lemon/smart_graph.h
changeset 1187 4c89e925cfe2
parent 956 141f9c0db4a3
child 1188 5ef0ab7b61cd
     1.1 --- a/lemon/smart_graph.h	Sun Nov 14 16:35:31 2010 +0100
     1.2 +++ b/lemon/smart_graph.h	Sun Nov 14 20:06:23 2010 +0100
     1.3 @@ -405,8 +405,6 @@
     1.4      std::vector<NodeT> nodes;
     1.5      std::vector<ArcT> arcs;
     1.6  
     1.7 -    int first_free_arc;
     1.8 -
     1.9    public:
    1.10  
    1.11      typedef SmartGraphBase Graph;
    1.12 @@ -811,6 +809,514 @@
    1.13      };
    1.14    };
    1.15  
    1.16 +  class SmartBpGraphBase {
    1.17 +
    1.18 +  protected:
    1.19 +
    1.20 +    struct NodeT {
    1.21 +      int first_out;
    1.22 +      int partition_next;
    1.23 +      int partition_index;
    1.24 +      bool red;
    1.25 +    };
    1.26 +
    1.27 +    struct ArcT {
    1.28 +      int target;
    1.29 +      int next_out;
    1.30 +    };
    1.31 +
    1.32 +    std::vector<NodeT> nodes;
    1.33 +    std::vector<ArcT> arcs;
    1.34 +
    1.35 +    int first_red, first_blue;
    1.36 +
    1.37 +  public:
    1.38 +
    1.39 +    typedef SmartBpGraphBase Graph;
    1.40 +
    1.41 +    class Node;
    1.42 +    class Arc;
    1.43 +    class Edge;
    1.44 +
    1.45 +    class Node {
    1.46 +      friend class SmartBpGraphBase;
    1.47 +    protected:
    1.48 +
    1.49 +      int _id;
    1.50 +      explicit Node(int id) { _id = id;}
    1.51 +
    1.52 +    public:
    1.53 +      Node() {}
    1.54 +      Node (Invalid) { _id = -1; }
    1.55 +      bool operator==(const Node& node) const {return _id == node._id;}
    1.56 +      bool operator!=(const Node& node) const {return _id != node._id;}
    1.57 +      bool operator<(const Node& node) const {return _id < node._id;}
    1.58 +    };
    1.59 +
    1.60 +    class Edge {
    1.61 +      friend class SmartBpGraphBase;
    1.62 +    protected:
    1.63 +
    1.64 +      int _id;
    1.65 +      explicit Edge(int id) { _id = id;}
    1.66 +
    1.67 +    public:
    1.68 +      Edge() {}
    1.69 +      Edge (Invalid) { _id = -1; }
    1.70 +      bool operator==(const Edge& arc) const {return _id == arc._id;}
    1.71 +      bool operator!=(const Edge& arc) const {return _id != arc._id;}
    1.72 +      bool operator<(const Edge& arc) const {return _id < arc._id;}
    1.73 +    };
    1.74 +
    1.75 +    class Arc {
    1.76 +      friend class SmartBpGraphBase;
    1.77 +    protected:
    1.78 +
    1.79 +      int _id;
    1.80 +      explicit Arc(int id) { _id = id;}
    1.81 +
    1.82 +    public:
    1.83 +      operator Edge() const {
    1.84 +        return _id != -1 ? edgeFromId(_id / 2) : INVALID;
    1.85 +      }
    1.86 +
    1.87 +      Arc() {}
    1.88 +      Arc (Invalid) { _id = -1; }
    1.89 +      bool operator==(const Arc& arc) const {return _id == arc._id;}
    1.90 +      bool operator!=(const Arc& arc) const {return _id != arc._id;}
    1.91 +      bool operator<(const Arc& arc) const {return _id < arc._id;}
    1.92 +    };
    1.93 +
    1.94 +
    1.95 +
    1.96 +    SmartBpGraphBase()
    1.97 +      : nodes(), arcs(), first_red(-1), first_blue(-1) {}
    1.98 +
    1.99 +    typedef True NodeNumTag;
