lemon/network_simplex.h
author Peter Kovacs <kpeter@inf.elte.hu>
Sat, 20 Feb 2010 18:39:03 +0100
changeset 910 f3bc4e9b5f3a
parent 878 4b1b378823dc
child 911 2914b6f0fde0
permissions -rw-r--r--
New heuristics for MCF algorithms (#340)
and some implementation improvements.

- A useful heuristic is added to NetworkSimplex to make the
initial pivots faster.
- A powerful global update heuristic is added to CostScaling
and the implementation is reworked with various improvements.
- Better relabeling in CostScaling to improve numerical stability
and make the code faster.
- A small improvement is made in CapacityScaling for better
delta computation.
- Add notes to the classes about the usage of vector<char> instead
of vector<bool> for efficiency reasons.
kpeter@648
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
kpeter@648
     2
 *
kpeter@648
     3
 * This file is a part of LEMON, a generic C++ optimization library.
kpeter@648
     4
 *
kpeter@648
     5
 * Copyright (C) 2003-2009
kpeter@648
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
kpeter@648
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
kpeter@648
     8
 *
kpeter@648
     9
 * Permission to use, modify and distribute this software is granted
kpeter@648
    10
 * provided that this copyright notice appears in all copies. For
kpeter@648
    11
 * precise terms see the accompanying LICENSE file.
kpeter@648
    12
 *
kpeter@648
    13
 * This software is provided "AS IS" with no warranty of any kind,
kpeter@648
    14
 * express or implied, and with no claim as to its suitability for any
kpeter@648
    15
 * purpose.
kpeter@648
    16
 *
kpeter@648
    17
 */
kpeter@648
    18
kpeter@648
    19
#ifndef LEMON_NETWORK_SIMPLEX_H
kpeter@648
    20
#define LEMON_NETWORK_SIMPLEX_H
kpeter@648
    21
kpeter@710
    22
/// \ingroup min_cost_flow_algs
kpeter@648
    23
///
kpeter@648
    24
/// \file
kpeter@652
    25
/// \brief Network Simplex algorithm for finding a minimum cost flow.
kpeter@648
    26
kpeter@648
    27
#include <vector>
kpeter@648
    28
#include <limits>
kpeter@648
    29
#include <algorithm>
kpeter@648
    30
kpeter@650
    31
#include <lemon/core.h>
kpeter@648
    32
#include <lemon/math.h>
kpeter@648
    33
kpeter@648
    34
namespace lemon {
kpeter@648
    35
kpeter@710
    36
  /// \addtogroup min_cost_flow_algs
kpeter@648
    37
  /// @{
kpeter@648
    38
kpeter@652
    39
  /// \brief Implementation of the primal Network Simplex algorithm
kpeter@648
    40
  /// for finding a \ref min_cost_flow "minimum cost flow".
kpeter@648
    41
  ///
kpeter@652
    42
  /// \ref NetworkSimplex implements the primal Network Simplex algorithm
kpeter@802
    43
  /// for finding a \ref min_cost_flow "minimum cost flow"
kpeter@802
    44
  /// \ref amo93networkflows, \ref dantzig63linearprog,
kpeter@802
    45
  /// \ref kellyoneill91netsimplex.
kpeter@878
    46
  /// This algorithm is a highly efficient specialized version of the
kpeter@878
    47
  /// linear programming simplex method directly for the minimum cost
kpeter@878
    48
  /// flow problem.
kpeter@653
    49
  ///
kpeter@878
    50
  /// In general, %NetworkSimplex is the fastest implementation available
kpeter@878
    51
  /// in LEMON for this problem.
kpeter@878
    52
  /// Moreover, it supports both directions of the supply/demand inequality
kpeter@833
    53
  /// constraints. For more information, see \ref SupplyType.
kpeter@687
    54
  ///
kpeter@687
    55
  /// Most of the parameters of the problem (except for the digraph)
kpeter@687
    56
  /// can be given using separate functions, and the algorithm can be
kpeter@687
    57
  /// executed using the \ref run() function. If some parameters are not
kpeter@687
    58
  /// specified, then default values will be used.
kpeter@648
    59
  ///
kpeter@652
    60
  /// \tparam GR The digraph type the algorithm runs on.
kpeter@878
    61
  /// \tparam V The number type used for flow amounts, capacity bounds
kpeter@833
    62
  /// and supply values in the algorithm. By default, it is \c int.
kpeter@878
    63
  /// \tparam C The number type used for costs and potentials in the
kpeter@833
    64
  /// algorithm. By default, it is the same as \c V.
kpeter@648
    65
  ///
kpeter@878
    66
  /// \warning Both number types must be signed and all input data must
kpeter@655
    67
  /// be integer.
kpeter@648
    68
  ///
kpeter@652
    69
  /// \note %NetworkSimplex provides five different pivot rule
kpeter@656
    70
  /// implementations, from which the most efficient one is used
kpeter@833
    71
  /// by default. For more information, see \ref PivotRule.
kpeter@688
    72
  template <typename GR, typename V = int, typename C = V>
kpeter@648
    73
  class NetworkSimplex
kpeter@648
    74
  {
kpeter@652
    75
  public:
kpeter@648
    76
kpeter@689
    77
    /// The type of the flow amounts, capacity bounds and supply values
kpeter@688
    78
    typedef V Value;
kpeter@689
    79
    /// The type of the arc costs
kpeter@654
    80
    typedef C Cost;
kpeter@652
    81
kpeter@652
    82
  public:
kpeter@652
    83
kpeter@687
    84
    /// \brief Problem type constants for the \c run() function.
kpeter@652
    85
    ///
kpeter@687
    86
    /// Enum type containing the problem type constants that can be
kpeter@687
    87
    /// returned by the \ref run() function of the algorithm.
kpeter@687
    88
    enum ProblemType {
kpeter@687
    89
      /// The problem has no feasible solution (flow).
kpeter@687
    90
      INFEASIBLE,
kpeter@687
    91
      /// The problem has optimal solution (i.e. it is feasible and
kpeter@687
    92
      /// bounded), and the algorithm has found optimal flow and node
kpeter@687
    93
      /// potentials (primal and dual solutions).
kpeter@687
    94
      OPTIMAL,
kpeter@687
    95
      /// The objective function of the problem is unbounded, i.e.
kpeter@687
    96
      /// there is a directed cycle having negative total cost and
kpeter@687
    97
      /// infinite upper bound.
kpeter@687
    98
      UNBOUNDED
kpeter@687
    99
    };
kpeter@687
   100
    
kpeter@687
   101
    /// \brief Constants for selecting the type of the supply constraints.
kpeter@687
   102
    ///
kpeter@687
   103
    /// Enum type containing constants for selecting the supply type,
kpeter@687
   104
    /// i.e. the direction of the inequalities in the supply/demand
kpeter@687
   105
    /// constraints of the \ref min_cost_flow "minimum cost flow problem".
kpeter@687
   106
    ///
kpeter@710
   107
    /// The default supply type is \c GEQ, the \c LEQ type can be
kpeter@710
   108
    /// selected using \ref supplyType().
kpeter@710
   109
    /// The equality form is a special case of both supply types.
kpeter@687
   110
    enum SupplyType {
kpeter@687
   111
      /// This option means that there are <em>"greater or equal"</em>
kpeter@710
   112
      /// supply/demand constraints in the definition of the problem.
kpeter@687
   113
      GEQ,
kpeter@687
   114
      /// This option means that there are <em>"less or equal"</em>
kpeter@710
   115
      /// supply/demand constraints in the definition of the problem.
kpeter@710
   116
      LEQ
kpeter@687
   117
    };
kpeter@687
   118
    
kpeter@687
   119
    /// \brief Constants for selecting the pivot rule.
kpeter@687
   120
    ///
kpeter@687
   121
    /// Enum type containing constants for selecting the pivot rule for
kpeter@687
   122
    /// the \ref run() function.
kpeter@687
   123
    ///
kpeter@652
   124
    /// \ref NetworkSimplex provides five different pivot rule
kpeter@652
   125
    /// implementations that significantly affect the running time
kpeter@652
   126
    /// of the algorithm.
kpeter@833
   127
    /// By default, \ref BLOCK_SEARCH "Block Search" is used, which
kpeter@652
   128
    /// proved to be the most efficient and the most robust on various
kpeter@878
   129
    /// test inputs.
kpeter@833
   130
    /// However, another pivot rule can be selected using the \ref run()
kpeter@652
   131
    /// function with the proper parameter.
kpeter@652
   132
    enum PivotRule {
kpeter@652
   133
kpeter@833
   134
      /// The \e First \e Eligible pivot rule.
kpeter@652
   135
      /// The next eligible arc is selected in a wraparound fashion
kpeter@652
   136
      /// in every iteration.
kpeter@652
   137
      FIRST_ELIGIBLE,
kpeter@652
   138
kpeter@833
   139
      /// The \e Best \e Eligible pivot rule.
kpeter@652
   140
      /// The best eligible arc is selected in every iteration.
kpeter@652
   141
      BEST_ELIGIBLE,
kpeter@652
   142
kpeter@833
   143
      /// The \e Block \e Search pivot rule.
kpeter@652
   144
      /// A specified number of arcs are examined in every iteration
kpeter@652
   145
      /// in a wraparound fashion and the best eligible arc is selected
kpeter@652
   146
      /// from this block.
kpeter@652
   147
      BLOCK_SEARCH,
kpeter@652
   148
kpeter@833
   149
      /// The \e Candidate \e List pivot rule.
kpeter@652
   150
      /// In a major iteration a candidate list is built from eligible arcs
kpeter@652
   151
      /// in a wraparound fashion and in the following minor iterations
kpeter@652
   152
      /// the best eligible arc is selected from this list.
kpeter@652
   153
      CANDIDATE_LIST,
kpeter@652
   154
kpeter@833
   155
      /// The \e Altering \e Candidate \e List pivot rule.
kpeter@652
   156
      /// It is a modified version of the Candidate List method.
kpeter@652
   157
      /// It keeps only the several best eligible arcs from the former
kpeter@652
   158
      /// candidate list and extends this list in every iteration.
