lemon/smart_graph.h
author Balazs Dezso <deba@inf.elte.hu>
Sun, 14 Nov 2010 20:06:23 +0100
changeset 1187 4c89e925cfe2
parent 956 141f9c0db4a3
child 1188 5ef0ab7b61cd
permissions -rw-r--r--
SmartBpGraph implementation (#69)
alpar@209
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
deba@109
     2
 *
alpar@209
     3
 * This file is a part of LEMON, a generic C++ optimization library.
deba@109
     4
 *
alpar@956
     5
 * Copyright (C) 2003-2010
deba@109
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
deba@109
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
deba@109
     8
 *
deba@109
     9
 * Permission to use, modify and distribute this software is granted
deba@109
    10
 * provided that this copyright notice appears in all copies. For
deba@109
    11
 * precise terms see the accompanying LICENSE file.
deba@109
    12
 *
deba@109
    13
 * This software is provided "AS IS" with no warranty of any kind,
deba@109
    14
 * express or implied, and with no claim as to its suitability for any
deba@109
    15
 * purpose.
deba@109
    16
 *
deba@109
    17
 */
deba@109
    18
deba@109
    19
#ifndef LEMON_SMART_GRAPH_H
deba@109
    20
#define LEMON_SMART_GRAPH_H
deba@109
    21
deba@109
    22
///\ingroup graphs
deba@109
    23
///\file
deba@109
    24
///\brief SmartDigraph and SmartGraph classes.
deba@109
    25
deba@109
    26
#include <vector>
deba@109
    27
deba@220
    28
#include <lemon/core.h>
deba@109
    29
#include <lemon/error.h>
deba@109
    30
#include <lemon/bits/graph_extender.h>
deba@109
    31
deba@109
    32
namespace lemon {
deba@109
    33
deba@109
    34
  class SmartDigraph;
deba@109
    35
deba@109
    36
  class SmartDigraphBase {
deba@109
    37
  protected:
deba@109
    38
alpar@209
    39
    struct NodeT
deba@109
    40
    {
alpar@209
    41
      int first_in, first_out;
deba@109
    42
      NodeT() {}
deba@109
    43
    };
alpar@209
    44
    struct ArcT
deba@109
    45
    {
alpar@209
    46
      int target, source, next_in, next_out;
alpar@209
    47
      ArcT() {}
deba@109
    48
    };
deba@109
    49
deba@109
    50
    std::vector<NodeT> nodes;
deba@109
    51
    std::vector<ArcT> arcs;
alpar@209
    52
deba@109
    53
  public:
deba@109
    54
kpeter@664
    55
    typedef SmartDigraphBase Digraph;
deba@109
    56
deba@109
    57
    class Node;
deba@109
    58
    class Arc;
deba@109
    59
deba@109
    60
  public:
deba@109
    61
deba@109
    62
    SmartDigraphBase() : nodes(), arcs() { }
alpar@209
    63
    SmartDigraphBase(const SmartDigraphBase &_g)
deba@109
    64
      : nodes(_g.nodes), arcs(_g.arcs) { }
alpar@209
    65
deba@109
    66
    typedef True NodeNumTag;
kpeter@372
    67
    typedef True ArcNumTag;
deba@109
    68
deba@109
    69
    int nodeNum() const { return nodes.size(); }
deba@109
    70
    int arcNum() const { return arcs.size(); }
deba@109
    71
deba@109
    72
    int maxNodeId() const { return nodes.size()-1; }
deba@109
    73
    int maxArcId() const { return arcs.size()-1; }
deba@109
    74
deba@109
    75
    Node addNode() {
alpar@209
    76
      int n = nodes.size();
deba@109
    77
      nodes.push_back(NodeT());
deba@109
    78
      nodes[n].first_in = -1;
deba@109
    79
      nodes[n].first_out = -1;
deba@109
    80
      return Node(n);
deba@109
    81
    }
alpar@209
    82
deba@109
    83
    Arc addArc(Node u, Node v) {
alpar@209
    84
      int n = arcs.size();
deba@109
    85
      arcs.push_back(ArcT());
alpar@209
    86
      arcs[n].source = u._id;
deba@109
    87
      arcs[n].target = v._id;
deba@109
    88
      arcs[n].next_out = nodes[u._id].first_out;
deba@109
    89
      arcs[n].next_in = nodes[v._id].first_in;
deba@109
    90
      nodes[u._id].first_out = nodes[v._id].first_in = n;
deba@109
    91
deba@109
    92
      return Arc(n);
deba@109
    93
    }
deba@109
    94
deba@109
    95
    void clear() {
deba@109
    96
      arcs.clear();
deba@109
    97
      nodes.clear();
deba@109
    98
    }
deba@109
    99
deba@109
   100
    Node source(Arc a) const { return Node(arcs[a._id].source); }
deba@109
   101
    Node target(Arc a) const { return Node(arcs[a._id].target); }
deba@109
   102
deba@109
   103
    static int id(Node v) { return v._id; }
deba@109
   104
    static int id(Arc a) { return a._id; }
deba@109
   105
deba@109
   106
    static Node nodeFromId(int id) { return Node(id);}
deba@109
   107
    static Arc arcFromId(int id) { return Arc(id);}
deba@109
   108
alpar@209
   109
    bool valid(Node n) const {
alpar@209
   110
      return n._id >= 0 && n._id < static_cast<int>(nodes.size());
deba@149
   111
    }
alpar@209
   112
    bool valid(Arc a) const {
alpar@209
   113
      return a._id >= 0 && a._id < static_cast<int>(arcs.size());
deba@149
   114
    }
deba@149
   115
deba@109
   116
    class Node {
deba@109
   117
      friend class SmartDigraphBase;
deba@109
   118
      friend class SmartDigraph;
deba@109
   119
deba@109
   120
    protected:
deba@109
   121
      int _id;
deba@109
   122
      explicit Node(int id) : _id(id) {}
deba@109
   123
    public:
deba@109
   124
      Node() {}
deba@109
   125
      Node (Invalid) : _id(-1) {}
deba@109
   126
      bool operator==(const Node i) const {return _id == i._id;}
deba@109
   127
      bool operator!=(const Node i) const {return _id != i._id;}
deba@109
   128
      bool operator<(const Node i) const {return _id < i._id;}
deba@109
   129
    };
alpar@209
   130
deba@109
   131
deba@109
   132
    class Arc {
deba@109
   133
      friend class SmartDigraphBase;
deba@109
   134
      friend class SmartDigraph;
deba@109
   135
deba@109
   136
    protected:
deba@109
   137
      int _id;
deba@109
   138
      explicit Arc(int id) : _id(id) {}
deba@109
   139
    public:
deba@109
   140
      Arc() { }
deba@109
   141
      Arc (Invalid) : _id(-1) {}
deba@109
   142
      bool operator==(const Arc i) const {return _id == i._id;}
deba@109
   143
      bool operator!=(const Arc i) const {return _id != i._id;}
deba@109
   144
      bool operator<(const Arc i) const {return _id < i._id;}
deba@109
   145
    };
deba@109
   146
deba@109
   147
    void first(Node& node) const {
deba@109
   148
      node._id = nodes.size() - 1;
deba@109
   149
    }
deba@109
   150
deba@109
   151
    static void next(Node& node) {
deba@109
   152
      --node._id;
deba@109
   153
    }
deba@109
   154
deba@109
   155
    void first(Arc& arc) const {
deba@109
   156
      arc._id = arcs.size() - 1;
deba@109
   157
    }
deba@109
   158
deba@109
   159
    static void next(Arc& arc) {
deba@109
   160
      --arc._id;
deba@109
   161
    }
deba@109
   162
deba@109
   163
    void firstOut(Arc& arc, const Node& node) const {
deba@109
   164
      arc._id = nodes[node._id].first_out;
deba@109
   165
    }
deba@109
   166
deba@109
   167
    void nextOut(Arc& arc) const {
deba@109
   168
      arc._id = arcs[arc._id].next_out;
deba@109
   169
    }
deba@109
   170
deba@109
   171
    void firstIn(Arc& arc, const Node& node) const {
deba@109
   172
      arc._id = nodes[node._id].first_in;
deba@109
   173
    }
alpar@209
   174
deba@109
   175
    void nextIn(Arc& arc) const {
deba@109
   176
      arc._id = arcs[arc._id].next_in;
deba@109
   177
    }
deba@109
   178
deba@109
   179
  };
deba@109
   180
deba@109
   181
  typedef DigraphExtender<SmartDigraphBase> ExtendedSmartDigraphBase;
deba@109
   182
deba@109
   183
  ///\ingroup graphs
deba@109
   184
  ///
deba@109
   185
  ///\brief A smart directed graph class.
