lemon/capacity_scaling.h
author Peter Kovacs <kpeter@inf.elte.hu>
Thu, 12 Nov 2009 23:45:15 +0100
changeset 811 fe80a8145653
parent 810 3b53491bf643
child 812 4b1b378823dc
permissions -rw-r--r--
Small implementation improvements in MCF algorithms (#180)

- Handle max() as infinite value (not only infinity()).
- Better GEQ handling in CapacityScaling.
- Skip the unnecessary saturating operations in the first phase in
CapacityScaling.
- Use vector<char> instead of vector<bool> and vector<int> if it is
possible and it proved to be usually faster.
kpeter@805
     1
/* -*- C++ -*-
kpeter@805
     2
 *
kpeter@805
     3
 * This file is a part of LEMON, a generic C++ optimization library
kpeter@805
     4
 *
kpeter@805
     5
 * Copyright (C) 2003-2008
kpeter@805
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
kpeter@805
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
kpeter@805
     8
 *
kpeter@805
     9
 * Permission to use, modify and distribute this software is granted
kpeter@805
    10
 * provided that this copyright notice appears in all copies. For
kpeter@805
    11
 * precise terms see the accompanying LICENSE file.
kpeter@805
    12
 *
kpeter@805
    13
 * This software is provided "AS IS" with no warranty of any kind,
kpeter@805
    14
 * express or implied, and with no claim as to its suitability for any
kpeter@805
    15
 * purpose.
kpeter@805
    16
 *
kpeter@805
    17
 */
kpeter@805
    18
kpeter@805
    19
#ifndef LEMON_CAPACITY_SCALING_H
kpeter@805
    20
#define LEMON_CAPACITY_SCALING_H
kpeter@805
    21
kpeter@806
    22
/// \ingroup min_cost_flow_algs
kpeter@805
    23
///
kpeter@805
    24
/// \file
kpeter@806
    25
/// \brief Capacity Scaling algorithm for finding a minimum cost flow.
kpeter@805
    26
kpeter@805
    27
#include <vector>
kpeter@806
    28
#include <limits>
kpeter@806
    29
#include <lemon/core.h>
kpeter@805
    30
#include <lemon/bin_heap.h>
kpeter@805
    31
kpeter@805
    32
namespace lemon {
kpeter@805
    33
kpeter@807
    34
  /// \brief Default traits class of CapacityScaling algorithm.
kpeter@807
    35
  ///
kpeter@807
    36
  /// Default traits class of CapacityScaling algorithm.
kpeter@807
    37
  /// \tparam GR Digraph type.
kpeter@807
    38
  /// \tparam V The value type used for flow amounts, capacity bounds
kpeter@807
    39
  /// and supply values. By default it is \c int.
kpeter@807
    40
  /// \tparam C The value type used for costs and potentials.
kpeter@807
    41
  /// By default it is the same as \c V.
kpeter@807
    42
  template <typename GR, typename V = int, typename C = V>
kpeter@807
    43
  struct CapacityScalingDefaultTraits
kpeter@807
    44
  {
kpeter@807
    45
    /// The type of the digraph
kpeter@807
    46
    typedef GR Digraph;
kpeter@807
    47
    /// The type of the flow amounts, capacity bounds and supply values
kpeter@807
    48
    typedef V Value;
kpeter@807
    49
    /// The type of the arc costs
kpeter@807
    50
    typedef C Cost;
kpeter@807
    51
kpeter@807
    52
    /// \brief The type of the heap used for internal Dijkstra computations.
kpeter@807
    53
    ///
kpeter@807
    54
    /// The type of the heap used for internal Dijkstra computations.
kpeter@807
    55
    /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
kpeter@807
    56
    /// its priority type must be \c Cost and its cross reference type
kpeter@807
    57
    /// must be \ref RangeMap "RangeMap<int>".
kpeter@807
    58
    typedef BinHeap<Cost, RangeMap<int> > Heap;
kpeter@807
    59
  };
kpeter@807
    60
kpeter@806
    61
  /// \addtogroup min_cost_flow_algs
kpeter@805
    62
  /// @{
kpeter@805
    63
kpeter@806
    64
  /// \brief Implementation of the Capacity Scaling algorithm for
kpeter@806
    65
  /// finding a \ref min_cost_flow "minimum cost flow".
kpeter@805
    66
  ///
kpeter@805
    67
  /// \ref CapacityScaling implements the capacity scaling version
kpeter@806
    68
  /// of the successive shortest path algorithm for finding a
kpeter@806
    69
  /// \ref min_cost_flow "minimum cost flow". It is an efficient dual
kpeter@806
    70
  /// solution method.
kpeter@805
    71
  ///
kpeter@806
    72
  /// Most of the parameters of the problem (except for the digraph)
kpeter@806
    73
  /// can be given using separate functions, and the algorithm can be
kpeter@806
    74
  /// executed using the \ref run() function. If some parameters are not
kpeter@806
    75
  /// specified, then default values will be used.
kpeter@805
    76
  ///
kpeter@806
    77
  /// \tparam GR The digraph type the algorithm runs on.
kpeter@806
    78
  /// \tparam V The value type used for flow amounts, capacity bounds
kpeter@806
    79
  /// and supply values in the algorithm. By default it is \c int.
kpeter@806
    80
  /// \tparam C The value type used for costs and potentials in the
kpeter@806
    81
  /// algorithm. By default it is the same as \c V.
kpeter@805
    82
  ///
kpeter@806
    83
  /// \warning Both value types must be signed and all input data must
kpeter@806
    84
  /// be integer.
kpeter@806
    85
  /// \warning This algorithm does not support negative costs for such
kpeter@806
    86
  /// arcs that have infinite upper bound.
kpeter@807
    87
#ifdef DOXYGEN
kpeter@807
    88
  template <typename GR, typename V, typename C, typename TR>
kpeter@807
    89
#else
kpeter@807
    90
  template < typename GR, typename V = int, typename C = V,
kpeter@807
    91
             typename TR = CapacityScalingDefaultTraits<GR, V, C> >
kpeter@807
    92
#endif
kpeter@805
    93
  class CapacityScaling
kpeter@805
    94
  {
kpeter@806
    95
  public:
kpeter@805
    96
kpeter@807
    97
    /// The type of the digraph
kpeter@807
    98
    typedef typename TR::Digraph Digraph;
kpeter@806
    99
    /// The type of the flow amounts, capacity bounds and supply values
kpeter@807
   100
    typedef typename TR::Value Value;
kpeter@806
   101
    /// The type of the arc costs
kpeter@807
   102
    typedef typename TR::Cost Cost;
kpeter@807
   103
kpeter@807
   104
    /// The type of the heap used for internal Dijkstra computations
kpeter@807
   105
    typedef typename TR::Heap Heap;
kpeter@807
   106
kpeter@807
   107
    /// The \ref CapacityScalingDefaultTraits "traits class" of the algorithm
kpeter@807
   108
    typedef TR Traits;
kpeter@805
   109
kpeter@805
   110
  public:
kpeter@805
   111
kpeter@806
   112
    /// \brief Problem type constants for the \c run() function.
