lemon/cost_scaling.h
author Peter Kovacs <kpeter@inf.elte.hu>
Tue, 15 Mar 2011 19:52:31 +0100
changeset 1048 1226290a9b7d
parent 1047 ddd3c0d3d9bf
child 1049 a07b6b27fe69
permissions -rw-r--r--
Faster computation of the dual solution in CostScaling (#417)
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2010
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_COST_SCALING_H
    20 #define LEMON_COST_SCALING_H
    21 
    22 /// \ingroup min_cost_flow_algs
    23 /// \file
    24 /// \brief Cost scaling algorithm for finding a minimum cost flow.
    25 
    26 #include <vector>
    27 #include <deque>
    28 #include <limits>
    29 
    30 #include <lemon/core.h>
    31 #include <lemon/maps.h>
    32 #include <lemon/math.h>
    33 #include <lemon/static_graph.h>
    34 #include <lemon/circulation.h>
    35 #include <lemon/bellman_ford.h>
    36 
    37 namespace lemon {
    38 
    39   /// \brief Default traits class of CostScaling algorithm.
    40   ///
    41   /// Default traits class of CostScaling algorithm.
    42   /// \tparam GR Digraph type.
    43   /// \tparam V The number type used for flow amounts, capacity bounds
    44   /// and supply values. By default it is \c int.
    45   /// \tparam C The number type used for costs and potentials.
    46   /// By default it is the same as \c V.
    47 #ifdef DOXYGEN
    48   template <typename GR, typename V = int, typename C = V>
    49 #else
    50   template < typename GR, typename V = int, typename C = V,
    51              bool integer = std::numeric_limits<C>::is_integer >
    52 #endif
    53   struct CostScalingDefaultTraits
    54   {
    55     /// The type of the digraph
    56     typedef GR Digraph;
    57     /// The type of the flow amounts, capacity bounds and supply values
    58     typedef V Value;
    59     /// The type of the arc costs
    60     typedef C Cost;
    61 
    62     /// \brief The large cost type used for internal computations
    63     ///
    64     /// The large cost type used for internal computations.
    65     /// It is \c long \c long if the \c Cost type is integer,
    66     /// otherwise it is \c double.
    67     /// \c Cost must be convertible to \c LargeCost.
    68     typedef double LargeCost;
    69   };
    70 
    71   // Default traits class for integer cost types
    72   template <typename GR, typename V, typename C>
    73   struct CostScalingDefaultTraits<GR, V, C, true>
    74   {
    75     typedef GR Digraph;
    76     typedef V Value;
    77     typedef C Cost;
    78 #ifdef LEMON_HAVE_LONG_LONG
    79     typedef long long LargeCost;
    80 #else
    81     typedef long LargeCost;
    82 #endif
    83   };
    84 
    85 
    86   /// \addtogroup min_cost_flow_algs
    87   /// @{
    88 
    89   /// \brief Implementation of the Cost Scaling algorithm for
    90   /// finding a \ref min_cost_flow "minimum cost flow".
    91   ///
    92   /// \ref CostScaling implements a cost scaling algorithm that performs
    93   /// push/augment and relabel operations for finding a \ref min_cost_flow
    94   /// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation,
    95   /// \ref goldberg97efficient, \ref bunnagel98efficient.
    96   /// It is a highly efficient primal-dual solution method, which
    97   /// can be viewed as the generalization of the \ref Preflow
    98   /// "preflow push-relabel" algorithm for the maximum flow problem.
    99   ///
   100   /// In general, \ref NetworkSimplex and \ref CostScaling are the fastest
   101   /// implementations available in LEMON for this problem.
   102   ///
   103   /// Most of the parameters of the problem (except for the digraph)
   104   /// can be given using separate functions, and the algorithm can be
   105   /// executed using the \ref run() function. If some parameters are not
   106   /// specified, then default values will be used.
   107   ///
   108   /// \tparam GR The digraph type the algorithm runs on.
   109   /// \tparam V The number type used for flow amounts, capacity bounds
   110   /// and supply values in the algorithm. By default, it is \c int.
   111   /// \tparam C The number type used for costs and potentials in the
   112   /// algorithm. By default, it is the same as \c V.
   113   /// \tparam TR The traits class that defines various types used by the
   114   /// algorithm. By default, it is \ref CostScalingDefaultTraits
   115   /// "CostScalingDefaultTraits<GR, V, C>".
   116   /// In most cases, this parameter should not be set directly,
   117   /// consider to use the named template parameters instead.
   118   ///
   119   /// \warning Both \c V and \c C must be signed number types.
   120   /// \warning All input data (capacities, supply values, and costs) must
   121   /// be integer.
   122   /// \warning This algorithm does not support negative costs for
   123   /// arcs having infinite upper bound.
   124   ///
   125   /// \note %CostScaling provides three different internal methods,
   126   /// from which the most efficient one is used by default.
   127   /// For more information, see \ref Method.
   128 #ifdef DOXYGEN
   129   template <typename GR, typename V, typename C, typename TR>
   130 #else
   131   template < typename GR, typename V = int, typename C = V,
   132              typename TR = CostScalingDefaultTraits<GR, V, C> >
   133 #endif
   134   class CostScaling
   135   {
   136   public:
   137 
   138     /// The type of the digraph
   139     typedef typename TR::Digraph Digraph;
   140     /// The type of the flow amounts, capacity bounds and supply values
   141     typedef typename TR::Value Value;
   142     /// The type of the arc costs
   143     typedef typename TR::Cost Cost;
   144 
   145     /// \brief The large cost type
   146     ///
   147     /// The large cost type used for internal computations.
   148     /// By default, it is \c long \c long if the \c Cost type is integer,
   149     /// otherwise it is \c double.
   150     typedef typename TR::LargeCost LargeCost;
   151 
   152     /// The \ref CostScalingDefaultTraits "traits class" of the algorithm
   153     typedef TR Traits;
   154 
   155   public:
   156 
   157     /// \brief Problem type constants for the \c run() function.
   158     ///
   159     /// Enum type containing the problem type constants that can be
   160     /// returned by the \ref run() function of the algorithm.
   161     enum ProblemType {
   162       /// The problem has no feasible solution (flow).
   163       INFEASIBLE,
   164       /// The problem has optimal solution (i.e. it is feasible and
   165       /// bounded), and the algorithm has found optimal flow and node
   166       /// potentials (primal and dual solutions).
   167       OPTIMAL,
   168       /// The digraph contains an arc of negative cost and infinite
   169       /// upper bound. It means that the objective function is unbounded
   170       /// on that arc, however, note that it could actually be bounded
   171       /// over the feasible flows, but this algroithm cannot handle
   172       /// these cases.
   173       UNBOUNDED
   174     };
   175 
   176     /// \brief Constants for selecting the internal method.
   177     ///
   178     /// Enum type containing constants for selecting the internal method
   179     /// for the \ref run() function.
   180     ///
   181     /// \ref CostScaling provides three internal methods that differ mainly
   182     /// in their base operations, which are used in conjunction with the
   183     /// relabel operation.
   184     /// By default, the so called \ref PARTIAL_AUGMENT
   185     /// "Partial Augment-Relabel" method is used, which turned out to be
   186     /// the most efficient and the most robust on various test inputs.
   187     /// However, the other methods can be selected using the \ref run()
   188     /// function with the proper parameter.
   189     enum Method {
   190       /// Local push operations are used, i.e. flow is moved only on one
   191       /// admissible arc at once.