kpeter@652
   159
      ALTERING_LIST
kpeter@652
   160
    };
kpeter@656
   161
    
kpeter@652
   162
  private:
kpeter@652
   163
kpeter@652
   164
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
kpeter@652
   165
kpeter@648
   166
    typedef std::vector<int> IntVector;
kpeter@689
   167
    typedef std::vector<Value> ValueVector;
kpeter@654
   168
    typedef std::vector<Cost> CostVector;
kpeter@910
   169
    typedef std::vector<char> BoolVector;
kpeter@910
   170
    // Note: vector<char> is used instead of vector<bool> for efficiency reasons
kpeter@648
   171
kpeter@648
   172
    // State constants for arcs
kpeter@648
   173
    enum ArcStateEnum {
kpeter@648
   174
      STATE_UPPER = -1,
kpeter@648
   175
      STATE_TREE  =  0,
kpeter@648
   176
      STATE_LOWER =  1
kpeter@648
   177
    };
kpeter@648
   178
kpeter@648
   179
  private:
kpeter@648
   180
kpeter@652
   181
    // Data related to the underlying digraph
kpeter@652
   182
    const GR &_graph;
kpeter@652
   183
    int _node_num;
kpeter@652
   184
    int _arc_num;
kpeter@710
   185
    int _all_arc_num;
kpeter@710
   186
    int _search_arc_num;
kpeter@652
   187
kpeter@652
   188
    // Parameters of the problem
kpeter@689
   189
    bool _have_lower;
kpeter@687
   190
    SupplyType _stype;
kpeter@688
   191
    Value _sum_supply;
kpeter@648
   192
kpeter@652
   193
    // Data structures for storing the digraph
kpeter@650
   194
    IntNodeMap _node_id;
kpeter@689
   195
    IntArcMap _arc_id;
kpeter@650
   196
    IntVector _source;
kpeter@650
   197
    IntVector _target;
kpeter@650
   198
kpeter@652
   199
    // Node and arc data
kpeter@689
   200
    ValueVector _lower;
kpeter@689
   201
    ValueVector _upper;
kpeter@689
   202
    ValueVector _cap;
kpeter@654
   203
    CostVector _cost;
kpeter@689
   204
    ValueVector _supply;
kpeter@689
   205
    ValueVector _flow;
kpeter@654
   206
    CostVector _pi;
kpeter@648
   207
kpeter@650
   208
    // Data for storing the spanning tree structure
kpeter@648
   209
    IntVector _parent;
kpeter@648
   210
    IntVector _pred;
kpeter@648
   211
    IntVector _thread;
kpeter@651
   212
    IntVector _rev_thread;
kpeter@651
   213
    IntVector _succ_num;
kpeter@651
   214
    IntVector _last_succ;
kpeter@651
   215
    IntVector _dirty_revs;
kpeter@910
   216
    BoolVector _forward;
kpeter@910
   217
    BoolVector _state;
kpeter@648
   218
    int _root;
kpeter@648
   219
kpeter@648
   220
    // Temporary data used in the current pivot iteration
kpeter@650
   221
    int in_arc, join, u_in, v_in, u_out, v_out;
kpeter@650
   222
    int first, second, right, last;
kpeter@648
   223
    int stem, par_stem, new_stem;
kpeter@688
   224
    Value delta;
kpeter@877
   225
    
kpeter@877
   226
    const Value MAX;
kpeter@648
   227
kpeter@687
   228
  public:
kpeter@687
   229
  
kpeter@687
   230
    /// \brief Constant for infinite upper bounds (capacities).
kpeter@687
   231
    ///
kpeter@687
   232
    /// Constant for infinite upper bounds (capacities).
kpeter@688
   233
    /// It is \c std::numeric_limits<Value>::infinity() if available,
kpeter@688
   234
    /// \c std::numeric_limits<Value>::max() otherwise.
kpeter@688
   235
    const Value INF;
kpeter@687
   236
kpeter@648
   237
  private:
kpeter@648
   238
kpeter@652
   239
    // Implementation of the First Eligible pivot rule
kpeter@648
   240
    class FirstEligiblePivotRule
kpeter@648
   241
    {
kpeter@648
   242
    private:
kpeter@648
   243
kpeter@648
   244
      // References to the NetworkSimplex class
kpeter@648
   245
      const IntVector  &_source;
kpeter@648
   246
      const IntVector  &_target;
kpeter@654
   247
      const CostVector &_cost;
kpeter@910
   248
      const BoolVector &_state;
kpeter@654
   249
      const CostVector &_pi;
kpeter@648
   250
      int &_in_arc;
kpeter@710
   251
      int _search_arc_num;
kpeter@648
   252
kpeter@648
   253
      // Pivot rule data
kpeter@648
   254
      int _next_arc;
kpeter@648
   255
kpeter@648
   256
    public:
kpeter@648
   257
kpeter@652
   258
      // Constructor
kpeter@648
   259
      FirstEligiblePivotRule(NetworkSimplex &ns) :
kpeter@650
   260
        _source(ns._source), _target(ns._target),
kpeter@648
   261
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
kpeter@710
   262
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
kpeter@710
   263
        _next_arc(0)
kpeter@648
   264
      {}
kpeter@648
   265
kpeter@652
   266
      // Find next entering arc
kpeter@648
   267
      bool findEnteringArc() {
kpeter@654
   268
        Cost c;
kpeter@910
   269
        for (int e = _next_arc; e != _search_arc_num; ++e) {
kpeter@648
   270
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@648
   271
          if (c < 0) {
kpeter@648
   272
            _in_arc = e;
kpeter@648
   273
            _next_arc = e + 1;
kpeter@648
   274
            return true;
kpeter@648
   275
          }
kpeter@648
   276
        }
kpeter@910
   277
        for (int e = 0; e != _next_arc; ++e) {
kpeter@648
   278
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@648
   279
          if (c < 0) {
kpeter@648
   280
            _in_arc = e;
kpeter@648
   281
            _next_arc = e + 1;
kpeter@648
   282
            return true;
kpeter@648
   283
          }
kpeter@648
   284
        }
kpeter@648
   285
        return false;
kpeter@648
   286
      }
kpeter@648
   287
kpeter@648
   288
    }; //class FirstEligiblePivotRule
kpeter@648
   289
kpeter@648
   290
kpeter@652
   291
    // Implementation of the Best Eligible pivot rule
kpeter@648
   292
    class BestEligiblePivotRule
kpeter@648
   293
    {
kpeter@648
   294
    private:
kpeter@648
   295
kpeter@648
   296
      // References to the NetworkSimplex class
kpeter@648
   297
      const IntVector  &_source;
kpeter@648
   298
      const IntVector  &_target;
kpeter@654
   299
      const CostVector &_cost;
kpeter@910
   300
      const BoolVector &_state;
kpeter@654
   301
      const CostVector &_pi;
kpeter@648
   302
      int &_in_arc;
kpeter@710
   303
      int _search_arc_num;
kpeter@648
   304
kpeter@648
   305
    public:
kpeter@648
   306
kpeter@652
   307
      // Constructor
kpeter@648
   308
      BestEligiblePivotRule(NetworkSimplex &ns) :
kpeter@650
   309
        _source(ns._source), _target(ns._target),
kpeter@648
   310
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
kpeter@710
   311
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num)
kpeter@648
   312
      {}
kpeter@648
   313
kpeter@652
   314
      // Find next entering arc
kpeter@648
   315
      bool findEnteringArc() {
kpeter@654
   316
        Cost c, min = 0;
kpeter@910
   317
        for (int e = 0; e != _search_arc_num; ++e) {
kpeter@648
   318
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@648
   319
          if (c < min) {
kpeter@648
   320
            min = c;
kpeter@648
   321
            _in_arc = e;
kpeter@648
   322
          }
kpeter@648
   323
        }
kpeter@648
   324
        return min < 0;
kpeter@648
   325
      }
kpeter@648
   326
kpeter@648
   327
    }; //class BestEligiblePivotRule
kpeter@648
   328
kpeter@648
   329
kpeter@652
   330
    // Implementation of the Block Search pivot rule
kpeter@648
   331
    class BlockSearchPivotRule
kpeter@648
   332
    {
kpeter@648
   333
    private:
kpeter@648
   334
kpeter@648
   335
      // References to the NetworkSimplex class
kpeter@648
   336
      const IntVector  &_source;
kpeter@648
   337
      const IntVector  &_target;
kpeter@654
   338
      const CostVector &_cost;
kpeter@910
   339
      const BoolVector &_state;
kpeter@654
   340
      const CostVector &_pi;
kpeter@648
   341
      int &_in_arc;
kpeter@710
   342
      int _search_arc_num;
kpeter@648
   343
kpeter@648
   344
      // Pivot rule data
kpeter@648
   345
      int _block_size;
kpeter@648
   346
      int _next_arc;
kpeter@648
   347
kpeter@648
   348
    public:
kpeter@648
   349
kpeter@652
   350
      // Constructor
kpeter@648
   351
      BlockSearchPivotRule(NetworkSimplex &ns) :
kpeter@650
   352
        _source(ns._source), _target(ns._target),
kpeter@648
   353
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
kpeter@710
   354
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
kpeter@710
   355
        _next_arc(0)
kpeter@648
   356
      {
kpeter@648
   357
        // The main parameters of the pivot rule
kpeter@910
   358
        const double BLOCK_SIZE_FACTOR = 1.0;
kpeter@648
   359
        const int MIN_BLOCK_SIZE = 10;
kpeter@648
   360
alpar@659
   361
        _block_size = std::max( int(BLOCK_SIZE_FACTOR *
kpeter@710
   362
                                    std::sqrt(double(_search_arc_num))),
kpeter@648
   363
                                MIN_BLOCK_SIZE );
kpeter@648
   364
      }
kpeter@648
   365
kpeter@652
   366
      // Find next entering arc
kpeter@648
   367
      bool findEnteringArc() {
kpeter@654
   368
        Cost c, min = 0;
kpeter@648
   369
        int cnt = _block_size;
kpeter@774
   370
        int e;
kpeter@910
   371
        for (e = _next_arc; e != _search_arc_num; ++e) {
kpeter@648
   372
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@648
   373
          if (c < min) {
kpeter@648
   374
            min = c;
kpeter@774
   375
            _in_arc = e;
kpeter@648
   376
          }
kpeter@648
   377
          if (--cnt == 0) {
kpeter@774
   378
            if (min < 0) goto search_end;
kpeter@648
   379
            cnt = _block_size;
kpeter@648
   380
          }
kpeter@648
   381
        }
kpeter@910
   382
        for (e = 0; e != _next_arc; ++e) {
kpeter@774
   383
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@774
   384
          if (c < min) {
kpeter@774
   385
            min = c;
kpeter@774
   386
            _in_arc = e;
kpeter@774
   387
          }
kpeter@774
   388
          if (--cnt == 0) {
kpeter@774
   389
            if (min < 0) goto search_end;
kpeter@774
   390
            cnt = _block_size;
kpeter@648
   391
          }
kpeter@648
   392
        }
kpeter@648
   393
        if (min >= 0) return false;
kpeter@774
   394
kpeter@774
   395
      search_end:
kpeter@648
   396
        _next_arc = e;
kpeter@648
   397
        return true;
kpeter@648
   398
      }
kpeter@648
   399
kpeter@648
   400
    }; //class BlockSearchPivotRule
kpeter@648
   401
kpeter@648
   402
kpeter@652
   403
    // Implementation of the Candidate List pivot rule
kpeter@648
   404
    class CandidateListPivotRule
kpeter@648
   405
    {
kpeter@648
   406
    private:
kpeter@648
   407
kpeter@648
   408