kpeter@806
   113
    ///
kpeter@806
   114
    /// Enum type containing the problem type constants that can be
kpeter@806
   115
    /// returned by the \ref run() function of the algorithm.
kpeter@806
   116
    enum ProblemType {
kpeter@806
   117
      /// The problem has no feasible solution (flow).
kpeter@806
   118
      INFEASIBLE,
kpeter@806
   119
      /// The problem has optimal solution (i.e. it is feasible and
kpeter@806
   120
      /// bounded), and the algorithm has found optimal flow and node
kpeter@806
   121
      /// potentials (primal and dual solutions).
kpeter@806
   122
      OPTIMAL,
kpeter@806
   123
      /// The digraph contains an arc of negative cost and infinite
kpeter@806
   124
      /// upper bound. It means that the objective function is unbounded
kpeter@806
   125
      /// on that arc, however note that it could actually be bounded
kpeter@806
   126
      /// over the feasible flows, but this algroithm cannot handle
kpeter@806
   127
      /// these cases.
kpeter@806
   128
      UNBOUNDED
kpeter@806
   129
    };
kpeter@806
   130
  
kpeter@806
   131
  private:
kpeter@806
   132
kpeter@806
   133
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
kpeter@806
   134
kpeter@806
   135
    typedef std::vector<int> IntVector;
kpeter@811
   136
    typedef std::vector<char> BoolVector;
kpeter@806
   137
    typedef std::vector<Value> ValueVector;
kpeter@806
   138
    typedef std::vector<Cost> CostVector;
kpeter@805
   139
kpeter@805
   140
  private:
kpeter@805
   141
kpeter@806
   142
    // Data related to the underlying digraph
kpeter@806
   143
    const GR &_graph;
kpeter@806
   144
    int _node_num;
kpeter@806
   145
    int _arc_num;
kpeter@806
   146
    int _res_arc_num;
kpeter@806
   147
    int _root;
kpeter@806
   148
kpeter@806
   149
    // Parameters of the problem
kpeter@806
   150
    bool _have_lower;
kpeter@806
   151
    Value _sum_supply;
kpeter@806
   152
kpeter@806
   153
    // Data structures for storing the digraph
kpeter@806
   154
    IntNodeMap _node_id;
kpeter@806
   155
    IntArcMap _arc_idf;
kpeter@806
   156
    IntArcMap _arc_idb;
kpeter@806
   157
    IntVector _first_out;
kpeter@806
   158
    BoolVector _forward;
kpeter@806
   159
    IntVector _source;
kpeter@806
   160
    IntVector _target;
kpeter@806
   161
    IntVector _reverse;
kpeter@806
   162
kpeter@806
   163
    // Node and arc data
kpeter@806
   164
    ValueVector _lower;
kpeter@806
   165
    ValueVector _upper;
kpeter@806
   166
    CostVector _cost;
kpeter@806
   167
    ValueVector _supply;
kpeter@806
   168
kpeter@806
   169
    ValueVector _res_cap;
kpeter@806
   170
    CostVector _pi;
kpeter@806
   171
    ValueVector _excess;
kpeter@806
   172
    IntVector _excess_nodes;
kpeter@806
   173
    IntVector _deficit_nodes;
kpeter@806
   174
kpeter@806
   175
    Value _delta;
kpeter@810
   176
    int _factor;
kpeter@806
   177
    IntVector _pred;
kpeter@806
   178
kpeter@806
   179
  public:
kpeter@806
   180
  
kpeter@806
   181
    /// \brief Constant for infinite upper bounds (capacities).
kpeter@805
   182
    ///
kpeter@806
   183
    /// Constant for infinite upper bounds (capacities).
kpeter@806
   184
    /// It is \c std::numeric_limits<Value>::infinity() if available,
kpeter@806
   185
    /// \c std::numeric_limits<Value>::max() otherwise.
kpeter@806
   186
    const Value INF;
kpeter@806
   187
kpeter@806
   188
  private:
kpeter@806
   189
kpeter@806
   190
    // Special implementation of the Dijkstra algorithm for finding
kpeter@806
   191
    // shortest paths in the residual network of the digraph with
kpeter@806
   192
    // respect to the reduced arc costs and modifying the node
kpeter@806
   193
    // potentials according to the found distance labels.