   192       PUSH,
   193       /// Augment operations are used, i.e. flow is moved on admissible
   194       /// paths from a node with excess to a node with deficit.
   195       AUGMENT,
   196       /// Partial augment operations are used, i.e. flow is moved on
   197       /// admissible paths started from a node with excess, but the
   198       /// lengths of these paths are limited. This method can be viewed
   199       /// as a combined version of the previous two operations.
   200       PARTIAL_AUGMENT
   201     };
   202 
   203   private:
   204 
   205     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
   206 
   207     typedef std::vector<int> IntVector;
   208     typedef std::vector<Value> ValueVector;
   209     typedef std::vector<Cost> CostVector;
   210     typedef std::vector<LargeCost> LargeCostVector;
   211     typedef std::vector<char> BoolVector;
   212     // Note: vector<char> is used instead of vector<bool> for efficiency reasons
   213 
   214   private:
   215 
   216     template <typename KT, typename VT>
   217     class StaticVectorMap {
   218     public:
   219       typedef KT Key;
   220       typedef VT Value;
   221 
   222       StaticVectorMap(std::vector<Value>& v) : _v(v) {}
   223 
   224       const Value& operator[](const Key& key) const {
   225         return _v[StaticDigraph::id(key)];
   226       }
   227 
   228       Value& operator[](const Key& key) {
   229         return _v[StaticDigraph::id(key)];
   230       }
   231 
   232       void set(const Key& key, const Value& val) {
   233         _v[StaticDigraph::id(key)] = val;
   234       }
   235 
   236     private:
   237       std::vector<Value>& _v;
   238     };
   239 
   240     typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap;
   241 
   242   private:
   243 
   244     // Data related to the underlying digraph
   245     const GR &_graph;
   246     int _node_num;
   247     int _arc_num;
   248     int _res_node_num;
   249     int _res_arc_num;
   250     int _root;
   251 
   252     // Parameters of the problem
   253     bool _have_lower;
   254     Value _sum_supply;
   255     int _sup_node_num;
   256 
   257     // Data structures for storing the digraph
   258     IntNodeMap _node_id;
   259     IntArcMap _arc_idf;
   260     IntArcMap _arc_idb;
   261     IntVector _first_out;
   262     BoolVector _forward;
   263     IntVector _source;
   264     IntVector _target;
   265     IntVector _reverse;
   266 
   267     // Node and arc data
   268     ValueVector _lower;
   269     ValueVector _upper;
   270     CostVector _scost;
   271     ValueVector _supply;
   272 
   273     ValueVector _res_cap;
   274     LargeCostVector _cost;
   275     LargeCostVector _pi;
   276     ValueVector _excess;
   277     IntVector _next_out;
   278     std::deque<int> _active_nodes;
   279 
   280     // Data for scaling
   281     LargeCost _epsilon;
   282     int _alpha;
   283 
   284     IntVector _buckets;
   285     IntVector _bucket_next;
   286     IntVector _bucket_prev;
   287     IntVector _rank;
   288     int _max_rank;
   289 
   290   public:
   291 
   292     /// \brief Constant for infinite upper bounds (capacities).
   293     ///
   294     /// Constant for infinite upper bounds (capacities).
   295     /// It is \c std::numeric_limits<Value>::infinity() if available,
   296     /// \c std::numeric_limits<Value>::max() otherwise.
   297     const Value INF;
   298 
   299   public:
   300 
   301     /// \name Named Template Parameters
   302     /// @{
   303 
   304     template <typename T>
   305     struct SetLargeCostTraits : public Traits {
   306       typedef T LargeCost;
   307     };
   308 
   309     /// \brief \ref named-templ-param "Named parameter" for setting
   310     /// \c LargeCost type.
   311     ///
   312     /// \ref named-templ-param "Named parameter" for setting \c LargeCost
   313     /// type, which is used for internal computations in the algorithm.
   314     /// \c Cost must be convertible to \c LargeCost.
   315     template <typename T>
   316     struct SetLargeCost
   317       : public CostScaling<GR, V, C, SetLargeCostTraits<T> > {
   318       typedef  CostScaling<GR, V, C, SetLargeCostTraits<T> > Create;
   319     };
   320 
   321     /// @}
   322 
   323   protected:
   324 
   325     CostScaling() {}
   326 
   327   public:
   328 
   329     /// \brief Constructor.
   330     ///
   331     /// The constructor of the class.
   332     ///
   333     /// \param graph The digraph the algorithm runs on.
   334     CostScaling(const GR& graph) :
   335       _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
   336       INF(std::numeric_limits<Value>::has_infinity ?
   337           std::numeric_limits<Value>::infinity() :
   338           std::numeric_limits<Value>::max())
   339     {
   340       // Check the number types
   341       LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
   342         "The flow type of CostScaling must be signed");
   343       LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
   344         "The cost type of CostScaling must be signed");
   345 
   346       // Reset data structures
   347       reset();
   348     }
   349 
   350     /// \name Parameters
   351     /// The parameters of the algorithm can be specified using these
   352     /// functions.
   353 
   354     /// @{
   355 
   356     /// \brief Set the lower bounds on the arcs.
   357     ///
   358     /// This function sets the lower bounds on the arcs.
   359     /// If it is not used before calling \ref run(), the lower bounds
   360     /// will be set to zero on all arcs.
   361     ///
   362     /// \param map An arc map storing the lower bounds.
   363     /// Its \c Value type must be convertible to the \c Value type
   364     /// of the algorithm.
   365     ///
   366     /// \return <tt>(*this)</tt>
   367     template <typename LowerMap>
   368     CostScaling& lowerMap(const LowerMap& map) {
   369       _have_lower = true;
   370       for (ArcIt a(_graph); a != INVALID; ++a) {
   371         _lower[_arc_idf[a]] = map[a];
   372         _lower[_arc_idb[a]] = map[a];
   373       }
   374       return *this;
   375     }
   376 
   377     /// \brief Set the upper bounds (capacities) on the arcs.
   378     ///
   379     /// This function sets the upper bounds (capacities) on the arcs.
   380     /// If it is not used before calling \ref run(), the upper bounds
   381     /// will be set to \ref INF on all arcs (i.e. the flow value will be
   382     /// unbounded from above).
   383     ///
   384     /// \param map An arc map storing the upper bounds.
   385     /// Its \c Value type must be convertible to the \c Value type
   386     /// of the algorithm.
   387     ///
   388     /// \return <tt>(*this)</tt>
   389     template<typename UpperMap>
   390     CostScaling& upperMap(const UpperMap& map) {
   391       for (ArcIt a(_graph); a != INVALID; ++a) {
   392         _upper[_arc_idf[a]] = map[a];
   393       }
   394       return *this;
   395     }
   396 
   397     /// \brief Set the costs of the arcs.
   398     ///
   399     /// This function sets the costs of the arcs.
   400     /// If it is not used before calling \ref run(), the costs
   401     /// will be set to \c 1 on all arcs.
   402     ///
   403     /// \param map An arc map storing the costs.
   404     /// Its \c Value type must be convertible to the \c Cost type
   405     /// of the algorithm.
   406     ///
   407     /// \return <tt>(*this)</tt>
   408     template<typename CostMap>
   409     CostScaling& costMap(const CostMap& map) {
   410       for (ArcIt a(_graph); a != INVALID; ++a) {
   411         _scost[_arc_idf[a]] =  map[a];
   412         _scost[_arc_idb[a]] = -map[a];
   413       }
   414       return *this;
   415     }
   416 
   417     /// \brief Set the supply values of the nodes.
