lemon/cost_scaling.h
author Peter Kovacs <kpeter@inf.elte.hu>
Sat, 08 Jan 2011 16:11:48 +0100
changeset 1025 140c953ad5d1
parent 956 141f9c0db4a3
child 1026 9312d6c89d02
permissions -rw-r--r--
Minor doc improvements
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2010
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_COST_SCALING_H
    20 #define LEMON_COST_SCALING_H
    21 
    22 /// \ingroup min_cost_flow_algs
    23 /// \file
    24 /// \brief Cost scaling algorithm for finding a minimum cost flow.
    25 
    26 #include <vector>
    27 #include <deque>
    28 #include <limits>
    29 
    30 #include <lemon/core.h>
    31 #include <lemon/maps.h>
    32 #include <lemon/math.h>
    33 #include <lemon/static_graph.h>
    34 #include <lemon/circulation.h>
    35 #include <lemon/bellman_ford.h>
    36 
    37 namespace lemon {
    38 
    39   /// \brief Default traits class of CostScaling algorithm.
    40   ///
    41   /// Default traits class of CostScaling algorithm.
    42   /// \tparam GR Digraph type.
    43   /// \tparam V The number type used for flow amounts, capacity bounds
    44   /// and supply values. By default it is \c int.
    45   /// \tparam C The number type used for costs and potentials.
    46   /// By default it is the same as \c V.
    47 #ifdef DOXYGEN
    48   template <typename GR, typename V = int, typename C = V>
    49 #else
    50   template < typename GR, typename V = int, typename C = V,
    51              bool integer = std::numeric_limits<C>::is_integer >
    52 #endif
    53   struct CostScalingDefaultTraits
    54   {
    55     /// The type of the digraph
    56     typedef GR Digraph;
    57     /// The type of the flow amounts, capacity bounds and supply values
    58     typedef V Value;
    59     /// The type of the arc costs
    60     typedef C Cost;
    61 
    62     /// \brief The large cost type used for internal computations
    63     ///
    64     /// The large cost type used for internal computations.
    65     /// It is \c long \c long if the \c Cost type is integer,
    66     /// otherwise it is \c double.
    67     /// \c Cost must be convertible to \c LargeCost.
    68     typedef double LargeCost;
    69   };
    70 
    71   // Default traits class for integer cost types
    72   template <typename GR, typename V, typename C>
    73   struct CostScalingDefaultTraits<GR, V, C, true>
    74   {
    75     typedef GR Digraph;
    76     typedef V Value;
    77     typedef C Cost;
    78 #ifdef LEMON_HAVE_LONG_LONG
    79     typedef long long LargeCost;
    80 #else
    81     typedef long LargeCost;
    82 #endif
    83   };
    84 
    85 
    86   /// \addtogroup min_cost_flow_algs
    87   /// @{
    88 
    89   /// \brief Implementation of the Cost Scaling algorithm for
    90   /// finding a \ref min_cost_flow "minimum cost flow".
    91   ///
    92   /// \ref CostScaling implements a cost scaling algorithm that performs
    93   /// push/augment and relabel operations for finding a \ref min_cost_flow
    94   /// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation,
    95   /// \ref goldberg97efficient, \ref bunnagel98efficient.
    96   /// It is a highly efficient primal-dual solution method, which
    97   /// can be viewed as the generalization of the \ref Preflow
    98   /// "preflow push-relabel" algorithm for the maximum flow problem.
    99   ///
   100   /// Most of the parameters of the problem (except for the digraph)
   101   /// can be given using separate functions, and the algorithm can be
   102   /// executed using the \ref run() function. If some parameters are not
   103   /// specified, then default values will be used.
   104   ///
   105   /// \tparam GR The digraph type the algorithm runs on.
   106   /// \tparam V The number type used for flow amounts, capacity bounds
   107   /// and supply values in the algorithm. By default, it is \c int.