kpeter@805
   194
    class ResidualDijkstra
kpeter@805
   195
    {
kpeter@805
   196
    private:
kpeter@805
   197
kpeter@806
   198
      int _node_num;
kpeter@811
   199
      bool _geq;
kpeter@806
   200
      const IntVector &_first_out;
kpeter@806
   201
      const IntVector &_target;
kpeter@806
   202
      const CostVector &_cost;
kpeter@806
   203
      const ValueVector &_res_cap;
kpeter@806
   204
      const ValueVector &_excess;
kpeter@806
   205
      CostVector &_pi;
kpeter@806
   206
      IntVector &_pred;
kpeter@806
   207
      
kpeter@806
   208
      IntVector _proc_nodes;
kpeter@806
   209
      CostVector _dist;
kpeter@806
   210
      
kpeter@805
   211
    public:
kpeter@805
   212
kpeter@806
   213
      ResidualDijkstra(CapacityScaling& cs) :
kpeter@811
   214
        _node_num(cs._node_num), _geq(cs._sum_supply < 0),
kpeter@811
   215
        _first_out(cs._first_out), _target(cs._target), _cost(cs._cost),
kpeter@811
   216
        _res_cap(cs._res_cap), _excess(cs._excess), _pi(cs._pi),
kpeter@811
   217
        _pred(cs._pred), _dist(cs._node_num)
kpeter@805
   218
      {}
kpeter@805
   219
kpeter@806
   220
      int run(int s, Value delta = 1) {
kpeter@807
   221
        RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP);
kpeter@805
   222
        Heap heap(heap_cross_ref);
kpeter@805
   223
        heap.push(s, 0);
kpeter@806
   224
        _pred[s] = -1;
kpeter@805
   225
        _proc_nodes.clear();
kpeter@805
   226
kpeter@806
   227
        // Process nodes
kpeter@805
   228
        while (!heap.empty() && _excess[heap.top()] > -delta) {
kpeter@806
   229
          int u = heap.top(), v;
kpeter@806
   230
          Cost d = heap.prio() + _pi[u], dn;
kpeter@805
   231
          _dist[u] = heap.prio();
kpeter@806
   232
          _proc_nodes.push_back(u);
kpeter@805
   233
          heap.pop();
kpeter@805
   234
kpeter@806
   235
          // Traverse outgoing residual arcs
kpeter@811
   236
          int last_out = _geq ? _first_out[u+1] : _first_out[u+1] - 1;
kpeter@811
   237
          for (int a = _first_out[u]; a != last_out; ++a) {
kpeter@806
   238
            if (_res_cap[a] < delta) continue;
kpeter@806
   239
            v = _target[a];
kpeter@806
   240
            switch (heap.state(v)) {
kpeter@805
   241
              case Heap::PRE_HEAP:
kpeter@806
   242
                heap.push(v, d + _cost[a] - _pi[v]);
kpeter@806
   243
                _pred[v] = a;
kpeter@805
   244
                break;
kpeter@805
   245
              case Heap::IN_HEAP:
kpeter@806
   246
                dn = d + _cost[a] - _pi[v];
kpeter@806
   247
                if (dn < heap[v]) {
kpeter@806
   248
                  heap.decrease(v, dn);
kpeter@806
   249
                  _pred[v] = a;
kpeter@805
   250
                }
kpeter@805
   251
                break;
kpeter@805
   252
              case Heap::POST_HEAP:
kpeter@805
   253
                break;
kpeter@805
   254
            }
kpeter@805
   255
          }
kpeter@805
   256
        }
kpeter@806
   257
        if (heap.empty()) return -1;
kpeter@805
   258
kpeter@806
   259
        // Update potentials of processed nodes
kpeter@806
   260
        int t = heap.top();
kpeter@806
   261
        Cost dt = heap.prio();
kpeter@806
   262
        for (int i = 0; i < int(_proc_nodes.size()); ++i) {
kpeter@806
   263
          _pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - dt;
kpeter@806
   264
        }
kpeter@805
   265
kpeter@805
   266
        return t;
kpeter@805
   267
      }
kpeter@805
   268
kpeter@805
   269
    }; //class ResidualDijkstra
kpeter@805
   270
kpeter@805
   271
  public:
kpeter@805
   272
kpeter@807
   273
    /// \name Named Template Parameters
kpeter@807
   274
    /// @{
kpeter@807
   275
kpeter@807
   276
    template <typename T>
kpeter@807
   277
    struct SetHeapTraits : public Traits {
kpeter@807
   278
      typedef T Heap;
kpeter@807
   279
    };
kpeter@807
   280
kpeter@807
   281
    /// \brief \ref named-templ-param "Named parameter" for setting
kpeter@807
   282
    /// \c Heap type.
kpeter@807
   283
    ///
kpeter@807
   284
    /// \ref named-templ-param "Named parameter" for setting \c Heap
kpeter@807
   285
    /// type, which is used for internal Dijkstra computations.
kpeter@807
   286
    /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
kpeter@807
   287
    /// its priority type must be \c Cost and its cross reference type
kpeter@807
   288
    /// must be \ref RangeMap "RangeMap<int>".
kpeter@807
   289
    template <typename T>
kpeter@807
   290
    struct SetHeap
kpeter@807
   291
      : public CapacityScaling<GR, V, C, SetHeapTraits<T> > {
kpeter@807
   292
      typedef  CapacityScaling<GR, V, C, SetHeapTraits<T> > Create;
kpeter@807
   293
    };
kpeter@807
   294
kpeter@807
   295
    /// @}
kpeter@807
   296
kpeter@807
   297
  public:
kpeter@807
   298
kpeter@806
   299
    /// \brief Constructor.
kpeter@805
   300
    ///
kpeter@806
   301
    /// The constructor of the class.
kpeter@805
   302
    ///
kpeter@806
   303
    /// \param graph The digraph the algorithm runs on.
kpeter@806
   304
    CapacityScaling(const GR& graph) :
kpeter@806
   305
      _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
kpeter@806
   306
      INF(std::numeric_limits<Value>::has_infinity ?
kpeter@806
   307
          std::numeric_limits<Value>::infinity() :
kpeter@806
   308
          std::numeric_limits<Value>::max())
kpeter@805
   309
    {
kpeter@806
   310
      // Check the value types
kpeter@806
   311
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
kpeter@806
   312
        "The flow type of CapacityScaling must be signed");
kpeter@806
   313
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
kpeter@806
   314
        "The cost type of CapacityScaling must be signed");
kpeter@806
   315
kpeter@806
   316
      // Resize vectors
kpeter@806
   317
      _node_num = countNodes(_graph);
kpeter@806
   318
      _arc_num = countArcs(_graph);
kpeter@806
   319
      _res_arc_num = 2 * (_arc_num + _node_num);
kpeter@806
   320
      _root = _node_num;
kpeter@806
   321
      ++_node_num;
kpeter@806
   322
kpeter@806
   323
      _first_out.resize(_node_num + 1);
kpeter@806
   324
      _forward.resize(_res_arc_num);
kpeter@806
   325
      _source.resize(_res_arc_num);
kpeter@806
   326
      _target.resize(_res_arc_num);
kpeter@806
   327
      _reverse.resize(_res_arc_num);
kpeter@806
   328
kpeter@806
   329
      _lower.resize(_res_arc_num);
kpeter@806
   330
      _upper.resize(_res_arc_num);
kpeter@806
   331
      _cost.resize(_res_arc_num);
kpeter@806
   332
      _supply.resize(_node_num);
kpeter@806
   333
      
kpeter@806
   334
      _res_cap.resize(_res_arc_num);
kpeter@806
   335
      _pi.resize(_node_num);
kpeter@806
   336
      _excess.resize(_node_num);
kpeter@806
   337
      _pred.resize(_node_num);
kpeter@806
   338
kpeter@806
   339
      // Copy the graph
kpeter@806
   340
      int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1;
kpeter@806
   341
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
kpeter@806
   342
        _node_id[n] = i;
kpeter@805
   343
      }
kpeter@806
   344
      i = 0;
kpeter@806
   345
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
kpeter@806
   346
        _first_out[i] = j;
kpeter@806
   347
        for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
kpeter@806
   348
          _arc_idf[a] = j;
kpeter@806
   349
          _forward[j] = true;
kpeter@806
   350
          _source[j] = i;
kpeter@806
   351
          _target[j] = _node_id[_graph.runningNode(a)];
kpeter@806
   352
        }
kpeter@806
   353
        for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
kpeter@806
   354
          _arc_idb[a] = j;
kpeter@806
   355
          _forward[j] = false;
kpeter@806
   356
          _source[j] = i;
kpeter@806
   357
          _target[j] = _node_id[_graph.runningNode(a)];
kpeter@806
   358
        }
kpeter@806
   359
        _forward[j] = false;
kpeter@806
   360
        _source[j] = i;
kpeter@806
   361
        _target[j] = _root;
kpeter@806
   362
        _reverse[j] = k;
kpeter@806
   363
        _forward[k] = true;
kpeter@806
   364
        _source[k] = _root;
kpeter@806
   365
        _target[k] = i;
kpeter@806
   366
        _reverse[k] = j;
kpeter@806
   367
        ++j; ++k;
kpeter@806
   368
      }
kpeter@806
   369
      _first_out[i] = j;
kpeter@806
   370
      _first_out[_node_num] = k;
kpeter@805
   371
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@806
   372
        int fi = _arc_idf[a];
kpeter@806
   373
        int bi = _arc_idb[a];
kpeter@806
   374
        _reverse[fi] = bi;
kpeter@806
   375
        _reverse[bi] = fi;
kpeter@805
   376
      }
kpeter@806
   377
      
kpeter@806
   378
      // Reset parameters
kpeter@806
   379
      reset();
kpeter@805
   380
    }
kpeter@805
   381
kpeter@806
   382
    /// \name Parameters
kpeter@806
   383
    /// The parameters of the algorithm can be specified using these
kpeter@806
   384
    /// functions.
