba@326
  3057
    ///
kpeter@590
  3058
    /// This function returns the dual value (ptential) of the given blossom.
kpeter@590
  3059
    ///
kpeter@590
  3060
    /// \pre Either run() or start() must be called before using this function.
deba@326
  3061
    Value blossomValue(int k) const {
deba@326
  3062
      return _blossom_potential[k].value;
deba@326
  3063
    }
deba@326
  3064
kpeter@590
  3065
    /// \brief Iterator for obtaining the nodes of a blossom.
deba@326
  3066
    ///
deba@868
  3067
    /// This class provides an iterator for obtaining the nodes of the
kpeter@590
  3068
    /// given blossom. It lists a subset of the nodes.
deba@868
  3069
    /// Before using this iterator, you must allocate a
kpeter@590
  3070
    /// MaxWeightedPerfectMatching class and execute it.
deba@326
  3071
    class BlossomIt {
deba@326
  3072
    public:
deba@326
  3073
deba@326
  3074
      /// \brief Constructor.
deba@326
  3075
      ///
kpeter@590
  3076
      /// Constructor to get the nodes of the given variable.
kpeter@590
  3077
      ///
deba@868
  3078
      /// \pre Either \ref MaxWeightedPerfectMatching::run() "algorithm.run()"
deba@868
  3079
      /// or \ref MaxWeightedPerfectMatching::start() "algorithm.start()"
kpeter@590
  3080
      /// must be called before initializing this iterator.
deba@326
  3081
      BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable)
deba@326
  3082
        : _algorithm(&algorithm)
deba@326
  3083
      {
deba@326
  3084
        _index = _algorithm->_blossom_potential[variable].begin;
deba@326
  3085
        _last = _algorithm->_blossom_potential[variable].end;
deba@326
  3086
      }
deba@326
  3087
kpeter@590
  3088
      /// \brief Conversion to \c Node.
deba@326
  3089
      ///
kpeter@590
  3090
      /// Conversion to \c Node.
deba@326
  3091
      operator Node() const {
deba@327
  3092
        return _algorithm->_blossom_node_list[_index];
deba@326
  3093
      }
deba@326
  3094
deba@326
  3095
      /// \brief Increment operator.
deba@326
  3096
      ///
deba@326
  3097
      /// Increment operator.
deba@326
  3098
      BlossomIt& operator++() {
deba@326
  3099
        ++_index;
deba@326
  3100
        return *this;
deba@326
  3101
      }
deba@326
  3102
deba@327
  3103
      /// \brief Validity checking
deba@327
  3104
      ///
kpeter@590
  3105
      /// This function checks whether the iterator is invalid.
deba@327
  3106
      bool operator==(Invalid) const { return _index == _last; }
deba@327
  3107
deba@327
  3108
      /// \brief Validity checking
deba@327
  3109
      ///
kpeter@590
  3110
      /// This function checks whether the iterator is valid.
deba@327
  3111
      bool operator!=(Invalid) const { return _index != _last; }
deba@326
  3112
deba@326
  3113
    private:
deba@326
  3114
      const MaxWeightedPerfectMatching* _algorithm;
deba@326
  3115
      int _last;
deba@326
  3116
      int _index;
deba@326
  3117
    };
deba@326
  3118
deba@326
  3119
    /// @}
deba@326
  3120
deba@326
  3121
  };
deba@326
  3122
deba@326
  3123
} //END OF NAMESPACE LEMON
deba@326
  3124
deba@868
  3125
#endif //LEMON_MATCHING_H