deba@109
   186
  ///
kpeter@782
   187
  ///\ref SmartDigraph is a simple and fast digraph implementation.
kpeter@782
   188
  ///It is also quite memory efficient but at the price
alpar@956
   189
  ///that it does not support node and arc deletion
kpeter@782
   190
  ///(except for the Snapshot feature).
deba@109
   191
  ///
kpeter@782
   192
  ///This type fully conforms to the \ref concepts::Digraph "Digraph concept"
kpeter@782
   193
  ///and it also provides some additional functionalities.
kpeter@782
   194
  ///Most of its member functions and nested classes are documented
kpeter@782
   195
  ///only in the concept class.
kpeter@782
   196
  ///
kpeter@834
   197
  ///This class provides constant time counting for nodes and arcs.
kpeter@834
   198
  ///
kpeter@782
   199
  ///\sa concepts::Digraph
kpeter@782
   200
  ///\sa SmartGraph
deba@109
   201
  class SmartDigraph : public ExtendedSmartDigraphBase {
deba@109
   202
    typedef ExtendedSmartDigraphBase Parent;
deba@109
   203
deba@109
   204
  private:
kpeter@782
   205
    /// Digraphs are \e not copy constructible. Use DigraphCopy instead.
deba@109
   206
    SmartDigraph(const SmartDigraph &) : ExtendedSmartDigraphBase() {};
kpeter@782
   207
    /// \brief Assignment of a digraph to another one is \e not allowed.
kpeter@782
   208
    /// Use DigraphCopy instead.
deba@109
   209
    void operator=(const SmartDigraph &) {}
deba@109
   210
deba@109
   211
  public:
alpar@209
   212
deba@109
   213
    /// Constructor
alpar@209
   214
deba@109
   215
    /// Constructor.
deba@109
   216
    ///
deba@109
   217
    SmartDigraph() {};
alpar@209
   218
deba@109
   219
    ///Add a new node to the digraph.
alpar@209
   220
kpeter@782
   221
    ///This function adds a new node to the digraph.
kpeter@782
   222
    ///\return The new node.
deba@109
   223
    Node addNode() { return Parent::addNode(); }
alpar@209
   224
deba@109
   225
    ///Add a new arc to the digraph.
alpar@209
   226
kpeter@782
   227
    ///This function adds a new arc to the digraph with source node \c s
deba@109
   228
    ///and target node \c t.
kpeter@606
   229
    ///\return The new arc.
kpeter@782
   230
    Arc addArc(Node s, Node t) {
alpar@209
   231
      return Parent::addArc(s, t);
deba@109
   232
    }
deba@109
   233
deba@149
   234
    /// \brief Node validity check
deba@149
   235
    ///
kpeter@782
   236
    /// This function gives back \c true if the given node is valid,
kpeter@782
   237
    /// i.e. it is a real node of the digraph.
deba@149
   238
    ///
deba@149
   239
    /// \warning A removed node (using Snapshot) could become valid again
kpeter@782
   240
    /// if new nodes are added to the digraph.
deba@149
   241
    bool valid(Node n) const { return Parent::valid(n); }
deba@149
   242
deba@149
   243
    /// \brief Arc validity check
deba@149
   244
    ///
kpeter@782
   245
    /// This function gives back \c true if the given arc is valid,
kpeter@782
   246
    /// i.e. it is a real arc of the digraph.
deba@149
   247
    ///
deba@149
   248
    /// \warning A removed arc (using Snapshot) could become valid again
kpeter@782
   249
    /// if new arcs are added to the graph.
deba@149
   250
    bool valid(Arc a) const { return Parent::valid(a); }
deba@149
   251
deba@109
   252
    ///Split a node.
alpar@209
   253
kpeter@782
   254
    ///This function splits the given node. First, a new node is added
kpeter@782
   255
    ///to the digraph, then the source of each outgoing arc of node \c n
kpeter@782
   256
    ///is moved to this new node.
kpeter@782
   257
    ///If the second parameter \c connect is \c true (this is the default
kpeter@782
   258
    ///value), then a new arc from node \c n to the newly created node
kpeter@782
   259
    ///is also added.
deba@109
   260
    ///\return The newly created node.
deba@109
   261
    ///
kpeter@782
   262
    ///\note All iterators remain valid.
kpeter@782
   263
    ///
deba@109
   264
    ///\warning This functionality cannot be used together with the Snapshot
deba@109
   265
    ///feature.
deba@109
   266
    Node split(Node n, bool connect = true)
deba@109
   267
    {
deba@109
   268
      Node b = addNode();
deba@109
   269
      nodes[b._id].first_out=nodes[n._id].first_out;
deba@109
   270
      nodes[n._id].first_out=-1;
kpeter@382
   271
      for(int i=nodes[b._id].first_out; i!=-1; i=arcs[i].next_out) {
kpeter@382
   272
        arcs[i].source=b._id;
kpeter@382
   273
      }
deba@109
   274
      if(connect) addArc(n,b);
deba@109
   275
      return b;
deba@109
   276
    }
deba@109
   277
kpeter@782
   278
    ///Clear the digraph.
kpeter@782
   279
kpeter@782
   280
    ///This function erases all nodes and arcs from the digraph.
kpeter@782
   281
    ///
kpeter@782
   282
    void clear() {
kpeter@782
   283
      Parent::clear();
kpeter@782
   284
    }
kpeter@782
   285
kpeter@782
   286
    /// Reserve memory for nodes.
kpeter@782
   287
kpeter@782
   288
    /// Using this function, it is possible to avoid superfluous memory
kpeter@782
   289
    /// allocation: if you know that the digraph you want to build will
kpeter@782
   290
    /// be large (e.g. it will contain millions of nodes and/or arcs),
kpeter@782
   291
    /// then it is worth reserving space for this amount before starting
kpeter@782
   292
    /// to build the digraph.
kpeter@782
   293
    /// \sa reserveArc()
kpeter@782
   294
    void reserveNode(int n) { nodes.reserve(n); };
kpeter@782
   295
kpeter@782
   296
    /// Reserve memory for arcs.
kpeter@782
   297
kpeter@782
   298
    /// Using this function, it is possible to avoid superfluous memory
kpeter@782
   299
    /// allocation: if you know that the digraph you want to build will
kpeter@782
   300
    /// be large (e.g. it will contain millions of nodes and/or arcs),
kpeter@782
   301
    /// then it is worth reserving space for this amount before starting
kpeter@782
   302
    /// to build the digraph.
kpeter@782
   303
    /// \sa reserveNode()
kpeter@782
   304
    void reserveArc(int m) { arcs.reserve(m); };
kpeter@782
   305
deba@109
   306
  public:
alpar@209
   307
deba@109
   308
    class Snapshot;
deba@109
   309
deba@109
   310
  protected:
deba@109
   311
deba@109
   312
    void restoreSnapshot(const Snapshot &s)
deba@109
   313
    {
deba@109
   314
      while(s.arc_num<arcs.size()) {
deba@109
   315
        Arc arc = arcFromId(arcs.size()-1);
alpar@209
   316
        Parent::notifier(Arc()).erase(arc);
alpar@209
   317
        nodes[arcs.back().source].first_out=arcs.back().next_out;
alpar@209
   318
        nodes[arcs.back().target].first_in=arcs.back().next_in;
alpar@209
   319
        arcs.pop_back();
deba@109
   320
      }
deba@109
   321
      while(s.node_num<nodes.size()) {
deba@109
   322
        Node node = nodeFromId(nodes.size()-1);
alpar@209
   323
        Parent::notifier(Node()).erase(node);
alpar@209
   324
        nodes.pop_back();
deba@109
   325
      }
alpar@209
   326
    }
deba@109
   327
deba@109
   328
  public:
deba@109
   329
kpeter@782
   330
    ///Class to make a snapshot of the digraph and to restore it later.
deba@109
   331
kpeter@782
   332
    ///Class to make a snapshot of the digraph and to restore it later.
deba@109
   333
    ///
deba@109
   334
    ///The newly added nodes and arcs can be removed using the
kpeter@782
   335
    ///restore() function. This is the only way for deleting nodes and/or
kpeter@782
   336
    ///arcs from a SmartDigraph structure.