kpeter@806
   385
kpeter@806
   386
    /// @{
kpeter@806
   387
kpeter@806
   388
    /// \brief Set the lower bounds on the arcs.
kpeter@805
   389
    ///
kpeter@806
   390
    /// This function sets the lower bounds on the arcs.
kpeter@806
   391
    /// If it is not used before calling \ref run(), the lower bounds
kpeter@806
   392
    /// will be set to zero on all arcs.
kpeter@805
   393
    ///
kpeter@806
   394
    /// \param map An arc map storing the lower bounds.
kpeter@806
   395
    /// Its \c Value type must be convertible to the \c Value type
kpeter@806
   396
    /// of the algorithm.
kpeter@806
   397
    ///
kpeter@806
   398
    /// \return <tt>(*this)</tt>
kpeter@806
   399
    template <typename LowerMap>
kpeter@806
   400
    CapacityScaling& lowerMap(const LowerMap& map) {
kpeter@806
   401
      _have_lower = true;
kpeter@806
   402
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@806
   403
        _lower[_arc_idf[a]] = map[a];
kpeter@806
   404
        _lower[_arc_idb[a]] = map[a];
kpeter@805
   405
      }
kpeter@805
   406
      return *this;
kpeter@805
   407
    }
kpeter@805
   408
kpeter@806
   409
    /// \brief Set the upper bounds (capacities) on the arcs.
kpeter@805
   410
    ///
kpeter@806
   411
    /// This function sets the upper bounds (capacities) on the arcs.
kpeter@806
   412
    /// If it is not used before calling \ref run(), the upper bounds
kpeter@806
   413
    /// will be set to \ref INF on all arcs (i.e. the flow value will be
kpeter@806
   414
    /// unbounded from above on each arc).
kpeter@805
   415
    ///
kpeter@806
   416
    /// \param map An arc map storing the upper bounds.
kpeter@806
   417
    /// Its \c Value type must be convertible to the \c Value type
kpeter@806
   418
    /// of the algorithm.
kpeter@806
   419
    ///
kpeter@806
   420
    /// \return <tt>(*this)</tt>
kpeter@806
   421
    template<typename UpperMap>
kpeter@806
   422
    CapacityScaling& upperMap(const UpperMap& map) {
kpeter@806
   423
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@806
   424
        _upper[_arc_idf[a]] = map[a];
kpeter@805
   425
      }
kpeter@805
   426
      return *this;
kpeter@805
   427
    }
kpeter@805
   428
kpeter@806
   429
    /// \brief Set the costs of the arcs.
kpeter@806
   430
    ///
kpeter@806
   431
    /// This function sets the costs of the arcs.
kpeter@806
   432
    /// If it is not used before calling \ref run(), the costs
kpeter@806
   433
    /// will be set to \c 1 on all arcs.
kpeter@806
   434
    ///
kpeter@806
   435
    /// \param map An arc map storing the costs.
kpeter@806
   436
    /// Its \c Value type must be convertible to the \c Cost type
kpeter@806
   437
    /// of the algorithm.
kpeter@806
   438
    ///
kpeter@806
   439
    /// \return <tt>(*this)</tt>
kpeter@806
   440
    template<typename CostMap>
kpeter@806
   441
    CapacityScaling& costMap(const CostMap& map) {
kpeter@806
   442
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@806
   443
        _cost[_arc_idf[a]] =  map[a];
kpeter@806
   444
        _cost[_arc_idb[a]] = -map[a];
kpeter@806
   445
      }
kpeter@806
   446
      return *this;
kpeter@806
   447
    }
kpeter@806
   448
kpeter@806
   449
    /// \brief Set the supply values of the nodes.
kpeter@806
   450
    ///
kpeter@806
   451
    /// This function sets the supply values of the nodes.
kpeter@806
   452
    /// If neither this function nor \ref stSupply() is used before
kpeter@806
   453
    /// calling \ref run(), the supply of each node will be set to zero.
kpeter@806
   454
    ///
kpeter@806
   455
    /// \param map A node map storing the supply values.
kpeter@806
   456
    /// Its \c Value type must be convertible to the \c Value type
kpeter@806
   457
    /// of the algorithm.
kpeter@806
   458
    ///
kpeter@806
   459
    /// \return <tt>(*this)</tt>
kpeter@806
   460
    template<typename SupplyMap>
kpeter@806
   461
    CapacityScaling& supplyMap(const SupplyMap& map) {
kpeter@806
   462
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@806
   463
        _supply[_node_id[n]] = map[n];
kpeter@806
   464
      }
kpeter@806
   465
      return *this;
kpeter@806
   466
    }
kpeter@806
   467
kpeter@806
   468
    /// \brief Set single source and target nodes and a supply value.
kpeter@806
   469
    ///
kpeter@806
   470
    /// This function sets a single source node and a single target node
kpeter@806
   471
    /// and the required flow value.