   418     ///
   419     /// This function sets the supply values of the nodes.
   420     /// If neither this function nor \ref stSupply() is used before
   421     /// calling \ref run(), the supply of each node will be set to zero.
   422     ///
   423     /// \param map A node map storing the supply values.
   424     /// Its \c Value type must be convertible to the \c Value type
   425     /// of the algorithm.
   426     ///
   427     /// \return <tt>(*this)</tt>
   428     template<typename SupplyMap>
   429     CostScaling& supplyMap(const SupplyMap& map) {
   430       for (NodeIt n(_graph); n != INVALID; ++n) {
   431         _supply[_node_id[n]] = map[n];
   432       }
   433       return *this;
   434     }
   435 
   436     /// \brief Set single source and target nodes and a supply value.
   437     ///
   438     /// This function sets a single source node and a single target node
   439     /// and the required flow value.
   440     /// If neither this function nor \ref supplyMap() is used before
   441     /// calling \ref run(), the supply of each node will be set to zero.
   442     ///
   443     /// Using this function has the same effect as using \ref supplyMap()
   444     /// with a map in which \c k is assigned to \c s, \c -k is
   445     /// assigned to \c t and all other nodes have zero supply value.
   446     ///
   447     /// \param s The source node.
   448     /// \param t The target node.
   449     /// \param k The required amount of flow from node \c s to node \c t
   450     /// (i.e. the supply of \c s and the demand of \c t).
   451     ///
   452     /// \return <tt>(*this)</tt>
   453     CostScaling& stSupply(const Node& s, const Node& t, Value k) {
   454       for (int i = 0; i != _res_node_num; ++i) {
   455         _supply[i] = 0;
   456       }
   457       _supply[_node_id[s]] =  k;
   458       _supply[_node_id[t]] = -k;
   459       return *this;
   460     }
   461 
   462     /// @}
   463 
   464     /// \name Execution control
   465     /// The algorithm can be executed using \ref run().
   466 
   467     /// @{
   468 
   469     /// \brief Run the algorithm.
   470     ///
   471     /// This function runs the algorithm.
   472     /// The paramters can be specified using functions \ref lowerMap(),
   473     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
   474     /// For example,
   475     /// \code
   476     ///   CostScaling<ListDigraph> cs(graph);
   477     ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
   478     ///     .supplyMap(sup).run();
   479     /// \endcode
   480     ///
   481     /// This function can be called more than once. All the given parameters
   482     /// are kept for the next call, unless \ref resetParams() or \ref reset()
   483     /// is used, thus only the modified parameters have to be set again.
   484     /// If the underlying digraph was also modified after the construction
   485     /// of the class (or the last \ref reset() call), then the \ref reset()
   486     /// function must be called.
   487     ///
   488     /// \param method The internal method that will be used in the
   489     /// algorithm. For more information, see \ref Method.
   490     /// \param factor The cost scaling factor. It must be larger than one.
   491     ///
   492     /// \return \c INFEASIBLE if no feasible flow exists,
   493     /// \n \c OPTIMAL if the problem has optimal solution
   494     /// (i.e. it is feasible and bounded), and the algorithm has found
   495     /// optimal flow and node potentials (primal and dual solutions),
   496     /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
   497     /// and infinite upper bound. It means that the objective function
   498     /// is unbounded on that arc, however, note that it could actually be
   499     /// bounded over the feasible flows, but this algroithm cannot handle
   500     /// these cases.
   501     ///
   502     /// \see ProblemType, Method
   503     /// \see resetParams(), reset()
   504     ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 8) {
   505       _alpha = factor;
   506       ProblemType pt = init();
   507       if (pt != OPTIMAL) return pt;
   508       start(method);
   509       return OPTIMAL;
   510     }
   511 
   512     /// \brief Reset all the parameters that have been given before.
   513     ///
   514     /// This function resets all the paramaters that have been given
   515     /// before using functions \ref lowerMap(), \ref upperMap(),
   516     /// \ref costMap(), \ref supplyMap(), \ref stSupply().
   517     ///
   518     /// It is useful for multiple \ref run() calls. Basically, all the given
   519     /// parameters are kept for the next \ref run() call, unless
   520     /// \ref resetParams() or \ref reset() is used.
   521     /// If the underlying digraph was also modified after the construction
   522     /// of the class or the last \ref reset() call, then the \ref reset()
   523     /// function must be used, otherwise \ref resetParams() is sufficient.
   524     ///
   525     /// For example,
   526     /// \code
   527     ///   CostScaling<ListDigraph> cs(graph);
   528     ///
   529     ///   // First run
   530     ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
   531     ///     .supplyMap(sup).run();
   532     ///
   533     ///   // Run again with modified cost map (resetParams() is not called,
   534     ///   // so only the cost map have to be set again)
   535     ///   cost[e] += 100;
   536     ///   cs.costMap(cost).run();
   537     ///
   538     ///   // Run again from scratch using resetParams()
   539     ///   // (the lower bounds will be set to zero on all arcs)
   540     ///   cs.resetParams();
   541     ///   cs.upperMap(capacity).costMap(cost)
   542     ///     .supplyMap(sup).run();
   543     /// \endcode
   544     ///
   545     /// \return <tt>(*this)</tt>
   546     ///
   547     /// \see reset(), run()
   548     CostScaling& resetParams() {
   549       for (int i = 0; i != _res_node_num; ++i) {
   550         _supply[i] = 0;
   551       }
   552       int limit = _first_out[_root];
   553       for (int j = 0; j != limit; ++j) {
   554         _lower[j] = 0;
   555         _upper[j] = INF;
   556         _scost[j] = _forward[j] ? 1 : -1;
   557       }
   558       for (int j = limit; j != _res_arc_num; ++j) {
   559         _lower[j] = 0;
   560         _upper[j] = INF;
   561         _scost[j] = 0;
   562         _scost[_reverse[j]] = 0;
   563       }
   564       _have_lower = false;
   565       return *this;
   566     }
   567 
   568     /// \brief Reset the internal data structures and all the parameters
   569     /// that have been given before.
   570     ///
   571     /// This function resets the internal data structures and all the
   572     /// paramaters that have been given before using functions \ref lowerMap(),
   573     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
   574     ///
   575     /// It is useful for multiple \ref run() calls. By default, all the given
   576     /// parameters are kept for the next \ref run() call, unless
   577     /// \ref resetParams() or \ref reset() is used.
   578     /// If the underlying digraph was also modified after the construction
   579     /// of the class or the last \ref reset() call, then the \ref reset()
   580     /// function must be used, otherwise \ref resetParams() is sufficient.
   581     ///
   582     /// See \ref resetParams() for examples.