   1.100 +    typedef True EdgeNumTag;
   1.101 +    typedef True ArcNumTag;
   1.102 +
   1.103 +    int nodeNum() const { return nodes.size(); }
   1.104 +    int redNum() const {
   1.105 +      return first_red == -1 ? 0 : nodes[first_red].partition_index + 1;
   1.106 +    }
   1.107 +    int blueNum() const {
   1.108 +      return first_blue == -1 ? 0 : nodes[first_blue].partition_index + 1;
   1.109 +    }
   1.110 +    int edgeNum() const { return arcs.size() / 2; }
   1.111 +    int arcNum() const { return arcs.size(); }
   1.112 +
   1.113 +    int maxNodeId() const { return nodes.size()-1; }
   1.114 +    int maxRedId() const {
   1.115 +      return first_red == -1 ? -1 : nodes[first_red].partition_index;
   1.116 +    }
   1.117 +    int maxBlueId() const {
   1.118 +      return first_blue == -1 ? -1 : nodes[first_blue].partition_index;
   1.119 +    }
   1.120 +    int maxEdgeId() const { return arcs.size() / 2 - 1; }
   1.121 +    int maxArcId() const { return arcs.size()-1; }
   1.122 +
   1.123 +    bool red(Node n) const { return nodes[n._id].red; }
   1.124 +    bool blue(Node n) const { return !nodes[n._id].red; }
   1.125 +
   1.126 +    Node source(Arc a) const { return Node(arcs[a._id ^ 1].target); }
   1.127 +    Node target(Arc a) const { return Node(arcs[a._id].target); }
   1.128 +
   1.129 +    Node redNode(Edge e) const { return Node(arcs[2 * e._id].target); }
   1.130 +    Node blueNode(Edge e) const { return Node(arcs[2 * e._id + 1].target); }
   1.131 +
   1.132 +    Node u(Edge e) const { return redNode(e); }
   1.133 +    Node v(Edge e) const { return blueNode(e); }
   1.134 +
   1.135 +    static bool direction(Arc a) {
   1.136 +      return (a._id & 1) == 1;
   1.137 +    }
   1.138 +
   1.139 +    static Arc direct(Edge e, bool d) {
   1.140 +      return Arc(e._id * 2 + (d ? 1 : 0));
   1.141 +    }
   1.142 +
   1.143 +    void first(Node& node) const {
   1.144 +      node._id = nodes.size() - 1;
   1.145 +    }
   1.146 +
   1.147 +    static void next(Node& node) {
   1.148 +      --node._id;
   1.149 +    }
   1.150 +
   1.151 +    void firstRed(Node& node) const {
   1.152 +      node._id = first_red;
   1.153 +    }
   1.154 +
   1.155 +    void nextRed(Node& node) const {
   1.156 +      node._id = nodes[node._id].partition_next;
   1.157 +    }
   1.158 +
   1.159 +    void firstBlue(Node& node) const {
   1.160 +      node._id = first_blue;
   1.161 +    }
   1.162 +
   1.163 +    void nextBlue(Node& node) const {
   1.164 +      node._id = nodes[node._id].partition_next;
   1.165 +    }
   1.166 +
   1.167 +    void first(Arc& arc) const {
   1.168 +      arc._id = arcs.size() - 1;
   1.169 +    }
   1.170 +
   1.171 +    static void next(Arc& arc) {
   1.172 +      --arc._id;
   1.173 +    }
   1.174 +
   1.175 +    void first(Edge& arc) const {
   1.176 +      arc._id = arcs.size() / 2 - 1;
   1.177 +    }
   1.178 +
   1.179 +    static void next(Edge& arc) {
   1.180 +      --arc._id;
   1.181 +    }
   1.182 +
   1.183 +    void firstOut(Arc &arc, const Node& v) const {
   1.184 +      arc._id = nodes[v._id].first_out;
   1.185 +    }
   1.186 +    void nextOut(Arc &arc) const {