      // References to the NetworkSimplex class
kpeter@648
   409
      const IntVector  &_source;
kpeter@648
   410
      const IntVector  &_target;
kpeter@654
   411
      const CostVector &_cost;
kpeter@910
   412
      const BoolVector &_state;
kpeter@654
   413
      const CostVector &_pi;
kpeter@648
   414
      int &_in_arc;
kpeter@710
   415
      int _search_arc_num;
kpeter@648
   416
kpeter@648
   417
      // Pivot rule data
kpeter@648
   418
      IntVector _candidates;
kpeter@648
   419
      int _list_length, _minor_limit;
kpeter@648
   420
      int _curr_length, _minor_count;
kpeter@648
   421
      int _next_arc;
kpeter@648
   422
kpeter@648
   423
    public:
kpeter@648
   424
kpeter@648
   425
      /// Constructor
kpeter@648
   426
      CandidateListPivotRule(NetworkSimplex &ns) :
kpeter@650
   427
        _source(ns._source), _target(ns._target),
kpeter@648
   428
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
kpeter@710
   429
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
kpeter@710
   430
        _next_arc(0)
kpeter@648
   431
      {
kpeter@648
   432
        // The main parameters of the pivot rule
kpeter@774
   433
        const double LIST_LENGTH_FACTOR = 0.25;
kpeter@648
   434
        const int MIN_LIST_LENGTH = 10;
kpeter@648
   435
        const double MINOR_LIMIT_FACTOR = 0.1;
kpeter@648
   436
        const int MIN_MINOR_LIMIT = 3;
kpeter@648
   437
alpar@659
   438
        _list_length = std::max( int(LIST_LENGTH_FACTOR *
kpeter@710
   439
                                     std::sqrt(double(_search_arc_num))),
kpeter@648
   440
                                 MIN_LIST_LENGTH );
kpeter@648
   441
        _minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length),
kpeter@648
   442
                                 MIN_MINOR_LIMIT );
kpeter@648
   443
        _curr_length = _minor_count = 0;
kpeter@648
   444
        _candidates.resize(_list_length);
kpeter@648
   445
      }
kpeter@648
   446
kpeter@648
   447
      /// Find next entering arc
kpeter@648
   448
      bool findEnteringArc() {
kpeter@654
   449
        Cost min, c;
kpeter@774
   450
        int e;
kpeter@648
   451
        if (_curr_length > 0 && _minor_count < _minor_limit) {
kpeter@648
   452
          // Minor iteration: select the best eligible arc from the
kpeter@648
   453
          // current candidate list
kpeter@648
   454
          ++_minor_count;
kpeter@648
   455
          min = 0;
kpeter@648
   456
          for (int i = 0; i < _curr_length; ++i) {
kpeter@648
   457
            e = _candidates[i];
kpeter@648
   458
            c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@648
   459
            if (c < min) {
kpeter@648
   460
              min = c;
kpeter@774
   461
              _in_arc = e;
kpeter@648
   462
            }
kpeter@774
   463
            else if (c >= 0) {
kpeter@648
   464
              _candidates[i--] = _candidates[--_curr_length];
kpeter@648
   465
            }
kpeter@648
   466
          }
kpeter@774
   467
          if (min < 0) return true;
kpeter@648
   468
        }
kpeter@648
   469
kpeter@648
   470
        // Major iteration: build a new candidate list
kpeter@648
   471
        min = 0;
kpeter@648
   472
        _curr_length = 0;
kpeter@910
   473
        for (e = _next_arc; e != _search_arc_num; ++e) {
kpeter@648
   474
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@648
   475
          if (c < 0) {
kpeter@648
   476
            _candidates[_curr_length++] = e;
kpeter@648
   477
            if (c < min) {
kpeter@648
   478
              min = c;
kpeter@774
   479
              _in_arc = e;
kpeter@648
   480
            }
kpeter@774
   481
            if (_curr_length == _list_length) goto search_end;
kpeter@648
   482
          }
kpeter@648
   483
        }
kpeter@910
   484
        for (e = 0; e != _next_arc; ++e) {
kpeter@774
   485
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@774
   486
          if (c < 0) {
kpeter@774
   487
            _candidates[_curr_length++] = e;
kpeter@774
   488
            if (c < min) {
kpeter@774
   489
              min = c;
kpeter@774
   490
              _in_arc = e;
kpeter@648
   491
            }
kpeter@774
   492
            if (_curr_length == _list_length) goto search_end;
kpeter@648
   493
          }
kpeter@648
   494
        }
kpeter@648
   495
        if (_curr_length == 0) return false;
kpeter@774
   496
      
kpeter@774
   497
      search_end:        
kpeter@648
   498
        _minor_count = 1;
kpeter@648
   499
        _next_arc = e;
kpeter@648
   500
        return true;
kpeter@648
   501
      }
kpeter@648
   502
kpeter@648
   503
    }; //class CandidateListPivotRule
kpeter@648
   504
kpeter@648
   505
kpeter@652
   506
    // Implementation of the Altering Candidate List pivot rule
kpeter@648
   507
    class AlteringListPivotRule
kpeter@648
   508
    {
kpeter@648
   509
    private:
kpeter@648
   510
kpeter@648
   511
      // References to the NetworkSimplex class
kpeter@648
   512
      const IntVector  &_source;
kpeter@648
   513
      const IntVector  &_target;
kpeter@654
   514
      const CostVector &_cost;
kpeter@910
   515
      const BoolVector &_state;
kpeter@654
   516
      const CostVector &_pi;
kpeter@648
   517
      int &_in_arc;
kpeter@710
   518
      int _search_arc_num;
kpeter@648
   519
kpeter@648
   520
      // Pivot rule data
kpeter@648
   521
      int _block_size, _head_length, _curr_length;
kpeter@648
   522
      int _next_arc;
kpeter@648
   523
      IntVector _candidates;
kpeter@654
   524
      CostVector _cand_cost;
kpeter@648
   525
kpeter@648
   526
      // Functor class to compare arcs during sort of the candidate list
kpeter@648
   527
      class SortFunc
kpeter@648
   528
      {
kpeter@648
   529
      private:
kpeter@654
   530
        const CostVector &_map;
kpeter@648
   531
      public:
kpeter@654
   532
        SortFunc(const CostVector &map) : _map(map) {}
kpeter@648
   533
        bool operator()(int left, int right) {
kpeter@648
   534
          return _map[left] > _map[right];
kpeter@648
   535
        }
kpeter@648
   536
      };
kpeter@648
   537
kpeter@648
   538
      SortFunc _sort_func;
kpeter@648
   539
kpeter@648
   540
    public:
kpeter@648
   541
kpeter@652
   542
      // Constructor
kpeter@648
   543
      AlteringListPivotRule(NetworkSimplex &ns) :
kpeter@650
   544
        _source(ns._source), _target(ns._target),
kpeter@648
   545
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
kpeter@710
   546
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
kpeter@710
   547
        _next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost)
kpeter@648
   548
      {
kpeter@648
   549
        // The main parameters of the pivot rule
kpeter@774
   550
        const double BLOCK_SIZE_FACTOR = 1.0;
kpeter@648
   551
        const int MIN_BLOCK_SIZE = 10;
kpeter@648
   552
        const double HEAD_LENGTH_FACTOR = 0.1;
kpeter@648
   553
        const int MIN_HEAD_LENGTH = 3;
kpeter@648
   554
alpar@659
   555
        _block_size = std::max( int(BLOCK_SIZE_FACTOR *
kpeter@710
   556
                                    std::sqrt(double(_search_arc_num))),
kpeter@648
   557
                                MIN_BLOCK_SIZE );
kpeter@648
   558
        _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size),
kpeter@648
   559
                                 MIN_HEAD_LENGTH );
kpeter@648
   560
        _candidates.resize(_head_length + _block_size);
kpeter@648
   561
        _curr_length = 0;
kpeter@648
   562
      }
kpeter@648
   563
kpeter@652
   564
      // Find next entering arc
kpeter@648
   565
      bool findEnteringArc() {
kpeter@648
   566
        // Check the current candidate list
kpeter@648
   567
        int e;
kpeter@910
   568
        for (int i = 0; i != _curr_length; ++i) {
kpeter@648
   569
          e = _candidates[i];
kpeter@648
   570
          _cand_cost[e] = _state[e] *
kpeter@648
   571
            (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@648
   572
          if (_cand_cost[e] >= 0) {
kpeter@648
   573
            _candidates[i--] = _candidates[--_curr_length];
kpeter@648
   574
          }
kpeter@648
   575
        }
kpeter@648
   576
kpeter@648
   577
        // Extend the list
kpeter@648
   578
        int cnt = _block_size;
kpeter@648
   579
        int limit = _head_length;
kpeter@648
   580
kpeter@910
   581
        for (e = _next_arc; e != _search_arc_num; ++e) {
kpeter@648
   582
          _cand_cost[e] = _state[e] *
kpeter@648
   583
            (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@648
   584
          if (_cand_cost[e] < 0) {
kpeter@648
   585
            _candidates[_curr_length++] = e;
kpeter@648
   586
          }
kpeter@648
   587
          if (--cnt == 0) {
kpeter@774
   588
            if (_curr_length > limit) goto search_end;
kpeter@648
   589
            limit = 0;
kpeter@648
   590
            cnt = _block_size;
kpeter@648
   591
          }
kpeter@648
   592
        }
kpeter@910
   593
        for (e = 0; e != _next_arc; ++e) {
kpeter@774
   594
          _cand_cost[e] = _state[e] *
kpeter@774
   595
            (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@774
   596
          if (_cand_cost[e] < 0) {
kpeter@774
   597
            _candidates[_curr_length++] = e;
kpeter@774
   598
          }
kpeter@774
   599
          if (--cnt == 0) {
kpeter@774
   600
            if (_curr_length > limit) goto search_end;
kpeter@774
   601
            limit = 0;
kpeter@774
   602
            cnt = _block_size;
kpeter@648
   603
          }
kpeter@648
   604
        }
kpeter@648
   605
        if (_curr_length == 0) return false;
kpeter@774
   606
        
kpeter@774
   607
      search_end:
kpeter@648
   608
kpeter@648
   609
        // Make heap of the candidate list (approximating a partial sort)
kpeter@648
   610
        make_heap( _candidates.begin(), _candidates.begin() + _curr_length,
kpeter@648
   611
                   _sort_func );
kpeter@648
   612
kpeter@648
   613
        // Pop the first element of the heap
kpeter@648
   614
        _in_arc = _candidates[0];
kpeter@774
   615
        _next_arc = e;
kpeter@648
   616
        pop_heap( _candidates.begin(), _candidates.begin() + _curr_length,
kpeter@648
   617
                  _sort_func );
kpeter@648
   618
        _curr_length = std::min(_head_length, _curr_length - 1);
kpeter@648
   619
        return true;
kpeter@648
   620
      }
kpeter@648
   621
kpeter@648
   622
    }; //class AlteringListPivotRule
kpeter@648
   623
kpeter@648
   624
  public:
kpeter@648
   625
kpeter@652
   626
    /// \brief Constructor.