   108   /// \tparam C The number type used for costs and potentials in the
   109   /// algorithm. By default, it is the same as \c V.
   110   /// \tparam TR The traits class that defines various types used by the
   111   /// algorithm. By default, it is \ref CostScalingDefaultTraits
   112   /// "CostScalingDefaultTraits<GR, V, C>".
   113   /// In most cases, this parameter should not be set directly,
   114   /// consider to use the named template parameters instead.
   115   ///
   116   /// \warning Both \c V and \c C must be signed number types.
   117   /// \warning All input data (capacities, supply values, and costs) must
   118   /// be integer.
   119   /// \warning This algorithm does not support negative costs for such
   120   /// arcs that have infinite upper bound.
   121   ///
   122   /// \note %CostScaling provides three different internal methods,
   123   /// from which the most efficient one is used by default.
   124   /// For more information, see \ref Method.
   125 #ifdef DOXYGEN
   126   template <typename GR, typename V, typename C, typename TR>
   127 #else
   128   template < typename GR, typename V = int, typename C = V,
   129              typename TR = CostScalingDefaultTraits<GR, V, C> >
   130 #endif
   131   class CostScaling
   132   {
   133   public:
   134 
   135     /// The type of the digraph
   136     typedef typename TR::Digraph Digraph;
   137     /// The type of the flow amounts, capacity bounds and supply values
   138     typedef typename TR::Value Value;
   139     /// The type of the arc costs
   140     typedef typename TR::Cost Cost;
   141 
   142     /// \brief The large cost type
   143     ///
   144     /// The large cost type used for internal computations.
   145     /// By default, it is \c long \c long if the \c Cost type is integer,
   146     /// otherwise it is \c double.
   147     typedef typename TR::LargeCost LargeCost;
   148 
   149     /// The \ref CostScalingDefaultTraits "traits class" of the algorithm
   150     typedef TR Traits;
   151 
   152   public:
   153 
   154     /// \brief Problem type constants for the \c run() function.
   155     ///
   156     /// Enum type containing the problem type constants that can be
   157     /// returned by the \ref run() function of the algorithm.
   158     enum ProblemType {
   159       /// The problem has no feasible solution (flow).
   160       INFEASIBLE,
   161       /// The problem has optimal solution (i.e. it is feasible and
   162       /// bounded), and the algorithm has found optimal flow and node
   163       /// potentials (primal and dual solutions).
   164       OPTIMAL,
   165       /// The digraph contains an arc of negative cost and infinite
   166       /// upper bound. It means that the objective function is unbounded
   167       /// on that arc, however, note that it could actually be bounded
   168       /// over the feasible flows, but this algroithm cannot handle
   169       /// these cases.
   170       UNBOUNDED
   171     };
   172 
   173     /// \brief Constants for selecting the internal method.
   174     ///
   175     /// Enum type containing constants for selecting the internal method
   176     /// for the \ref run() function.
   177     ///
   178     /// \ref CostScaling provides three internal methods that differ mainly
   179     /// in their base operations, which are used in conjunction with the
   180     /// relabel operation.
   181     /// By default, the so called \ref PARTIAL_AUGMENT
   182     /// "Partial Augment-Relabel" method is used, which proved to be
   183     /// the most efficient and the most robust on various test inputs.
   184     /// However, the other methods can be selected using the \ref run()
   185     /// function with the proper parameter.
   186     enum Method {
   187       /// Local push operations are used, i.e. flow is moved only on one
   188       /// admissible arc at once.
   189       PUSH,
   190       /// Augment operations are used, i.e. flow is moved on admissible
   191       /// paths from a node with excess to a node with deficit.
   192       AUGMENT,
   193       /// Partial augment operations are used, i.e. flow is moved on
   194       /// admissible paths started from a node with excess, but the
   195       /// lengths of these paths are limited. This method can be viewed
   196       /// as a combined version of the previous two operations.