   1.187 +      arc._id = arcs[arc._id].next_out;
   1.188 +    }
   1.189 +
   1.190 +    void firstIn(Arc &arc, const Node& v) const {
   1.191 +      arc._id = ((nodes[v._id].first_out) ^ 1);
   1.192 +      if (arc._id == -2) arc._id = -1;
   1.193 +    }
   1.194 +    void nextIn(Arc &arc) const {
   1.195 +      arc._id = ((arcs[arc._id ^ 1].next_out) ^ 1);
   1.196 +      if (arc._id == -2) arc._id = -1;
   1.197 +    }
   1.198 +
   1.199 +    void firstInc(Edge &arc, bool& d, const Node& v) const {
   1.200 +      int de = nodes[v._id].first_out;
   1.201 +      if (de != -1) {
   1.202 +        arc._id = de / 2;
   1.203 +        d = ((de & 1) == 1);
   1.204 +      } else {
   1.205 +        arc._id = -1;
   1.206 +        d = true;
   1.207 +      }
   1.208 +    }
   1.209 +    void nextInc(Edge &arc, bool& d) const {
   1.210 +      int de = (arcs[(arc._id * 2) | (d ? 1 : 0)].next_out);
   1.211 +      if (de != -1) {
   1.212 +        arc._id = de / 2;
   1.213 +        d = ((de & 1) == 1);
   1.214 +      } else {
   1.215 +        arc._id = -1;
   1.216 +        d = true;
   1.217 +      }
   1.218 +    }
   1.219 +
   1.220 +    static int id(Node v) { return v._id; }
   1.221 +    int redId(Node v) const {
   1.222 +      LEMON_DEBUG(nodes[v._id].red, "Node has to be red");
   1.223 +      return nodes[v._id].partition_index;
   1.224 +    }
   1.225 +    int blueId(Node v) const {
   1.226 +      LEMON_DEBUG(nodes[v._id].red, "Node has to be blue");
   1.227 +      return nodes[v._id].partition_index;
   1.228 +    }
   1.229 +    static int id(Arc e) { return e._id; }
   1.230 +    static int id(Edge e) { return e._id; }
   1.231 +
   1.232 +    static Node nodeFromId(int id) { return Node(id);}
   1.233 +    static Arc arcFromId(int id) { return Arc(id);}
   1.234 +    static Edge edgeFromId(int id) { return Edge(id);}
   1.235 +
   1.236 +    bool valid(Node n) const {
   1.237 +      return n._id >= 0 && n._id < static_cast<int>(nodes.size());
   1.238 +    }
   1.239 +    bool valid(Arc a) const {
   1.240 +      return a._id >= 0 && a._id < static_cast<int>(arcs.size());
   1.241 +    }
   1.242 +    bool valid(Edge e) const {
   1.243 +      return e._id >= 0 && 2 * e._id < static_cast<int>(arcs.size());
   1.244 +    }
   1.245 +
   1.246 +    Node addRedNode() {
   1.247 +      int n = nodes.size();
   1.248 +      nodes.push_back(NodeT());
   1.249 +      nodes[n].first_out = -1;
   1.250 +      nodes[n].red = true;
   1.251 +      if (first_red == -1) {
   1.252 +        nodes[n].partition_index = 0;
   1.253 +      } else {
   1.254 +        nodes[n].partition_index = nodes[first_red].partition_index + 1;
   1.255 +      }
   1.256 +      nodes[n].partition_next = first_red;
   1.257 +      first_red = n;
   1.258 +
   1.259 +      return Node(n);
   1.260 +    }
   1.261 +
   1.262 +    Node addBlueNode() {
   1.263 +      int n = nodes.size();
   1.264 +      nodes.push_back(NodeT());
   1.265 +      nodes[n].first_out = -1;
   1.266 +      nodes[n].red = false;
   1.267 +      if (first_blue == -1) {
   1.268 +        nodes[n].partition_index = 0;
   1.269 +      } else {
