lemon/min_mean_cycle.h
author Peter Kovacs <kpeter@inf.elte.hu>
Thu, 06 Aug 2009 20:12:43 +0200
changeset 807 83ce7ce39f21
parent 806 d66ff32624e2
child 808 5795860737f5
permissions -rw-r--r--
Rework and fix the implementation of MinMeanCycle (#179)

- Fix the handling of the cycle means.
- Many implementation improvements:
- More efficient data storage for the strongly connected
components.
- Better handling of BFS queues.
- Merge consecutive BFS searches (perform two BFS searches
instead of three).

This version is about two times faster on average and an order of
magnitude faster if there are a lot of strongly connected components.
kpeter@805
     1
/* -*- C++ -*-
kpeter@805
     2
 *
kpeter@805
     3
 * This file is a part of LEMON, a generic C++ optimization library
kpeter@805
     4
 *
kpeter@805
     5
 * Copyright (C) 2003-2008
kpeter@805
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
kpeter@805
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
kpeter@805
     8
 *
kpeter@805
     9
 * Permission to use, modify and distribute this software is granted
kpeter@805
    10
 * provided that this copyright notice appears in all copies. For
kpeter@805
    11
 * precise terms see the accompanying LICENSE file.
kpeter@805
    12
 *
kpeter@805
    13
 * This software is provided "AS IS" with no warranty of any kind,
kpeter@805
    14
 * express or implied, and with no claim as to its suitability for any
kpeter@805
    15
 * purpose.
kpeter@805
    16
 *
kpeter@805
    17
 */
kpeter@805
    18
kpeter@805
    19
#ifndef LEMON_MIN_MEAN_CYCLE_H
kpeter@805
    20
#define LEMON_MIN_MEAN_CYCLE_H
kpeter@805
    21
kpeter@805
    22
/// \ingroup shortest_path
kpeter@805
    23
///
kpeter@805
    24
/// \file
kpeter@805
    25
/// \brief Howard's algorithm for finding a minimum mean cycle.
kpeter@805
    26
kpeter@805
    27
#include <vector>
kpeter@805
    28
#include <lemon/core.h>
kpeter@805
    29
#include <lemon/path.h>
kpeter@805
    30
#include <lemon/tolerance.h>
kpeter@805
    31
#include <lemon/connectivity.h>
kpeter@805
    32
kpeter@805
    33
namespace lemon {
kpeter@805
    34
kpeter@805
    35
  /// \addtogroup shortest_path
kpeter@805
    36
  /// @{
kpeter@805
    37
kpeter@805
    38
  /// \brief Implementation of Howard's algorithm for finding a minimum
kpeter@805
    39
  /// mean cycle.
kpeter@805
    40
  ///
kpeter@805
    41
  /// \ref MinMeanCycle implements Howard's algorithm for finding a
kpeter@805
    42
  /// directed cycle of minimum mean length (cost) in a digraph.
kpeter@805
    43
  ///
kpeter@805
    44
  /// \tparam GR The type of the digraph the algorithm runs on.
kpeter@805
    45
  /// \tparam LEN The type of the length map. The default
kpeter@805
    46
  /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
kpeter@805
    47
  ///
kpeter@805
    48
  /// \warning \c LEN::Value must be convertible to \c double.