kpeter@648
   627
    ///
kpeter@656
   628
    /// The constructor of the class.
kpeter@648
   629
    ///
kpeter@650
   630
    /// \param graph The digraph the algorithm runs on.
kpeter@775
   631
    /// \param arc_mixing Indicate if the arcs have to be stored in a
kpeter@775
   632
    /// mixed order in the internal data structure. 
kpeter@775
   633
    /// In special cases, it could lead to better overall performance,
kpeter@775
   634
    /// but it is usually slower. Therefore it is disabled by default.
kpeter@775
   635
    NetworkSimplex(const GR& graph, bool arc_mixing = false) :
kpeter@689
   636
      _graph(graph), _node_id(graph), _arc_id(graph),
kpeter@877
   637
      MAX(std::numeric_limits<Value>::max()),
kpeter@688
   638
      INF(std::numeric_limits<Value>::has_infinity ?
kpeter@877
   639
          std::numeric_limits<Value>::infinity() : MAX)
kpeter@652
   640
    {
kpeter@878
   641
      // Check the number types
kpeter@688
   642
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
kpeter@687
   643
        "The flow type of NetworkSimplex must be signed");
kpeter@687
   644
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
kpeter@687
   645
        "The cost type of NetworkSimplex must be signed");
kpeter@689
   646
        
kpeter@689
   647
      // Resize vectors
kpeter@689
   648
      _node_num = countNodes(_graph);
kpeter@689
   649
      _arc_num = countArcs(_graph);
kpeter@689
   650
      int all_node_num = _node_num + 1;
kpeter@710
   651
      int max_arc_num = _arc_num + 2 * _node_num;
kpeter@648
   652
kpeter@710
   653
      _source.resize(max_arc_num);
kpeter@710
   654
      _target.resize(max_arc_num);
kpeter@689
   655
kpeter@710
   656
      _lower.resize(_arc_num);
kpeter@710
   657
      _upper.resize(_arc_num);
kpeter@710
   658
      _cap.resize(max_arc_num);
kpeter@710
   659
      _cost.resize(max_arc_num);
kpeter@689
   660
      _supply.resize(all_node_num);
kpeter@710
   661
      _flow.resize(max_arc_num);
kpeter@689
   662
      _pi.resize(all_node_num);
kpeter@689
   663
kpeter@689
   664
      _parent.resize(all_node_num);
kpeter@689
   665
      _pred.resize(all_node_num);
kpeter@689
   666
      _forward.resize(all_node_num);
kpeter@689
   667
      _thread.resize(all_node_num);
kpeter@689
   668
      _rev_thread.resize(all_node_num);
kpeter@689
   669
      _succ_num.resize(all_node_num);
kpeter@689
   670
      _last_succ.resize(all_node_num);
kpeter@710
   671
      _state.resize(max_arc_num);
kpeter@689
   672
kpeter@775
   673
      // Copy the graph
kpeter@689
   674
      int i = 0;
kpeter@689
   675
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
kpeter@689
   676
        _node_id[n] = i;
kpeter@689
   677
      }
kpeter@775
   678
      if (arc_mixing) {
kpeter@775
   679
        // Store the arcs in a mixed order
kpeter@775
   680
        int k = std::max(int(std::sqrt(double(_arc_num))), 10);
kpeter@775
   681
        int i = 0, j = 0;
kpeter@775
   682
        for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@775
   683
          _arc_id[a] = i;
kpeter@775
   684
          _source[i] = _node_id[_graph.source(a)];
kpeter@775
   685
          _target[i] = _node_id[_graph.target(a)];
kpeter@775
   686
          if ((i += k) >= _arc_num) i = ++j;
kpeter@775
   687
        }
kpeter@775
   688
      } else {
kpeter@775
   689
        // Store the arcs in the original order
kpeter@775
   690
        int i = 0;
kpeter@775
   691
        for (ArcIt a(_graph); a != INVALID; ++a, ++i) {
kpeter@775
   692
          _arc_id[a] = i;
kpeter@775
   693
          _source[i] = _node_id[_graph.source(a)];
kpeter@775
   694
          _target[i] = _node_id[_graph.target(a)];
kpeter@775
   695
        }
kpeter@689
   696
      }
kpeter@689
   697
      
kpeter@776
   698
      // Reset parameters
kpeter@776
   699
      reset();
kpeter@648
   700
    }
kpeter@648
   701
kpeter@656
   702
    /// \name Parameters
kpeter@656
   703
    /// The parameters of the algorithm can be specified using these
kpeter@656
   704
    /// functions.
kpeter@656
   705
kpeter@656
   706
    /// @{
kpeter@656
   707
kpeter@652
   708
    /// \brief Set the lower bounds on the arcs.
kpeter@652
   709
    ///
kpeter@652
   710
    /// This function sets the lower bounds on the arcs.
kpeter@687
   711
    /// If it is not used before calling \ref run(), the lower bounds
kpeter@687
   712
    /// will be set to zero on all arcs.
kpeter@652
   713
    ///
kpeter@652
   714
    /// \param map An arc map storing the lower bounds.
kpeter@688
   715
    /// Its \c Value type must be convertible to the \c Value type
kpeter@652
   716
    /// of the algorithm.
kpeter@652
   717
    ///
kpeter@652
   718
    /// \return <tt>(*this)</tt>
kpeter@687
   719
    template <typename LowerMap>
kpeter@687
   720
    NetworkSimplex& lowerMap(const LowerMap& map) {
kpeter@689
   721
      _have_lower = true;
kpeter@652
   722
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@689
   723
        _lower[_arc_id[a]] = map[a];
kpeter@652
   724
      }
kpeter@652
   725
      return *this;
kpeter@652
   726
    }
kpeter@652
   727
kpeter@652
   728
    /// \brief Set the upper bounds (capacities) on the arcs.
kpeter@652
   729
    ///
kpeter@652
   730
    /// This function sets the upper bounds (capacities) on the arcs.
kpeter@687
   731
    /// If it is not used before calling \ref run(), the upper bounds
kpeter@687
   732
    /// will be set to \ref INF on all arcs (i.e. the flow value will be
kpeter@878
   733
    /// unbounded from above).
kpeter@652
   734
    ///
kpeter@652
   735
    /// \param map An arc map storing the upper bounds.
kpeter@688
   736
    /// Its \c Value type must be convertible to the \c Value type
kpeter@652
   737
    /// of the algorithm.
kpeter@652
   738
    ///
kpeter@652
   739
    /// \return <tt>(*this)</tt>
kpeter@687
   740
    template<typename UpperMap>
kpeter@687
   741
    NetworkSimplex& upperMap(const UpperMap& map) {
kpeter@652
   742
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@689
   743
        _upper[_arc_id[a]] = map[a];
kpeter@652
   744
      }
kpeter@652
   745
      return *this;
kpeter@652
   746
    }
kpeter@652
   747
kpeter@652
   748
    /// \brief Set the costs of the arcs.
kpeter@652
   749
    ///
kpeter@652
   750
    /// This function sets the costs of the arcs.
kpeter@652
   751
    /// If it is not used before calling \ref run(), the costs
kpeter@652
   752
    /// will be set to \c 1 on all arcs.
kpeter@652
   753
    ///
kpeter@652
   754
    /// \param map An arc map storing the costs.
kpeter@654
   755
    /// Its \c Value type must be convertible to the \c Cost type
kpeter@652
   756
    /// of the algorithm.
kpeter@652
   757
    ///
kpeter@652
   758
    /// \return <tt>(*this)</tt>
kpeter@687
   759
    template<typename CostMap>
kpeter@687
   760
    NetworkSimplex& costMap(const CostMap& map) {
kpeter@652
   761
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@689
   762
        _cost[_arc_id[a]] = map[a];
kpeter@652
   763
      }
kpeter@652
   764
      return *this;
kpeter@652
   765
    }
kpeter@652
   766
kpeter@652
   767
    /// \brief Set the supply values of the nodes.
kpeter@652
   768
    ///
kpeter@652
   769
    /// This function sets the supply values of the nodes.
kpeter@652
   770
    /// If neither this function nor \ref stSupply() is used before
kpeter@652
   771
    /// calling \ref run(), the supply of each node will be set to zero.
kpeter@652
   772
    ///
kpeter@652
   773
    /// \param map A node map storing the supply values.
kpeter@688
   774
    /// Its \c Value type must be convertible to the \c Value type
kpeter@652
   775
    /// of the algorithm.
kpeter@652
   776
    ///
kpeter@652
   777
    /// \return <tt>(*this)</tt>
kpeter@687
   778
    template<typename SupplyMap>
kpeter@687
   779
    NetworkSimplex& supplyMap(const SupplyMap& map) {
kpeter@652
   780
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@689
   781
        _supply[_node_id[n]] = map[n];
kpeter@652
   782
      }
kpeter@652
   783
      return *this;
kpeter@652
   784
    }
kpeter@652
   785
kpeter@652
   786
    /// \brief Set single source and target nodes and a supply value.
kpeter@652
   787
    ///
kpeter@652
   788
    /// This function sets a single source node and a single target node
kpeter@652
   789
    /// and the required flow value.
kpeter@652
   790
    /// If neither this function nor \ref supplyMap() is used before
kpeter@652
   791
    /// calling \ref run(), the supply of each node will be set to zero.
kpeter@652
   792
    ///
kpeter@687
   793
    /// Using this function has the same effect as using \ref supplyMap()
kpeter@687
   794
    /// with such a map in which \c k is assigned to \c s, \c -k is
kpeter@687
   795
    /// assigned to \c t and all other nodes have zero supply value.
kpeter@687
   796
    ///
kpeter@652
   797
    /// \param s The source node.
kpeter@652
   798
    /// \param t The target node.
kpeter@652
   799
    /// \param k The required amount of flow from node \c s to node \c t
kpeter@652
   800
    /// (i.e. the supply of \c s and the demand of \c t).
kpeter@652
   801
    ///
kpeter@652
   802
    /// \return <tt>(*this)</tt>
kpeter@688
   803
    NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) {
kpeter@689
   804
      for (int i = 0; i != _node_num; ++i) {
kpeter@689
   805
        _supply[i] = 0;
kpeter@689
   806
      }
kpeter@689
   807
      _supply[_node_id[s]] =  k;
kpeter@689
   808
      _supply[_node_id[t]] = -k;
kpeter@652
   809
      return *this;
kpeter@652
   810
    }
kpeter@656
   811
    
kpeter@687
   812
    /// \brief Set the type of the supply constraints.
kpeter@656
   813
    ///
kpeter@687
   814
    /// This function sets the type of the supply/demand constraints.
kpeter@687
   815
    /// If it is not used before calling \ref run(), the \ref GEQ supply
kpeter@656
   816
    /// type will be used.