   1.270 +        nodes[n].partition_index = nodes[first_blue].partition_index + 1;
   1.271 +      }
   1.272 +      nodes[n].partition_next = first_blue;
   1.273 +      first_blue = n;
   1.274 +
   1.275 +      return Node(n);
   1.276 +    }
   1.277 +
   1.278 +    Edge addEdge(Node u, Node v) {
   1.279 +      int n = arcs.size();
   1.280 +      arcs.push_back(ArcT());
   1.281 +      arcs.push_back(ArcT());
   1.282 +
   1.283 +      arcs[n].target = u._id;
   1.284 +      arcs[n | 1].target = v._id;
   1.285 +
   1.286 +      arcs[n].next_out = nodes[v._id].first_out;
   1.287 +      nodes[v._id].first_out = n;
   1.288 +
   1.289 +      arcs[n | 1].next_out = nodes[u._id].first_out;
   1.290 +      nodes[u._id].first_out = (n | 1);
   1.291 +
   1.292 +      return Edge(n / 2);
   1.293 +    }
   1.294 +
   1.295 +    void clear() {
   1.296 +      arcs.clear();
   1.297 +      nodes.clear();
   1.298 +      first_red = -1;
   1.299 +      first_blue = -1;
   1.300 +    }
   1.301 +
   1.302 +  };
   1.303 +
   1.304 +  typedef BpGraphExtender<SmartBpGraphBase> ExtendedSmartBpGraphBase;
   1.305 +
   1.306 +  /// \ingroup graphs
   1.307 +  ///
   1.308 +  /// \brief A smart undirected graph class.
   1.309 +  ///
   1.310 +  /// \ref SmartBpGraph is a simple and fast graph implementation.
   1.311 +  /// It is also quite memory efficient but at the price
   1.312 +  /// that it does not support node and edge deletion
   1.313 +  /// (except for the Snapshot feature).
   1.314 +  ///
   1.315 +  /// This type fully conforms to the \ref concepts::Graph "Graph concept"
   1.316 +  /// and it also provides some additional functionalities.
   1.317 +  /// Most of its member functions and nested classes are documented
   1.318 +  /// only in the concept class.
   1.319 +  ///
   1.320 +  /// This class provides constant time counting for nodes, edges and arcs.
   1.321 +  ///
   1.322 +  /// \sa concepts::Graph
   1.323 +  /// \sa SmartDigraph
   1.324 +  class SmartBpGraph : public ExtendedSmartBpGraphBase {
   1.325 +    typedef ExtendedSmartBpGraphBase Parent;
   1.326 +
   1.327 +  private:
   1.328 +    /// Graphs are \e not copy constructible. Use GraphCopy instead.
   1.329 +    SmartBpGraph(const SmartBpGraph &) : ExtendedSmartBpGraphBase() {};
   1.330 +    /// \brief Assignment of a graph to another one is \e not allowed.
   1.331 +    /// Use GraphCopy instead.
   1.332 +    void operator=(const SmartBpGraph &) {}
   1.333 +
   1.334 +  public:
   1.335 +
   1.336 +    /// Constructor
   1.337 +
   1.338 +    /// Constructor.
   1.339 +    ///
   1.340 +    SmartBpGraph() {}
   1.341 +
   1.342 +    /// \brief Add a new red node to the graph.
   1.343 +    ///
   1.344 +    /// This function adds a red new node to the graph.
   1.345 +    /// \return The new node.
   1.346 +    Node addRedNode() { return Parent::addRedNode(); }
   1.347 +
   1.348 +    /// \brief Add a new blue node to the graph.
   1.349 +    ///
   1.350 +    /// This function adds a blue new node to the graph.
   1.351 +    /// \return The new node.
   1.352 +    Node addBlueNode() { return Parent::addBlueNode(); }
   1.353 +
   1.354 +    /// \brief Add a new edge to the graph.