kpeter@805
    49
#ifdef DOXYGEN
kpeter@805
    50
  template <typename GR, typename LEN>
kpeter@805
    51
#else
kpeter@805
    52
  template < typename GR,
kpeter@805
    53
             typename LEN = typename GR::template ArcMap<int> >
kpeter@805
    54
#endif
kpeter@805
    55
  class MinMeanCycle
kpeter@805
    56
  {
kpeter@805
    57
  public:
kpeter@805
    58
  
kpeter@805
    59
    /// The type of the digraph the algorithm runs on
kpeter@805
    60
    typedef GR Digraph;
kpeter@805
    61
    /// The type of the length map
kpeter@805
    62
    typedef LEN LengthMap;
kpeter@805
    63
    /// The type of the arc lengths
kpeter@805
    64
    typedef typename LengthMap::Value Value;
kpeter@805
    65
    /// The type of the paths
kpeter@805
    66
    typedef lemon::Path<Digraph> Path;
kpeter@805
    67
kpeter@805
    68
  private:
kpeter@805
    69
kpeter@805
    70
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
kpeter@805
    71
  
kpeter@805
    72
    // The digraph the algorithm runs on
kpeter@805
    73
    const Digraph &_gr;
kpeter@805
    74
    // The length of the arcs
kpeter@805
    75
    const LengthMap &_length;
kpeter@805
    76
kpeter@807
    77
    // Data for the found cycles
kpeter@807
    78
    bool _curr_found, _best_found;
kpeter@807
    79
    Value _curr_length, _best_length;
kpeter@807
    80
    int _curr_size, _best_size;
kpeter@807
    81
    Node _curr_node, _best_node;
kpeter@807
    82
kpeter@805
    83
    Path *_cycle_path;
kpeter@807
    84
    bool _local_path;
kpeter@805
    85
kpeter@807
    86
    // Internal data used by the algorithm
kpeter@807
    87
    typename Digraph::template NodeMap<Arc> _policy;
kpeter@807
    88
    typename Digraph::template NodeMap<bool> _reached;
kpeter@807
    89
    typename Digraph::template NodeMap<int> _level;
kpeter@807
    90
    typename Digraph::template NodeMap<double> _dist;
kpeter@805
    91
kpeter@807
    92
    // Data for storing the strongly connected components
kpeter@807
    93
    int _comp_num;
kpeter@805
    94
    typename Digraph::template NodeMap<int> _comp;
kpeter@807
    95
    std::vector<std::vector<Node> > _comp_nodes;
kpeter@807
    96
    std::vector<Node>* _nodes;
kpeter@807
    97
    typename Digraph::template NodeMap<std::vector<Arc> > _in_arcs;
kpeter@807
    98
    
kpeter@807
    99
    // Queue used for BFS search
kpeter@807
   100
    std::vector<Node> _queue;
kpeter@807
   101
    int _qfront, _qback;
kpeter@807
   102
    
kpeter@805
   103
    Tolerance<double> _tol;
kpeter@805
   104
kpeter@805
   105
  public:
kpeter@805
   106
kpeter@805
   107
    /// \brief Constructor.
kpeter@805
   108
    ///
kpeter@805
   109
    /// The constructor of the class.
kpeter@805
   110
    ///
kpeter@805
   111
    /// \param digraph The digraph the algorithm runs on.
kpeter@805
   112
    /// \param length The lengths (costs) of the arcs.
kpeter@805
   113
    MinMeanCycle( const Digraph &digraph,
kpeter@805
   114
                  const LengthMap &length ) :
kpeter@807
   115
      _gr(digraph), _length(length), _cycle_path(NULL), _local_path(false),
kpeter@807
   116
      _policy(digraph), _reached(digraph), _level(digraph), _dist(digraph),
kpeter@807
   117
      _comp(digraph), _in_arcs(digraph)
kpeter@805
   118
    {}
kpeter@805
   119
kpeter@805
   120
    /// Destructor.
kpeter@805
   121
    ~MinMeanCycle() {
kpeter@805
   122
      if (_local_path) delete _cycle_path;
kpeter@805
   123
    }
kpeter@805
   124
kpeter@805
   125
    /// \brief Set the path structure for storing the found cycle.
kpeter@805
   126
    ///
kpeter@805
   127
    /// This function sets an external path structure for storing the
kpeter@805
   128
    /// found cycle.
kpeter@805
   129
    ///
kpeter@805
   130
    /// If you don't call this function before calling \ref run() or
kpeter@806
   131
    /// \ref findMinMean(), it will allocate a local \ref Path "path"
kpeter@805
   132
    /// structure. The destuctor deallocates this automatically
kpeter@805
   133
    /// allocated object, of course.
kpeter@805
   134
    ///
kpeter@805
   135
    /// \note The algorithm calls only the \ref lemon::Path::addBack()
kpeter@805
   136
    /// "addBack()" function of the given path structure.
