lemon/karp.h
author Peter Kovacs <kpeter@inf.elte.hu>
Fri, 26 Feb 2010 23:53:09 +0100
changeset 914 aa8c9008b3de
parent 891 75e6020b19b1
child 941 a93f1a27d831
permissions -rw-r--r--
Better return type for cycleLength() functions (#179)
in the min mean cycle algorithms.

The original Value type is used instead of the LargeValue type,
which is introduced for internal computations.
kpeter@812
     1
/* -*- C++ -*-
kpeter@812
     2
 *
kpeter@812
     3
 * This file is a part of LEMON, a generic C++ optimization library
kpeter@812
     4
 *
kpeter@812
     5
 * Copyright (C) 2003-2008
kpeter@812
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
kpeter@812
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
kpeter@812
     8
 *
kpeter@812
     9
 * Permission to use, modify and distribute this software is granted
kpeter@812
    10
 * provided that this copyright notice appears in all copies. For
kpeter@812
    11
 * precise terms see the accompanying LICENSE file.
kpeter@812
    12
 *
kpeter@812
    13
 * This software is provided "AS IS" with no warranty of any kind,
kpeter@812
    14
 * express or implied, and with no claim as to its suitability for any
kpeter@812
    15
 * purpose.
kpeter@812
    16
 *
kpeter@812
    17
 */
kpeter@812
    18
kpeter@812
    19
#ifndef LEMON_KARP_H
kpeter@812
    20
#define LEMON_KARP_H
kpeter@812
    21
kpeter@815
    22
/// \ingroup min_mean_cycle
kpeter@812
    23
///
kpeter@812
    24
/// \file
kpeter@812
    25
/// \brief Karp's algorithm for finding a minimum mean cycle.
kpeter@812
    26
kpeter@812
    27
#include <vector>
kpeter@812
    28
#include <limits>
kpeter@812
    29
#include <lemon/core.h>
kpeter@812
    30
#include <lemon/path.h>
kpeter@812
    31
#include <lemon/tolerance.h>
kpeter@812
    32
#include <lemon/connectivity.h>
kpeter@812
    33
kpeter@812
    34
namespace lemon {
kpeter@812
    35
kpeter@812
    36
  /// \brief Default traits class of Karp algorithm.
kpeter@812
    37
  ///
kpeter@812
    38
  /// Default traits class of Karp algorithm.
kpeter@812
    39
  /// \tparam GR The type of the digraph.
kpeter@812
    40
  /// \tparam LEN The type of the length map.
kpeter@812
    41
  /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
kpeter@812
    42
#ifdef DOXYGEN
kpeter@812
    43
  template <typename GR, typename LEN>
kpeter@812
    44
#else
kpeter@812
    45
  template <typename GR, typename LEN,
kpeter@812
    46
    bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
kpeter@812
    47
#endif
kpeter@812
    48
  struct KarpDefaultTraits
kpeter@812
    49
  {
kpeter@812
    50
    /// The type of the digraph
kpeter@812
    51
    typedef GR Digraph;
kpeter@812
    52
    /// The type of the length map
kpeter@812
    53
    typedef LEN LengthMap;
kpeter@812
    54
    /// The type of the arc lengths
kpeter@812
    55
    typedef typename LengthMap::Value Value;
kpeter@812
    56
kpeter@812
    57
    /// \brief The large value type used for internal computations
kpeter@812
    58
    ///
kpeter@812
    59
    /// The large value type used for internal computations.
kpeter@812
    60
    /// It is \c long \c long if the \c Value type is integer,
kpeter@812
    61
    /// otherwise it is \c double.
kpeter@812
    62
    /// \c Value must be convertible to \c LargeValue.
kpeter@812
    63
    typedef double LargeValue;
kpeter@812
    64
kpeter@812
    65
    /// The tolerance type used for internal computations
kpeter@812
    66
    typedef lemon::Tolerance<LargeValue> Tolerance;
kpeter@812
    67
kpeter@812
    68
    /// \brief The path type of the found cycles
kpeter@812
    69
    ///
kpeter@812
    70
    /// The path type of the found cycles.