   197       PARTIAL_AUGMENT
   198     };
   199 
   200   private:
   201 
   202     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
   203 
   204     typedef std::vector<int> IntVector;
   205     typedef std::vector<Value> ValueVector;
   206     typedef std::vector<Cost> CostVector;
   207     typedef std::vector<LargeCost> LargeCostVector;
   208     typedef std::vector<char> BoolVector;
   209     // Note: vector<char> is used instead of vector<bool> for efficiency reasons
   210 
   211   private:
   212 
   213     template <typename KT, typename VT>
   214     class StaticVectorMap {
   215     public:
   216       typedef KT Key;
   217       typedef VT Value;
   218 
   219       StaticVectorMap(std::vector<Value>& v) : _v(v) {}
   220 
   221       const Value& operator[](const Key& key) const {
   222         return _v[StaticDigraph::id(key)];
   223       }
   224 
   225       Value& operator[](const Key& key) {
   226         return _v[StaticDigraph::id(key)];
   227       }
   228 
   229       void set(const Key& key, const Value& val) {
   230         _v[StaticDigraph::id(key)] = val;
   231       }
   232 
   233     private:
   234       std::vector<Value>& _v;
   235     };
   236 
   237     typedef StaticVectorMap<StaticDigraph::Node, LargeCost> LargeCostNodeMap;
   238     typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap;
   239 
   240   private:
   241 
   242     // Data related to the underlying digraph
   243     const GR &_graph;
   244     int _node_num;
   245     int _arc_num;
   246     int _res_node_num;
   247     int _res_arc_num;
   248     int _root;
   249 
   250     // Parameters of the problem
   251     bool _have_lower;
   252     Value _sum_supply;
   253     int _sup_node_num;
   254 
   255     // Data structures for storing the digraph
   256     IntNodeMap _node_id;
   257     IntArcMap _arc_idf;
   258     IntArcMap _arc_idb;
   259     IntVector _first_out;
   260     BoolVector _forward;
   261     IntVector _source;
   262     IntVector _target;
   263     IntVector _reverse;
   264 
   265     // Node and arc data
   266     ValueVector _lower;
   267     ValueVector _upper;
   268     CostVector _scost;
   269     ValueVector _supply;
   270 
   271     ValueVector _res_cap;
   272     LargeCostVector _cost;
   273     LargeCostVector _pi;
   274     ValueVector _excess;
   275     IntVector _next_out;
   276     std::deque<int> _active_nodes;
   277 
   278     // Data for scaling
   279     LargeCost _epsilon;
   280     int _alpha;
   281 
   282     IntVector _buckets;
   283     IntVector _bucket_next;
   284     IntVector _bucket_prev;
   285     IntVector _rank;
   286     int _max_rank;
   287 
   288     // Data for a StaticDigraph structure
   289     typedef std::pair<int, int> IntPair;
   290     StaticDigraph _sgr;
   291     std::vector<IntPair> _arc_vec;
   292     std::vector<LargeCost> _cost_vec;
   293     LargeCostArcMap _cost_map;
   294     LargeCostNodeMap _pi_map;
   295 
   296   public:
   297 
   298     /// \brief Constant for infinite upper bounds (capacities).
   299     ///
   300     /// Constant for infinite upper bounds (capacities).
   301     /// It is \c std::numeric_limits<Value>::infinity() if available,
   302     /// \c std::numeric_limits<Value>::max() otherwise.
   303     const Value INF;
   304 
   305   public:
   306 
   307     /// \name Named Template Parameters
   308     /// @{
   309 
   310     template <typename T>
   311     struct SetLargeCostTraits : public Traits {
   312       typedef T LargeCost;
   313     };
   314 
   315     /// \brief \ref named-templ-param "Named parameter" for setting
   316     /// \c LargeCost type.
   317     ///
   318     /// \ref named-templ-param "Named parameter" for setting \c LargeCost
   319     /// type, which is used for internal computations in the algorithm.