   583     ///
   584     /// \return <tt>(*this)</tt>
   585     ///
   586     /// \see resetParams(), run()
   587     CostScaling& reset() {
   588       // Resize vectors
   589       _node_num = countNodes(_graph);
   590       _arc_num = countArcs(_graph);
   591       _res_node_num = _node_num + 1;
   592       _res_arc_num = 2 * (_arc_num + _node_num);
   593       _root = _node_num;
   594 
   595       _first_out.resize(_res_node_num + 1);
   596       _forward.resize(_res_arc_num);
   597       _source.resize(_res_arc_num);
   598       _target.resize(_res_arc_num);
   599       _reverse.resize(_res_arc_num);
   600 
   601       _lower.resize(_res_arc_num);
   602       _upper.resize(_res_arc_num);
   603       _scost.resize(_res_arc_num);
   604       _supply.resize(_res_node_num);
   605 
   606       _res_cap.resize(_res_arc_num);
   607       _cost.resize(_res_arc_num);
   608       _pi.resize(_res_node_num);
   609       _excess.resize(_res_node_num);
   610       _next_out.resize(_res_node_num);
   611 
   612       // Copy the graph
   613       int i = 0, j = 0, k = 2 * _arc_num + _node_num;
   614       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   615         _node_id[n] = i;
   616       }
   617       i = 0;
   618       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   619         _first_out[i] = j;
   620         for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   621           _arc_idf[a] = j;
   622           _forward[j] = true;
   623           _source[j] = i;
   624           _target[j] = _node_id[_graph.runningNode(a)];
   625         }
   626         for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   627           _arc_idb[a] = j;
   628           _forward[j] = false;
   629           _source[j] = i;
   630           _target[j] = _node_id[_graph.runningNode(a)];
   631         }
   632         _forward[j] = false;
   633         _source[j] = i;
   634         _target[j] = _root;
   635         _reverse[j] = k;
   636         _forward[k] = true;
   637         _source[k] = _root;
   638         _target[k] = i;
   639         _reverse[k] = j;
   640         ++j; ++k;
   641       }
   642       _first_out[i] = j;
   643       _first_out[_res_node_num] = k;
   644       for (ArcIt a(_graph); a != INVALID; ++a) {
   645         int fi = _arc_idf[a];
   646         int bi = _arc_idb[a];
   647         _reverse[fi] = bi;
   648         _reverse[bi] = fi;
   649       }
   650 
   651       // Reset parameters
   652       resetParams();
   653       return *this;
   654     }
   655 
   656     /// @}
   657 
   658     /// \name Query Functions
   659     /// The results of the algorithm can be obtained using these
   660     /// functions.\n
   661     /// The \ref run() function must be called before using them.
   662 
   663     /// @{
   664 
   665     /// \brief Return the total cost of the found flow.
   666     ///
   667     /// This function returns the total cost of the found flow.
   668     /// Its complexity is O(e).
   669     ///
   670     /// \note The return type of the function can be specified as a
   671     /// template parameter. For example,
   672     /// \code
   673     ///   cs.totalCost<double>();
   674     /// \endcode
   675     /// It is useful if the total cost cannot be stored in the \c Cost
   676     /// type of the algorithm, which is the default return type of the
   677     /// function.
   678     ///
   679     /// \pre \ref run() must be called before using this function.
   680     template <typename Number>
   681     Number totalCost() const {
   682       Number c = 0;
   683       for (ArcIt a(_graph); a != INVALID; ++a) {
   684         int i = _arc_idb[a];
   685         c += static_cast<Number>(_res_cap[i]) *
   686              (-static_cast<Number>(_scost[i]));
   687       }
   688       return c;
   689     }
   690 
   691 #ifndef DOXYGEN
   692     Cost totalCost() const {
   693       return totalCost<Cost>();
   694     }
   695 #endif
   696 
   697     /// \brief Return the flow on the given arc.
   698     ///
   699     /// This function returns the flow on the given arc.
   700     ///
   701     /// \pre \ref run() must be called before using this function.
   702     Value flow(const Arc& a) const {
   703       return _res_cap[_arc_idb[a]];
   704     }
   705 
   706     /// \brief Return the flow map (the primal solution).
   707     ///
   708     /// This function copies the flow value on each arc into the given
   709     /// map. The \c Value type of the algorithm must be convertible to
   710     /// the \c Value type of the map.
   711     ///
   712     /// \pre \ref run() must be called before using this function.
   713     template <typename FlowMap>
   714     void flowMap(FlowMap &map) const {
   715       for (ArcIt a(_graph); a != INVALID; ++a) {
   716         map.set(a, _res_cap[_arc_idb[a]]);
   717       }
   718     }
   719 
   720     /// \brief Return the potential (dual value) of the given node.
   721     ///
   722     /// This function returns the potential (dual value) of the
   723     /// given node.
   724     ///
   725     /// \pre \ref run() must be called before using this function.
   726     Cost potential(const Node& n) const {
   727       return static_cast<Cost>(_pi[_node_id[n]]);
   728     }
   729 
   730     /// \brief Return the potential map (the dual solution).
   731     ///
   732     /// This function copies the potential (dual value) of each node
   733     /// into the given map.
   734     /// The \c Cost type of the algorithm must be convertible to the
   735     /// \c Value type of the map.
   736     ///
   737     /// \pre \ref run() must be called before using this function.
   738     template <typename PotentialMap>
   739     void potentialMap(PotentialMap &map) const {
   740       for (NodeIt n(_graph); n != INVALID; ++n) {
   741         map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
   742       }
   743     }
   744 
   745     /// @}
   746 
   747   private:
   748 
   749     // Initialize the algorithm
   750     ProblemType init() {
   751       if (_res_node_num <= 1) return INFEASIBLE;
   752 
   753       // Check the sum of supply values
   754       _sum_supply = 0;
   755       for (int i = 0; i != _root; ++i) {
   756         _sum_supply += _supply[i];
   757       }
   758       if (_sum_supply > 0) return INFEASIBLE;
   759 
   760 
   761       // Initialize vectors
   762       for (int i = 0; i != _res_node_num; ++i) {
   763         _pi[i] = 0;
   764         _excess[i] = _supply[i];
   765       }
   766 
   767       // Remove infinite upper bounds and check negative arcs
   768       const Value MAX = std::numeric_limits<Value>::max();
   769       int last_out;
   770       if (_have_lower) {
   771         for (int i = 0; i != _root; ++i) {
   772           last_out = _first_out[i+1];
   773           for (int j = _first_out[i]; j != last_out; ++j) {
   774             if (_forward[j]) {
   775               Value c = _scost[j] < 0 ? _upper[j] : _lower[j];
   776               if (c >= MAX) return UNBOUNDED;
   777               _excess[i] -= c;
   778               _excess[_target[j]] += c;
   779             }
   780           }
   781         }
   782       } else {
   783         for (int i = 0; i != _root; ++i) {
   784           last_out = _first_out[i+1];
   785           for (int j = _first_out[i]; j != last_out; ++j) {
   786             if (_forward[j] && _scost[j] < 0) {
   787               Value c = _upper[j];
   788               if (c >= MAX) return UNBOUNDED;
   789               _excess[i] -= c;
   790               _excess[_target[j]] += c;
   791             }
   792           }
   793         }