kpeter@805
   137
    ///
kpeter@805
   138
    /// \return <tt>(*this)</tt>
kpeter@805
   139
    ///
kpeter@805
   140
    /// \sa cycle()
kpeter@805
   141
    MinMeanCycle& cyclePath(Path &path) {
kpeter@805
   142
      if (_local_path) {
kpeter@805
   143
        delete _cycle_path;
kpeter@805
   144
        _local_path = false;
kpeter@805
   145
      }
kpeter@805
   146
      _cycle_path = &path;
kpeter@805
   147
      return *this;
kpeter@805
   148
    }
kpeter@805
   149
kpeter@805
   150
    /// \name Execution control
kpeter@805
   151
    /// The simplest way to execute the algorithm is to call the \ref run()
kpeter@805
   152
    /// function.\n
kpeter@806
   153
    /// If you only need the minimum mean length, you may call
kpeter@806
   154
    /// \ref findMinMean().
kpeter@805
   155
kpeter@805
   156
    /// @{
kpeter@805
   157
kpeter@805
   158
    /// \brief Run the algorithm.
kpeter@805
   159
    ///
kpeter@805
   160
    /// This function runs the algorithm.
kpeter@806
   161
    /// It can be called more than once (e.g. if the underlying digraph
kpeter@806
   162
    /// and/or the arc lengths have been modified).
kpeter@805
   163
    ///
kpeter@805
   164
    /// \return \c true if a directed cycle exists in the digraph.
kpeter@805
   165
    ///
kpeter@806
   166
    /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
kpeter@805
   167
    /// \code
kpeter@806
   168
    ///   return mmc.findMinMean() && mmc.findCycle();
kpeter@805
   169
    /// \endcode
kpeter@805
   170
    bool run() {
kpeter@805
   171
      return findMinMean() && findCycle();
kpeter@805
   172
    }
kpeter@805
   173
kpeter@806
   174
    /// \brief Find the minimum cycle mean.
kpeter@805
   175
    ///
kpeter@806
   176
    /// This function finds the minimum mean length of the directed
kpeter@806
   177
    /// cycles in the digraph.
kpeter@805
   178
    ///
kpeter@806
   179
    /// \return \c true if a directed cycle exists in the digraph.
kpeter@806
   180
    bool findMinMean() {
kpeter@807
   181
      // Initialize and find strongly connected components
kpeter@807
   182
      init();
kpeter@807
   183
      findComponents();
kpeter@807
   184
      
kpeter@806
   185
      // Find the minimum cycle mean in the components
kpeter@805
   186
      for (int comp = 0; comp < _comp_num; ++comp) {
kpeter@807
   187
        // Find the minimum mean cycle in the current component
kpeter@807
   188
        if (!buildPolicyGraph(comp)) continue;
kpeter@805
   189
        while (true) {
kpeter@807
   190
          findPolicyCycle();
kpeter@805
   191
          if (!computeNodeDistances()) break;
kpeter@805
   192
        }
kpeter@807
   193
        // Update the best cycle (global minimum mean cycle)
kpeter@807
   194
        if ( !_best_found || (_curr_found &&
kpeter@807
   195
             _curr_length * _best_size < _best_length * _curr_size) ) {
kpeter@807
   196
          _best_found = true;
kpeter@807
   197
          _best_length = _curr_length;
kpeter@807
   198
          _best_size = _curr_size;
kpeter@807
   199
          _best_node = _curr_node;
kpeter@807
   200
        }
kpeter@805
   201
      }
kpeter@807
   202
      return _best_found;
kpeter@805
   203
    }
kpeter@805
   204
kpeter@805
   205
    /// \brief Find a minimum mean directed cycle.
kpeter@805
   206
    ///
kpeter@805
   207
    /// This function finds a directed cycle of minimum mean length
kpeter@805
   208
    /// in the digraph using the data computed by findMinMean().
kpeter@805
   209
    ///
kpeter@805
   210
    /// \return \c true if a directed cycle exists in the digraph.
kpeter@805
   211
    ///
kpeter@806
   212
    /// \pre \ref findMinMean() must be called before using this function.
kpeter@805
   213
    bool findCycle() {
kpeter@807
   214
      if (!_best_found) return false;
kpeter@807
   215
      _cycle_path->addBack(_policy[_best_node]);
kpeter@807
   216
      for ( Node v = _best_node;
kpeter@807
   217
            (v = _gr.target(_policy[v])) != _best_node; ) {
kpeter@805
   218
        _cycle_path->addBack(_policy[v]);
kpeter@805
   219
      }
kpeter@805
   220
      return true;
kpeter@805
   221
    }
kpeter@805
   222
kpeter@805
   223
    /// @}
kpeter@805
   224
kpeter@805
   225
    /// \name Query Functions
kpeter@806
   226
    /// The results of the algorithm can be obtained using these
kpeter@805
   227
    /// functions.\n
kpeter@805
   228
    /// The algorithm should be executed before using them.