   320     /// \c Cost must be convertible to \c LargeCost.
   321     template <typename T>
   322     struct SetLargeCost
   323       : public CostScaling<GR, V, C, SetLargeCostTraits<T> > {
   324       typedef  CostScaling<GR, V, C, SetLargeCostTraits<T> > Create;
   325     };
   326 
   327     /// @}
   328 
   329   protected:
   330 
   331     CostScaling() {}
   332 
   333   public:
   334 
   335     /// \brief Constructor.
   336     ///
   337     /// The constructor of the class.
   338     ///
   339     /// \param graph The digraph the algorithm runs on.
   340     CostScaling(const GR& graph) :
   341       _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
   342       _cost_map(_cost_vec), _pi_map(_pi),
   343       INF(std::numeric_limits<Value>::has_infinity ?
   344           std::numeric_limits<Value>::infinity() :
   345           std::numeric_limits<Value>::max())
   346     {
   347       // Check the number types
   348       LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
   349         "The flow type of CostScaling must be signed");
   350       LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
   351         "The cost type of CostScaling must be signed");
   352 
   353       // Reset data structures
   354       reset();
   355     }
   356 
   357     /// \name Parameters
   358     /// The parameters of the algorithm can be specified using these
   359     /// functions.
   360 
   361     /// @{
   362 
   363     /// \brief Set the lower bounds on the arcs.
   364     ///
   365     /// This function sets the lower bounds on the arcs.
   366     /// If it is not used before calling \ref run(), the lower bounds
   367     /// will be set to zero on all arcs.
   368     ///
   369     /// \param map An arc map storing the lower bounds.
   370     /// Its \c Value type must be convertible to the \c Value type
   371     /// of the algorithm.
   372     ///
   373     /// \return <tt>(*this)</tt>
   374     template <typename LowerMap>
   375     CostScaling& lowerMap(const LowerMap& map) {
   376       _have_lower = true;
   377       for (ArcIt a(_graph); a != INVALID; ++a) {
   378         _lower[_arc_idf[a]] = map[a];
   379         _lower[_arc_idb[a]] = map[a];
   380       }
   381       return *this;
   382     }
   383 
   384     /// \brief Set the upper bounds (capacities) on the arcs.
   385     ///
   386     /// This function sets the upper bounds (capacities) on the arcs.
   387     /// If it is not used before calling \ref run(), the upper bounds
   388     /// will be set to \ref INF on all arcs (i.e. the flow value will be
   389     /// unbounded from above).
   390     ///
   391     /// \param map An arc map storing the upper bounds.
   392     /// Its \c Value type must be convertible to the \c Value type
   393     /// of the algorithm.
   394     ///
   395     /// \return <tt>(*this)</tt>
   396     template<typename UpperMap>
   397     CostScaling& upperMap(const UpperMap& map) {
   398       for (ArcIt a(_graph); a != INVALID; ++a) {
   399         _upper[_arc_idf[a]] = map[a];
   400       }
   401       return *this;
   402     }
   403 
   404     /// \brief Set the costs of the arcs.
   405     ///
   406     /// This function sets the costs of the arcs.
   407     /// If it is not used before calling \ref run(), the costs
   408     /// will be set to \c 1 on all arcs.
   409     ///
   410     /// \param map An arc map storing the costs.
   411     /// Its \c Value type must be convertible to the \c Cost type
   412     /// of the algorithm.
   413     ///
   414     /// \return <tt>(*this)</tt>
   415     template<typename CostMap>
   416     CostScaling& costMap(const CostMap& map) {
   417       for (ArcIt a(_graph); a != INVALID; ++a) {
   418         _scost[_arc_idf[a]] =  map[a];
   419         _scost[_arc_idb[a]] = -map[a];
   420       }
   421       return *this;
   422     }
   423 
   424     /// \brief Set the supply values of the nodes.