   794       }
   795       Value ex, max_cap = 0;
   796       for (int i = 0; i != _res_node_num; ++i) {
   797         ex = _excess[i];
   798         _excess[i] = 0;
   799         if (ex < 0) max_cap -= ex;
   800       }
   801       for (int j = 0; j != _res_arc_num; ++j) {
   802         if (_upper[j] >= MAX) _upper[j] = max_cap;
   803       }
   804 
   805       // Initialize the large cost vector and the epsilon parameter
   806       _epsilon = 0;
   807       LargeCost lc;
   808       for (int i = 0; i != _root; ++i) {
   809         last_out = _first_out[i+1];
   810         for (int j = _first_out[i]; j != last_out; ++j) {
   811           lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha;
   812           _cost[j] = lc;
   813           if (lc > _epsilon) _epsilon = lc;
   814         }
   815       }
   816       _epsilon /= _alpha;
   817 
   818       // Initialize maps for Circulation and remove non-zero lower bounds
   819       ConstMap<Arc, Value> low(0);
   820       typedef typename Digraph::template ArcMap<Value> ValueArcMap;
   821       typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
   822       ValueArcMap cap(_graph), flow(_graph);
   823       ValueNodeMap sup(_graph);
   824       for (NodeIt n(_graph); n != INVALID; ++n) {
   825         sup[n] = _supply[_node_id[n]];
   826       }
   827       if (_have_lower) {
   828         for (ArcIt a(_graph); a != INVALID; ++a) {
   829           int j = _arc_idf[a];
   830           Value c = _lower[j];
   831           cap[a] = _upper[j] - c;
   832           sup[_graph.source(a)] -= c;
   833           sup[_graph.target(a)] += c;
   834         }
   835       } else {
   836         for (ArcIt a(_graph); a != INVALID; ++a) {
   837           cap[a] = _upper[_arc_idf[a]];
   838         }
   839       }
   840 
   841       _sup_node_num = 0;
   842       for (NodeIt n(_graph); n != INVALID; ++n) {
   843         if (sup[n] > 0) ++_sup_node_num;
   844       }
   845 
   846       // Find a feasible flow using Circulation
   847       Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
   848         circ(_graph, low, cap, sup);
   849       if (!circ.flowMap(flow).run()) return INFEASIBLE;
   850 
   851       // Set residual capacities and handle GEQ supply type
   852       if (_sum_supply < 0) {
   853         for (ArcIt a(_graph); a != INVALID; ++a) {
   854           Value fa = flow[a];
   855           _res_cap[_arc_idf[a]] = cap[a] - fa;
   856           _res_cap[_arc_idb[a]] = fa;
   857           sup[_graph.source(a)] -= fa;
   858           sup[_graph.target(a)] += fa;
   859         }
   860         for (NodeIt n(_graph); n != INVALID; ++n) {
   861           _excess[_node_id[n]] = sup[n];
   862         }
   863         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   864           int u = _target[a];
   865           int ra = _reverse[a];
   866           _res_cap[a] = -_sum_supply + 1;
   867           _res_cap[ra] = -_excess[u];
   868           _cost[a] = 0;
   869           _cost[ra] = 0;
   870           _excess[u] = 0;
   871         }
   872       } else {
   873         for (ArcIt a(_graph); a != INVALID; ++a) {
   874           Value fa = flow[a];
   875           _res_cap[_arc_idf[a]] = cap[a] - fa;
   876           _res_cap[_arc_idb[a]] = fa;
   877         }
   878         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   879           int ra = _reverse[a];
   880           _res_cap[a] = 0;
   881           _res_cap[ra] = 0;
   882           _cost[a] = 0;
   883           _cost[ra] = 0;
   884         }
   885       }
   886 
   887       // Initialize data structures for buckets
   888       _max_rank = _alpha * _res_node_num;
   889       _buckets.resize(_max_rank);
   890       _bucket_next.resize(_res_node_num + 1);
   891       _bucket_prev.resize(_res_node_num + 1);
   892       _rank.resize(_res_node_num + 1);
   893 
   894       return OPTIMAL;
   895     }
   896 
   897     // Execute the algorithm and transform the results
   898     void start(Method method) {
   899       const int MAX_PARTIAL_PATH_LENGTH = 4;
   900 
   901       switch (method) {
   902         case PUSH:
   903           startPush();
   904           break;
   905         case AUGMENT:
   906           startAugment(_res_node_num - 1);
   907           break;
   908         case PARTIAL_AUGMENT:
   909           startAugment(MAX_PARTIAL_PATH_LENGTH);
   910           break;
   911       }
   912 
   913       // Compute node potentials (dual solution)
   914       for (int i = 0; i != _res_node_num; ++i) {
   915         _pi[i] = static_cast<Cost>(_pi[i] / (_res_node_num * _alpha));
   916       }
   917       bool optimal = true;
   918       for (int i = 0; optimal && i != _res_node_num; ++i) {
   919         LargeCost pi_i = _pi[i];
   920         int last_out = _first_out[i+1];
   921         for (int j = _first_out[i]; j != last_out; ++j) {
   922           if (_res_cap[j] > 0 && _scost[j] + pi_i - _pi[_target[j]] < 0) {
   923             optimal = false;
   924             break;
   925           }
   926         }
   927       }
   928 
   929       if (!optimal) {
   930         // Compute node potentials for the original costs with BellmanFord
   931         // (if it is necessary)
   932         typedef std::pair<int, int> IntPair;
   933         StaticDigraph sgr;
   934         std::vector<IntPair> arc_vec;
   935         std::vector<LargeCost> cost_vec;
   936         LargeCostArcMap cost_map(cost_vec);
   937 
   938         arc_vec.clear();
   939         cost_vec.clear();
   940         for (int j = 0; j != _res_arc_num; ++j) {
   941           if (_res_cap[j] > 0) {
   942             int u = _source[j], v = _target[j];
   943             arc_vec.push_back(IntPair(u, v));
   944             cost_vec.push_back(_scost[j] + _pi[u] - _pi[v]);
   945           }
   946         }
   947         sgr.build(_res_node_num, arc_vec.begin(), arc_vec.end());
   948 
   949         typename BellmanFord<StaticDigraph, LargeCostArcMap>::Create
   950           bf(sgr, cost_map);
   951         bf.init(0);
   952         bf.start();
   953 
   954         for (int i = 0; i != _res_node_num; ++i) {
   955           _pi[i] += bf.dist(sgr.node(i));
   956         }
   957       }
   958 
   959       // Shift potentials to meet the requirements of the GEQ type
   960       // optimality conditions
   961       LargeCost max_pot = _pi[_root];
   962       for (int i = 0; i != _res_node_num; ++i) {
   963         if (_pi[i] > max_pot) max_pot = _pi[i];
   964       }
   965       if (max_pot != 0) {
   966         for (int i = 0; i != _res_node_num; ++i) {
   967           _pi[i] -= max_pot;
   968         }
   969       }
   970 
   971       // Handle non-zero lower bounds
   972       if (_have_lower) {
   973         int limit = _first_out[_root];
   974         for (int j = 0; j != limit; ++j) {
   975           if (!_forward[j]) _res_cap[j] += _lower[j];
   976         }
   977       }
   978     }
   979 
   980     // Initialize a cost scaling phase
   981     void initPhase() {
   982       // Saturate arcs not satisfying the optimality condition
   983       for (int u = 0; u != _res_node_num; ++u) {
   984         int last_out = _first_out[u+1];
   985         LargeCost pi_u = _pi[u];
   986         for (int a = _first_out[u]; a != last_out; ++a) {
   987           Value delta = _res_cap[a];
   988           if (delta > 0) {
   989             int v = _target[a];
   990             if (_cost[a] + pi_u - _pi[v] < 0) {
   991               _excess[u] -= delta;
   992               _excess[v] += delta;
   993               _res_cap[a] = 0;
   994               _res_cap[_reverse[a]] += delta;
   995             }
   996           }