kpeter@812
    71
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
kpeter@819
    72
    /// and it must have an \c addFront() function.
kpeter@812
    73
    typedef lemon::Path<Digraph> Path;
kpeter@812
    74
  };
kpeter@812
    75
kpeter@812
    76
  // Default traits class for integer value types
kpeter@812
    77
  template <typename GR, typename LEN>
kpeter@812
    78
  struct KarpDefaultTraits<GR, LEN, true>
kpeter@812
    79
  {
kpeter@812
    80
    typedef GR Digraph;
kpeter@812
    81
    typedef LEN LengthMap;
kpeter@812
    82
    typedef typename LengthMap::Value Value;
kpeter@812
    83
#ifdef LEMON_HAVE_LONG_LONG
kpeter@812
    84
    typedef long long LargeValue;
kpeter@812
    85
#else
kpeter@812
    86
    typedef long LargeValue;
kpeter@812
    87
#endif
kpeter@812
    88
    typedef lemon::Tolerance<LargeValue> Tolerance;
kpeter@812
    89
    typedef lemon::Path<Digraph> Path;
kpeter@812
    90
  };
kpeter@812
    91
kpeter@812
    92
kpeter@815
    93
  /// \addtogroup min_mean_cycle
kpeter@812
    94
  /// @{
kpeter@812
    95
kpeter@812
    96
  /// \brief Implementation of Karp's algorithm for finding a minimum
kpeter@812
    97
  /// mean cycle.
kpeter@812
    98
  ///
kpeter@812
    99
  /// This class implements Karp's algorithm for finding a directed
kpeter@818
   100
  /// cycle of minimum mean length (cost) in a digraph
kpeter@818
   101
  /// \ref amo93networkflows, \ref dasdan98minmeancycle.
kpeter@815
   102
  /// It runs in time O(ne) and uses space O(n<sup>2</sup>+e).
kpeter@812
   103
  ///
kpeter@812
   104
  /// \tparam GR The type of the digraph the algorithm runs on.
kpeter@812
   105
  /// \tparam LEN The type of the length map. The default
kpeter@812
   106
  /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
kpeter@891
   107
  /// \tparam TR The traits class that defines various types used by the
kpeter@891
   108
  /// algorithm. By default, it is \ref KarpDefaultTraits
kpeter@891
   109
  /// "KarpDefaultTraits<GR, LEN>".
kpeter@891
   110
  /// In most cases, this parameter should not be set directly,
kpeter@891
   111
  /// consider to use the named template parameters instead.
kpeter@812
   112
#ifdef DOXYGEN
kpeter@812
   113
  template <typename GR, typename LEN, typename TR>
kpeter@812
   114
#else
kpeter@812
   115
  template < typename GR,
kpeter@812
   116
             typename LEN = typename GR::template ArcMap<int>,
kpeter@812
   117
             typename TR = KarpDefaultTraits<GR, LEN> >
kpeter@812
   118
#endif
kpeter@812
   119
  class Karp
kpeter@812
   120
  {
kpeter@812
   121
  public:
kpeter@812
   122
kpeter@812
   123
    /// The type of the digraph
kpeter@812
   124
    typedef typename TR::Digraph Digraph;
kpeter@812
   125
    /// The type of the length map
kpeter@812
   126
    typedef typename TR::LengthMap LengthMap;
kpeter@812
   127
    /// The type of the arc lengths
kpeter@812
   128
    typedef typename TR::Value Value;
kpeter@812
   129
kpeter@812
   130
    /// \brief The large value type
kpeter@812
   131
    ///
kpeter@812
   132
    /// The large value type used for internal computations.
kpeter@891
   133
    /// By default, it is \c long \c long if the \c Value type is integer,
kpeter@812
   134
    /// otherwise it is \c double.