deba@109
   337
    ///
alpar@956
   338
    ///\note After a state is restored, you cannot restore a later state,
kpeter@782
   339
    ///i.e. you cannot add the removed nodes and arcs again using
kpeter@782
   340
    ///another Snapshot instance.
kpeter@782
   341
    ///
kpeter@782
   342
    ///\warning Node splitting cannot be restored.
kpeter@782
   343
    ///\warning The validity of the snapshot is not stored due to
kpeter@782
   344
    ///performance reasons. If you do not use the snapshot correctly,
kpeter@782
   345
    ///it can cause broken program, invalid or not restored state of
kpeter@782
   346
    ///the digraph or no change.
alpar@209
   347
    class Snapshot
deba@109
   348
    {
deba@109
   349
      SmartDigraph *_graph;
deba@109
   350
    protected:
deba@109
   351
      friend class SmartDigraph;
deba@109
   352
      unsigned int node_num;
deba@109
   353
      unsigned int arc_num;
deba@109
   354
    public:
deba@109
   355
      ///Default constructor.
alpar@209
   356
deba@109
   357
      ///Default constructor.
kpeter@782
   358
      ///You have to call save() to actually make a snapshot.
deba@109
   359
      Snapshot() : _graph(0) {}
deba@109
   360
      ///Constructor that immediately makes a snapshot
alpar@209
   361
kpeter@782
   362
      ///This constructor immediately makes a snapshot of the given digraph.
kpeter@782
   363
      ///
kpeter@782
   364
      Snapshot(SmartDigraph &gr) : _graph(&gr) {
alpar@209
   365
        node_num=_graph->nodes.size();
alpar@209
   366
        arc_num=_graph->arcs.size();
deba@109
   367
      }
deba@109
   368
deba@109
   369
      ///Make a snapshot.
deba@109
   370
kpeter@782
   371
      ///This function makes a snapshot of the given digraph.
kpeter@782
   372
      ///It can be called more than once. In case of a repeated
deba@109
   373
      ///call, the previous snapshot gets lost.
kpeter@782
   374
      void save(SmartDigraph &gr) {
kpeter@782
   375
        _graph=&gr;
alpar@209
   376
        node_num=_graph->nodes.size();
alpar@209
   377
        arc_num=_graph->arcs.size();
deba@109
   378
      }
deba@109
   379
deba@109
   380
      ///Undo the changes until a snapshot.
alpar@209
   381
kpeter@782
   382
      ///This function undos the changes until the last snapshot
kpeter@782
   383
      ///created by save() or Snapshot(SmartDigraph&).
deba@109
   384
      void restore()
deba@109
   385
      {
alpar@209
   386
        _graph->restoreSnapshot(*this);
deba@109
   387
      }
deba@109
   388
    };
deba@109
   389
  };
deba@109
   390
deba@109
   391
deba@109
   392
  class SmartGraphBase {
deba@109
   393
deba@109
   394
  protected:
deba@109
   395
deba@109
   396
    struct NodeT {
deba@109
   397
      int first_out;
deba@109
   398
    };
alpar@209
   399
deba@109
   400
    struct ArcT {
deba@109
   401
      int target;
deba@109
   402
      int next_out;
deba@109
   403
    };
deba@109
   404
deba@109
   405
    std::vector<NodeT> nodes;
deba@109
   406
    std::vector<ArcT> arcs;
deba@109
   407
deba@109
   408
  public:
alpar@209
   409
kpeter@664
   410
    typedef SmartGraphBase Graph;
deba@109
   411
deba@109
   412
    class Node;
deba@109
   413
    class Arc;
deba@109
   414
    class Edge;
alpar@209
   415
deba@109
   416
    class Node {
deba@109
   417
      friend class SmartGraphBase;
deba@109
   418
    protected:
deba@109
   419
deba@109
   420
      int _id;
deba@109
   421
      explicit Node(int id) { _id = id;}
deba@109
   422
deba@109
   423
    public:
deba@109
   424
      Node() {}
deba@109
   425
      Node (Invalid) { _id = -1; }
deba@109
   426
      bool operator==(const Node& node) const {return _id == node._id;}
deba@109
   427
      bool operator!=(const Node& node) const {return _id != node._id;}
deba@109
   428
      bool operator<(const Node& node) const {return _id < node._id;}
deba@109
   429
    };
deba@109
   430
deba@109
   431
    class Edge {
deba@109
   432
      friend class SmartGraphBase;
deba@109
   433
    protected:
deba@109
   434
deba@109
   435
      int _id;
deba@109
   436
      explicit Edge(int id) { _id = id;}
deba@109
   437
deba@109
   438
    public:
deba@109
   439
      Edge() {}
deba@109
   440
      Edge (Invalid) { _id = -1; }
deba@109
   441
      bool operator==(const Edge& arc) const {return _id == arc._id;}
deba@109
   442
      bool operator!=(const Edge& arc) const {return _id != arc._id;}
deba@109
   443
      bool operator<(const Edge& arc) const {return _id < arc._id;}
deba@109
   444
    };
deba@109
   445
deba@109
   446
    class Arc {
deba@109
   447
      friend class SmartGraphBase;
deba@109
   448
    protected:
deba@109
   449
deba@109
   450
      int _id;
deba@109
   451
      explicit Arc(int id) { _id = id;}
deba@109
   452
deba@109
   453
    public:
kpeter@341
   454
      operator Edge() const {
kpeter@341
   455
        return _id != -1 ? edgeFromId(_id / 2) : INVALID;
deba@238
   456
      }
deba@109
   457
deba@109
   458
      Arc() {}
deba@109
   459
      Arc (Invalid) { _id = -1; }
deba@109
   460
      bool operator==(const Arc& arc) const {return _id == arc._id;}
deba@109
   461
      bool operator!=(const Arc& arc) const {return _id != arc._id;}
deba@109
   462
      bool operator<(const Arc& arc) const {return _id < arc._id;}
deba@109
   463
    };
deba@109
   464
deba@109
   465
deba@109
   466
deba@109
   467
    SmartGraphBase()
deba@109
   468
      : nodes(), arcs() {}
deba@109
   469
kpeter@380
   470
    typedef True NodeNumTag;
kpeter@380
   471
    typedef True EdgeNumTag;
kpeter@380
   472
    typedef True ArcNumTag;
kpeter@380
   473
kpeter@380
   474
    int nodeNum() const { return nodes.size(); }
kpeter@380
   475
    int edgeNum() const { return arcs.size() / 2; }
kpeter@380
   476
    int arcNum() const { return arcs.size(); }
alpar@209
   477
alpar@209
   478
    int maxNodeId() const { return nodes.size()-1; }
deba@109
   479
    int maxEdgeId() const { return arcs.size() / 2 - 1; }
deba@109
   480
    int maxArcId() const { return arcs.size()-1; }
deba@109
   481
deba@109
   482
    Node source(Arc e) const { return Node(arcs[e._id ^ 1].target); }
deba@109
   483
    Node target(Arc e) const { return Node(arcs[e._id].target); }
deba@109
   484
deba@125
   485
    Node u(Edge e) const { return Node(arcs[2 * e._id].target); }
deba@125
   486
    Node v(Edge e) const { return Node(arcs[2 * e._id + 1].target); }
deba@109
   487
deba@109
   488
    static bool direction(Arc e) {
deba@109
   489
      return (e._id & 1) == 1;
deba@109
   490
    }
deba@109
   491
deba@109
   492
    static Arc direct(Edge e, bool d) {
deba@109
   493
      return Arc(e._id * 2 + (d ? 1 : 0));
deba@109
   494
    }
deba@109
   495
alpar@209
   496
    void first(Node& node) const {
deba@109
   497
      node._id = nodes.size() - 1;
deba@109
   498
    }
deba@109
   499
kpeter@825
   500
    static void next(Node& node) {
deba@109
   501
      --node._id;
deba@109
   502
    }
deba@109
   503
alpar@209
   504
    void first(Arc& arc) const {
deba@109
   505
      arc._id = arcs.size() - 1;
deba@109
   506
    }
deba@109
   507
kpeter@825
   508
    static void next(Arc& arc) {
deba@109
   509
      --arc._id;
deba@109
   510
    }
deba@109
   511
alpar@209
   512
    void first(Edge& arc) const {
deba@109
   513
      arc._id = arcs.size() / 2 - 1;
deba@109
   514
    }
deba@109
   515
kpeter@825
   516
    static void next(Edge& arc) {
