lp.dox
author Peter Kovacs <kpeter@inf.elte.hu>
Mon, 15 Feb 2010 01:51:58 +0100
changeset 32 ef12f83752f6
parent 30 7d70e9735686
child 45 725c60c7492d
permissions -rw-r--r--
Happy New Year + unify files
kpeter@30
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
kpeter@30
     2
 *
kpeter@30
     3
 * This file is a part of LEMON, a generic C++ optimization library.
kpeter@30
     4
 *
kpeter@32
     5
 * Copyright (C) 2003-2010
kpeter@30
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
kpeter@30
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
kpeter@30
     8
 *
kpeter@30
     9
 * Permission to use, modify and distribute this software is granted
kpeter@30
    10
 * provided that this copyright notice appears in all copies. For
kpeter@30
    11
 * precise terms see the accompanying LICENSE file.
kpeter@30
    12
 *
kpeter@30
    13
 * This software is provided "AS IS" with no warranty of any kind,
kpeter@30
    14
 * express or implied, and with no claim as to its suitability for any
kpeter@30
    15
 * purpose.
kpeter@30
    16
 *
kpeter@30
    17
 */
kpeter@30
    18
kpeter@30
    19
namespace lemon {
kpeter@30
    20
/**
kpeter@30
    21
[PAGE]sec_lp[PAGE] Linear Programming Interface
kpeter@30
    22
kpeter@30
    23
\todo Clarify this section.
kpeter@30
    24
kpeter@30
    25
Linear programming (LP) is one of the most important
kpeter@30
    26
general methods of operations research and LP solvers are widely used in
kpeter@30
    27
optimization software. The interface provided in LEMON makes it possible to
kpeter@30
    28
specify LP problems using a high-level syntax.
kpeter@30
    29
kpeter@30
    30
\code
kpeter@30
    31
  Lp lp;
kpeter@30
    32
kpeter@30
    33
  Lp::Col x1 = lp.addCol();
kpeter@30
    34
  Lp::Col x2 = lp.addCol();
kpeter@30
    35
kpeter@30
    36
  lp.addRow(0 <= x1 + x2 <= 100);
kpeter@30
    37
  lp.addRow(2 * x1 <= x2 + 32);
kpeter@30
    38
kpeter@30
    39
  lp.colLowerBound(x1, 0);
kpeter@30
    40
  lp.colUpperBound(x2, 100);
kpeter@30
    41
kpeter@30
    42
  lp.max();
kpeter@30
    43
  lp.obj(10 * x1 + 6 * x2);
kpeter@30
    44
  lp.solve();
kpeter@30
    45
kpeter@30
    46
  cout << "Objective function value: " << lp.primal() << endl;
kpeter@30
    47
  cout << "x1 = " << lp.primal(x1) << endl;
kpeter@30
    48
  cout << "x2 = " << lp.primal(x2) << endl;
kpeter@30
    49
\endcode
kpeter@30
    50
kpeter@30
    51
\ref LpBase::Col "Lp::Col" type represents the variables in the LP problems,
kpeter@30
    52
while \ref LpBase::Row "Lp::Row" represents the constraints. The numerical
kpeter@30
    53
operators can be used to form expressions from columns and dual
kpeter@30
    54
expressions from rows. Due to the suitable operator overloads,
kpeter@30
    55
a problem can be described in C++ conveniently, directly as it is
kpeter@30
    56
expressed in mathematics.
kpeter@30
    57
kpeter@30
    58
kpeter@30
    59
The following example solves a maximum flow problem with linear
kpeter@30
    60
programming. Several other graph optimization problems can also be
kpeter@30
    61
expressed as linear programs and this interface helps to solve them easily
kpeter@30
    62
(though usually not so efficiently as by a direct combinatorial method).
kpeter@30
    63
kpeter@30
    64
\code
kpeter@30
    65
  Lp lp;
kpeter@30
    66
  Digraph::ArcMap<Lp::Col> f(g);
kpeter@30
    67
  lp.addColSet(f);
kpeter@30
    68
kpeter@30
    69
  // Capacity constraints
kpeter@30
    70
  for (Digraph::ArcIt a(g); a != INVALID; ++a) {
kpeter@30
    71
    lp.colLowerBound(f[a], 0);
kpeter@30
    72
    lp.colUpperBound(f[a], capacity[a]);
kpeter@30
    73
  }
kpeter@30
    74
kpeter@30
    75
  // Flow conservation constraints
kpeter@30
    76
  for (Digraph::NodeIt n(g); n != INVALID; ++n) {
kpeter@30
    77
    if (n == src || n == trg) continue;
kpeter@30
    78
    Lp::Expr e;
kpeter@30
    79
    for (Digraph::OutArcIt a(g,n); a != INVALID; ++a) e += f[a];
kpeter@30
    80
    for (Digraph::InArcIt a(g,n); a != INVALID; ++a) e -= f[a];
kpeter@30
    81
    lp.addRow(e == 0);
kpeter@30
    82
  }
kpeter@30
    83
kpeter@30
    84
  // Objective function
kpeter@30
    85
  Lp::Expr o;
kpeter@30
    86
  for (Digraph::OutArcIt a(g,src); a != INVALID; ++a) o += f[a];
kpeter@30
    87
  for (Digraph::InArcIt a(g,src); a != INVALID; ++a) o -= f[a];
kpeter@30
    88
kpeter@30
    89
  lp.max();
kpeter@30
    90
  lp.obj(o);
kpeter@30
    91
  lp.solve();
kpeter@30
    92
\endcode
kpeter@30
    93
kpeter@30
    94
Note that LEMON does not implement an LP solver, it just wraps various
kpeter@30
    95
libraries with a uniform high-level interface.
kpeter@30
    96
Currently, the following linear and mixed integer programming packages are
kpeter@30
    97
supported: GLPK, Clp, Cbc, ILOG CPLEX and SoPlex.
kpeter@30
    98
However, additional wrapper classes for new solvers can also be implemented
kpeter@30
    99
quite easily.
kpeter@30
   100
kpeter@30
   101
[TRAILER]
kpeter@30
   102
*/
kpeter@32
   103
}