kpeter@656
   817
    ///
kpeter@833
   818
    /// For more information, see \ref SupplyType.
kpeter@656
   819
    ///
kpeter@656
   820
    /// \return <tt>(*this)</tt>
kpeter@687
   821
    NetworkSimplex& supplyType(SupplyType supply_type) {
kpeter@687
   822
      _stype = supply_type;
kpeter@656
   823
      return *this;
kpeter@656
   824
    }
kpeter@652
   825
kpeter@656
   826
    /// @}
kpeter@648
   827
kpeter@652
   828
    /// \name Execution Control
kpeter@652
   829
    /// The algorithm can be executed using \ref run().
kpeter@652
   830
kpeter@648
   831
    /// @{
kpeter@648
   832
kpeter@648
   833
    /// \brief Run the algorithm.
kpeter@648
   834
    ///
kpeter@648
   835
    /// This function runs the algorithm.
kpeter@656
   836
    /// The paramters can be specified using functions \ref lowerMap(),
kpeter@687
   837
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), 
kpeter@689
   838
    /// \ref supplyType().
kpeter@656
   839
    /// For example,
kpeter@652
   840
    /// \code
kpeter@652
   841
    ///   NetworkSimplex<ListDigraph> ns(graph);
kpeter@687
   842
    ///   ns.lowerMap(lower).upperMap(upper).costMap(cost)
kpeter@652
   843
    ///     .supplyMap(sup).run();
kpeter@652
   844
    /// \endcode
kpeter@648
   845
    ///
kpeter@653
   846
    /// This function can be called more than once. All the parameters
kpeter@653
   847
    /// that have been given are kept for the next call, unless
kpeter@653
   848
    /// \ref reset() is called, thus only the modified parameters
kpeter@653
   849
    /// have to be set again. See \ref reset() for examples.
kpeter@833
   850
    /// However, the underlying digraph must not be modified after this
kpeter@689
   851
    /// class have been constructed, since it copies and extends the graph.
kpeter@653
   852
    ///
kpeter@652
   853
    /// \param pivot_rule The pivot rule that will be used during the
kpeter@833
   854
    /// algorithm. For more information, see \ref PivotRule.
kpeter@648
   855
    ///
kpeter@687
   856
    /// \return \c INFEASIBLE if no feasible flow exists,
kpeter@687
   857
    /// \n \c OPTIMAL if the problem has optimal solution
kpeter@687
   858
    /// (i.e. it is feasible and bounded), and the algorithm has found
kpeter@687
   859
    /// optimal flow and node potentials (primal and dual solutions),
kpeter@687
   860
    /// \n \c UNBOUNDED if the objective function of the problem is
kpeter@687
   861
    /// unbounded, i.e. there is a directed cycle having negative total
kpeter@687
   862
    /// cost and infinite upper bound.
kpeter@687
   863
    ///
kpeter@687
   864
    /// \see ProblemType, PivotRule
kpeter@687
   865
    ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) {
kpeter@687
   866
      if (!init()) return INFEASIBLE;
kpeter@687
   867
      return start(pivot_rule);
kpeter@648
   868
    }
kpeter@648
   869
kpeter@653
   870
    /// \brief Reset all the parameters that have been given before.
kpeter@653
   871
    ///
kpeter@653
   872
    /// This function resets all the paramaters that have been given
kpeter@656
   873
    /// before using functions \ref lowerMap(), \ref upperMap(),
kpeter@689
   874
    /// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType().
kpeter@653
   875
    ///
kpeter@653
   876
    /// It is useful for multiple run() calls. If this function is not
kpeter@653
   877
    /// used, all the parameters given before are kept for the next
kpeter@653
   878
    /// \ref run() call.
kpeter@833
   879
    /// However, the underlying digraph must not be modified after this
kpeter@689
   880
    /// class have been constructed, since it copies and extends the graph.
kpeter@653
   881
    ///
kpeter@653
   882
    /// For example,
kpeter@653
   883
    /// \code
kpeter@653
   884
    ///   NetworkSimplex<ListDigraph> ns(graph);
kpeter@653
   885
    ///
kpeter@653
   886
    ///   // First run
kpeter@687
   887
    ///   ns.lowerMap(lower).upperMap(upper).costMap(cost)
kpeter@653
   888
    ///     .supplyMap(sup).run();
kpeter@653
   889
    ///
kpeter@653
   890
    ///   // Run again with modified cost map (reset() is not called,
kpeter@653
   891
    ///   // so only the cost map have to be set again)
kpeter@653
   892
    ///   cost[e] += 100;
kpeter@653
   893
    ///   ns.costMap(cost).run();
kpeter@653
   894
    ///
kpeter@653
   895
    ///   // Run again from scratch using reset()
kpeter@653
   896
    ///   // (the lower bounds will be set to zero on all arcs)
kpeter@653
   897
    ///   ns.reset();
kpeter@687
   898
    ///   ns.upperMap(capacity).costMap(cost)
kpeter@653
   899
    ///     .supplyMap(sup).run();
kpeter@653
   900
    /// \endcode
kpeter@653
   901
    ///
kpeter@653
   902
    /// \return <tt>(*this)</tt>
kpeter@653
   903
    NetworkSimplex& reset() {
kpeter@689
   904
      for (int i = 0; i != _node_num; ++i) {
kpeter@689
   905
        _supply[i] = 0;
kpeter@689
   906
      }
kpeter@689
   907
      for (int i = 0; i != _arc_num; ++i) {
kpeter@689
   908
        _lower[i] = 0;
kpeter@689
   909
        _upper[i] = INF;
kpeter@689
   910
        _cost[i] = 1;
kpeter@689
   911
      }
kpeter@689
   912
      _have_lower = false;
kpeter@687
   913
      _stype = GEQ;
kpeter@653
   914
      return *this;
kpeter@653
   915
    }
kpeter@653
   916
kpeter@648
   917
    /// @}
kpeter@648
   918
kpeter@648
   919
    /// \name Query Functions
kpeter@648
   920
    /// The results of the algorithm can be obtained using these
kpeter@648
   921
    /// functions.\n
kpeter@652
   922
    /// The \ref run() function must be called before using them.
kpeter@652
   923
kpeter@648
   924
    /// @{
kpeter@648
   925
kpeter@652
   926
    /// \brief Return the total cost of the found flow.
kpeter@652
   927
    ///
kpeter@652
   928
    /// This function returns the total cost of the found flow.
kpeter@687
   929
    /// Its complexity is O(e).
kpeter@652
   930
    ///
kpeter@652
   931
    /// \note The return type of the function can be specified as a
kpeter@652
   932
    /// template parameter. For example,
kpeter@652
   933
    /// \code
kpeter@652
   934
    ///   ns.totalCost<double>();
kpeter@652
   935
    /// \endcode
kpeter@654
   936
    /// It is useful if the total cost cannot be stored in the \c Cost
kpeter@652
   937
    /// type of the algorithm, which is the default return type of the
kpeter@652
   938
    /// function.
kpeter@652
   939
    ///
kpeter@652
   940
    /// \pre \ref run() must be called before using this function.
kpeter@689
   941
    template <typename Number>
kpeter@689
   942
    Number totalCost() const {
kpeter@689
   943
      Number c = 0;
kpeter@689
   944
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@689
   945
        int i = _arc_id[a];
kpeter@689
   946
        c += Number(_flow[i]) * Number(_cost[i]);
kpeter@652
   947
      }
kpeter@652
   948
      return c;
kpeter@652
   949
    }
kpeter@652
   950
kpeter@652
   951
#ifndef DOXYGEN
kpeter@654
   952
    Cost totalCost() const {
kpeter@654
   953
      return totalCost<Cost>();
kpeter@652
   954
    }
kpeter@652
   955
#endif
kpeter@652
   956
kpeter@652
   957
    /// \brief Return the flow on the given arc.
kpeter@652
   958
    ///
kpeter@652
   959
    /// This function returns the flow on the given arc.
kpeter@652
   960
    ///
kpeter@652
   961
    /// \pre \ref run() must be called before using this function.
kpeter@688
   962
    Value flow(const Arc& a) const {
kpeter@689
   963
      return _flow[_arc_id[a]];
kpeter@652
   964
    }
kpeter@652
   965
kpeter@689
   966
    /// \brief Return the flow map (the primal solution).
kpeter@648
   967
    ///
kpeter@689
   968
    /// This function copies the flow value on each arc into the given
kpeter@689
   969
    /// map. The \c Value type of the algorithm must be convertible to
kpeter@689
   970
    /// the \c Value type of the map.
kpeter@648
   971
    ///
kpeter@648
   972
    /// \pre \ref run() must be called before using this function.
kpeter@689
   973
    template <typename FlowMap>
kpeter@689
   974
    void flowMap(FlowMap &map) const {
kpeter@689
   975
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@689
   976
        map.set(a, _flow[_arc_id[a]]);
kpeter@689
   977
      }
kpeter@648
   978
    }
kpeter@648
   979
kpeter@652
   980
    /// \brief Return the potential (dual value) of the given node.
kpeter@652
   981
    ///
kpeter@652
   982
    /// This function returns the potential (dual value) of the
kpeter@652
   983
    /// given node.
kpeter@652
   984
    ///
kpeter@652
   985
    /// \pre \ref run() must be called before using this function.
kpeter@654
   986
    Cost potential(const Node& n) const {
kpeter@689
   987
      return _pi[_node_id[n]];
kpeter@652
   988
    }
kpeter@652
   989
kpeter@689
   990
    /// \brief Return the potential map (the dual solution).
kpeter@648
   991
    ///
kpeter@689
   992
    /// This function copies the potential (dual value) of each node
kpeter@689
   993
    /// into the given map.
kpeter@689
   994
    /// The \c Cost type of the algorithm must be convertible to the
kpeter@689
   995
    /// \c Value type of the map.
kpeter@648
   996
    ///
kpeter@648
   997
    /// \pre \ref run() must be called before using this function.