deba@109
   517
      --arc._id;
deba@109
   518
    }
deba@109
   519
deba@109
   520
    void firstOut(Arc &arc, const Node& v) const {
deba@109
   521
      arc._id = nodes[v._id].first_out;
deba@109
   522
    }
deba@109
   523
    void nextOut(Arc &arc) const {
deba@109
   524
      arc._id = arcs[arc._id].next_out;
deba@109
   525
    }
deba@109
   526
deba@109
   527
    void firstIn(Arc &arc, const Node& v) const {
deba@109
   528
      arc._id = ((nodes[v._id].first_out) ^ 1);
deba@109
   529
      if (arc._id == -2) arc._id = -1;
deba@109
   530
    }
deba@109
   531
    void nextIn(Arc &arc) const {
deba@109
   532
      arc._id = ((arcs[arc._id ^ 1].next_out) ^ 1);
deba@109
   533
      if (arc._id == -2) arc._id = -1;
deba@109
   534
    }
deba@109
   535
deba@109
   536
    void firstInc(Edge &arc, bool& d, const Node& v) const {
deba@109
   537
      int de = nodes[v._id].first_out;
deba@109
   538
      if (de != -1) {
deba@109
   539
        arc._id = de / 2;
deba@109
   540
        d = ((de & 1) == 1);
deba@109
   541
      } else {
deba@109
   542
        arc._id = -1;
deba@109
   543
        d = true;
deba@109
   544
      }
deba@109
   545
    }
deba@109
   546
    void nextInc(Edge &arc, bool& d) const {
deba@109
   547
      int de = (arcs[(arc._id * 2) | (d ? 1 : 0)].next_out);
deba@109
   548
      if (de != -1) {
deba@109
   549
        arc._id = de / 2;
deba@109
   550
        d = ((de & 1) == 1);
deba@109
   551
      } else {
deba@109
   552
        arc._id = -1;
alpar@209
   553
        d = true;
deba@109
   554
      }
deba@109
   555
    }
alpar@209
   556
deba@109
   557
    static int id(Node v) { return v._id; }
deba@109
   558
    static int id(Arc e) { return e._id; }
deba@109
   559
    static int id(Edge e) { return e._id; }
deba@109
   560
deba@109
   561
    static Node nodeFromId(int id) { return Node(id);}
deba@109
   562
    static Arc arcFromId(int id) { return Arc(id);}
deba@109
   563
    static Edge edgeFromId(int id) { return Edge(id);}
deba@109
   564
alpar@209
   565
    bool valid(Node n) const {
alpar@209
   566
      return n._id >= 0 && n._id < static_cast<int>(nodes.size());
deba@149
   567
    }
alpar@209
   568
    bool valid(Arc a) const {
deba@149
   569
      return a._id >= 0 && a._id < static_cast<int>(arcs.size());
deba@149
   570
    }
alpar@209
   571
    bool valid(Edge e) const {
alpar@209
   572
      return e._id >= 0 && 2 * e._id < static_cast<int>(arcs.size());
deba@149
   573
    }
deba@149
   574
alpar@209
   575
    Node addNode() {
deba@109
   576
      int n = nodes.size();
deba@109
   577
      nodes.push_back(NodeT());
deba@109
   578
      nodes[n].first_out = -1;
alpar@209
   579
deba@109
   580
      return Node(n);
deba@109
   581
    }
alpar@209
   582
deba@138
   583
    Edge addEdge(Node u, Node v) {
deba@109
   584
      int n = arcs.size();
deba@109
   585
      arcs.push_back(ArcT());
deba@109
   586
      arcs.push_back(ArcT());
alpar@209
   587
deba@109
   588
      arcs[n].target = u._id;
deba@109
   589
      arcs[n | 1].target = v._id;
deba@109
   590
deba@109
   591
      arcs[n].next_out = nodes[v._id].first_out;
deba@109
   592
      nodes[v._id].first_out = n;
deba@109
   593
alpar@209
   594
      arcs[n | 1].next_out = nodes[u._id].first_out;
deba@109
   595
      nodes[u._id].first_out = (n | 1);
deba@109
   596
deba@109
   597
      return Edge(n / 2);
deba@109
   598
    }
alpar@209
   599
deba@109
   600
    void clear() {
deba@109
   601
      arcs.clear();
deba@109
   602
      nodes.clear();
deba@109
   603
    }
deba@109
   604
deba@109
   605
  };
deba@109
   606
deba@109
   607
  typedef GraphExtender<SmartGraphBase> ExtendedSmartGraphBase;
deba@109
   608
deba@109
   609
  /// \ingroup graphs
deba@109
   610
  ///
deba@109
   611
  /// \brief A smart undirected graph class.
deba@109
   612
  ///
kpeter@782
   613
  /// \ref SmartGraph is a simple and fast graph implementation.
kpeter@782
   614
  /// It is also quite memory efficient but at the price
alpar@956
   615
  /// that it does not support node and edge deletion
kpeter@782
   616
  /// (except for the Snapshot feature).
deba@109
   617
  ///
kpeter@782
   618
  /// This type fully conforms to the \ref concepts::Graph "Graph concept"
kpeter@782
   619
  /// and it also provides some additional functionalities.
kpeter@782
   620
  /// Most of its member functions and nested classes are documented
kpeter@782
   621
  /// only in the concept class.
kpeter@782
   622
  ///
kpeter@834
   623
  /// This class provides constant time counting for nodes, edges and arcs.
kpeter@834
   624
  ///
kpeter@782
   625
  /// \sa concepts::Graph
kpeter@782
   626
  /// \sa SmartDigraph
deba@109
   627
  class SmartGraph : public ExtendedSmartGraphBase {
kpeter@664
   628
    typedef ExtendedSmartGraphBase Parent;
kpeter@664
   629
deba@109
   630
  private:
kpeter@782
   631
    /// Graphs are \e not copy constructible. Use GraphCopy instead.
deba@109
   632
    SmartGraph(const SmartGraph &) : ExtendedSmartGraphBase() {};
kpeter@782
   633
    /// \brief Assignment of a graph to another one is \e not allowed.
kpeter@782
   634
    /// Use GraphCopy instead.
deba@109
   635
    void operator=(const SmartGraph &) {}
deba@109
   636
deba@109
   637
  public:
deba@109
   638
deba@109
   639
    /// Constructor
alpar@209
   640
deba@109
   641
    /// Constructor.
deba@109
   642
    ///
deba@109
   643
    SmartGraph() {}
deba@109
   644
kpeter@782
   645
    /// \brief Add a new node to the graph.
kpeter@782
   646
    ///
kpeter@782
   647
    /// This function adds a new node to the graph.
kpeter@606
   648
    /// \return The new node.
deba@109
   649
    Node addNode() { return Parent::addNode(); }
alpar@209
   650
kpeter@782
   651
    /// \brief Add a new edge to the graph.
kpeter@782
   652
    ///
kpeter@782
   653
    /// This function adds a new edge to the graph between nodes
kpeter@782
   654
    /// \c u and \c v with inherent orientation from node \c u to
kpeter@782
   655
    /// node \c v.
kpeter@782
   656
    /// \return The new edge.
kpeter@782
   657
    Edge addEdge(Node u, Node v) {
kpeter@782
   658
      return Parent::addEdge(u, v);
deba@109
   659
    }
deba@109
   660
deba@149
   661
    /// \brief Node validity check
deba@149
   662
    ///
kpeter@782
   663
    /// This function gives back \c true if the given node is valid,
kpeter@782
   664
    /// i.e. it is a real node of the graph.
deba@149
   665
    ///
deba@149
   666
    /// \warning A removed node (using Snapshot) could become valid again
kpeter@782
   667
    /// if new nodes are added to the graph.
deba@149
   668
    bool valid(Node n) const { return Parent::valid(n); }
deba@149
   669
kpeter@782
   670
    /// \brief Edge validity check
kpeter@782
   671
    ///
kpeter@782
   672
    /// This function gives back \c true if the given edge is valid,
kpeter@782
   673
    /// i.e. it is a real edge of the graph.
kpeter@782
   674
    ///
kpeter@782
   675
    /// \warning A removed edge (using Snapshot) could become valid again
kpeter@782
   676
    /// if new edges are added to the graph.
kpeter@782
   677
    bool valid(Edge e) const { return Parent::valid(e); }
kpeter@782
   678
deba@149
   679
    /// \brief Arc validity check
deba@149
   680
    ///
kpeter@782
   681
    /// This function gives back \c true if the given arc is valid,
kpeter@782
   682
    /// i.e. it is a real arc of the graph.