   425     ///
   426     /// This function sets the supply values of the nodes.
   427     /// If neither this function nor \ref stSupply() is used before
   428     /// calling \ref run(), the supply of each node will be set to zero.
   429     ///
   430     /// \param map A node map storing the supply values.
   431     /// Its \c Value type must be convertible to the \c Value type
   432     /// of the algorithm.
   433     ///
   434     /// \return <tt>(*this)</tt>
   435     template<typename SupplyMap>
   436     CostScaling& supplyMap(const SupplyMap& map) {
   437       for (NodeIt n(_graph); n != INVALID; ++n) {
   438         _supply[_node_id[n]] = map[n];
   439       }
   440       return *this;
   441     }
   442 
   443     /// \brief Set single source and target nodes and a supply value.
   444     ///
   445     /// This function sets a single source node and a single target node
   446     /// and the required flow value.
   447     /// If neither this function nor \ref supplyMap() is used before
   448     /// calling \ref run(), the supply of each node will be set to zero.
   449     ///
   450     /// Using this function has the same effect as using \ref supplyMap()
   451     /// with such a map in which \c k is assigned to \c s, \c -k is
   452     /// assigned to \c t and all other nodes have zero supply value.
   453     ///
   454     /// \param s The source node.
   455     /// \param t The target node.
   456     /// \param k The required amount of flow from node \c s to node \c t
   457     /// (i.e. the supply of \c s and the demand of \c t).
   458     ///
   459     /// \return <tt>(*this)</tt>
   460     CostScaling& stSupply(const Node& s, const Node& t, Value k) {
   461       for (int i = 0; i != _res_node_num; ++i) {
   462         _supply[i] = 0;
   463       }
   464       _supply[_node_id[s]] =  k;
   465       _supply[_node_id[t]] = -k;
   466       return *this;
   467     }
   468 
   469     /// @}
   470 
   471     /// \name Execution control
   472     /// The algorithm can be executed using \ref run().
   473 
   474     /// @{
   475 
   476     /// \brief Run the algorithm.
   477     ///
   478     /// This function runs the algorithm.
   479     /// The paramters can be specified using functions \ref lowerMap(),
   480     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
   481     /// For example,
   482     /// \code
   483     ///   CostScaling<ListDigraph> cs(graph);
   484     ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
   485     ///     .supplyMap(sup).run();
   486     /// \endcode
   487     ///
   488     /// This function can be called more than once. All the given parameters
   489     /// are kept for the next call, unless \ref resetParams() or \ref reset()
   490     /// is used, thus only the modified parameters have to be set again.
   491     /// If the underlying digraph was also modified after the construction
   492     /// of the class (or the last \ref reset() call), then the \ref reset()
   493     /// function must be called.
   494     ///
   495     /// \param method The internal method that will be used in the
   496     /// algorithm. For more information, see \ref Method.
   497     /// \param factor The cost scaling factor. It must be larger than one.
   498     ///
   499     /// \return \c INFEASIBLE if no feasible flow exists,
   500     /// \n \c OPTIMAL if the problem has optimal solution
   501     /// (i.e. it is feasible and bounded), and the algorithm has found
   502     /// optimal flow and node potentials (primal and dual solutions),
   503     /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
   504     /// and infinite upper bound. It means that the objective function
   505     /// is unbounded on that arc, however, note that it could actually be
   506     /// bounded over the feasible flows, but this algroithm cannot handle
   507     /// these cases.
   508     ///
   509     /// \see ProblemType, Method
   510     /// \see resetParams(), reset()
   511     ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 8) {
   512       _alpha = factor;
   513       ProblemType pt = init();
   514       if (pt != OPTIMAL) return pt;
   515       start(method);
   516       return OPTIMAL;
   517     }
   518 
   519     /// \brief Reset all the parameters that have been given before.