kpeter@806
   472
    /// If neither this function nor \ref supplyMap() is used before
kpeter@806
   473
    /// calling \ref run(), the supply of each node will be set to zero.
kpeter@806
   474
    ///
kpeter@806
   475
    /// Using this function has the same effect as using \ref supplyMap()
kpeter@806
   476
    /// with such a map in which \c k is assigned to \c s, \c -k is
kpeter@806
   477
    /// assigned to \c t and all other nodes have zero supply value.
kpeter@806
   478
    ///
kpeter@806
   479
    /// \param s The source node.
kpeter@806
   480
    /// \param t The target node.
kpeter@806
   481
    /// \param k The required amount of flow from node \c s to node \c t
kpeter@806
   482
    /// (i.e. the supply of \c s and the demand of \c t).
kpeter@806
   483
    ///
kpeter@806
   484
    /// \return <tt>(*this)</tt>
kpeter@806
   485
    CapacityScaling& stSupply(const Node& s, const Node& t, Value k) {
kpeter@806
   486
      for (int i = 0; i != _node_num; ++i) {
kpeter@806
   487
        _supply[i] = 0;
kpeter@806
   488
      }
kpeter@806
   489
      _supply[_node_id[s]] =  k;
kpeter@806
   490
      _supply[_node_id[t]] = -k;
kpeter@806
   491
      return *this;
kpeter@806
   492
    }
kpeter@806
   493
    
kpeter@806
   494
    /// @}
kpeter@806
   495
kpeter@805
   496
    /// \name Execution control
kpeter@807
   497
    /// The algorithm can be executed using \ref run().
kpeter@805
   498
kpeter@805
   499
    /// @{
kpeter@805
   500
kpeter@805
   501
    /// \brief Run the algorithm.
kpeter@805
   502
    ///
kpeter@805
   503
    /// This function runs the algorithm.
kpeter@806
   504
    /// The paramters can be specified using functions \ref lowerMap(),
kpeter@806
   505
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
kpeter@806
   506
    /// For example,
kpeter@806
   507
    /// \code
kpeter@806
   508
    ///   CapacityScaling<ListDigraph> cs(graph);
kpeter@806
   509
    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
kpeter@806
   510
    ///     .supplyMap(sup).run();
kpeter@806
   511
    /// \endcode
kpeter@806
   512
    ///
kpeter@806
   513
    /// This function can be called more than once. All the parameters
kpeter@806
   514
    /// that have been given are kept for the next call, unless
kpeter@806
   515
    /// \ref reset() is called, thus only the modified parameters
kpeter@806
   516
    /// have to be set again. See \ref reset() for examples.
kpeter@806
   517
    /// However the underlying digraph must not be modified after this
kpeter@810
   518
    /// class have been constructed, since it copies and extends the graph.
kpeter@805
   519
    ///
kpeter@810
   520
    /// \param factor The capacity scaling factor. It must be larger than
kpeter@810
   521
    /// one to use scaling. If it is less or equal to one, then scaling
kpeter@810
   522
    /// will be disabled.
kpeter@805
   523
    ///
kpeter@806
   524
    /// \return \c INFEASIBLE if no feasible flow exists,
kpeter@806
   525
    /// \n \c OPTIMAL if the problem has optimal solution
kpeter@806
   526
    /// (i.e. it is feasible and bounded), and the algorithm has found
kpeter@806
   527
    /// optimal flow and node potentials (primal and dual solutions),
kpeter@806
   528
    /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
kpeter@806
   529
    /// and infinite upper bound. It means that the objective function
kpeter@806
   530
    /// is unbounded on that arc, however note that it could actually be
kpeter@806
   531
    /// bounded over the feasible flows, but this algroithm cannot handle
kpeter@806
   532
    /// these cases.
kpeter@806
   533
    ///
kpeter@806
   534
    /// \see ProblemType
kpeter@810
   535
    ProblemType run(int factor = 4) {
kpeter@810
   536
      _factor = factor;
kpeter@810
   537
      ProblemType pt = init();
kpeter@806
   538
      if (pt != OPTIMAL) return pt;
kpeter@806
   539
      return start();
kpeter@806
   540
    }
kpeter@806
   541
kpeter@806
   542
    /// \brief Reset all the parameters that have been given before.
kpeter@806
   543
    ///
kpeter@806
   544
    /// This function resets all the paramaters that have been given
kpeter@806
   545
    /// before using functions \ref lowerMap(), \ref upperMap(),
kpeter@806
   546
    /// \ref costMap(), \ref supplyMap(), \ref stSupply().
kpeter@806
   547
    ///
kpeter@806
   548
    /// It is useful for multiple run() calls. If this function is not
kpeter@806
   549
    /// used, all the parameters given before are kept for the next
kpeter@806
   550
    /// \ref run() call.
kpeter@810
   551
    /// However, the underlying digraph must not be modified after this
kpeter@806
   552
    /// class have been constructed, since it copies and extends the graph.
kpeter@806
   553
    ///
kpeter@806
   554
    /// For example,
kpeter@806
   555
    /// \code
kpeter@806
   556
    ///   CapacityScaling<ListDigraph> cs(graph);
kpeter@806
   557
    ///
kpeter@806
   558
    ///   // First run
kpeter@806
   559
    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
kpeter@806
   560
    ///     .supplyMap(sup).run();
kpeter@806
   561
    ///
kpeter@806
   562
    ///   // Run again with modified cost map (reset() is not called,
kpeter@806
   563
    ///   // so only the cost map have to be set again)
kpeter@806
   564
    ///   cost[e] += 100;
kpeter@806
   565
    ///   cs.costMap(cost).run();
kpeter@806
   566
    ///
kpeter@806
   567
    ///   // Run again from scratch using reset()
kpeter@806
   568
    ///   // (the lower bounds will be set to zero on all arcs)
kpeter@806
   569
    ///   cs.reset();
kpeter@806
   570
    ///   cs.upperMap(capacity).costMap(cost)
kpeter@806
   571
    ///     .supplyMap(sup).run();
kpeter@806
   572
    /// \endcode
kpeter@806
   573
    ///
kpeter@806
   574
    /// \return <tt>(*this)</tt>
kpeter@806
   575
    CapacityScaling& reset() {
kpeter@806
   576
      for (int i = 0; i != _node_num; ++i) {
kpeter@806
   577
        _supply[i] = 0;
kpeter@806
   578
      }
kpeter@806
   579
      for (int j = 0; j != _res_arc_num; ++j) {
kpeter@806
   580
        _lower[j] = 0;
kpeter@806
   581
        _upper[j] = INF;
kpeter@806
   582
        _cost[j] = _forward[j] ? 1 : -1;
kpeter@806
   583
      }
kpeter@806
   584
      _have_lower = false;
kpeter@806
   585
      return *this;
kpeter@805
   586
    }
kpeter@805
   587
kpeter@805
   588
    /// @}
kpeter@805
   589
kpeter@805
   590
    /// \name Query Functions
kpeter@805
   591
    /// The results of the algorithm can be obtained using these
kpeter@805
   592
    /// functions.\n
kpeter@806
   593
    /// The \ref run() function must be called before using them.