   1.355 +    ///
   1.356 +    /// This function adds a new edge to the graph between nodes
   1.357 +    /// \c u and \c v with inherent orientation from node \c u to
   1.358 +    /// node \c v.
   1.359 +    /// \return The new edge.
   1.360 +    Edge addEdge(Node red, Node blue) {
   1.361 +      LEMON_DEBUG(Parent::red(red) && Parent::blue(blue),
   1.362 +                  "Edge has to be formed by a red and a blue nodes");
   1.363 +      return Parent::addEdge(red, blue);
   1.364 +    }
   1.365 +
   1.366 +    /// \brief Node validity check
   1.367 +    ///
   1.368 +    /// This function gives back \c true if the given node is valid,
   1.369 +    /// i.e. it is a real node of the graph.
   1.370 +    ///
   1.371 +    /// \warning A removed node (using Snapshot) could become valid again
   1.372 +    /// if new nodes are added to the graph.
   1.373 +    bool valid(Node n) const { return Parent::valid(n); }
   1.374 +
   1.375 +    /// \brief Edge validity check
   1.376 +    ///
   1.377 +    /// This function gives back \c true if the given edge is valid,
   1.378 +    /// i.e. it is a real edge of the graph.
   1.379 +    ///
   1.380 +    /// \warning A removed edge (using Snapshot) could become valid again
   1.381 +    /// if new edges are added to the graph.
   1.382 +    bool valid(Edge e) const { return Parent::valid(e); }
   1.383 +
   1.384 +    /// \brief Arc validity check
   1.385 +    ///
   1.386 +    /// This function gives back \c true if the given arc is valid,
   1.387 +    /// i.e. it is a real arc of the graph.
   1.388 +    ///
   1.389 +    /// \warning A removed arc (using Snapshot) could become valid again
   1.390 +    /// if new edges are added to the graph.
   1.391 +    bool valid(Arc a) const { return Parent::valid(a); }
   1.392 +
   1.393 +    ///Clear the graph.
   1.394 +
   1.395 +    ///This function erases all nodes and arcs from the graph.
   1.396 +    ///
   1.397 +    void clear() {
   1.398 +      Parent::clear();
   1.399 +    }
   1.400 +
   1.401 +    /// Reserve memory for nodes.
   1.402 +
   1.403 +    /// Using this function, it is possible to avoid superfluous memory
   1.404 +    /// allocation: if you know that the graph you want to build will
   1.405 +    /// be large (e.g. it will contain millions of nodes and/or edges),
   1.406 +    /// then it is worth reserving space for this amount before starting
   1.407 +    /// to build the graph.
   1.408 +    /// \sa reserveEdge()
   1.409 +    void reserveNode(int n) { nodes.reserve(n); };
   1.410 +
   1.411 +    /// Reserve memory for edges.
   1.412 +
   1.413 +    /// Using this function, it is possible to avoid superfluous memory
   1.414 +    /// allocation: if you know that the graph you want to build will
   1.415 +    /// be large (e.g. it will contain millions of nodes and/or edges),
   1.416 +    /// then it is worth reserving space for this amount before starting
   1.417 +    /// to build the graph.