kpeter@805
   229
kpeter@805
   230
    /// @{
kpeter@805
   231
kpeter@805
   232
    /// \brief Return the total length of the found cycle.
kpeter@805
   233
    ///
kpeter@805
   234
    /// This function returns the total length of the found cycle.
kpeter@805
   235
    ///
kpeter@807
   236
    /// \pre \ref run() or \ref findMinMean() must be called before
kpeter@805
   237
    /// using this function.
kpeter@805
   238
    Value cycleLength() const {
kpeter@807
   239
      return _best_length;
kpeter@805
   240
    }
kpeter@805
   241
kpeter@805
   242
    /// \brief Return the number of arcs on the found cycle.
kpeter@805
   243
    ///
kpeter@805
   244
    /// This function returns the number of arcs on the found cycle.
kpeter@805
   245
    ///
kpeter@807
   246
    /// \pre \ref run() or \ref findMinMean() must be called before
kpeter@805
   247
    /// using this function.
kpeter@805
   248
    int cycleArcNum() const {
kpeter@807
   249
      return _best_size;
kpeter@805
   250
    }
kpeter@805
   251
kpeter@805
   252
    /// \brief Return the mean length of the found cycle.
kpeter@805
   253
    ///
kpeter@805
   254
    /// This function returns the mean length of the found cycle.
kpeter@805
   255
    ///
kpeter@807
   256
    /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
kpeter@805
   257
    /// following code.
kpeter@805
   258
    /// \code
kpeter@807
   259
    ///   return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
kpeter@805
   260
    /// \endcode
kpeter@805
   261
    ///
kpeter@805
   262
    /// \pre \ref run() or \ref findMinMean() must be called before
kpeter@805
   263
    /// using this function.
kpeter@805
   264
    double cycleMean() const {
kpeter@807
   265
      return static_cast<double>(_best_length) / _best_size;
kpeter@805
   266
    }
kpeter@805
   267
kpeter@805
   268
    /// \brief Return the found cycle.
kpeter@805
   269
    ///
kpeter@805
   270
    /// This function returns a const reference to the path structure
kpeter@805
   271
    /// storing the found cycle.
kpeter@805
   272
    ///
kpeter@805
   273
    /// \pre \ref run() or \ref findCycle() must be called before using
kpeter@805
   274
    /// this function.
kpeter@805
   275
    ///
kpeter@805
   276
    /// \sa cyclePath()
kpeter@805
   277
    const Path& cycle() const {
kpeter@805
   278
      return *_cycle_path;
kpeter@805
   279
    }
kpeter@805
   280
kpeter@805
   281
    ///@}
kpeter@805
   282
kpeter@805
   283
  private:
kpeter@805
   284
kpeter@807
   285
    // Initialize
kpeter@807
   286
    void init() {
kpeter@807
   287
      _tol.epsilon(1e-6);
kpeter@807
   288
      if (!_cycle_path) {
kpeter@807
   289
        _local_path = true;
kpeter@807
   290
        _cycle_path = new Path;
kpeter@805
   291
      }
kpeter@807
   292
      _queue.resize(countNodes(_gr));
kpeter@807
   293
      _best_found = false;
kpeter@807
   294
      _best_length = 0;
kpeter@807
   295
      _best_size = 1;
kpeter@807
   296
      _cycle_path->clear();
kpeter@807
   297
    }
kpeter@807
   298
    
kpeter@807
   299
    // Find strongly connected components and initialize _comp_nodes
kpeter@807
   300
    // and _in_arcs
kpeter@807
   301
    void findComponents() {
kpeter@807
   302
      _comp_num = stronglyConnectedComponents(_gr, _comp);
kpeter@807
   303
      _comp_nodes.resize(_comp_num);
kpeter@807
   304
      if (_comp_num == 1) {
kpeter@807
   305
        _comp_nodes[0].clear();
kpeter@807
   306
        for (NodeIt n(_gr); n != INVALID; ++n) {
kpeter@807
   307