kpeter@805
   594
kpeter@805
   595
    /// @{
kpeter@805
   596
kpeter@806
   597
    /// \brief Return the total cost of the found flow.
kpeter@805
   598
    ///
kpeter@806
   599
    /// This function returns the total cost of the found flow.
kpeter@806
   600
    /// Its complexity is O(e).
kpeter@806
   601
    ///
kpeter@806
   602
    /// \note The return type of the function can be specified as a
kpeter@806
   603
    /// template parameter. For example,
kpeter@806
   604
    /// \code
kpeter@806
   605
    ///   cs.totalCost<double>();
kpeter@806
   606
    /// \endcode
kpeter@806
   607
    /// It is useful if the total cost cannot be stored in the \c Cost
kpeter@806
   608
    /// type of the algorithm, which is the default return type of the
kpeter@806
   609
    /// function.
kpeter@805
   610
    ///
kpeter@805
   611
    /// \pre \ref run() must be called before using this function.
kpeter@806
   612
    template <typename Number>
kpeter@806
   613
    Number totalCost() const {
kpeter@806
   614
      Number c = 0;
kpeter@806
   615
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@806
   616
        int i = _arc_idb[a];
kpeter@806
   617
        c += static_cast<Number>(_res_cap[i]) *
kpeter@806
   618
             (-static_cast<Number>(_cost[i]));
kpeter@806
   619
      }
kpeter@806
   620
      return c;
kpeter@805
   621
    }
kpeter@805
   622
kpeter@806
   623
#ifndef DOXYGEN
kpeter@806
   624
    Cost totalCost() const {
kpeter@806
   625
      return totalCost<Cost>();
kpeter@805
   626
    }
kpeter@806
   627
#endif
kpeter@805
   628
kpeter@805
   629
    /// \brief Return the flow on the given arc.
kpeter@805
   630
    ///
kpeter@806
   631
    /// This function returns the flow on the given arc.
kpeter@805
   632
    ///
kpeter@805
   633
    /// \pre \ref run() must be called before using this function.
kpeter@806
   634
    Value flow(const Arc& a) const {
kpeter@806
   635
      return _res_cap[_arc_idb[a]];
kpeter@805
   636
    }
kpeter@805
   637
kpeter@806
   638
    /// \brief Return the flow map (the primal solution).
kpeter@805
   639
    ///
kpeter@806
   640
    /// This function copies the flow value on each arc into the given
kpeter@806
   641
    /// map. The \c Value type of the algorithm must be convertible to
kpeter@806
   642
    /// the \c Value type of the map.
kpeter@805
   643
    ///
kpeter@805
   644
    /// \pre \ref run() must be called before using this function.
kpeter@806
   645
    template <typename FlowMap>
kpeter@806
   646
    void flowMap(FlowMap &map) const {
kpeter@806
   647
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@806
   648
        map.set(a, _res_cap[_arc_idb[a]]);
kpeter@806
   649
      }
kpeter@805
   650
    }
kpeter@805
   651
kpeter@806
   652
    /// \brief Return the potential (dual value) of the given node.
kpeter@805
   653
    ///
kpeter@806
   654
    /// This function returns the potential (dual value) of the
kpeter@806
   655
    /// given node.
kpeter@805
   656
    ///
kpeter@805
   657
    /// \pre \ref run() must be called before using this function.
kpeter@806
   658
    Cost potential(const Node& n) const {
kpeter@806
   659
      return _pi[_node_id[n]];
kpeter@806
   660
    }
kpeter@806
   661
kpeter@806
   662
    /// \brief Return the potential map (the dual solution).
kpeter@806
   663
    ///
kpeter@806
   664
    /// This function copies the potential (dual value) of each node
kpeter@806
   665
    /// into the given map.
kpeter@806
   666
    /// The \c Cost type of the algorithm must be convertible to the
kpeter@806
   667
    /// \c Value type of the map.
kpeter@806
   668
    ///
kpeter@806
   669
    /// \pre \ref run() must be called before using this function.
kpeter@806
   670
    template <typename PotentialMap>
kpeter@806
   671
    void potentialMap(PotentialMap &map) const {
kpeter@806
   672
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@806
   673
        map.set(n, _pi[_node_id[n]]);
kpeter@806
   674
      }
kpeter@805
   675
    }
kpeter@805
   676
kpeter@805
   677
    /// @}
kpeter@805
   678
kpeter@805
   679
  private:
kpeter@805
   680
kpeter@806
   681
    // Initialize the algorithm
kpeter@810
   682
    ProblemType init() {
kpeter@806
   683
      if (_node_num == 0) return INFEASIBLE;
kpeter@805
   684
kpeter@806
   685
      // Check the sum of supply values
kpeter@806
   686
      _sum_supply = 0;
kpeter@806
   687
      for (int i = 0; i != _root; ++i) {
kpeter@806
   688
        _sum_supply += _supply[i];
kpeter@805
   689
      }
kpeter@806
   690
      if (_sum_supply > 0) return INFEASIBLE;
kpeter@806
   691
      
kpeter@811
   692
      // Initialize vectors
kpeter@806
   693
      for (int i = 0; i != _root; ++i) {
kpeter@806
   694
        _pi[i] = 0;
kpeter@806
   695
        _excess[i] = _supply[i];
kpeter@805
   696
      }
kpeter@805
   697
kpeter@806
   698
      // Remove non-zero lower bounds
kpeter@811
   699
      const Value MAX = std::numeric_limits<Value>::max();
kpeter@811
   700
      int last_out;
kpeter@806
   701
      if (_have_lower) {
kpeter@806
   702
        for (int i = 0; i != _root; ++i) {
kpeter@811
   703
          last_out = _first_out[i+1];
kpeter@811
   704
          for (int j = _first_out[i]; j != last_out; ++j) {
kpeter@806
   705
            if (_forward[j]) {
kpeter@806
   706