   1.418 +    /// \sa reserveNode()
   1.419 +    void reserveEdge(int m) { arcs.reserve(2 * m); };
   1.420 +
   1.421 +  public:
   1.422 +
   1.423 +    class Snapshot;
   1.424 +
   1.425 +  protected:
   1.426 +
   1.427 +    void saveSnapshot(Snapshot &s)
   1.428 +    {
   1.429 +      s._graph = this;
   1.430 +      s.node_num = nodes.size();
   1.431 +      s.arc_num = arcs.size();
   1.432 +    }
   1.433 +
   1.434 +    void restoreSnapshot(const Snapshot &s)
   1.435 +    {
   1.436 +      while(s.arc_num<arcs.size()) {
   1.437 +        int n=arcs.size()-1;
   1.438 +        Edge arc=edgeFromId(n/2);
   1.439 +        Parent::notifier(Edge()).erase(arc);
   1.440 +        std::vector<Arc> dir;
   1.441 +        dir.push_back(arcFromId(n));
   1.442 +        dir.push_back(arcFromId(n-1));
   1.443 +        Parent::notifier(Arc()).erase(dir);
   1.444 +        nodes[arcs[n-1].target].first_out=arcs[n].next_out;
   1.445 +        nodes[arcs[n].target].first_out=arcs[n-1].next_out;
   1.446 +        arcs.pop_back();
   1.447 +        arcs.pop_back();
   1.448 +      }
   1.449 +      while(s.node_num<nodes.size()) {
   1.450 +        int n=nodes.size()-1;
   1.451 +        Node node = nodeFromId(n);
   1.452 +        if (Parent::red(node)) {
   1.453 +          first_red = nodes[n].partition_next;
   1.454 +          Parent::notifier(RedNode()).erase(node);          
   1.455 +        } else {
   1.456 +          first_blue = nodes[n].partition_next;
   1.457 +          Parent::notifier(BlueNode()).erase(node);
   1.458 +        }
   1.459 +        Parent::notifier(Node()).erase(node);
   1.460 +        nodes.pop_back();
   1.461 +      }
   1.462 +    }
   1.463 +
   1.464 +  public:
   1.465 +
   1.466 +    ///Class to make a snapshot of the graph and to restore it later.
   1.467 +
   1.468 +    ///Class to make a snapshot of the graph and to restore it later.
   1.469 +    ///
   1.470 +    ///The newly added nodes and edges can be removed using the
   1.471 +    ///restore() function. This is the only way for deleting nodes and/or
   1.472 +    ///edges from a SmartBpGraph structure.
   1.473 +    ///
   1.474 +    ///\note After a state is restored, you cannot restore a later state,
   1.475 +    ///i.e. you cannot add the removed nodes and edges again using
   1.476 +    ///another Snapshot instance.
   1.477 +    ///
   1.478 +    ///\warning The validity of the snapshot is not stored due to
   1.479 +    ///performance reasons. If you do not use the snapshot correctly,
   1.480 +    ///it can cause broken program, invalid or not restored state of
   1.481 +    ///the graph or no change.
   1.482 +    class Snapshot
   1.483 +    {
   1.484 +      SmartBpGraph *_graph;
   1.485 +    protected:
   1.486 +      friend class SmartBpGraph;
   1.487 +      unsigned int node_num;
   1.488 +      unsigned int arc_num;
   1.489 +    public:
   1.490 +      ///Default constructor.
   1.491 +
   1.492 +      ///Default constructor.
   1.493 +      ///You have to call save() to actually make a snapshot.
   1.494 +      Snapshot() : _graph(0) {}
   1.495 +      ///Constructor that immediately makes a snapshot
   1.496 +
   1.497 +      /// This constructor immediately makes a snapshot of the given graph.
   1.498 +      ///
   1.499 +      Snapshot(SmartBpGraph &gr) {
   1.500 +        gr.saveSnapshot(*this);
   1.501 +      }
   1.502 +
   1.503 +      ///Make a snapshot.
   1.504 +
   1.505 +      ///This function makes a snapshot of the given graph.
   1.506 +      ///It can be called more than once. In case of a repeated
   1.507 +      ///call, the previous snapshot gets lost.
   1.508 +      void save(SmartBpGraph &gr)
   1.509 +      {
   1.510 +        gr.saveSnapshot(*this);
   1.511 +      }
   1.512 +
   1.513 +      ///Undo the changes until the last snapshot.
   1.514 +
   1.515 +      ///This function undos the changes until the last snapshot
   1.516 +      ///created by save() or Snapshot(SmartBpGraph&).
   1.517 +      void restore()
   1.518 +      {
   1.519 +        _graph->restoreSnapshot(*this);
   1.520 +      }
   1.521 +    };
   1.522 +  };
   1.523 +
   1.524  } //namespace lemon
   1.525  
   1.526