kpeter@812
   135
    typedef typename TR::LargeValue LargeValue;
kpeter@812
   136
kpeter@812
   137
    /// The tolerance type
kpeter@812
   138
    typedef typename TR::Tolerance Tolerance;
kpeter@812
   139
kpeter@812
   140
    /// \brief The path type of the found cycles
kpeter@812
   141
    ///
kpeter@812
   142
    /// The path type of the found cycles.
kpeter@812
   143
    /// Using the \ref KarpDefaultTraits "default traits class",
kpeter@812
   144
    /// it is \ref lemon::Path "Path<Digraph>".
kpeter@812
   145
    typedef typename TR::Path Path;
kpeter@812
   146
kpeter@812
   147
    /// The \ref KarpDefaultTraits "traits class" of the algorithm
kpeter@812
   148
    typedef TR Traits;
kpeter@812
   149
kpeter@812
   150
  private:
kpeter@812
   151
kpeter@812
   152
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
kpeter@812
   153
kpeter@812
   154
    // Data sturcture for path data
kpeter@812
   155
    struct PathData
kpeter@812
   156
    {
kpeter@812
   157
      LargeValue dist;
kpeter@812
   158
      Arc pred;
kpeter@814
   159
      PathData(LargeValue d, Arc p = INVALID) :
kpeter@814
   160
        dist(d), pred(p) {}
kpeter@812
   161
    };
kpeter@812
   162
kpeter@812
   163
    typedef typename Digraph::template NodeMap<std::vector<PathData> >
kpeter@812
   164
      PathDataNodeMap;
kpeter@812
   165
kpeter@812
   166
  private:
kpeter@812
   167
kpeter@812
   168
    // The digraph the algorithm runs on
kpeter@812
   169
    const Digraph &_gr;
kpeter@812
   170
    // The length of the arcs
kpeter@812
   171
    const LengthMap &_length;
kpeter@812
   172
kpeter@812
   173
    // Data for storing the strongly connected components
kpeter@812
   174
    int _comp_num;
kpeter@812
   175
    typename Digraph::template NodeMap<int> _comp;
kpeter@812
   176
    std::vector<std::vector<Node> > _comp_nodes;
kpeter@812
   177
    std::vector<Node>* _nodes;
kpeter@812
   178
    typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs;
kpeter@812
   179
kpeter@812
   180
    // Data for the found cycle
kpeter@812
   181
    LargeValue _cycle_length;
kpeter@812
   182
    int _cycle_size;
kpeter@812
   183
    Node _cycle_node;
kpeter@812
   184
kpeter@812
   185
    Path *_cycle_path;
kpeter@812
   186
    bool _local_path;
kpeter@812
   187
kpeter@812
   188
    // Node map for storing path data
kpeter@812
   189
    PathDataNodeMap _data;
kpeter@812
   190
    // The processed nodes in the last round
kpeter@812
   191
    std::vector<Node> _process;
kpeter@812
   192
kpeter@812
   193
    Tolerance _tolerance;
kpeter@814
   194
    
kpeter@814
   195
    // Infinite constant
kpeter@814
   196
    const LargeValue INF;
kpeter@812
   197
kpeter@812
   198
  public:
kpeter@812
   199
kpeter@812
   200
    /// \name Named Template Parameters
kpeter@812
   201
    /// @{
kpeter@812
   202
kpeter@812
   203
    template <typename T>
kpeter@812
   204
    struct SetLargeValueTraits : public Traits {
kpeter@812
   205
      typedef T LargeValue;
kpeter@812
   206
      typedef lemon::Tolerance<T> Tolerance;
kpeter@812
   207
    };
kpeter@812
   208
kpeter@812
   209
    /// \brief \ref named-templ-param "Named parameter" for setting
kpeter@812
   210
    /// \c LargeValue type.
kpeter@812
   211
    ///
kpeter@812
   212
    /// \ref named-templ-param "Named parameter" for setting \c LargeValue
kpeter@812
   213
    /// type. It is used for internal computations in the algorithm.