              Value c = _lower[j];
kpeter@806
   707
              if (c >= 0) {
kpeter@811
   708
                _res_cap[j] = _upper[j] < MAX ? _upper[j] - c : INF;
kpeter@806
   709
              } else {
kpeter@811
   710
                _res_cap[j] = _upper[j] < MAX + c ? _upper[j] - c : INF;
kpeter@806
   711
              }
kpeter@806
   712
              _excess[i] -= c;
kpeter@806
   713
              _excess[_target[j]] += c;
kpeter@806
   714
            } else {
kpeter@806
   715
              _res_cap[j] = 0;
kpeter@806
   716
            }
kpeter@806
   717
          }
kpeter@806
   718
        }
kpeter@806
   719
      } else {
kpeter@806
   720
        for (int j = 0; j != _res_arc_num; ++j) {
kpeter@806
   721
          _res_cap[j] = _forward[j] ? _upper[j] : 0;
kpeter@806
   722
        }
kpeter@806
   723
      }
kpeter@805
   724
kpeter@806
   725
      // Handle negative costs
kpeter@811
   726
      for (int i = 0; i != _root; ++i) {
kpeter@811
   727
        last_out = _first_out[i+1] - 1;
kpeter@811
   728
        for (int j = _first_out[i]; j != last_out; ++j) {
kpeter@811
   729
          Value rc = _res_cap[j];
kpeter@811
   730
          if (_cost[j] < 0 && rc > 0) {
kpeter@811
   731
            if (rc >= MAX) return UNBOUNDED;
kpeter@811
   732
            _excess[i] -= rc;
kpeter@811
   733
            _excess[_target[j]] += rc;
kpeter@811
   734
            _res_cap[j] = 0;
kpeter@811
   735
            _res_cap[_reverse[j]] += rc;
kpeter@806
   736
          }
kpeter@806
   737
        }
kpeter@806
   738
      }
kpeter@806
   739
      
kpeter@806
   740
      // Handle GEQ supply type
kpeter@806
   741
      if (_sum_supply < 0) {
kpeter@806
   742
        _pi[_root] = 0;
kpeter@806
   743
        _excess[_root] = -_sum_supply;
kpeter@806
   744
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
kpeter@811
   745
          int ra = _reverse[a];
kpeter@811
   746
          _res_cap[a] = -_sum_supply + 1;
kpeter@811
   747
          _res_cap[ra] = 0;
kpeter@806
   748
          _cost[a] = 0;
kpeter@811
   749
          _cost[ra] = 0;
kpeter@806
   750
        }
kpeter@806
   751
      } else {
kpeter@806
   752
        _pi[_root] = 0;
kpeter@806
   753
        _excess[_root] = 0;
kpeter@806
   754
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
kpeter@811
   755
          int ra = _reverse[a];
kpeter@806
   756
          _res_cap[a] = 1;
kpeter@811
   757
          _res_cap[ra] = 0;
kpeter@806
   758
          _cost[a] = 0;
kpeter@811
   759
          _cost[ra] = 0;
kpeter@806
   760
        }
kpeter@806
   761
      }
kpeter@806
   762
kpeter@806
   763
      // Initialize delta value
kpeter@810
   764
      if (_factor > 1) {
kpeter@805
   765
        // With scaling
kpeter@806
   766
        Value max_sup = 0, max_dem = 0;
kpeter@806
   767
        for (int i = 0; i != _node_num; ++i) {
kpeter@811
   768
          Value ex = _excess[i];
kpeter@811
   769
          if ( ex > max_sup) max_sup =  ex;
kpeter@811
   770
          if (-ex > max_dem) max_dem = -ex;
kpeter@805
   771
        }
kpeter@806
   772
        Value max_cap = 0;
kpeter@806
   773
        for (int j = 0; j != _res_arc_num; ++j) {
kpeter@806
   774
          if (_res_cap[j] > max_cap) max_cap = _res_cap[j];
kpeter@805
   775
        }
kpeter@805
   776
        max_sup = std::min(std::min(max_sup, max_dem), max_cap);
kpeter@810
   777
        for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2) ;
kpeter@805
   778
      } else {
kpeter@805
   779
        // Without scaling
kpeter@805
   780
        _delta = 1;
kpeter@805
   781
      }
kpeter@805
   782
kpeter@806
   783
      return OPTIMAL;
kpeter@805
   784
    }
kpeter@805
   785
kpeter@806
   786
    ProblemType start() {
kpeter@806
   787
      // Execute the algorithm
kpeter@806
   788
      ProblemType pt;
kpeter@805
   789
      if (_delta > 1)
kpeter@806
   790
        pt = startWithScaling();
kpeter@805
   791
      else
kpeter@806
   792
        pt = startWithoutScaling();
kpeter@806
   793
kpeter@806
   794
      // Handle non-zero lower bounds
kpeter@806
   795
      if (_have_lower) {
kpeter@811
   796
        int limit = _first_out[_root];
kpeter@811
   797
        for (int j = 0; j != limit; ++j) {
kpeter@806
   798
          if (!_forward[j]) _res_cap[j] += _lower[j];
kpeter@806
   799
        }
kpeter@806
   800
      }
kpeter@806
   801
kpeter@806
   802
      // Shift potentials if necessary
kpeter@806
   803
      Cost pr = _pi[_root];
kpeter@806
   804
      if (_sum_supply < 0 || pr > 0) {
kpeter@806
   805
        for (int i = 0; i != _node_num; ++i) {
kpeter@806
   806
          _pi[i] -= pr;
kpeter@806
   807
        }        
kpeter@806
   808
      }
kpeter@806
   809
      
kpeter@806
   810
      return pt;
kpeter@805
   811
    }
kpeter@805
   812
kpeter@806
   813
    // Execute the capacity scaling algorithm
kpeter@806
   814
    ProblemType startWithScaling() {
kpeter@807
   815
      // Perform capacity scaling phases
kpeter@806
   816
      int s, t;
kpeter@806
   817
      ResidualDijkstra _dijkstra(*this);
kpeter@805
   818
      while (true) {
kpeter@806
   819
        // Saturate all arcs not satisfying the optimality condition
kpeter@811
   820
        int last_out;
kpeter@806
   821
        for (int u = 0; u != _node_num; ++u) {
kpeter@811
   822
          last_out = _sum_supply < 0 ?