deba@149
   683
    ///
deba@149
   684
    /// \warning A removed arc (using Snapshot) could become valid again
kpeter@782
   685
    /// if new edges are added to the graph.
deba@149
   686
    bool valid(Arc a) const { return Parent::valid(a); }
deba@149
   687
deba@109
   688
    ///Clear the graph.
alpar@209
   689
kpeter@782
   690
    ///This function erases all nodes and arcs from the graph.
deba@109
   691
    ///
deba@109
   692
    void clear() {
deba@109
   693
      Parent::clear();
deba@109
   694
    }
deba@109
   695
kpeter@783
   696
    /// Reserve memory for nodes.
kpeter@783
   697
kpeter@783
   698
    /// Using this function, it is possible to avoid superfluous memory
kpeter@783
   699
    /// allocation: if you know that the graph you want to build will
kpeter@783
   700
    /// be large (e.g. it will contain millions of nodes and/or edges),
kpeter@783
   701
    /// then it is worth reserving space for this amount before starting
kpeter@783
   702
    /// to build the graph.
kpeter@783
   703
    /// \sa reserveEdge()
kpeter@783
   704
    void reserveNode(int n) { nodes.reserve(n); };
kpeter@783
   705
kpeter@783
   706
    /// Reserve memory for edges.
kpeter@783
   707
kpeter@783
   708
    /// Using this function, it is possible to avoid superfluous memory
kpeter@783
   709
    /// allocation: if you know that the graph you want to build will
kpeter@783
   710
    /// be large (e.g. it will contain millions of nodes and/or edges),
kpeter@783
   711
    /// then it is worth reserving space for this amount before starting
kpeter@783
   712
    /// to build the graph.
kpeter@783
   713
    /// \sa reserveNode()
kpeter@783
   714
    void reserveEdge(int m) { arcs.reserve(2 * m); };
kpeter@783
   715
deba@109
   716
  public:
alpar@209
   717
deba@109
   718
    class Snapshot;
deba@109
   719
deba@109
   720
  protected:
deba@109
   721
deba@109
   722
    void saveSnapshot(Snapshot &s)
deba@109
   723
    {
deba@109
   724
      s._graph = this;
deba@109
   725
      s.node_num = nodes.size();
deba@109
   726
      s.arc_num = arcs.size();
deba@109
   727
    }
deba@109
   728
deba@109
   729
    void restoreSnapshot(const Snapshot &s)
deba@109
   730
    {
deba@109
   731
      while(s.arc_num<arcs.size()) {
deba@109
   732
        int n=arcs.size()-1;
deba@109
   733
        Edge arc=edgeFromId(n/2);
alpar@209
   734
        Parent::notifier(Edge()).erase(arc);
deba@109
   735
        std::vector<Arc> dir;
deba@109
   736
        dir.push_back(arcFromId(n));
deba@109
   737
        dir.push_back(arcFromId(n-1));
alpar@209
   738
        Parent::notifier(Arc()).erase(dir);
kpeter@386
   739
        nodes[arcs[n-1].target].first_out=arcs[n].next_out;
kpeter@386
   740
        nodes[arcs[n].target].first_out=arcs[n-1].next_out;
alpar@209
   741
        arcs.pop_back();
alpar@209
   742
        arcs.pop_back();
deba@109
   743
      }
deba@109
   744
      while(s.node_num<nodes.size()) {
deba@109
   745
        int n=nodes.size()-1;
deba@109
   746
        Node node = nodeFromId(n);
alpar@209
   747
        Parent::notifier(Node()).erase(node);
alpar@209
   748
        nodes.pop_back();
deba@109
   749
      }
alpar@209
   750
    }
deba@109
   751
deba@109
   752
  public:
deba@109
   753
kpeter@782
   754
    ///Class to make a snapshot of the graph and to restore it later.
deba@109
   755
kpeter@782
   756
    ///Class to make a snapshot of the graph and to restore it later.
deba@109
   757
    ///
kpeter@782
   758
    ///The newly added nodes and edges can be removed using the
kpeter@782
   759
    ///restore() function. This is the only way for deleting nodes and/or
kpeter@782
   760
    ///edges from a SmartGraph structure.
deba@109
   761
    ///
alpar@956
   762
    ///\note After a state is restored, you cannot restore a later state,
kpeter@782
   763
    ///i.e. you cannot add the removed nodes and edges again using
kpeter@782
   764
    ///another Snapshot instance.
deba@109
   765
    ///
kpeter@782
   766
    ///\warning The validity of the snapshot is not stored due to
kpeter@782
   767
    ///performance reasons. If you do not use the snapshot correctly,
kpeter@782
   768
    ///it can cause broken program, invalid or not restored state of
kpeter@782
   769
    ///the graph or no change.
alpar@209
   770
    class Snapshot
deba@109
   771
    {
deba@109
   772
      SmartGraph *_graph;
deba@109
   773
    protected:
deba@109
   774
      friend class SmartGraph;
deba@109
   775
      unsigned int node_num;
deba@109
   776
      unsigned int arc_num;
deba@109
   777
    public:
deba@109
   778
      ///Default constructor.
alpar@209
   779
deba@109
   780
      ///Default constructor.
kpeter@782
   781
      ///You have to call save() to actually make a snapshot.
deba@109
   782
      Snapshot() : _graph(0) {}
deba@109
   783
      ///Constructor that immediately makes a snapshot
alpar@209
   784
kpeter@782
   785
      /// This constructor immediately makes a snapshot of the given graph.
kpeter@782
   786
      ///
kpeter@782
   787
      Snapshot(SmartGraph &gr) {
kpeter@782
   788
        gr.saveSnapshot(*this);
deba@109
   789
      }
deba@109
   790
deba@109
   791
      ///Make a snapshot.
deba@109
   792
kpeter@782
   793
      ///This function makes a snapshot of the given graph.
kpeter@782
   794
      ///It can be called more than once. In case of a repeated
deba@109
   795
      ///call, the previous snapshot gets lost.
kpeter@782
   796
      void save(SmartGraph &gr)
deba@109
   797
      {
kpeter@782
   798
        gr.saveSnapshot(*this);
deba@109
   799
      }
deba@109
   800
kpeter@782
   801
      ///Undo the changes until the last snapshot.
alpar@209
   802
kpeter@782
   803
      ///This function undos the changes until the last snapshot
kpeter@782
   804
      ///created by save() or Snapshot(SmartGraph&).