kpeter@689
   998
    template <typename PotentialMap>
kpeter@689
   999
    void potentialMap(PotentialMap &map) const {
kpeter@689
  1000
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@689
  1001
        map.set(n, _pi[_node_id[n]]);
kpeter@689
  1002
      }
kpeter@648
  1003
    }
kpeter@648
  1004
kpeter@648
  1005
    /// @}
kpeter@648
  1006
kpeter@648
  1007
  private:
kpeter@648
  1008
kpeter@648
  1009
    // Initialize internal data structures
kpeter@648
  1010
    bool init() {
kpeter@652
  1011
      if (_node_num == 0) return false;
kpeter@648
  1012
kpeter@689
  1013
      // Check the sum of supply values
kpeter@689
  1014
      _sum_supply = 0;
kpeter@689
  1015
      for (int i = 0; i != _node_num; ++i) {
kpeter@689
  1016
        _sum_supply += _supply[i];
kpeter@689
  1017
      }
alpar@690
  1018
      if ( !((_stype == GEQ && _sum_supply <= 0) ||
alpar@690
  1019
             (_stype == LEQ && _sum_supply >= 0)) ) return false;
kpeter@648
  1020
kpeter@689
  1021
      // Remove non-zero lower bounds
kpeter@689
  1022
      if (_have_lower) {
kpeter@689
  1023
        for (int i = 0; i != _arc_num; ++i) {
kpeter@689
  1024
          Value c = _lower[i];
kpeter@689
  1025
          if (c >= 0) {
kpeter@877
  1026
            _cap[i] = _upper[i] < MAX ? _upper[i] - c : INF;
kpeter@689
  1027
          } else {
kpeter@877
  1028
            _cap[i] = _upper[i] < MAX + c ? _upper[i] - c : INF;
kpeter@689
  1029
          }
kpeter@689
  1030
          _supply[_source[i]] -= c;
kpeter@689
  1031
          _supply[_target[i]] += c;
kpeter@689
  1032
        }
kpeter@689
  1033
      } else {
kpeter@689
  1034
        for (int i = 0; i != _arc_num; ++i) {
kpeter@689
  1035
          _cap[i] = _upper[i];
kpeter@689
  1036
        }
kpeter@652
  1037
      }
kpeter@648
  1038
kpeter@656
  1039
      // Initialize artifical cost
kpeter@687
  1040
      Cost ART_COST;
kpeter@656
  1041
      if (std::numeric_limits<Cost>::is_exact) {
kpeter@710
  1042
        ART_COST = std::numeric_limits<Cost>::max() / 2 + 1;
kpeter@656
  1043
      } else {
kpeter@687
  1044
        ART_COST = std::numeric_limits<Cost>::min();
kpeter@656
  1045
        for (int i = 0; i != _arc_num; ++i) {
kpeter@687
  1046
          if (_cost[i] > ART_COST) ART_COST = _cost[i];
kpeter@656
  1047
        }
kpeter@687
  1048
        ART_COST = (ART_COST + 1) * _node_num;
kpeter@656
  1049
      }
kpeter@656
  1050
kpeter@689
  1051
      // Initialize arc maps
kpeter@689
  1052
      for (int i = 0; i != _arc_num; ++i) {
kpeter@689
  1053
        _flow[i] = 0;
kpeter@689
  1054
        _state[i] = STATE_LOWER;
kpeter@689
  1055
      }
kpeter@689
  1056
      
kpeter@648
  1057
      // Set data for the artificial root node
kpeter@648
  1058
      _root = _node_num;
kpeter@648
  1059
      _parent[_root] = -1;
kpeter@648
  1060
      _pred[_root] = -1;
kpeter@648
  1061
      _thread[_root] = 0;
kpeter@651
  1062
      _rev_thread[0] = _root;
kpeter@689
  1063
      _succ_num[_root] = _node_num + 1;
kpeter@651
  1064
      _last_succ[_root] = _root - 1;
kpeter@687
  1065
      _supply[_root] = -_sum_supply;
kpeter@710
  1066
      _pi[_root] = 0;
kpeter@648
  1067
kpeter@648
  1068
      // Add artificial arcs and initialize the spanning tree data structure
kpeter@710
  1069
      if (_sum_supply == 0) {
kpeter@710
  1070
        // EQ supply constraints
kpeter@710
  1071
        _search_arc_num = _arc_num;
kpeter@710
  1072
        _all_arc_num = _arc_num + _node_num;
kpeter@710
  1073
        for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
kpeter@710
  1074
          _parent[u] = _root;
kpeter@710
  1075
          _pred[u] = e;
kpeter@710
  1076
          _thread[u] = u + 1;
kpeter@710
  1077
          _rev_thread[u + 1] = u;
kpeter@710
  1078
          _succ_num[u] = 1;
kpeter@710
  1079
          _last_succ[u] = u;
kpeter@710
  1080
          _cap[e] = INF;
kpeter@710
  1081
          _state[e] = STATE_TREE;
kpeter@710
  1082
          if (_supply[u] >= 0) {
kpeter@710
  1083
            _forward[u] = true;
kpeter@710
  1084
            _pi[u] = 0;
kpeter@710
  1085
            _source[e] = u;
kpeter@710
  1086
            _target[e] = _root;
kpeter@710
  1087
            _flow[e] = _supply[u];
kpeter@710
  1088
            _cost[e] = 0;
kpeter@710
  1089
          } else {
kpeter@710
  1090
            _forward[u] = false;
kpeter@710
  1091
            _pi[u] = ART_COST;
kpeter@710
  1092
            _source[e] = _root;
kpeter@710
  1093
            _target[e] = u;
kpeter@710
  1094
            _flow[e] = -_supply[u];
kpeter@710
  1095
            _cost[e] = ART_COST;
kpeter@710
  1096
          }
kpeter@648
  1097
        }
kpeter@648
  1098
      }
kpeter@710
  1099
      else if (_sum_supply > 0) {
kpeter@710
  1100
        // LEQ supply constraints
kpeter@710
  1101
        _search_arc_num = _arc_num + _node_num;
kpeter@710
  1102
        int f = _arc_num + _node_num;
kpeter@710
  1103
        for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
kpeter@710
  1104
          _parent[u] = _root;
kpeter@710
  1105
          _thread[u] = u + 1;
kpeter@710
  1106
          _rev_thread[u + 1] = u;
kpeter@710
  1107
          _succ_num[u] = 1;
kpeter@710
  1108
          _last_succ[u] = u;
kpeter@710
  1109
          if (_supply[u] >= 0) {
kpeter@710
  1110
            _forward[u] = true;
kpeter@710
  1111
            _pi[u] = 0;
kpeter@710
  1112
            _pred[u] = e;
kpeter@710
  1113
            _source[e] = u;
kpeter@710
  1114
            _target[e] = _root;
kpeter@710
  1115
            _cap[e] = INF;
kpeter@710
  1116
            _flow[e] = _supply[u];
kpeter@710
  1117
            _cost[e] = 0;
kpeter@710
  1118
            _state[e] = STATE_TREE;
kpeter@710
  1119
          } else {
kpeter@710
  1120
            _forward[u] = false;
kpeter@710
  1121
            _pi[u] = ART_COST;
kpeter@710
  1122
            _pred[u] = f;
kpeter@710
  1123
            _source[f] = _root;
kpeter@710
  1124
            _target[f] = u;
kpeter@710
  1125
            _cap[f] = INF;
kpeter@710
  1126
            _flow[f] = -_supply[u];
kpeter@710
  1127
            _cost[f] = ART_COST;
kpeter@710
  1128
            _state[f] = STATE_TREE;
kpeter@710
  1129
            _source[e] = u;
kpeter@710
  1130
            _target[e] = _root;
kpeter@710
  1131
            _cap[e] = INF;
kpeter@710
  1132
            _flow[e] = 0;
kpeter@710
  1133
            _cost[e] = 0;
kpeter@710
  1134
            _state[e] = STATE_LOWER;
kpeter@710
  1135
            ++f;
kpeter@710
  1136
          }
kpeter@710
  1137
        }
kpeter@710
  1138
        _all_arc_num = f;
kpeter@710
  1139
      }
kpeter@710
  1140
      else {
kpeter@710
  1141
        // GEQ supply constraints
kpeter@710
  1142
        _search_arc_num = _arc_num + _node_num;
kpeter@710
  1143
        int f = _arc_num + _node_num;
kpeter@710
  1144
        for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
kpeter@710
  1145
          _parent[u] = _root;
kpeter@710
  1146
          _thread[u] = u + 1;
kpeter@710
  1147
          _rev_thread[u + 1] = u;
kpeter@710
  1148
          _succ_num[u] = 1;
kpeter@710
  1149
          _last_succ[u] = u;
kpeter@710
  1150
          if (_supply[u] <= 0) {
kpeter@710
  1151
            _forward[u] = false;
kpeter@710
  1152
            _pi[u] = 0;
kpeter@710
  1153
            _pred[u] = e;
kpeter@710
  1154
            _source[e] = _root;
kpeter@710
  1155
            _target[e] = u;
kpeter@710
  1156
            _cap[e] = INF;
kpeter@710
  1157
            _flow[e] = -_supply[u];
kpeter@710
  1158
            _cost[e] = 0;
kpeter@710
  1159
            _state[e] = STATE_TREE;
kpeter@710
  1160
          } else {
kpeter@710
  1161
            _forward[u] = true;
kpeter@710
  1162
            _pi[u] = -ART_COST;
kpeter@710
  1163
            _pred[u] = f;
kpeter@710
  1164
            _source[f] = u;
kpeter@710
  1165
            _target[f] = _root;
kpeter@710
  1166
            _cap[f] = INF;
kpeter@710
  1167
            _flow[f] = _supply[u];
kpeter@710
  1168
            _state[f] = STATE_TREE;
kpeter@710
  1169
            _cost[f] = ART_COST;
kpeter@710
  1170
            _source[e] = _root;
kpeter@710
  1171
            _target[e] = u;
kpeter@710
  1172
            _cap[e] = INF;
kpeter@710
  1173
            _flow[e] = 0;
kpeter@710
  1174
            _cost[e] = 0;
kpeter@710
  1175
            _state[e] = STATE_LOWER;
kpeter@710
  1176
            ++f;
kpeter@710
  1177
          }
kpeter@710
  1178
        }
kpeter@710
  1179
        _all_arc_num = f;
kpeter@710
  1180
      }
kpeter@648
  1181
kpeter@648
  1182
      return true;
kpeter@648
  1183
    }
kpeter@648
  1184
kpeter@648
  1185
    // Find the join node
kpeter@648
  1186
    void findJoinNode() {
kpeter@650
  1187
      int u = _source[in_arc];
kpeter@650
  1188
      int v = _target[in_arc];
kpeter@648
  1189
      while (u != v) {
kpeter@651
  1190
        if (_succ_num[u] < _succ_num[v]) {
kpeter@651
  1191
          u = _parent[u];
kpeter@651
  1192
        } else {
kpeter@651
  1193
          v = _parent[v];
kpeter@651
  1194
        }
kpeter@648
  1195
      }
kpeter@648
  1196
      join = u;
kpeter@648
  1197
    }
kpeter@648
  1198
kpeter@648
  1199
    // Find the leaving arc of the cycle and returns true if the
kpeter@648
  1200
    // leaving arc is not the same as the entering arc
kpeter@648
  1201
    bool findLeavingArc() {
kpeter@648
  1202
      // Initialize first and second nodes according to the direction
kpeter@648
  1203
      // of the cycle
kpeter@650
  1204
      if (_state[in_arc] == STATE_LOWER) {
kpeter@650
  1205
        first  = _source[in_arc];
kpeter@650
  1206
        second = _target[in_arc];
kpeter@648
  1207
      } else {
kpeter@650
  1208
        first  = _target[in_arc];
kpeter@650
  1209
        second = _source[in_arc];
kpeter@648
  1210
      }
kpeter@650
  1211
      delta = _cap[in_arc];
kpeter@648
  1212
      int result = 0;
kpeter@688
  1213
      Value d;
kpeter@648
  1214
      int e;
kpeter@648
  1215
kpeter@648
  1216
      // Search the cycle along the path form the first node to the root
kpeter@648
  1217
      for (int u = first; u != join; u = _parent[u]) {
kpeter@648
  1218
        e = _pred[u];
kpeter@687
  1219
        d = _forward[u] ?