kpeter@812
   214
    template <typename T>
kpeter@812
   215
    struct SetLargeValue
kpeter@812
   216
      : public Karp<GR, LEN, SetLargeValueTraits<T> > {
kpeter@812
   217
      typedef Karp<GR, LEN, SetLargeValueTraits<T> > Create;
kpeter@812
   218
    };
kpeter@812
   219
kpeter@812
   220
    template <typename T>
kpeter@812
   221
    struct SetPathTraits : public Traits {
kpeter@812
   222
      typedef T Path;
kpeter@812
   223
    };
kpeter@812
   224
kpeter@812
   225
    /// \brief \ref named-templ-param "Named parameter" for setting
kpeter@812
   226
    /// \c %Path type.
kpeter@812
   227
    ///
kpeter@812
   228
    /// \ref named-templ-param "Named parameter" for setting the \c %Path
kpeter@812
   229
    /// type of the found cycles.
kpeter@812
   230
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
kpeter@812
   231
    /// and it must have an \c addFront() function.
kpeter@812
   232
    template <typename T>
kpeter@812
   233
    struct SetPath
kpeter@812
   234
      : public Karp<GR, LEN, SetPathTraits<T> > {
kpeter@812
   235
      typedef Karp<GR, LEN, SetPathTraits<T> > Create;
kpeter@812
   236
    };
kpeter@812
   237
kpeter@812
   238
    /// @}
kpeter@812
   239
kpeter@812
   240
  public:
kpeter@812
   241
kpeter@812
   242
    /// \brief Constructor.
kpeter@812
   243
    ///
kpeter@812
   244
    /// The constructor of the class.
kpeter@812
   245
    ///
kpeter@812
   246
    /// \param digraph The digraph the algorithm runs on.
kpeter@812
   247
    /// \param length The lengths (costs) of the arcs.
kpeter@812
   248
    Karp( const Digraph &digraph,
kpeter@812
   249
          const LengthMap &length ) :
kpeter@812
   250
      _gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph),
kpeter@812
   251
      _cycle_length(0), _cycle_size(1), _cycle_node(INVALID),
kpeter@814
   252
      _cycle_path(NULL), _local_path(false), _data(digraph),
kpeter@814
   253
      INF(std::numeric_limits<LargeValue>::has_infinity ?
kpeter@814
   254
          std::numeric_limits<LargeValue>::infinity() :
kpeter@814
   255
          std::numeric_limits<LargeValue>::max())
kpeter@812
   256
    {}
kpeter@812
   257
kpeter@812
   258
    /// Destructor.
kpeter@812
   259
    ~Karp() {
kpeter@812
   260
      if (_local_path) delete _cycle_path;
kpeter@812
   261
    }
kpeter@812
   262
kpeter@812
   263
    /// \brief Set the path structure for storing the found cycle.
kpeter@812
   264
    ///
kpeter@812
   265
    /// This function sets an external path structure for storing the
kpeter@812
   266
    /// found cycle.
kpeter@812
   267
    ///
kpeter@812
   268
    /// If you don't call this function before calling \ref run() or
kpeter@812
   269
    /// \ref findMinMean(), it will allocate a local \ref Path "path"
kpeter@812
   270
    /// structure. The destuctor deallocates this automatically
kpeter@812
   271
    /// allocated object, of course.
kpeter@812
   272
    ///
kpeter@812
   273
    /// \note The algorithm calls only the \ref lemon::Path::addFront()
kpeter@812
   274
    /// "addFront()" function of the given path structure.
kpeter@812
   275
    ///
kpeter@812
   276
    /// \return <tt>(*this)</tt>
kpeter@812
   277
    Karp& cycle(Path &path) {
kpeter@812
   278
      if (_local_path) {
kpeter@812
   279
        delete _cycle_path;
kpeter@812
   280
        _local_path = false;
kpeter@812
   281
      }
kpeter@812
   282
      _cycle_path = &path;
kpeter@812
   283
      return *this;
kpeter@812
   284
    }
kpeter@812
   285
kpeter@816
   286
    /// \brief Set the tolerance used by the algorithm.