   520     ///
   521     /// This function resets all the paramaters that have been given
   522     /// before using functions \ref lowerMap(), \ref upperMap(),
   523     /// \ref costMap(), \ref supplyMap(), \ref stSupply().
   524     ///
   525     /// It is useful for multiple \ref run() calls. Basically, all the given
   526     /// parameters are kept for the next \ref run() call, unless
   527     /// \ref resetParams() or \ref reset() is used.
   528     /// If the underlying digraph was also modified after the construction
   529     /// of the class or the last \ref reset() call, then the \ref reset()
   530     /// function must be used, otherwise \ref resetParams() is sufficient.
   531     ///
   532     /// For example,
   533     /// \code
   534     ///   CostScaling<ListDigraph> cs(graph);
   535     ///
   536     ///   // First run
   537     ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
   538     ///     .supplyMap(sup).run();
   539     ///
   540     ///   // Run again with modified cost map (resetParams() is not called,
   541     ///   // so only the cost map have to be set again)
   542     ///   cost[e] += 100;
   543     ///   cs.costMap(cost).run();
   544     ///
   545     ///   // Run again from scratch using resetParams()
   546     ///   // (the lower bounds will be set to zero on all arcs)
   547     ///   cs.resetParams();
   548     ///   cs.upperMap(capacity).costMap(cost)
   549     ///     .supplyMap(sup).run();
   550     /// \endcode
   551     ///
   552     /// \return <tt>(*this)</tt>
   553     ///
   554     /// \see reset(), run()
   555     CostScaling& resetParams() {
   556       for (int i = 0; i != _res_node_num; ++i) {
   557         _supply[i] = 0;
   558       }
   559       int limit = _first_out[_root];
   560       for (int j = 0; j != limit; ++j) {
   561         _lower[j] = 0;
   562         _upper[j] = INF;
   563         _scost[j] = _forward[j] ? 1 : -1;
   564       }
   565       for (int j = limit; j != _res_arc_num; ++j) {
   566         _lower[j] = 0;
   567         _upper[j] = INF;
   568         _scost[j] = 0;
   569         _scost[_reverse[j]] = 0;
   570       }
   571       _have_lower = false;
   572       return *this;
   573     }
   574 
   575     /// \brief Reset all the parameters that have been given before.
   576     ///
   577     /// This function resets all the paramaters that have been given
   578     /// before using functions \ref lowerMap(), \ref upperMap(),
   579     /// \ref costMap(), \ref supplyMap(), \ref stSupply().
   580     ///
   581     /// It is useful for multiple run() calls. If this function is not
   582     /// used, all the parameters given before are kept for the next
   583     /// \ref run() call.
   584     /// However, the underlying digraph must not be modified after this
   585     /// class have been constructed, since it copies and extends the graph.
   586     /// \return <tt>(*this)</tt>
   587     CostScaling& reset() {
   588       // Resize vectors
   589       _node_num = countNodes(_graph);
   590       _arc_num = countArcs(_graph);
   591       _res_node_num = _node_num + 1;
   592       _res_arc_num = 2 * (_arc_num + _node_num);
   593       _root = _node_num;
   594 
   595       _first_out.resize(_res_node_num + 1);
   596       _forward.resize(_res_arc_num);
   597       _source.resize(_res_arc_num);
   598       _target.resize(_res_arc_num);
   599       _reverse.resize(_res_arc_num);
   600 
   601       _lower.resize(_res_arc_num);
   602       _upper.resize(_res_arc_num);
   603       _scost.resize(_res_arc_num);
   604       _supply.resize(_res_node_num);
   605 
   606       _res_cap.resize(_res_arc_num);
   607       _cost.resize(_res_arc_num);
   608       _pi.resize(_res_node_num);
   609       _excess.resize(_res_node_num);
   610       _next_out.resize(_res_node_num);
   611 
   612       _arc_vec.reserve(_res_arc_num);
   613       _cost_vec.reserve(_res_arc_num);
   614 
   615       // Copy the graph
   616       int i = 0, j = 0, k = 2 * _arc_num + _node_num;
   617       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   618         _node_id[n] = i;