   997         }
   998       }
   999 
  1000       // Find active nodes (i.e. nodes with positive excess)
  1001       for (int u = 0; u != _res_node_num; ++u) {
  1002         if (_excess[u] > 0) _active_nodes.push_back(u);
  1003       }
  1004 
  1005       // Initialize the next arcs
  1006       for (int u = 0; u != _res_node_num; ++u) {
  1007         _next_out[u] = _first_out[u];
  1008       }
  1009     }
  1010 
  1011     // Price (potential) refinement heuristic
  1012     bool priceRefinement() {
  1013 
  1014       // Stack for stroing the topological order
  1015       IntVector stack(_res_node_num);
  1016       int stack_top;
  1017 
  1018       // Perform phases
  1019       while (topologicalSort(stack, stack_top)) {
  1020 
  1021         // Compute node ranks in the acyclic admissible network and
  1022         // store the nodes in buckets
  1023         for (int i = 0; i != _res_node_num; ++i) {
  1024           _rank[i] = 0;
  1025         }
  1026         const int bucket_end = _root + 1;
  1027         for (int r = 0; r != _max_rank; ++r) {
  1028           _buckets[r] = bucket_end;
  1029         }
  1030         int top_rank = 0;
  1031         for ( ; stack_top >= 0; --stack_top) {
  1032           int u = stack[stack_top], v;
  1033           int rank_u = _rank[u];
  1034 
  1035           LargeCost rc, pi_u = _pi[u];
  1036           int last_out = _first_out[u+1];
  1037           for (int a = _first_out[u]; a != last_out; ++a) {
  1038             if (_res_cap[a] > 0) {
  1039               v = _target[a];
  1040               rc = _cost[a] + pi_u - _pi[v];
  1041               if (rc < 0) {
  1042                 LargeCost nrc = static_cast<LargeCost>((-rc - 0.5) / _epsilon);
  1043                 if (nrc < LargeCost(_max_rank)) {
  1044                   int new_rank_v = rank_u + static_cast<int>(nrc);
  1045                   if (new_rank_v > _rank[v]) {
  1046                     _rank[v] = new_rank_v;
  1047                   }
  1048                 }
  1049               }
  1050             }
  1051           }
  1052 
  1053           if (rank_u > 0) {
  1054             top_rank = std::max(top_rank, rank_u);
  1055             int bfirst = _buckets[rank_u];
  1056             _bucket_next[u] = bfirst;
  1057             _bucket_prev[bfirst] = u;
  1058             _buckets[rank_u] = u;
  1059           }
  1060         }
  1061 
  1062         // Check if the current flow is epsilon-optimal
  1063         if (top_rank == 0) {
  1064           return true;
  1065         }
  1066 
  1067         // Process buckets in top-down order
  1068         for (int rank = top_rank; rank > 0; --rank) {
  1069           while (_buckets[rank] != bucket_end) {
  1070             // Remove the first node from the current bucket
  1071             int u = _buckets[rank];
  1072             _buckets[rank] = _bucket_next[u];
  1073 
  1074             // Search the outgoing arcs of u
  1075             LargeCost rc, pi_u = _pi[u];
  1076             int last_out = _first_out[u+1];
  1077             int v, old_rank_v, new_rank_v;
  1078             for (int a = _first_out[u]; a != last_out; ++a) {
  1079               if (_res_cap[a] > 0) {
  1080                 v = _target[a];
  1081                 old_rank_v = _rank[v];
  1082 
  1083                 if (old_rank_v < rank) {
  1084 
  1085                   // Compute the new rank of node v
  1086                   rc = _cost[a] + pi_u - _pi[v];
  1087                   if (rc < 0) {
  1088                     new_rank_v = rank;
  1089                   } else {
  1090                     LargeCost nrc = rc / _epsilon;
  1091                     new_rank_v = 0;
  1092                     if (nrc < LargeCost(_max_rank)) {
  1093                       new_rank_v = rank - 1 - static_cast<int>(nrc);
  1094                     }
  1095                   }
  1096 
  1097                   // Change the rank of node v
  1098                   if (new_rank_v > old_rank_v) {
  1099                     _rank[v] = new_rank_v;
  1100 
  1101                     // Remove v from its old bucket
  1102                     if (old_rank_v > 0) {
  1103                       if (_buckets[old_rank_v] == v) {
  1104                         _buckets[old_rank_v] = _bucket_next[v];
  1105                       } else {
  1106                         int pv = _bucket_prev[v], nv = _bucket_next[v];
  1107                         _bucket_next[pv] = nv;
  1108                         _bucket_prev[nv] = pv;
  1109                       }
  1110                     }
  1111 
  1112                     // Insert v into its new bucket
  1113                     int nv = _buckets[new_rank_v];
  1114                     _bucket_next[v] = nv;
  1115                     _bucket_prev[nv] = v;
  1116                     _buckets[new_rank_v] = v;
  1117                   }
  1118                 }
  1119               }
  1120             }
  1121 
  1122             // Refine potential of node u
  1123             _pi[u] -= rank * _epsilon;
  1124           }
  1125         }
  1126 
  1127       }
  1128 
  1129       return false;
  1130     }
  1131 
  1132     // Find and cancel cycles in the admissible network and
  1133     // determine topological order using DFS
  1134     bool topologicalSort(IntVector &stack, int &stack_top) {
  1135       const int MAX_CYCLE_CANCEL = 1;
  1136 
  1137       BoolVector reached(_res_node_num, false);
  1138       BoolVector processed(_res_node_num, false);
  1139       IntVector pred(_res_node_num);
  1140       for (int i = 0; i != _res_node_num; ++i) {
  1141         _next_out[i] = _first_out[i];
  1142       }
  1143       stack_top = -1;
  1144 
  1145       int cycle_cnt = 0;
  1146       for (int start = 0; start != _res_node_num; ++start) {
  1147         if (reached[start]) continue;
  1148 
  1149         // Start DFS search from this start node
  1150         pred[start] = -1;
  1151         int tip = start, v;
  1152         while (true) {
  1153           // Check the outgoing arcs of the current tip node
  1154           reached[tip] = true;
  1155           LargeCost pi_tip = _pi[tip];
  1156           int a, last_out = _first_out[tip+1];
  1157           for (a = _next_out[tip]; a != last_out; ++a) {
  1158             if (_res_cap[a] > 0) {
  1159               v = _target[a];
  1160               if (_cost[a] + pi_tip - _pi[v] < 0) {
  1161                 if (!reached[v]) {
  1162                   // A new node is reached
  1163                   reached[v] = true;
  1164                   pred[v] = tip;
  1165                   _next_out[tip] = a;
  1166                   tip = v;
  1167                   a = _next_out[tip];
  1168                   last_out = _first_out[tip+1];
  1169                   break;
  1170                 }
  1171                 else if (!processed[v]) {
  1172                   // A cycle is found
  1173                   ++cycle_cnt;
  1174                   _next_out[tip] = a;
  1175 
  1176                   // Find the minimum residual capacity along the cycle
  1177                   Value d, delta = _res_cap[a];
  1178                   int u, delta_node = tip;
  1179                   for (u = tip; u != v; ) {
  1180                     u = pred[u];
  1181                     d = _res_cap[_next_out[u]];
  1182                     if (d <= delta) {
  1183                       delta = d;
  1184                       delta_node = u;
  1185                     }
  1186                   }
  1187 
  1188                   // Augment along the cycle
  1189                   _res_cap[a] -= delta;
  1190                   _res_cap[_reverse[a]] += delta;
  1191                   for (u = tip; u != v; ) {