kpeter@816
   287
    ///
kpeter@816
   288
    /// This function sets the tolerance object used by the algorithm.
kpeter@816
   289
    ///
kpeter@816
   290
    /// \return <tt>(*this)</tt>
kpeter@816
   291
    Karp& tolerance(const Tolerance& tolerance) {
kpeter@816
   292
      _tolerance = tolerance;
kpeter@816
   293
      return *this;
kpeter@816
   294
    }
kpeter@816
   295
kpeter@816
   296
    /// \brief Return a const reference to the tolerance.
kpeter@816
   297
    ///
kpeter@816
   298
    /// This function returns a const reference to the tolerance object
kpeter@816
   299
    /// used by the algorithm.
kpeter@816
   300
    const Tolerance& tolerance() const {
kpeter@816
   301
      return _tolerance;
kpeter@816
   302
    }
kpeter@816
   303
kpeter@812
   304
    /// \name Execution control
kpeter@812
   305
    /// The simplest way to execute the algorithm is to call the \ref run()
kpeter@812
   306
    /// function.\n
kpeter@812
   307
    /// If you only need the minimum mean length, you may call
kpeter@812
   308
    /// \ref findMinMean().
kpeter@812
   309
kpeter@812
   310
    /// @{
kpeter@812
   311
kpeter@812
   312
    /// \brief Run the algorithm.
kpeter@812
   313
    ///
kpeter@812
   314
    /// This function runs the algorithm.
kpeter@812
   315
    /// It can be called more than once (e.g. if the underlying digraph
kpeter@812
   316
    /// and/or the arc lengths have been modified).
kpeter@812
   317
    ///
kpeter@812
   318
    /// \return \c true if a directed cycle exists in the digraph.
kpeter@812
   319
    ///
kpeter@812
   320
    /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
kpeter@812
   321
    /// \code
kpeter@812
   322
    ///   return mmc.findMinMean() && mmc.findCycle();
kpeter@812
   323
    /// \endcode
kpeter@812
   324
    bool run() {
kpeter@812
   325
      return findMinMean() && findCycle();
kpeter@812
   326
    }
kpeter@812
   327
kpeter@812
   328
    /// \brief Find the minimum cycle mean.
kpeter@812
   329
    ///
kpeter@812
   330
    /// This function finds the minimum mean length of the directed
kpeter@812
   331
    /// cycles in the digraph.
kpeter@812
   332
    ///
kpeter@812
   333
    /// \return \c true if a directed cycle exists in the digraph.
kpeter@812
   334
    bool findMinMean() {
kpeter@812
   335
      // Initialization and find strongly connected components
kpeter@812
   336
      init();
kpeter@812
   337
      findComponents();
kpeter@812
   338
      
kpeter@812
   339
      // Find the minimum cycle mean in the components
kpeter@812
   340
      for (int comp = 0; comp < _comp_num; ++comp) {
kpeter@812
   341
        if (!initComponent(comp)) continue;
kpeter@812
   342
        processRounds();
kpeter@812
   343
        updateMinMean();
kpeter@812
   344
      }
kpeter@812
   345
      return (_cycle_node != INVALID);
kpeter@812
   346
    }
kpeter@812
   347
kpeter@812
   348
    /// \brief Find a minimum mean directed cycle.
kpeter@812
   349
    ///
kpeter@812
   350
    /// This function finds a directed cycle of minimum mean length
kpeter@812
   351
    /// in the digraph using the data computed by findMinMean().
kpeter@812
   352
    ///
kpeter@812
   353
    /// \return \c true if a directed cycle exists in the digraph.
kpeter@812
   354
    ///
kpeter@812
   355
    /// \pre \ref findMinMean() must be called before using this function.