deba@109
   805
      void restore()
deba@109
   806
      {
deba@109
   807
        _graph->restoreSnapshot(*this);
deba@109
   808
      }
deba@109
   809
    };
deba@109
   810
  };
alpar@209
   811
deba@1187
   812
  class SmartBpGraphBase {
deba@1187
   813
deba@1187
   814
  protected:
deba@1187
   815
deba@1187
   816
    struct NodeT {
deba@1187
   817
      int first_out;
deba@1187
   818
      int partition_next;
deba@1187
   819
      int partition_index;
deba@1187
   820
      bool red;
deba@1187
   821
    };
deba@1187
   822
deba@1187
   823
    struct ArcT {
deba@1187
   824
      int target;
deba@1187
   825
      int next_out;
deba@1187
   826
    };
deba@1187
   827
deba@1187
   828
    std::vector<NodeT> nodes;
deba@1187
   829
    std::vector<ArcT> arcs;
deba@1187
   830
deba@1187
   831
    int first_red, first_blue;
deba@1187
   832
deba@1187
   833
  public:
deba@1187
   834
deba@1187
   835
    typedef SmartBpGraphBase Graph;
deba@1187
   836
deba@1187
   837
    class Node;
deba@1187
   838
    class Arc;
deba@1187
   839
    class Edge;
deba@1187
   840
deba@1187
   841
    class Node {
deba@1187
   842
      friend class SmartBpGraphBase;
deba@1187
   843
    protected:
deba@1187
   844
deba@1187
   845
      int _id;
deba@1187
   846
      explicit Node(int id) { _id = id;}
deba@1187
   847
deba@1187
   848
    public:
deba@1187
   849
      Node() {}
deba@1187
   850
      Node (Invalid) { _id = -1; }
deba@1187
   851
      bool operator==(const Node& node) const {return _id == node._id;}
deba@1187
   852
      bool operator!=(const Node& node) const {return _id != node._id;}
deba@1187
   853
      bool operator<(const Node& node) const {return _id < node._id;}
deba@1187
   854
    };
deba@1187
   855
deba@1187
   856
    class Edge {
deba@1187
   857
      friend class SmartBpGraphBase;
deba@1187
   858
    protected:
deba@1187
   859
deba@1187
   860
      int _id;
deba@1187
   861
      explicit Edge(int id) { _id = id;}
deba@1187
   862
deba@1187
   863
    public:
deba@1187
   864
      Edge() {}
deba@1187
   865
      Edge (Invalid) { _id = -1; }
deba@1187
   866
      bool operator==(const Edge& arc) const {return _id == arc._id;}
deba@1187
   867
      bool operator!=(const Edge& arc) const {return _id != arc._id;}
deba@1187
   868
      bool operator<(const Edge& arc) const {return _id < arc._id;}
deba@1187
   869
    };
deba@1187
   870
deba@1187
   871
    class Arc {
deba@1187
   872
      friend class SmartBpGraphBase;
deba@1187
   873
    protected:
deba@1187
   874
deba@1187
   875
      int _id;
deba@1187
   876
      explicit Arc(int id) { _id = id;}
deba@1187
   877
deba@1187
   878
    public:
deba@1187
   879
      operator Edge() const {
deba@1187
   880
        return _id != -1 ? edgeFromId(_id / 2) : INVALID;
deba@1187
   881
      }
deba@1187
   882
deba@1187
   883
      Arc() {}
deba@1187
   884
      Arc (Invalid) { _id = -1; }
deba@1187
   885
      bool operator==(const Arc& arc) const {return _id == arc._id;}
deba@1187
   886
      bool operator!=(const Arc& arc) const {return _id != arc._id;}
deba@1187
   887
      bool operator<(const Arc& arc) const {return _id < arc._id;}
deba@1187
   888
    };
deba@1187
   889
deba@1187
   890
deba@1187
   891
deba@1187
   892
    SmartBpGraphBase()
deba@1187
   893
      : nodes(), arcs(), first_red(-1), first_blue(-1) {}
deba@1187
   894
deba@1187
   895
    typedef True NodeNumTag;
deba@1187
   896
    typedef True EdgeNumTag;
deba@1187
   897
    typedef True ArcNumTag;
deba@1187
   898
deba@1187
   899
    int nodeNum() const { return nodes.size(); }
deba@1187
   900
    int redNum() const {
deba@1187
   901
      return first_red == -1 ? 0 : nodes[first_red].partition_index + 1;
deba@1187
   902
    }
deba@1187
   903
    int blueNum() const {
deba@1187
   904
      return first_blue == -1 ? 0 : nodes[first_blue].partition_index + 1;
deba@1187
   905
    }
deba@1187
   906
    int edgeNum() const { return arcs.size() / 2; }
deba@1187
   907
    int arcNum() const { return arcs.size(); }
deba@1187
   908
deba@1187
   909
    int maxNodeId() const { return nodes.size()-1; }
deba@1187
   910
    int maxRedId() const {
deba@1187
   911
      return first_red == -1 ? -1 : nodes[first_red].partition_index;
deba@1187
   912
    }
deba@1187
   913
    int maxBlueId() const {
deba@1187
   914
      return first_blue == -1 ? -1 : nodes[first_blue].partition_index;
deba@1187
   915
    }
deba@1187
   916
    int maxEdgeId() const { return arcs.size() / 2 - 1; }
deba@1187
   917
    int maxArcId() const { return arcs.size()-1; }
deba@1187
   918
deba@1187
   919
    bool red(Node n) const { return nodes[n._id].red; }
deba@1187
   920
    bool blue(Node n) const { return !nodes[n._id].red; }
deba@1187
   921
deba@1187
   922
    Node source(Arc a) const { return Node(arcs[a._id ^ 1].target); }
deba@1187
   923
    Node target(Arc a) const { return Node(arcs[a._id].target); }
deba@1187
   924
deba@1187
   925
    Node redNode(Edge e) const { return Node(arcs[2 * e._id].target); }
deba@1187
   926
    Node blueNode(Edge e) const { return Node(arcs[2 * e._id + 1].target); }
deba@1187
   927
deba@1187
   928
    Node u(Edge e) const { return redNode(e); }
deba@1187
   929
    Node v(Edge e) const { return blueNode(e); }
deba@1187
   930
deba@1187
   931
    static bool direction(Arc a) {
deba@1187
   932
      return (a._id & 1) == 1;
deba@1187
   933
    }
deba@1187
   934
deba@1187
   935
    static Arc direct(Edge e, bool d) {
deba@1187
   936
      return Arc(e._id * 2 + (d ? 1 : 0));
deba@1187
   937
    }
deba@1187
   938
deba@1187
   939
    void first(Node& node) const {
deba@1187
   940
      node._id = nodes.size() - 1;
deba@1187
   941
    }
deba@1187
   942
deba@1187
   943
    static void next(Node& node) {
deba@1187
   944
      --node._id;
deba@1187
   945
    }
deba@1187
   946
deba@1187
   947
    void firstRed(Node& node) const {
deba@1187
   948
      node._id = first_red;
deba@1187
   949
    }
deba@1187
   950
deba@1187
   951
    void nextRed(Node& node) const {
deba@1187
   952
      node._id = nodes[node._id].partition_next;
deba@1187
   953
    }
deba@1187
   954
deba@1187
   955
    void firstBlue(Node& node) const {
deba@1187
   956
      node._id = first_blue;
deba@1187
   957
    }
deba@1187
   958
deba@1187
   959
    void nextBlue(Node& node) const {
deba@1187
   960
      node._id = nodes[node._id].partition_next;
deba@1187
   961
    }
deba@1187
   962
deba@1187
   963
    void first(Arc& arc) const {
deba@1187
   964
      arc._id = arcs.size() - 1;
deba@1187
   965
    }
deba@1187
   966
deba@1187
   967
    static void next(Arc& arc) {
deba@1187
   968
      --arc._id;
deba@1187
   969
    }
deba@1187
   970
deba@1187
   971
    void first(Edge& arc) const {
deba@1187
   972
      arc._id = arcs.size() / 2 - 1;
deba@1187
   973
    }
deba@1187
   974
deba@1187
   975
    static void next(Edge& arc) {
deba@1187
   976
      --arc._id;
deba@1187
   977
    }
deba@1187
   978
deba@1187
   979
    void firstOut(Arc &arc, const Node& v) const {
deba@1187
   980
      arc._id = nodes[v._id].first_out;
deba@1187
   981
    }
deba@1187
   982
    void nextOut(Arc &arc) const {
deba@1187
   983
      arc._id = arcs[arc._id].next_out;
deba@1187
   984
    }
deba@1187
   985
deba@1187
   986
    void firstIn(Arc &arc, const Node& v) const {
deba@1187
   987
      arc._id = ((nodes[v._id].first_out) ^ 1);
deba@1187
   988
      if (arc._id == -2) arc._id = -1;
deba@1187
   989
    }
deba@1187
   990
    void nextIn(Arc &arc) const {
deba@1187
   991
      arc._id = ((arcs[arc._id ^ 1].next_out) ^ 1);
deba@1187
   992
      if (arc._id == -2) arc._id = -1;
deba@1187
   993
    }
deba@1187
   994
deba@1187
   995
    void firstInc(Edge &arc, bool& d, const Node& v) const {
deba@1187
   996
      int de = nodes[v._id].first_out;