          _comp_nodes[0].push_back(n);
kpeter@807
   308
          _in_arcs[n].clear();
kpeter@807
   309
          for (InArcIt a(_gr, n); a != INVALID; ++a) {
kpeter@807
   310
            _in_arcs[n].push_back(a);
kpeter@807
   311
          }
kpeter@807
   312
        }
kpeter@807
   313
      } else {
kpeter@807
   314
        for (int i = 0; i < _comp_num; ++i)
kpeter@807
   315
          _comp_nodes[i].clear();
kpeter@807
   316
        for (NodeIt n(_gr); n != INVALID; ++n) {
kpeter@807
   317
          int k = _comp[n];
kpeter@807
   318
          _comp_nodes[k].push_back(n);
kpeter@807
   319
          _in_arcs[n].clear();
kpeter@807
   320
          for (InArcIt a(_gr, n); a != INVALID; ++a) {
kpeter@807
   321
            if (_comp[_gr.source(a)] == k) _in_arcs[n].push_back(a);
kpeter@807
   322
          }
kpeter@807
   323
        }
kpeter@805
   324
      }
kpeter@807
   325
    }
kpeter@807
   326
kpeter@807
   327
    // Build the policy graph in the given strongly connected component
kpeter@807
   328
    // (the out-degree of every node is 1)
kpeter@807
   329
    bool buildPolicyGraph(int comp) {
kpeter@807
   330
      _nodes = &(_comp_nodes[comp]);
kpeter@807
   331
      if (_nodes->size() < 1 ||
kpeter@807
   332
          (_nodes->size() == 1 && _in_arcs[(*_nodes)[0]].size() == 0)) {
kpeter@807
   333
        return false;
kpeter@805
   334
      }
kpeter@807
   335
      for (int i = 0; i < int(_nodes->size()); ++i) {
kpeter@807
   336
        _dist[(*_nodes)[i]] = std::numeric_limits<double>::max();
kpeter@807
   337
      }
kpeter@807
   338
      Node u, v;
kpeter@807
   339
      Arc e;
kpeter@807
   340
      for (int i = 0; i < int(_nodes->size()); ++i) {
kpeter@807
   341
        v = (*_nodes)[i];
kpeter@807
   342
        for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
kpeter@807
   343
          e = _in_arcs[v][j];
kpeter@807
   344
          u = _gr.source(e);
kpeter@807
   345
          if (_length[e] < _dist[u]) {
kpeter@807
   346
            _dist[u] = _length[e];
kpeter@807
   347
            _policy[u] = e;
kpeter@807
   348
          }
kpeter@805
   349
        }
kpeter@805
   350
      }
kpeter@805
   351
      return true;
kpeter@805
   352
    }
kpeter@805
   353
kpeter@807
   354
    // Find the minimum mean cycle in the policy graph
kpeter@807
   355
    void findPolicyCycle() {
kpeter@807
   356
      for (int i = 0; i < int(_nodes->size()); ++i) {
kpeter@807
   357
        _level[(*_nodes)[i]] = -1;
kpeter@807
   358
      }
kpeter@805
   359
      Value clength;
kpeter@805
   360
      int csize;
kpeter@805
   361
      Node u, v;
kpeter@807
   362
      _curr_found = false;
kpeter@807
   363
      for (int i = 0; i < int(_nodes->size()); ++i) {
kpeter@807
   364
        u = (*_nodes)[i];
kpeter@807
   365
        if (_level[u] >= 0) continue;
kpeter@807
   366
        for (; _level[u] < 0; u = _gr.target(_policy[u])) {
kpeter@807
   367
          _level[u] = i;
kpeter@807
   368
        }
kpeter@807
   369
        if (_level[u] == i) {
kpeter@807
   370
          // A cycle is found
kpeter@807
   371
          clength = _length[_policy[u]];
kpeter@807
   372
          csize = 1;
kpeter@807
   373
          for (v = u; (v = _gr.target(_policy[v])) != u; ) {
kpeter@807
   374
            clength += _length[_policy[v]];
kpeter@807
   375
            ++csize;
kpeter@805
   376
          }
kpeter@807
   377
          if ( !_curr_found ||
kpeter@807
   378
               (clength * _curr_size < _curr_length * csize) ) {
kpeter@807
   379
            _curr_found = true;