kpeter@812
   356
    bool findCycle() {
kpeter@812
   357
      if (_cycle_node == INVALID) return false;
kpeter@812
   358
      IntNodeMap reached(_gr, -1);
kpeter@812
   359
      int r = _data[_cycle_node].size();
kpeter@812
   360
      Node u = _cycle_node;
kpeter@812
   361
      while (reached[u] < 0) {
kpeter@812
   362
        reached[u] = --r;
kpeter@812
   363
        u = _gr.source(_data[u][r].pred);
kpeter@812
   364
      }
kpeter@812
   365
      r = reached[u];
kpeter@812
   366
      Arc e = _data[u][r].pred;
kpeter@812
   367
      _cycle_path->addFront(e);
kpeter@812
   368
      _cycle_length = _length[e];
kpeter@812
   369
      _cycle_size = 1;
kpeter@812
   370
      Node v;
kpeter@812
   371
      while ((v = _gr.source(e)) != u) {
kpeter@812
   372
        e = _data[v][--r].pred;
kpeter@812
   373
        _cycle_path->addFront(e);
kpeter@812
   374
        _cycle_length += _length[e];
kpeter@812
   375
        ++_cycle_size;
kpeter@812
   376
      }
kpeter@812
   377
      return true;
kpeter@812
   378
    }
kpeter@812
   379
kpeter@812
   380
    /// @}
kpeter@812
   381
kpeter@812
   382
    /// \name Query Functions
kpeter@812
   383
    /// The results of the algorithm can be obtained using these
kpeter@812
   384
    /// functions.\n
kpeter@812
   385
    /// The algorithm should be executed before using them.
kpeter@812
   386
kpeter@812
   387
    /// @{
kpeter@812
   388
kpeter@812
   389
    /// \brief Return the total length of the found cycle.
kpeter@812
   390
    ///
kpeter@812
   391
    /// This function returns the total length of the found cycle.
kpeter@812
   392
    ///
kpeter@812
   393
    /// \pre \ref run() or \ref findMinMean() must be called before
kpeter@812
   394
    /// using this function.
kpeter@914
   395
    Value cycleLength() const {
kpeter@914
   396
      return static_cast<Value>(_cycle_length);
kpeter@812
   397
    }
kpeter@812
   398
kpeter@812
   399
    /// \brief Return the number of arcs on the found cycle.
kpeter@812
   400
    ///
kpeter@812
   401
    /// This function returns the number of arcs on the found cycle.
kpeter@812
   402
    ///
kpeter@812
   403
    /// \pre \ref run() or \ref findMinMean() must be called before
kpeter@812
   404
    /// using this function.
kpeter@812
   405
    int cycleArcNum() const {
kpeter@812
   406
      return _cycle_size;
kpeter@812
   407
    }
kpeter@812
   408
kpeter@812
   409
    /// \brief Return the mean length of the found cycle.
kpeter@812
   410
    ///
kpeter@812
   411
    /// This function returns the mean length of the found cycle.
kpeter@812
   412
    ///
kpeter@812
   413
    /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
kpeter@812
   414
    /// following code.
kpeter@812
   415
    /// \code
kpeter@812
   416
    ///   return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
kpeter@812
   417
    /// \endcode
kpeter@812
   418
    ///
kpeter@812
   419
    /// \pre \ref run() or \ref findMinMean() must be called before
kpeter@812
   420
    /// using this function.
kpeter@812
   421
    double cycleMean() const {
kpeter@812
   422
      return static_cast<double>(_cycle_length) / _cycle_size;
kpeter@812
   423
    }
kpeter@812
   424
kpeter@812
   425
    /// \brief Return the found cycle.
kpeter@812
   426
    ///
kpeter@812
   427
    /// This function returns a const reference to the path structure
kpeter@812
   428
    /// storing the found cycle.
kpeter@812
   429
    ///
kpeter@812
   430
    /// \pre \ref run() or \ref findCycle() must be called before using
kpeter@812
   431
    /// this function.