deba@1187
   997
      if (de != -1) {
deba@1187
   998
        arc._id = de / 2;
deba@1187
   999
        d = ((de & 1) == 1);
deba@1187
  1000
      } else {
deba@1187
  1001
        arc._id = -1;
deba@1187
  1002
        d = true;
deba@1187
  1003
      }
deba@1187
  1004
    }
deba@1187
  1005
    void nextInc(Edge &arc, bool& d) const {
deba@1187
  1006
      int de = (arcs[(arc._id * 2) | (d ? 1 : 0)].next_out);
deba@1187
  1007
      if (de != -1) {
deba@1187
  1008
        arc._id = de / 2;
deba@1187
  1009
        d = ((de & 1) == 1);
deba@1187
  1010
      } else {
deba@1187
  1011
        arc._id = -1;
deba@1187
  1012
        d = true;
deba@1187
  1013
      }
deba@1187
  1014
    }
deba@1187
  1015
deba@1187
  1016
    static int id(Node v) { return v._id; }
deba@1187
  1017
    int redId(Node v) const {
deba@1187
  1018
      LEMON_DEBUG(nodes[v._id].red, "Node has to be red");
deba@1187
  1019
      return nodes[v._id].partition_index;
deba@1187
  1020
    }
deba@1187
  1021
    int blueId(Node v) const {
deba@1187
  1022
      LEMON_DEBUG(nodes[v._id].red, "Node has to be blue");
deba@1187
  1023
      return nodes[v._id].partition_index;
deba@1187
  1024
    }
deba@1187
  1025
    static int id(Arc e) { return e._id; }
deba@1187
  1026
    static int id(Edge e) { return e._id; }
deba@1187
  1027
deba@1187
  1028
    static Node nodeFromId(int id) { return Node(id);}
deba@1187
  1029
    static Arc arcFromId(int id) { return Arc(id);}
deba@1187
  1030
    static Edge edgeFromId(int id) { return Edge(id);}
deba@1187
  1031
deba@1187
  1032
    bool valid(Node n) const {
deba@1187
  1033
      return n._id >= 0 && n._id < static_cast<int>(nodes.size());
deba@1187
  1034
    }
deba@1187
  1035
    bool valid(Arc a) const {
deba@1187
  1036
      return a._id >= 0 && a._id < static_cast<int>(arcs.size());
deba@1187
  1037
    }
deba@1187
  1038
    bool valid(Edge e) const {
deba@1187
  1039
      return e._id >= 0 && 2 * e._id < static_cast<int>(arcs.size());
deba@1187
  1040
    }
deba@1187
  1041
deba@1187
  1042
    Node addRedNode() {
deba@1187
  1043
      int n = nodes.size();
deba@1187
  1044
      nodes.push_back(NodeT());
deba@1187
  1045
      nodes[n].first_out = -1;
deba@1187
  1046
      nodes[n].red = true;
deba@1187
  1047
      if (first_red == -1) {
deba@1187
  1048
        nodes[n].partition_index = 0;
deba@1187
  1049
      } else {
deba@1187
  1050
        nodes[n].partition_index = nodes[first_red].partition_index + 1;
deba@1187
  1051
      }
deba@1187
  1052
      nodes[n].partition_next = first_red;
deba@1187
  1053
      first_red = n;
deba@1187
  1054
deba@1187
  1055
      return Node(n);
deba@1187
  1056
    }
deba@1187
  1057
deba@1187
  1058
    Node addBlueNode() {
deba@1187
  1059
      int n = nodes.size();
deba@1187
  1060
      nodes.push_back(NodeT());
deba@1187
  1061
      nodes[n].first_out = -1;
deba@1187
  1062
      nodes[n].red = false;
deba@1187
  1063
      if (first_blue == -1) {
deba@1187
  1064
        nodes[n].partition_index = 0;
deba@1187
  1065
      } else {
deba@1187
  1066
        nodes[n].partition_index = nodes[first_blue].partition_index + 1;
deba@1187
  1067
      }
deba@1187
  1068
      nodes[n].partition_next = first_blue;
deba@1187
  1069
      first_blue = n;
deba@1187
  1070
deba@1187
  1071
      return Node(n);
deba@1187
  1072
    }
deba@1187
  1073
deba@1187
  1074
    Edge addEdge(Node u, Node v) {
deba@1187
  1075
      int n = arcs.size();
deba@1187
  1076
      arcs.push_back(ArcT());
deba@1187
  1077
      arcs.push_back(ArcT());
deba@1187
  1078
deba@1187
  1079
      arcs[n].target = u._id;
deba@1187
  1080
      arcs[n | 1].target = v._id;
deba@1187
  1081
deba@1187
  1082
      arcs[n].next_out = nodes[v._id].first_out;
deba@1187
  1083
      nodes[v._id].first_out = n;
deba@1187
  1084
deba@1187
  1085
      arcs[n | 1].next_out = nodes[u._id].first_out;
deba@1187
  1086
      nodes[u._id].first_out = (n | 1);
deba@1187
  1087
deba@1187
  1088
      return Edge(n / 2);
deba@1187
  1089
    }
deba@1187
  1090
deba@1187
  1091
    void clear() {
deba@1187
  1092
      arcs.clear();
deba@1187
  1093
      nodes.clear();
deba@1187
  1094
      first_red = -1;
deba@1187
  1095
      first_blue = -1;
deba@1187
  1096
    }
deba@1187
  1097
deba@1187
  1098
  };
deba@1187
  1099
deba@1187
  1100
  typedef BpGraphExtender<SmartBpGraphBase> ExtendedSmartBpGraphBase;
deba@1187
  1101
deba@1187
  1102
  /// \ingroup graphs
deba@1187
  1103
  ///
deba@1187
  1104
  /// \brief A smart undirected graph class.
deba@1187
  1105
  ///
deba@1187
  1106
  /// \ref SmartBpGraph is a simple and fast graph implementation.
deba@1187
  1107
  /// It is also quite memory efficient but at the price
deba@1187
  1108
  /// that it does not support node and edge deletion
deba@1187
  1109
  /// (except for the Snapshot feature).
deba@1187
  1110
  ///
deba@1187
  1111
  /// This type fully conforms to the \ref concepts::Graph "Graph concept"
deba@1187
  1112
  /// and it also provides some additional functionalities.
deba@1187
  1113
  /// Most of its member functions and nested classes are documented
deba@1187
  1114
  /// only in the concept class.
deba@1187
  1115
  ///
deba@1187
  1116
  /// This class provides constant time counting for nodes, edges and arcs.
deba@1187
  1117
  ///
deba@1187
  1118
  /// \sa concepts::Graph
deba@1187
  1119
  /// \sa SmartDigraph
deba@1187
  1120
  class SmartBpGraph : public ExtendedSmartBpGraphBase {
deba@1187
  1121
    typedef ExtendedSmartBpGraphBase Parent;
deba@1187
  1122
deba@1187
  1123
  private:
deba@1187
  1124
    /// Graphs are \e not copy constructible. Use GraphCopy instead.
deba@1187
  1125
    SmartBpGraph(const SmartBpGraph &) : ExtendedSmartBpGraphBase() {};
deba@1187
  1126
    /// \brief Assignment of a graph to another one is \e not allowed.
deba@1187
  1127
    /// Use GraphCopy instead.
deba@1187
  1128
    void operator=(const SmartBpGraph &) {}
deba@1187
  1129
deba@1187
  1130
  public:
deba@1187
  1131
deba@1187
  1132
    /// Constructor
deba@1187
  1133
deba@1187
  1134
    /// Constructor.
deba@1187
  1135
    ///
deba@1187
  1136
    SmartBpGraph() {}
deba@1187
  1137
deba@1187
  1138
    /// \brief Add a new red node to the graph.
deba@1187
  1139
    ///
deba@1187
  1140
    /// This function adds a red new node to the graph.
deba@1187
  1141
    /// \return The new node.
deba@1187
  1142
    Node addRedNode() { return Parent::addRedNode(); }
deba@1187
  1143
deba@1187
  1144
    /// \brief Add a new blue node to the graph.
deba@1187
  1145
    ///
deba@1187
  1146
    /// This function adds a blue new node to the graph.
deba@1187
  1147
    /// \return The new node.
deba@1187
  1148
    Node addBlueNode() { return Parent::addBlueNode(); }
deba@1187
  1149
deba@1187
  1150
    /// \brief Add a new edge to the graph.
deba@1187
  1151
    ///
deba@1187
  1152
    /// This function adds a new edge to the graph between nodes
deba@1187
  1153
    /// \c u and \c v with inherent orientation from node \c u to
deba@1187
  1154
    /// node \c v.
deba@1187
  1155
    /// \return The new edge.
deba@1187
  1156
    Edge addEdge(Node red, Node blue) {
deba@1187
  1157
      LEMON_DEBUG(Parent::red(red) && Parent::blue(blue),
deba@1187
  1158
                  "Edge has to be formed by a red and a blue nodes");
deba@1187
  1159
      return Parent::addEdge(red, blue);
deba@1187
  1160
    }
deba@1187
  1161
deba@1187
  1162
    /// \brief Node validity check
deba@1187
  1163
    ///
deba@1187
  1164
    /// This function gives back \c true if the given node is valid,
deba@1187
  1165
    /// i.e. it is a real node of the graph.
deba@1187
  1166
    ///
deba@1187
  1167
    /// \warning A removed node (using Snapshot) could become valid again
deba@1187
  1168
    /// if new nodes are added to the graph.