kpeter@877
  1220
          _flow[e] : (_cap[e] >= MAX ? INF : _cap[e] - _flow[e]);
kpeter@648
  1221
        if (d < delta) {
kpeter@648
  1222
          delta = d;
kpeter@648
  1223
          u_out = u;
kpeter@648
  1224
          result = 1;
kpeter@648
  1225
        }
kpeter@648
  1226
      }
kpeter@648
  1227
      // Search the cycle along the path form the second node to the root
kpeter@648
  1228
      for (int u = second; u != join; u = _parent[u]) {
kpeter@648
  1229
        e = _pred[u];
kpeter@687
  1230
        d = _forward[u] ? 
kpeter@877
  1231
          (_cap[e] >= MAX ? INF : _cap[e] - _flow[e]) : _flow[e];
kpeter@648
  1232
        if (d <= delta) {
kpeter@648
  1233
          delta = d;
kpeter@648
  1234
          u_out = u;
kpeter@648
  1235
          result = 2;
kpeter@648
  1236
        }
kpeter@648
  1237
      }
kpeter@648
  1238
kpeter@648
  1239
      if (result == 1) {
kpeter@648
  1240
        u_in = first;
kpeter@648
  1241
        v_in = second;
kpeter@648
  1242
      } else {
kpeter@648
  1243
        u_in = second;
kpeter@648
  1244
        v_in = first;
kpeter@648
  1245
      }
kpeter@648
  1246
      return result != 0;
kpeter@648
  1247
    }
kpeter@648
  1248
kpeter@648
  1249
    // Change _flow and _state vectors
kpeter@648
  1250
    void changeFlow(bool change) {
kpeter@648
  1251
      // Augment along the cycle
kpeter@648
  1252
      if (delta > 0) {
kpeter@688
  1253
        Value val = _state[in_arc] * delta;
kpeter@650
  1254
        _flow[in_arc] += val;
kpeter@650
  1255
        for (int u = _source[in_arc]; u != join; u = _parent[u]) {
kpeter@648
  1256
          _flow[_pred[u]] += _forward[u] ? -val : val;
kpeter@648
  1257
        }
kpeter@650
  1258
        for (int u = _target[in_arc]; u != join; u = _parent[u]) {
kpeter@648
  1259
          _flow[_pred[u]] += _forward[u] ? val : -val;
kpeter@648
  1260
        }
kpeter@648
  1261
      }
kpeter@648
  1262
      // Update the state of the entering and leaving arcs
kpeter@648
  1263
      if (change) {
kpeter@650
  1264
        _state[in_arc] = STATE_TREE;
kpeter@648
  1265
        _state[_pred[u_out]] =
kpeter@648
  1266
          (_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER;
kpeter@648
  1267
      } else {
kpeter@650
  1268
        _state[in_arc] = -_state[in_arc];
kpeter@648
  1269
      }
kpeter@648
  1270
    }
kpeter@648
  1271
kpeter@651
  1272
    // Update the tree structure
kpeter@651
  1273
    void updateTreeStructure() {
kpeter@651
  1274
      int u, w;
kpeter@651
  1275
      int old_rev_thread = _rev_thread[u_out];
kpeter@651
  1276
      int old_succ_num = _succ_num[u_out];
kpeter@651
  1277
      int old_last_succ = _last_succ[u_out];
kpeter@648
  1278
      v_out = _parent[u_out];
kpeter@648
  1279
kpeter@651
  1280
      u = _last_succ[u_in];  // the last successor of u_in
kpeter@651
  1281
      right = _thread[u];    // the node after it
kpeter@651
  1282
kpeter@651
  1283
      // Handle the case when old_rev_thread equals to v_in
kpeter@651
  1284
      // (it also means that join and v_out coincide)
kpeter@651
  1285
      if (old_rev_thread == v_in) {
kpeter@651
  1286
        last = _thread[_last_succ[u_out]];
kpeter@651
  1287
      } else {
kpeter@651
  1288
        last = _thread[v_in];
kpeter@648
  1289
      }
kpeter@648
  1290
kpeter@651
  1291
      // Update _thread and _parent along the stem nodes (i.e. the nodes
kpeter@651
  1292
      // between u_in and u_out, whose parent have to be changed)
kpeter@648
  1293
      _thread[v_in] = stem = u_in;
kpeter@651
  1294
      _dirty_revs.clear();
kpeter@651
  1295
      _dirty_revs.push_back(v_in);
kpeter@648
  1296
      par_stem = v_in;
kpeter@648
  1297
      while (stem != u_out) {
kpeter@651
  1298
        // Insert the next stem node into the thread list
kpeter@651
  1299
        new_stem = _parent[stem];
kpeter@651
  1300
        _thread[u] = new_stem;
kpeter@651
  1301
        _dirty_revs.push_back(u);
kpeter@648
  1302
kpeter@651
  1303
        // Remove the subtree of stem from the thread list
kpeter@651
  1304
        w = _rev_thread[stem];
kpeter@651
  1305
        _thread[w] = right;
kpeter@651
  1306
        _rev_thread[right] = w;
kpeter@648
  1307
kpeter@651
  1308
        // Change the parent node and shift stem nodes
kpeter@648
  1309
        _parent[stem] = par_stem;
kpeter@648
  1310
        par_stem = stem;
kpeter@648
  1311
        stem = new_stem;
kpeter@648
  1312
kpeter@651
  1313
        // Update u and right
kpeter@651
  1314
        u = _last_succ[stem] == _last_succ[par_stem] ?
kpeter@651
  1315
          _rev_thread[par_stem] : _last_succ[stem];
kpeter@648
  1316
        right = _thread[u];
kpeter@648
  1317
      }
kpeter@648
  1318
      _parent[u_out] = par_stem;
kpeter@648
  1319
      _thread[u] = last;
kpeter@651
  1320
      _rev_thread[last] = u;
kpeter@651
  1321
      _last_succ[u_out] = u;
kpeter@648
  1322
kpeter@651
  1323
      // Remove the subtree of u_out from the thread list except for
kpeter@651
  1324
      // the case when old_rev_thread equals to v_in
kpeter@651
  1325
      // (it also means that join and v_out coincide)
kpeter@651
  1326
      if (old_rev_thread != v_in) {
kpeter@651
  1327
        _thread[old_rev_thread] = right;
kpeter@651
  1328
        _rev_thread[right] = old_rev_thread;
kpeter@651
  1329
      }
kpeter@651
  1330
kpeter@651
  1331
      // Update _rev_thread using the new _thread values
kpeter@910
  1332
      for (int i = 0; i != int(_dirty_revs.size()); ++i) {
kpeter@651
  1333
        u = _dirty_revs[i];
kpeter@651
  1334
        _rev_thread[_thread[u]] = u;
kpeter@651
  1335
      }
kpeter@651
  1336
kpeter@651
  1337
      // Update _pred, _forward, _last_succ and _succ_num for the
kpeter@651
  1338
      // stem nodes from u_out to u_in
kpeter@651
  1339
      int tmp_sc = 0, tmp_ls = _last_succ[u_out];
kpeter@651
  1340
      u = u_out;
kpeter@651
  1341
      while (u != u_in) {
kpeter@651
  1342
        w = _parent[u];
kpeter@651
  1343
        _pred[u] = _pred[w];
kpeter@651
  1344
        _forward[u] = !_forward[w];
kpeter@651
  1345
        tmp_sc += _succ_num[u] - _succ_num[w];
kpeter@651
  1346
        _succ_num[u] = tmp_sc;
kpeter@651
  1347
        _last_succ[w] = tmp_ls;
kpeter@651
  1348
        u = w;
kpeter@651
  1349
      }
kpeter@651
  1350
      _pred[u_in] = in_arc;
kpeter@651
  1351
      _forward[u_in] = (u_in == _source[in_arc]);
kpeter@651
  1352
      _succ_num[u_in] = old_succ_num;
kpeter@651
  1353
kpeter@651
  1354
      // Set limits for updating _last_succ form v_in and v_out
kpeter@651
  1355
      // towards the root
kpeter@651
  1356
      int up_limit_in = -1;
kpeter@651
  1357
      int up_limit_out = -1;
kpeter@651
  1358
      if (_last_succ[join] == v_in) {
kpeter@651
  1359
        up_limit_out = join;
kpeter@648
  1360
      } else {
kpeter@651
  1361
        up_limit_in = join;
kpeter@651
  1362
      }
kpeter@651
  1363
kpeter@651
  1364
      // Update _last_succ from v_in towards the root
kpeter@651
  1365
      for (u = v_in; u != up_limit_in && _last_succ[u] == v_in;
kpeter@651
  1366
           u = _parent[u]) {
kpeter@651
  1367
        _last_succ[u] = _last_succ[u_out];
kpeter@651
  1368
      }
kpeter@651
  1369
      // Update _last_succ from v_out towards the root
kpeter@651
  1370
      if (join != old_rev_thread && v_in != old_rev_thread) {
kpeter@651
  1371
        for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
kpeter@651
  1372
             u = _parent[u]) {
kpeter@651
  1373
          _last_succ[u] = old_rev_thread;
kpeter@651
  1374
        }
kpeter@651
  1375
      } else {
kpeter@651
  1376
        for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
kpeter@651
  1377
             u = _parent[u]) {
kpeter@651
  1378
          _last_succ[u] = _last_succ[u_out];
kpeter@651
  1379
        }
kpeter@651
  1380
      }
kpeter@651
  1381
kpeter@651
  1382
      // Update _succ_num from v_in to join
kpeter@651
  1383
      for (u = v_in; u != join; u = _parent[u]) {
kpeter@651
  1384
        _succ_num[u] += old_succ_num;
kpeter@651
  1385
      }
kpeter@651
  1386
      // Update _succ_num from v_out to join
kpeter@651
  1387
      for (u = v_out; u != join; u = _parent[u]) {
kpeter@651
  1388
        _succ_num[u] -= old_succ_num;
kpeter@648
  1389
      }
kpeter@648
  1390
    }
kpeter@648
  1391
kpeter@651
  1392
    // Update potentials
kpeter@651
  1393
    void updatePotential() {
kpeter@654
  1394
      Cost sigma = _forward[u_in] ?