kpeter@812
   432
    const Path& cycle() const {
kpeter@812
   433
      return *_cycle_path;
kpeter@812
   434
    }
kpeter@812
   435
kpeter@812
   436
    ///@}
kpeter@812
   437
kpeter@812
   438
  private:
kpeter@812
   439
kpeter@812
   440
    // Initialization
kpeter@812
   441
    void init() {
kpeter@812
   442
      if (!_cycle_path) {
kpeter@812
   443
        _local_path = true;
kpeter@812
   444
        _cycle_path = new Path;
kpeter@812
   445
      }
kpeter@812
   446
      _cycle_path->clear();
kpeter@812
   447
      _cycle_length = 0;
kpeter@812
   448
      _cycle_size = 1;
kpeter@812
   449
      _cycle_node = INVALID;
kpeter@812
   450
      for (NodeIt u(_gr); u != INVALID; ++u)
kpeter@812
   451
        _data[u].clear();
kpeter@812
   452
    }
kpeter@812
   453
kpeter@812
   454
    // Find strongly connected components and initialize _comp_nodes
kpeter@812
   455
    // and _out_arcs
kpeter@812
   456
    void findComponents() {
kpeter@812
   457
      _comp_num = stronglyConnectedComponents(_gr, _comp);
kpeter@812
   458
      _comp_nodes.resize(_comp_num);
kpeter@812
   459
      if (_comp_num == 1) {
kpeter@812
   460
        _comp_nodes[0].clear();
kpeter@812
   461
        for (NodeIt n(_gr); n != INVALID; ++n) {
kpeter@812
   462
          _comp_nodes[0].push_back(n);
kpeter@812
   463
          _out_arcs[n].clear();
kpeter@812
   464
          for (OutArcIt a(_gr, n); a != INVALID; ++a) {
kpeter@812
   465
            _out_arcs[n].push_back(a);
kpeter@812
   466
          }
kpeter@812
   467
        }
kpeter@812
   468
      } else {
kpeter@812
   469
        for (int i = 0; i < _comp_num; ++i)
kpeter@812
   470
          _comp_nodes[i].clear();
kpeter@812
   471
        for (NodeIt n(_gr); n != INVALID; ++n) {
kpeter@812
   472
          int k = _comp[n];
kpeter@812
   473
          _comp_nodes[k].push_back(n);
kpeter@812
   474
          _out_arcs[n].clear();
kpeter@812
   475
          for (OutArcIt a(_gr, n); a != INVALID; ++a) {
kpeter@812
   476
            if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a);
kpeter@812
   477
          }
kpeter@812
   478
        }
kpeter@812
   479
      }
kpeter@812
   480
    }
kpeter@812
   481
kpeter@812
   482
    // Initialize path data for the current component
kpeter@812
   483
    bool initComponent(int comp) {
kpeter@812
   484
      _nodes = &(_comp_nodes[comp]);
kpeter@812
   485
      int n = _nodes->size();
kpeter@812
   486
      if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) {
kpeter@812
   487
        return false;
kpeter@812
   488
      }      
kpeter@812
   489
      for (int i = 0; i < n; ++i) {
kpeter@814
   490
        _data[(*_nodes)[i]].resize(n + 1, PathData(INF));
kpeter@812
   491
      }
kpeter@812
   492
      return true;
kpeter@812
   493
    }
kpeter@812
   494
kpeter@812
   495
    // Process all rounds of computing path data for the current component.
kpeter@812
   496
    // _data[v][k] is the length of a shortest directed walk from the root
kpeter@812
   497
    // node to node v containing exactly k arcs.