kpeter@807
   380
            _curr_length = clength;
kpeter@807
   381
            _curr_size = csize;
kpeter@807
   382
            _curr_node = u;
kpeter@805
   383
          }
kpeter@805
   384
        }
kpeter@805
   385
      }
kpeter@805
   386
    }
kpeter@805
   387
kpeter@807
   388
    // Contract the policy graph and compute node distances
kpeter@805
   389
    bool computeNodeDistances() {
kpeter@807
   390
      // Find the component of the main cycle and compute node distances
kpeter@807
   391
      // using reverse BFS
kpeter@807
   392
      for (int i = 0; i < int(_nodes->size()); ++i) {
kpeter@807
   393
        _reached[(*_nodes)[i]] = false;
kpeter@807
   394
      }
kpeter@807
   395
      double curr_mean = double(_curr_length) / _curr_size;
kpeter@807
   396
      _qfront = _qback = 0;
kpeter@807
   397
      _queue[0] = _curr_node;
kpeter@807
   398
      _reached[_curr_node] = true;
kpeter@807
   399
      _dist[_curr_node] = 0;
kpeter@805
   400
      Node u, v;
kpeter@807
   401
      Arc e;
kpeter@807
   402
      while (_qfront <= _qback) {
kpeter@807
   403
        v = _queue[_qfront++];
kpeter@807
   404
        for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
kpeter@807
   405
          e = _in_arcs[v][j];
kpeter@805
   406
          u = _gr.source(e);
kpeter@807
   407
          if (_policy[u] == e && !_reached[u]) {
kpeter@807
   408
            _reached[u] = true;
kpeter@807
   409
            _dist[u] = _dist[v] + _length[e] - curr_mean;
kpeter@807
   410
            _queue[++_qback] = u;
kpeter@805
   411
          }
kpeter@805
   412
        }
kpeter@805
   413
      }
kpeter@807
   414
kpeter@807
   415
      // Connect all other nodes to this component and compute node
kpeter@807
   416
      // distances using reverse BFS
kpeter@807
   417
      _qfront = 0;
kpeter@807
   418
      while (_qback < int(_nodes->size())-1) {
kpeter@807
   419
        v = _queue[_qfront++];
kpeter@807
   420
        for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
kpeter@807
   421
          e = _in_arcs[v][j];
kpeter@807
   422
          u = _gr.source(e);
kpeter@807
   423
          if (!_reached[u]) {
kpeter@807
   424
            _reached[u] = true;
kpeter@807
   425
            _policy[u] = e;
kpeter@807
   426
            _dist[u] = _dist[v] + _length[e] - curr_mean;
kpeter@807
   427
            _queue[++_qback] = u;
kpeter@807
   428
          }
kpeter@807
   429
        }
kpeter@807
   430
      }
kpeter@807
   431
kpeter@807
   432
      // Improve node distances
kpeter@805
   433
      bool improved = false;
kpeter@807
   434
      for (int i = 0; i < int(_nodes->size()); ++i) {
kpeter@807
   435
        v = (*_nodes)[i];
kpeter@807
   436
        for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
kpeter@807
   437
          e = _in_arcs[v][j];
kpeter@807
   438
          u = _gr.source(e);
kpeter@807
   439
          double delta = _dist[v] + _length[e] - curr_mean;
kpeter@807
   440
          if (_tol.less(delta, _dist[u])) {
kpeter@807
   441
            _dist[u] = delta;
kpeter@807
   442
            _policy[u] = e;
kpeter@807
   443
            improved = true;
kpeter@807
   444
          }
kpeter@805
   445
        }
kpeter@805
   446
      }
kpeter@805
   447
      return improved;
kpeter@805
   448
    }
kpeter@805
   449
kpeter@805
   450
  }; //class MinMeanCycle
kpeter@805
   451
kpeter@805
   452
  ///@}
kpeter@805
   453
kpeter@805
   454
} //namespace lemon
kpeter@805
   455
kpeter@805
   456
#endif //LEMON_MIN_MEAN_CYCLE_H