deba@1187
  1169
    bool valid(Node n) const { return Parent::valid(n); }
deba@1187
  1170
deba@1187
  1171
    /// \brief Edge validity check
deba@1187
  1172
    ///
deba@1187
  1173
    /// This function gives back \c true if the given edge is valid,
deba@1187
  1174
    /// i.e. it is a real edge of the graph.
deba@1187
  1175
    ///
deba@1187
  1176
    /// \warning A removed edge (using Snapshot) could become valid again
deba@1187
  1177
    /// if new edges are added to the graph.
deba@1187
  1178
    bool valid(Edge e) const { return Parent::valid(e); }
deba@1187
  1179
deba@1187
  1180
    /// \brief Arc validity check
deba@1187
  1181
    ///
deba@1187
  1182
    /// This function gives back \c true if the given arc is valid,
deba@1187
  1183
    /// i.e. it is a real arc of the graph.
deba@1187
  1184
    ///
deba@1187
  1185
    /// \warning A removed arc (using Snapshot) could become valid again
deba@1187
  1186
    /// if new edges are added to the graph.
deba@1187
  1187
    bool valid(Arc a) const { return Parent::valid(a); }
deba@1187
  1188
deba@1187
  1189
    ///Clear the graph.
deba@1187
  1190
deba@1187
  1191
    ///This function erases all nodes and arcs from the graph.
deba@1187
  1192
    ///
deba@1187
  1193
    void clear() {
deba@1187
  1194
      Parent::clear();
deba@1187
  1195
    }
deba@1187
  1196
deba@1187
  1197
    /// Reserve memory for nodes.
deba@1187
  1198
deba@1187
  1199
    /// Using this function, it is possible to avoid superfluous memory
deba@1187
  1200
    /// allocation: if you know that the graph you want to build will
deba@1187
  1201
    /// be large (e.g. it will contain millions of nodes and/or edges),
deba@1187
  1202
    /// then it is worth reserving space for this amount before starting
deba@1187
  1203
    /// to build the graph.
deba@1187
  1204
    /// \sa reserveEdge()
deba@1187
  1205
    void reserveNode(int n) { nodes.reserve(n); };
deba@1187
  1206
deba@1187
  1207
    /// Reserve memory for edges.
deba@1187
  1208
deba@1187
  1209
    /// Using this function, it is possible to avoid superfluous memory
deba@1187
  1210
    /// allocation: if you know that the graph you want to build will
deba@1187
  1211
    /// be large (e.g. it will contain millions of nodes and/or edges),
deba@1187
  1212
    /// then it is worth reserving space for this amount before starting
deba@1187
  1213
    /// to build the graph.
deba@1187
  1214
    /// \sa reserveNode()
deba@1187
  1215
    void reserveEdge(int m) { arcs.reserve(2 * m); };
deba@1187
  1216
deba@1187
  1217
  public:
deba@1187
  1218
deba@1187
  1219
    class Snapshot;
deba@1187
  1220
deba@1187
  1221
  protected:
deba@1187
  1222
deba@1187
  1223
    void saveSnapshot(Snapshot &s)
deba@1187
  1224
    {
deba@1187
  1225
      s._graph = this;
deba@1187
  1226
      s.node_num = nodes.size();
deba@1187
  1227
      s.arc_num = arcs.size();
deba@1187
  1228
    }
deba@1187
  1229
deba@1187
  1230
    void restoreSnapshot(const Snapshot &s)
deba@1187
  1231
    {
deba@1187
  1232
      while(s.arc_num<arcs.size()) {
deba@1187
  1233
        int n=arcs.size()-1;
deba@1187
  1234
        Edge arc=edgeFromId(n/2);
deba@1187
  1235
        Parent::notifier(Edge()).erase(arc);
deba@1187
  1236
        std::vector<Arc> dir;
deba@1187
  1237
        dir.push_back(arcFromId(n));
deba@1187
  1238
        dir.push_back(arcFromId(n-1));
deba@1187
  1239
        Parent::notifier(Arc()).erase(dir);
deba@1187
  1240
        nodes[arcs[n-1].target].first_out=arcs[n].next_out;
deba@1187
  1241
        nodes[arcs[n].target].first_out=arcs[n-1].next_out;
deba@1187
  1242
        arcs.pop_back();
deba@1187
  1243
        arcs.pop_back();
deba@1187
  1244
      }
deba@1187
  1245
      while(s.node_num<nodes.size()) {
deba@1187
  1246
        int n=nodes.size()-1;
deba@1187
  1247
        Node node = nodeFromId(n);
deba@1187
  1248
        if (Parent::red(node)) {
deba@1187
  1249
          first_red = nodes[n].partition_next;
deba@1187
  1250
          Parent::notifier(RedNode()).erase(node);          
deba@1187
  1251
        } else {
deba@1187
  1252
          first_blue = nodes[n].partition_next;
deba@1187
  1253
          Parent::notifier(BlueNode()).erase(node);
deba@1187
  1254
        }
deba@1187
  1255
        Parent::notifier(Node()).erase(node);
deba@1187
  1256
        nodes.pop_back();
deba@1187
  1257
      }
deba@1187
  1258
    }
deba@1187
  1259
deba@1187
  1260
  public:
deba@1187
  1261
deba@1187
  1262
    ///Class to make a snapshot of the graph and to restore it later.
deba@1187
  1263
deba@1187
  1264
    ///Class to make a snapshot of the graph and to restore it later.
deba@1187
  1265
    ///
deba@1187
  1266
    ///The newly added nodes and edges can be removed using the
deba@1187
  1267
    ///restore() function. This is the only way for deleting nodes and/or
deba@1187
  1268
    ///edges from a SmartBpGraph structure.
deba@1187
  1269
    ///
deba@1187
  1270
    ///\note After a state is restored, you cannot restore a later state,
deba@1187
  1271
    ///i.e. you cannot add the removed nodes and edges again using
deba@1187
  1272
    ///another Snapshot instance.
deba@1187
  1273
    ///
deba@1187
  1274
    ///\warning The validity of the snapshot is not stored due to
deba@1187
  1275
    ///performance reasons. If you do not use the snapshot correctly,
deba@1187
  1276
    ///it can cause broken program, invalid or not restored state of
deba@1187
  1277
    ///the graph or no change.
deba@1187
  1278
    class Snapshot
deba@1187
  1279
    {
deba@1187
  1280
      SmartBpGraph *_graph;
deba@1187
  1281
    protected:
deba@1187
  1282
      friend class SmartBpGraph;
deba@1187
  1283
      unsigned int node_num;
deba@1187
  1284
      unsigned int arc_num;
deba@1187
  1285
    public:
deba@1187
  1286
      ///Default constructor.
deba@1187
  1287
deba@1187
  1288
      ///Default constructor.
deba@1187
  1289
      ///You have to call save() to actually make a snapshot.
deba@1187
  1290
      Snapshot() : _graph(0) {}
deba@1187
  1291
      ///Constructor that immediately makes a snapshot
deba@1187
  1292
deba@1187
  1293
      /// This constructor immediately makes a snapshot of the given graph.
deba@1187
  1294
      ///
deba@1187
  1295
      Snapshot(SmartBpGraph &gr) {
deba@1187
  1296
        gr.saveSnapshot(*this);
deba@1187
  1297
      }
deba@1187
  1298
deba@1187
  1299
      ///Make a snapshot.
deba@1187
  1300
deba@1187
  1301
      ///This function makes a snapshot of the given graph.
deba@1187
  1302
      ///It can be called more than once. In case of a repeated
deba@1187
  1303
      ///call, the previous snapshot gets lost.
deba@1187
  1304
      void save(SmartBpGraph &gr)
deba@1187
  1305
      {
deba@1187
  1306
        gr.saveSnapshot(*this);
deba@1187
  1307
      }
deba@1187
  1308
deba@1187
  1309
      ///Undo the changes until the last snapshot.
deba@1187
  1310
deba@1187
  1311
      ///This function undos the changes until the last snapshot
deba@1187
  1312
      ///created by save() or Snapshot(SmartBpGraph&).
deba@1187
  1313
      void restore()
deba@1187
  1314
      {
deba@1187
  1315
        _graph->restoreSnapshot(*this);
deba@1187
  1316
      }
deba@1187
  1317
    };
deba@1187
  1318
  };
deba@1187
  1319
deba@109
  1320
} //namespace lemon
deba@109
  1321
deba@109
  1322
deba@109
  1323
#endif //LEMON_SMART_GRAPH_H