kpeter@811
   823
            _first_out[u+1] : _first_out[u+1] - 1;
kpeter@811
   824
          for (int a = _first_out[u]; a != last_out; ++a) {
kpeter@806
   825
            int v = _target[a];
kpeter@806
   826
            Cost c = _cost[a] + _pi[u] - _pi[v];
kpeter@806
   827
            Value rc = _res_cap[a];
kpeter@806
   828
            if (c < 0 && rc >= _delta) {
kpeter@806
   829
              _excess[u] -= rc;
kpeter@806
   830
              _excess[v] += rc;
kpeter@806
   831
              _res_cap[a] = 0;
kpeter@806
   832
              _res_cap[_reverse[a]] += rc;
kpeter@806
   833
            }
kpeter@805
   834
          }
kpeter@805
   835
        }
kpeter@805
   836
kpeter@806
   837
        // Find excess nodes and deficit nodes
kpeter@805
   838
        _excess_nodes.clear();
kpeter@805
   839
        _deficit_nodes.clear();
kpeter@806
   840
        for (int u = 0; u != _node_num; ++u) {
kpeter@811
   841
          Value ex = _excess[u];
kpeter@811
   842
          if (ex >=  _delta) _excess_nodes.push_back(u);
kpeter@811
   843
          if (ex <= -_delta) _deficit_nodes.push_back(u);
kpeter@805
   844
        }
kpeter@805
   845
        int next_node = 0, next_def_node = 0;
kpeter@805
   846
kpeter@806
   847
        // Find augmenting shortest paths
kpeter@805
   848
        while (next_node < int(_excess_nodes.size())) {
kpeter@806
   849
          // Check deficit nodes
kpeter@805
   850
          if (_delta > 1) {
kpeter@805
   851
            bool delta_deficit = false;
kpeter@805
   852
            for ( ; next_def_node < int(_deficit_nodes.size());
kpeter@805
   853
                    ++next_def_node ) {
kpeter@805
   854
              if (_excess[_deficit_nodes[next_def_node]] <= -_delta) {
kpeter@805
   855
                delta_deficit = true;
kpeter@805
   856
                break;
kpeter@805
   857
              }
kpeter@805
   858
            }
kpeter@805
   859
            if (!delta_deficit) break;
kpeter@805
   860
          }
kpeter@805
   861
kpeter@806
   862
          // Run Dijkstra in the residual network
kpeter@805
   863
          s = _excess_nodes[next_node];
kpeter@806
   864
          if ((t = _dijkstra.run(s, _delta)) == -1) {
kpeter@805
   865
            if (_delta > 1) {
kpeter@805
   866
              ++next_node;
kpeter@805
   867
              continue;
kpeter@805
   868
            }
kpeter@806
   869
            return INFEASIBLE;
kpeter@805
   870
          }
kpeter@805
   871
kpeter@806
   872
          // Augment along a shortest path from s to t
kpeter@806
   873
          Value d = std::min(_excess[s], -_excess[t]);
kpeter@806
   874
          int u = t;
kpeter@806
   875
          int a;
kpeter@805
   876
          if (d > _delta) {
kpeter@806
   877
            while ((a = _pred[u]) != -1) {
kpeter@806
   878
              if (_res_cap[a] < d) d = _res_cap[a];
kpeter@806
   879
              u = _source[a];
kpeter@805
   880
            }
kpeter@805
   881
          }
kpeter@805
   882
          u = t;
kpeter@806
   883
          while ((a = _pred[u]) != -1) {
kpeter@806
   884
            _res_cap[a] -= d;
kpeter@806
   885
            _res_cap[_reverse[a]] += d;
kpeter@806
   886
            u = _source[a];
kpeter@805
   887
          }
kpeter@805
   888
          _excess[s] -= d;
kpeter@805
   889
          _excess[t] += d;
kpeter@805
   890
kpeter@805
   891
          if (_excess[s] < _delta) ++next_node;
kpeter@805
   892
        }
kpeter@805
   893
kpeter@805
   894
        if (_delta == 1) break;
kpeter@810
   895
        _delta = _delta <= _factor ? 1 : _delta / _factor;
kpeter@805
   896
      }
kpeter@805
   897
kpeter@806
   898
      return OPTIMAL;
kpeter@805
   899
    }
kpeter@805
   900
kpeter@806
   901
    // Execute the successive shortest path algorithm
kpeter@806
   902
    ProblemType startWithoutScaling() {
kpeter@806
   903
      // Find excess nodes
kpeter@806
   904
      _excess_nodes.clear();
kpeter@806
   905
      for (int i = 0; i != _node_num; ++i) {
kpeter@806
   906
        if (_excess[i] > 0) _excess_nodes.push_back(i);
kpeter@806
   907
      }
kpeter@806
   908
      if (_excess_nodes.size() == 0) return OPTIMAL;
kpeter@805
   909
      int next_node = 0;
kpeter@805
   910
kpeter@806
   911
      // Find shortest paths
kpeter@806
   912
      int s, t;
kpeter@806
   913
      ResidualDijkstra _dijkstra(*this);
kpeter@805
   914
      while ( _excess[_excess_nodes[next_node]] > 0 ||
kpeter@805
   915
              ++next_node < int(_excess_nodes.size()) )
kpeter@805
   916
      {
kpeter@806
   917
        // Run Dijkstra in the residual network
kpeter@805
   918
        s = _excess_nodes[next_node];
kpeter@806
   919
        if ((t = _dijkstra.run(s)) == -1) return INFEASIBLE;
kpeter@805
   920
kpeter@806
   921
        // Augment along a shortest path from s to t
kpeter@806
   922
        Value d = std::min(_excess[s], -_excess[t]);
kpeter@806
   923
        int u = t;
kpeter@806
   924
        int a;
kpeter@805
   925
        if (d > 1) {
kpeter@806
   926
          while ((a = _pred[u]) != -1) {
kpeter@806
   927
            if (_res_cap[a] < d) d = _res_cap[a];
kpeter@806
   928
            u = _source[a];
kpeter@805
   929
          }
kpeter@805
   930
        }
kpeter@805
   931
        u = t;
kpeter@806
   932
        while ((a = _pred[u]) != -1) {
kpeter@806
   933
          _res_cap[a] -= d;
kpeter@806
   934
          _res_cap[_reverse[a]] += d;
kpeter@806
   935
          u = _source[a];
kpeter@805
   936
        }
kpeter@805
   937
        _excess[s] -= d;
kpeter@805
   938
        _excess[t] += d;
kpeter@805
   939
      }
kpeter@805
   940
kpeter@806
   941
      return OPTIMAL;
kpeter@805
   942
    }
kpeter@805
   943
kpeter@805
   944
  }; //class CapacityScaling
kpeter@805
   945
kpeter@805
   946
  ///@}
kpeter@805
   947
kpeter@805
   948
} //namespace lemon
kpeter@805
   949
kpeter@805
   950
#endif //LEMON_CAPACITY_SCALING_H