kpeter@648
  1395
        _pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] :
kpeter@648
  1396
        _pi[v_in] - _pi[u_in] + _cost[_pred[u_in]];
kpeter@655
  1397
      // Update potentials in the subtree, which has been moved
kpeter@655
  1398
      int end = _thread[_last_succ[u_in]];
kpeter@655
  1399
      for (int u = u_in; u != end; u = _thread[u]) {
kpeter@655
  1400
        _pi[u] += sigma;
kpeter@648
  1401
      }
kpeter@648
  1402
    }
kpeter@648
  1403
kpeter@910
  1404
    // Heuristic initial pivots
kpeter@910
  1405
    bool initialPivots() {
kpeter@910
  1406
      Value curr, total = 0;
kpeter@910
  1407
      std::vector<Node> supply_nodes, demand_nodes;
kpeter@910
  1408
      for (NodeIt u(_graph); u != INVALID; ++u) {
kpeter@910
  1409
        curr = _supply[_node_id[u]];
kpeter@910
  1410
        if (curr > 0) {
kpeter@910
  1411
          total += curr;
kpeter@910
  1412
          supply_nodes.push_back(u);
kpeter@910
  1413
        }
kpeter@910
  1414
        else if (curr < 0) {
kpeter@910
  1415
          demand_nodes.push_back(u);
kpeter@910
  1416
        }
kpeter@910
  1417
      }
kpeter@910
  1418
      if (_sum_supply > 0) total -= _sum_supply;
kpeter@910
  1419
      if (total <= 0) return true;
kpeter@910
  1420
kpeter@910
  1421
      IntVector arc_vector;
kpeter@910
  1422
      if (_sum_supply >= 0) {
kpeter@910
  1423
        if (supply_nodes.size() == 1 && demand_nodes.size() == 1) {
kpeter@910
  1424
          // Perform a reverse graph search from the sink to the source
kpeter@910
  1425
          typename GR::template NodeMap<bool> reached(_graph, false);
kpeter@910
  1426
          Node s = supply_nodes[0], t = demand_nodes[0];
kpeter@910
  1427
          std::vector<Node> stack;
kpeter@910
  1428
          reached[t] = true;
kpeter@910
  1429
          stack.push_back(t);
kpeter@910
  1430
          while (!stack.empty()) {
kpeter@910
  1431
            Node u, v = stack.back();
kpeter@910
  1432
            stack.pop_back();
kpeter@910
  1433
            if (v == s) break;
kpeter@910
  1434
            for (InArcIt a(_graph, v); a != INVALID; ++a) {
kpeter@910
  1435
              if (reached[u = _graph.source(a)]) continue;
kpeter@910
  1436
              int j = _arc_id[a];
kpeter@910
  1437
              if (_cap[j] >= total) {
kpeter@910
  1438
                arc_vector.push_back(j);
kpeter@910
  1439
                reached[u] = true;
kpeter@910
  1440
                stack.push_back(u);
kpeter@910
  1441
              }
kpeter@910
  1442
            }
kpeter@910
  1443
          }
kpeter@910
  1444
        } else {
kpeter@910
  1445
          // Find the min. cost incomming arc for each demand node
kpeter@910
  1446
          for (int i = 0; i != int(demand_nodes.size()); ++i) {
kpeter@910
  1447
            Node v = demand_nodes[i];
kpeter@910
  1448
            Cost c, min_cost = std::numeric_limits<Cost>::max();
kpeter@910
  1449
            Arc min_arc = INVALID;
kpeter@910
  1450
            for (InArcIt a(_graph, v); a != INVALID; ++a) {
kpeter@910
  1451
              c = _cost[_arc_id[a]];
kpeter@910
  1452
              if (c < min_cost) {
kpeter@910
  1453
                min_cost = c;
kpeter@910
  1454
                min_arc = a;
kpeter@910
  1455
              }
kpeter@910
  1456
            }
kpeter@910
  1457
            if (min_arc != INVALID) {
kpeter@910
  1458
              arc_vector.push_back(_arc_id[min_arc]);
kpeter@910
  1459
            }
kpeter@910
  1460
          }
kpeter@910
  1461
        }
kpeter@910
  1462
      } else {
kpeter@910
  1463
        // Find the min. cost outgoing arc for each supply node
kpeter@910
  1464
        for (int i = 0; i != int(supply_nodes.size()); ++i) {
kpeter@910
  1465
          Node u = supply_nodes[i];
kpeter@910
  1466
          Cost c, min_cost = std::numeric_limits<Cost>::max();
kpeter@910
  1467
          Arc min_arc = INVALID;
kpeter@910
  1468
          for (OutArcIt a(_graph, u); a != INVALID; ++a) {
kpeter@910
  1469
            c = _cost[_arc_id[a]];
kpeter@910
  1470
            if (c < min_cost) {
kpeter@910
  1471
              min_cost = c;
kpeter@910
  1472
              min_arc = a;
kpeter@910
  1473
            }
kpeter@910
  1474
          }
kpeter@910
  1475
          if (min_arc != INVALID) {
kpeter@910
  1476
            arc_vector.push_back(_arc_id[min_arc]);
kpeter@910
  1477
          }
kpeter@910
  1478
        }
kpeter@910
  1479
      }
kpeter@910
  1480
kpeter@910
  1481
      // Perform heuristic initial pivots
kpeter@910
  1482
      for (int i = 0; i != int(arc_vector.size()); ++i) {
kpeter@910
  1483
        in_arc = arc_vector[i];
kpeter@910
  1484
        if (_state[in_arc] * (_cost[in_arc] + _pi[_source[in_arc]] -
kpeter@910
  1485
            _pi[_target[in_arc]]) >= 0) continue;
kpeter@910
  1486
        findJoinNode();
kpeter@910
  1487
        bool change = findLeavingArc();
kpeter@910
  1488
        if (delta >= MAX) return false;
kpeter@910
  1489
        changeFlow(change);
kpeter@910
  1490
        if (change) {
kpeter@910
  1491
          updateTreeStructure();
kpeter@910
  1492
          updatePotential();
kpeter@910
  1493
        }
kpeter@910
  1494
      }
kpeter@910
  1495
      return true;
kpeter@910
  1496
    }
kpeter@910
  1497
kpeter@648
  1498
    // Execute the algorithm
kpeter@687
  1499
    ProblemType start(PivotRule pivot_rule) {
kpeter@648
  1500
      // Select the pivot rule implementation
kpeter@648
  1501
      switch (pivot_rule) {
kpeter@652
  1502
        case FIRST_ELIGIBLE:
kpeter@648
  1503
          return start<FirstEligiblePivotRule>();
kpeter@652
  1504
        case BEST_ELIGIBLE:
kpeter@648
  1505
          return start<BestEligiblePivotRule>();
kpeter@652
  1506
        case BLOCK_SEARCH:
kpeter@648
  1507
          return start<BlockSearchPivotRule>();
kpeter@652
  1508
        case CANDIDATE_LIST:
kpeter@648
  1509
          return start<CandidateListPivotRule>();
kpeter@652
  1510
        case ALTERING_LIST:
kpeter@648
  1511
          return start<AlteringListPivotRule>();
kpeter@648
  1512
      }
kpeter@687
  1513
      return INFEASIBLE; // avoid warning
kpeter@648
  1514
    }
kpeter@648
  1515
kpeter@652
  1516
    template <typename PivotRuleImpl>
kpeter@687
  1517
    ProblemType start() {
kpeter@652
  1518
      PivotRuleImpl pivot(*this);
kpeter@648
  1519
kpeter@910
  1520
      // Perform heuristic initial pivots
kpeter@910
  1521
      if (!initialPivots()) return UNBOUNDED;
kpeter@910
  1522
kpeter@652
  1523
      // Execute the Network Simplex algorithm
kpeter@648
  1524
      while (pivot.findEnteringArc()) {
kpeter@648
  1525
        findJoinNode();
kpeter@648
  1526
        bool change = findLeavingArc();
kpeter@877
  1527
        if (delta >= MAX) return UNBOUNDED;
kpeter@648
  1528
        changeFlow(change);
kpeter@648
  1529
        if (change) {
kpeter@651
  1530
          updateTreeStructure();
kpeter@651
  1531
          updatePotential();
kpeter@648
  1532
        }
kpeter@648
  1533
      }
kpeter@687
  1534
      
kpeter@687
  1535
      // Check feasibility
kpeter@710
  1536
      for (int e = _search_arc_num; e != _all_arc_num; ++e) {
kpeter@710
  1537
        if (_flow[e] != 0) return INFEASIBLE;
kpeter@687
  1538
      }
kpeter@648
  1539
kpeter@689
  1540
      // Transform the solution and the supply map to the original form
kpeter@689
  1541
      if (_have_lower) {
kpeter@648
  1542
        for (int i = 0; i != _arc_num; ++i) {
kpeter@689
  1543
          Value c = _lower[i];
kpeter@689
  1544
          if (c != 0) {
kpeter@689
  1545
            _flow[i] += c;
kpeter@689
  1546
            _supply[_source[i]] += c;
kpeter@689
  1547
            _supply[_target[i]] -= c;
kpeter@689
  1548
          }
kpeter@648
  1549
        }
kpeter@648
  1550
      }
kpeter@710
  1551
      
kpeter@710
  1552
      // Shift potentials to meet the requirements of the GEQ/LEQ type
kpeter@710
  1553
      // optimality conditions
kpeter@710
  1554
      if (_sum_supply == 0) {
kpeter@710
  1555
        if (_stype == GEQ) {
kpeter@710
  1556
          Cost max_pot = std::numeric_limits<Cost>::min();
kpeter@710
  1557
          for (int i = 0; i != _node_num; ++i) {
kpeter@710
  1558
            if (_pi[i] > max_pot) max_pot = _pi[i];
kpeter@710
  1559
          }
kpeter@710
  1560
          if (max_pot > 0) {
kpeter@710
  1561
            for (int i = 0; i != _node_num; ++i)
kpeter@710
  1562
              _pi[i] -= max_pot;
kpeter@710
  1563
          }
kpeter@710
  1564
        } else {
kpeter@710
  1565
          Cost min_pot = std::numeric_limits<Cost>::max();
kpeter@710
  1566
          for (int i = 0; i != _node_num; ++i) {
kpeter@710
  1567
            if (_pi[i] < min_pot) min_pot = _pi[i];
kpeter@710
  1568
          }
kpeter@710
  1569
          if (min_pot < 0) {
kpeter@710
  1570
            for (int i = 0; i != _node_num; ++i)
kpeter@710
  1571
              _pi[i] -= min_pot;
kpeter@710
  1572
          }
kpeter@710
  1573
        }
kpeter@710
  1574
      }
kpeter@648
  1575
kpeter@687
  1576
      return OPTIMAL;
kpeter@648
  1577
    }
kpeter@648
  1578
kpeter@648
  1579
  }; //class NetworkSimplex
kpeter@648
  1580
kpeter@648
  1581
  ///@}
kpeter@648
  1582
kpeter@648
  1583
} //namespace lemon
kpeter@648
  1584
kpeter@648
  1585
#endif //LEMON_NETWORK_SIMPLEX_H