  1192                     u = pred[u];
  1193                     int ca = _next_out[u];
  1194                     _res_cap[ca] -= delta;
  1195                     _res_cap[_reverse[ca]] += delta;
  1196                   }
  1197 
  1198                   // Check the maximum number of cycle canceling
  1199                   if (cycle_cnt >= MAX_CYCLE_CANCEL) {
  1200                     return false;
  1201                   }
  1202 
  1203                   // Roll back search to delta_node
  1204                   if (delta_node != tip) {
  1205                     for (u = tip; u != delta_node; u = pred[u]) {
  1206                       reached[u] = false;
  1207                     }
  1208                     tip = delta_node;
  1209                     a = _next_out[tip] + 1;
  1210                     last_out = _first_out[tip+1];
  1211                     break;
  1212                   }
  1213                 }
  1214               }
  1215             }
  1216           }
  1217 
  1218           // Step back to the previous node
  1219           if (a == last_out) {
  1220             processed[tip] = true;
  1221             stack[++stack_top] = tip;
  1222             tip = pred[tip];
  1223             if (tip < 0) {
  1224               // Finish DFS from the current start node
  1225               break;
  1226             }
  1227             ++_next_out[tip];
  1228           }
  1229         }
  1230 
  1231       }
  1232 
  1233       return (cycle_cnt == 0);
  1234     }
  1235 
  1236     // Global potential update heuristic
  1237     void globalUpdate() {
  1238       const int bucket_end = _root + 1;
  1239 
  1240       // Initialize buckets
  1241       for (int r = 0; r != _max_rank; ++r) {
  1242         _buckets[r] = bucket_end;
  1243       }
  1244       Value total_excess = 0;
  1245       int b0 = bucket_end;
  1246       for (int i = 0; i != _res_node_num; ++i) {
  1247         if (_excess[i] < 0) {
  1248           _rank[i] = 0;
  1249           _bucket_next[i] = b0;
  1250           _bucket_prev[b0] = i;
  1251           b0 = i;
  1252         } else {
  1253           total_excess += _excess[i];
  1254           _rank[i] = _max_rank;
  1255         }
  1256       }
  1257       if (total_excess == 0) return;
  1258       _buckets[0] = b0;
  1259 
  1260       // Search the buckets
  1261       int r = 0;
  1262       for ( ; r != _max_rank; ++r) {
  1263         while (_buckets[r] != bucket_end) {
  1264           // Remove the first node from the current bucket
  1265           int u = _buckets[r];
  1266           _buckets[r] = _bucket_next[u];
  1267 
  1268           // Search the incomming arcs of u
  1269           LargeCost pi_u = _pi[u];
  1270           int last_out = _first_out[u+1];
  1271           for (int a = _first_out[u]; a != last_out; ++a) {
  1272             int ra = _reverse[a];
  1273             if (_res_cap[ra] > 0) {
  1274               int v = _source[ra];
  1275               int old_rank_v = _rank[v];
  1276               if (r < old_rank_v) {
  1277                 // Compute the new rank of v
  1278                 LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon;
  1279                 int new_rank_v = old_rank_v;
  1280                 if (nrc < LargeCost(_max_rank)) {
  1281                   new_rank_v = r + 1 + static_cast<int>(nrc);
  1282                 }
  1283 
  1284                 // Change the rank of v
  1285                 if (new_rank_v < old_rank_v) {
  1286                   _rank[v] = new_rank_v;
  1287                   _next_out[v] = _first_out[v];
  1288 
  1289                   // Remove v from its old bucket
  1290                   if (old_rank_v < _max_rank) {
  1291                     if (_buckets[old_rank_v] == v) {
  1292                       _buckets[old_rank_v] = _bucket_next[v];
  1293                     } else {
  1294                       int pv = _bucket_prev[v], nv = _bucket_next[v];
  1295                       _bucket_next[pv] = nv;
  1296                       _bucket_prev[nv] = pv;
  1297                     }
  1298                   }
  1299 
  1300                   // Insert v into its new bucket
  1301                   int nv = _buckets[new_rank_v];
  1302                   _bucket_next[v] = nv;
  1303                   _bucket_prev[nv] = v;
  1304                   _buckets[new_rank_v] = v;
  1305                 }
  1306               }
  1307             }
  1308           }
  1309 
  1310           // Finish search if there are no more active nodes
  1311           if (_excess[u] > 0) {
  1312             total_excess -= _excess[u];
  1313             if (total_excess <= 0) break;
  1314           }
  1315         }
  1316         if (total_excess <= 0) break;
  1317       }
  1318 
  1319       // Relabel nodes
  1320       for (int u = 0; u != _res_node_num; ++u) {
  1321         int k = std::min(_rank[u], r);
  1322         if (k > 0) {
  1323           _pi[u] -= _epsilon * k;
  1324           _next_out[u] = _first_out[u];
  1325         }
  1326       }
  1327     }
  1328 
  1329     /// Execute the algorithm performing augment and relabel operations
  1330     void startAugment(int max_length) {
  1331       // Paramters for heuristics
  1332       const int PRICE_REFINEMENT_LIMIT = 2;
  1333       const double GLOBAL_UPDATE_FACTOR = 1.0;
  1334       const int global_update_skip = static_cast<int>(GLOBAL_UPDATE_FACTOR *
  1335         (_res_node_num + _sup_node_num * _sup_node_num));
  1336       int next_global_update_limit = global_update_skip;
  1337 
  1338       // Perform cost scaling phases
  1339       IntVector path;
  1340       BoolVector path_arc(_res_arc_num, false);
  1341       int relabel_cnt = 0;
  1342       int eps_phase_cnt = 0;
  1343       for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
  1344                                         1 : _epsilon / _alpha )
  1345       {
  1346         ++eps_phase_cnt;
  1347 
  1348         // Price refinement heuristic
  1349         if (eps_phase_cnt >= PRICE_REFINEMENT_LIMIT) {
  1350           if (priceRefinement()) continue;
  1351         }
  1352 
  1353         // Initialize current phase
  1354         initPhase();
  1355 
  1356         // Perform partial augment and relabel operations
  1357         while (true) {
  1358           // Select an active node (FIFO selection)
  1359           while (_active_nodes.size() > 0 &&
  1360                  _excess[_active_nodes.front()] <= 0) {
  1361             _active_nodes.pop_front();
  1362           }
  1363           if (_active_nodes.size() == 0) break;
  1364           int start = _active_nodes.front();
  1365 
  1366           // Find an augmenting path from the start node
  1367           int tip = start;
  1368           while (int(path.size()) < max_length && _excess[tip] >= 0) {
  1369             int u;
  1370             LargeCost rc, min_red_cost = std::numeric_limits<LargeCost>::max();
  1371             LargeCost pi_tip = _pi[tip];
  1372             int last_out = _first_out[tip+1];
  1373             for (int a = _next_out[tip]; a != last_out; ++a) {
  1374               if (_res_cap[a] > 0) {
  1375                 u = _target[a];
  1376                 rc = _cost[a] + pi_tip - _pi[u];
  1377                 if (rc < 0) {
  1378                   path.push_back(a);
  1379                   _next_out[tip] = a;
  1380                   if (path_arc[a]) {
  1381                     goto augment;   // a cycle is found, stop path search
  1382                   }
  1383                   tip = u;
  1384                   path_arc[a] = true;
  1385                   goto next_step;
  1386                 }
  1387                 else if (rc < min_red_cost) {