kpeter@812
   498
    void processRounds() {
kpeter@812
   499
      Node start = (*_nodes)[0];
kpeter@814
   500
      _data[start][0] = PathData(0);
kpeter@812
   501
      _process.clear();
kpeter@812
   502
      _process.push_back(start);
kpeter@812
   503
kpeter@812
   504
      int k, n = _nodes->size();
kpeter@812
   505
      for (k = 1; k <= n && int(_process.size()) < n; ++k) {
kpeter@812
   506
        processNextBuildRound(k);
kpeter@812
   507
      }
kpeter@812
   508
      for ( ; k <= n; ++k) {
kpeter@812
   509
        processNextFullRound(k);
kpeter@812
   510
      }
kpeter@812
   511
    }
kpeter@812
   512
kpeter@812
   513
    // Process one round and rebuild _process
kpeter@812
   514
    void processNextBuildRound(int k) {
kpeter@812
   515
      std::vector<Node> next;
kpeter@812
   516
      Node u, v;
kpeter@812
   517
      Arc e;
kpeter@812
   518
      LargeValue d;
kpeter@812
   519
      for (int i = 0; i < int(_process.size()); ++i) {
kpeter@812
   520
        u = _process[i];
kpeter@812
   521
        for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
kpeter@812
   522
          e = _out_arcs[u][j];
kpeter@812
   523
          v = _gr.target(e);
kpeter@812
   524
          d = _data[u][k-1].dist + _length[e];
kpeter@814
   525
          if (_tolerance.less(d, _data[v][k].dist)) {
kpeter@814
   526
            if (_data[v][k].dist == INF) next.push_back(v);
kpeter@814
   527
            _data[v][k] = PathData(d, e);
kpeter@812
   528
          }
kpeter@812
   529
        }
kpeter@812
   530
      }
kpeter@812
   531
      _process.swap(next);
kpeter@812
   532
    }
kpeter@812
   533
kpeter@812
   534
    // Process one round using _nodes instead of _process
kpeter@812
   535
    void processNextFullRound(int k) {
kpeter@812
   536
      Node u, v;
kpeter@812
   537
      Arc e;
kpeter@812
   538
      LargeValue d;
kpeter@812
   539
      for (int i = 0; i < int(_nodes->size()); ++i) {
kpeter@812
   540
        u = (*_nodes)[i];
kpeter@812
   541
        for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
kpeter@812
   542
          e = _out_arcs[u][j];
kpeter@812
   543
          v = _gr.target(e);
kpeter@812
   544
          d = _data[u][k-1].dist + _length[e];
kpeter@814
   545
          if (_tolerance.less(d, _data[v][k].dist)) {
kpeter@814
   546
            _data[v][k] = PathData(d, e);
kpeter@812
   547
          }
kpeter@812
   548
        }
kpeter@812
   549
      }
kpeter@812
   550
    }
kpeter@812
   551
kpeter@812
   552
    // Update the minimum cycle mean
kpeter@812
   553
    void updateMinMean() {
kpeter@812
   554
      int n = _nodes->size();
kpeter@812
   555
      for (int i = 0; i < n; ++i) {
kpeter@812
   556
        Node u = (*_nodes)[i];
kpeter@814
   557
        if (_data[u][n].dist == INF) continue;
kpeter@812
   558
        LargeValue length, max_length = 0;
kpeter@812
   559
        int size, max_size = 1;
kpeter@812
   560
        bool found_curr = false;
kpeter@812
   561
        for (int k = 0; k < n; ++k) {
kpeter@814
   562
          if (_data[u][k].dist == INF) continue;
kpeter@812
   563
          length = _data[u][n].dist - _data[u][k].dist;
kpeter@812
   564
          size = n - k;
kpeter@812
   565
          if (!found_curr || length * max_size > max_length * size) {
kpeter@812
   566
            found_curr = true;
kpeter@812
   567
            max_length = length;
kpeter@812
   568
            max_size = size;
kpeter@812
   569
          }
kpeter@812
   570
        }
kpeter@812
   571
        if ( found_curr && (_cycle_node == INVALID ||
kpeter@812
   572
             max_length * _cycle_size < _cycle_length * max_size) ) {
kpeter@812
   573
          _cycle_length = max_length;
kpeter@812
   574
          _cycle_size = max_size;
kpeter@812
   575
          _cycle_node = u;
kpeter@812
   576
        }
kpeter@812
   577
      }
kpeter@812
   578
    }
kpeter@812
   579
kpeter@812
   580
  }; //class Karp
kpeter@812
   581
kpeter@812
   582
  ///@}
kpeter@812
   583
kpeter@812
   584
} //namespace lemon
kpeter@812
   585
kpeter@812
   586
#endif //LEMON_KARP_H