  1388                   min_red_cost = rc;
  1389                 }
  1390               }
  1391             }
  1392 
  1393             // Relabel tip node
  1394             if (tip != start) {
  1395               int ra = _reverse[path.back()];
  1396               min_red_cost =
  1397                 std::min(min_red_cost, _cost[ra] + pi_tip - _pi[_target[ra]]);
  1398             }
  1399             last_out = _next_out[tip];
  1400             for (int a = _first_out[tip]; a != last_out; ++a) {
  1401               if (_res_cap[a] > 0) {
  1402                 rc = _cost[a] + pi_tip - _pi[_target[a]];
  1403                 if (rc < min_red_cost) {
  1404                   min_red_cost = rc;
  1405                 }
  1406               }
  1407             }
  1408             _pi[tip] -= min_red_cost + _epsilon;
  1409             _next_out[tip] = _first_out[tip];
  1410             ++relabel_cnt;
  1411 
  1412             // Step back
  1413             if (tip != start) {
  1414               int pa = path.back();
  1415               path_arc[pa] = false;
  1416               tip = _source[pa];
  1417               path.pop_back();
  1418             }
  1419 
  1420           next_step: ;
  1421           }
  1422 
  1423           // Augment along the found path (as much flow as possible)
  1424         augment:
  1425           Value delta;
  1426           int pa, u, v = start;
  1427           for (int i = 0; i != int(path.size()); ++i) {
  1428             pa = path[i];
  1429             u = v;
  1430             v = _target[pa];
  1431             path_arc[pa] = false;
  1432             delta = std::min(_res_cap[pa], _excess[u]);
  1433             _res_cap[pa] -= delta;
  1434             _res_cap[_reverse[pa]] += delta;
  1435             _excess[u] -= delta;
  1436             _excess[v] += delta;
  1437             if (_excess[v] > 0 && _excess[v] <= delta) {
  1438               _active_nodes.push_back(v);
  1439             }
  1440           }
  1441           path.clear();
  1442 
  1443           // Global update heuristic
  1444           if (relabel_cnt >= next_global_update_limit) {
  1445             globalUpdate();
  1446             next_global_update_limit += global_update_skip;
  1447           }
  1448         }
  1449 
  1450       }
  1451 
  1452     }
  1453 
  1454     /// Execute the algorithm performing push and relabel operations
  1455     void startPush() {
  1456       // Paramters for heuristics
  1457       const int PRICE_REFINEMENT_LIMIT = 2;
  1458       const double GLOBAL_UPDATE_FACTOR = 2.0;
  1459 
  1460       const int global_update_skip = static_cast<int>(GLOBAL_UPDATE_FACTOR *
  1461         (_res_node_num + _sup_node_num * _sup_node_num));
  1462       int next_global_update_limit = global_update_skip;
  1463 
  1464       // Perform cost scaling phases
  1465       BoolVector hyper(_res_node_num, false);
  1466       LargeCostVector hyper_cost(_res_node_num);
  1467       int relabel_cnt = 0;
  1468       int eps_phase_cnt = 0;
  1469       for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
  1470                                         1 : _epsilon / _alpha )
  1471       {
  1472         ++eps_phase_cnt;
  1473 
  1474         // Price refinement heuristic
  1475         if (eps_phase_cnt >= PRICE_REFINEMENT_LIMIT) {
  1476           if (priceRefinement()) continue;
  1477         }
  1478 
  1479         // Initialize current phase
  1480         initPhase();
  1481 
  1482         // Perform push and relabel operations
  1483         while (_active_nodes.size() > 0) {
  1484           LargeCost min_red_cost, rc, pi_n;
  1485           Value delta;
  1486           int n, t, a, last_out = _res_arc_num;
  1487 
  1488         next_node:
  1489           // Select an active node (FIFO selection)
  1490           n = _active_nodes.front();
  1491           last_out = _first_out[n+1];
  1492           pi_n = _pi[n];
  1493 
  1494           // Perform push operations if there are admissible arcs
  1495           if (_excess[n] > 0) {
  1496             for (a = _next_out[n]; a != last_out; ++a) {
  1497               if (_res_cap[a] > 0 &&
  1498                   _cost[a] + pi_n - _pi[_target[a]] < 0) {
  1499                 delta = std::min(_res_cap[a], _excess[n]);
  1500                 t = _target[a];
  1501 
  1502                 // Push-look-ahead heuristic
  1503                 Value ahead = -_excess[t];
  1504                 int last_out_t = _first_out[t+1];
  1505                 LargeCost pi_t = _pi[t];
  1506                 for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
  1507                   if (_res_cap[ta] > 0 &&
  1508                       _cost[ta] + pi_t - _pi[_target[ta]] < 0)
  1509                     ahead += _res_cap[ta];
  1510                   if (ahead >= delta) break;
  1511                 }
  1512                 if (ahead < 0) ahead = 0;
  1513 
  1514                 // Push flow along the arc
  1515                 if (ahead < delta && !hyper[t]) {
  1516                   _res_cap[a] -= ahead;
  1517                   _res_cap[_reverse[a]] += ahead;
  1518                   _excess[n] -= ahead;
  1519                   _excess[t] += ahead;
  1520                   _active_nodes.push_front(t);
  1521                   hyper[t] = true;
  1522                   hyper_cost[t] = _cost[a] + pi_n - pi_t;
  1523                   _next_out[n] = a;
  1524                   goto next_node;
  1525                 } else {
  1526                   _res_cap[a] -= delta;
  1527                   _res_cap[_reverse[a]] += delta;
  1528                   _excess[n] -= delta;
  1529                   _excess[t] += delta;
  1530                   if (_excess[t] > 0 && _excess[t] <= delta)
  1531                     _active_nodes.push_back(t);
  1532                 }
  1533 
  1534                 if (_excess[n] == 0) {
  1535                   _next_out[n] = a;
  1536                   goto remove_nodes;
  1537                 }
  1538               }
  1539             }
  1540             _next_out[n] = a;
  1541           }
  1542 
  1543           // Relabel the node if it is still active (or hyper)
  1544           if (_excess[n] > 0 || hyper[n]) {
  1545              min_red_cost = hyper[n] ? -hyper_cost[n] :
  1546                std::numeric_limits<LargeCost>::max();
  1547             for (int a = _first_out[n]; a != last_out; ++a) {
  1548               if (_res_cap[a] > 0) {
  1549                 rc = _cost[a] + pi_n - _pi[_target[a]];
  1550                 if (rc < min_red_cost) {
  1551                   min_red_cost = rc;
  1552                 }
  1553               }
  1554             }
  1555             _pi[n] -= min_red_cost + _epsilon;
  1556             _next_out[n] = _first_out[n];
  1557             hyper[n] = false;
  1558             ++relabel_cnt;
  1559           }
  1560 
  1561           // Remove nodes that are not active nor hyper
  1562         remove_nodes:
  1563           while ( _active_nodes.size() > 0 &&
  1564                   _excess[_active_nodes.front()] <= 0 &&
  1565                   !hyper[_active_nodes.front()] ) {
  1566             _active_nodes.pop_front();
  1567           }
  1568 
  1569           // Global update heuristic
  1570           if (relabel_cnt >= next_global_update_limit) {
  1571             globalUpdate();
  1572             for (int u = 0; u != _res_node_num; ++u)
  1573               hyper[u] = false;
  1574             next_global_update_limit += global_update_skip;
  1575           }
  1576         }
  1577       }
  1578     }
  1579 
  1580   }; //class CostScaling
  1581 
  1582   ///@}
  1583 
  1584 } //namespace lemon
  1585 
  1586 #endif //LEMON_COST_SCALING_H