   619       }
   620       i = 0;
   621       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   622         _first_out[i] = j;
   623         for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   624           _arc_idf[a] = j;
   625           _forward[j] = true;
   626           _source[j] = i;
   627           _target[j] = _node_id[_graph.runningNode(a)];
   628         }
   629         for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   630           _arc_idb[a] = j;
   631           _forward[j] = false;
   632           _source[j] = i;
   633           _target[j] = _node_id[_graph.runningNode(a)];
   634         }
   635         _forward[j] = false;
   636         _source[j] = i;
   637         _target[j] = _root;
   638         _reverse[j] = k;
   639         _forward[k] = true;
   640         _source[k] = _root;
   641         _target[k] = i;
   642         _reverse[k] = j;
   643         ++j; ++k;
   644       }
   645       _first_out[i] = j;
   646       _first_out[_res_node_num] = k;
   647       for (ArcIt a(_graph); a != INVALID; ++a) {
   648         int fi = _arc_idf[a];
   649         int bi = _arc_idb[a];
   650         _reverse[fi] = bi;
   651         _reverse[bi] = fi;
   652       }
   653 
   654       // Reset parameters
   655       resetParams();
   656       return *this;
   657     }
   658 
   659     /// @}
   660 
   661     /// \name Query Functions
   662     /// The results of the algorithm can be obtained using these
   663     /// functions.\n
   664     /// The \ref run() function must be called before using them.
   665 
   666     /// @{
   667 
   668     /// \brief Return the total cost of the found flow.
   669     ///
   670     /// This function returns the total cost of the found flow.
   671     /// Its complexity is O(e).
   672     ///
   673     /// \note The return type of the function can be specified as a
   674     /// template parameter. For example,
   675     /// \code
   676     ///   cs.totalCost<double>();
   677     /// \endcode
   678     /// It is useful if the total cost cannot be stored in the \c Cost
   679     /// type of the algorithm, which is the default return type of the
   680     /// function.
   681     ///
   682     /// \pre \ref run() must be called before using this function.
   683     template <typename Number>
   684     Number totalCost() const {
   685       Number c = 0;
   686       for (ArcIt a(_graph); a != INVALID; ++a) {
   687         int i = _arc_idb[a];
   688         c += static_cast<Number>(_res_cap[i]) *
   689              (-static_cast<Number>(_scost[i]));
   690       }
   691       return c;
   692     }
   693 
   694 #ifndef DOXYGEN
   695     Cost totalCost() const {
   696       return totalCost<Cost>();
   697     }
   698 #endif
   699 
   700     /// \brief Return the flow on the given arc.
   701     ///
   702     /// This function returns the flow on the given arc.
   703     ///
   704     /// \pre \ref run() must be called before using this function.
   705     Value flow(const Arc& a) const {
   706       return _res_cap[_arc_idb[a]];
   707     }
   708 
   709     /// \brief Return the flow map (the primal solution).
   710     ///
   711     /// This function copies the flow value on each arc into the given
   712     /// map. The \c Value type of the algorithm must be convertible to
   713     /// the \c Value type of the map.
   714     ///
   715     /// \pre \ref run() must be called before using this function.
   716     template <typename FlowMap>
   717     void flowMap(FlowMap &map) const {
   718       for (ArcIt a(_graph); a != INVALID; ++a) {
   719         map.set(a, _res_cap[_arc_idb[a]]);
   720       }
   721     }
   722 
   723     /// \brief Return the potential (dual value) of the given node.
   724     ///
   725     /// This function returns the potential (dual value) of the
   726     /// given node.
   727     ///
   728     /// \pre \ref run() must be called before using this function.
   729     Cost potential(const Node& n) const {
   730       return static_cast<Cost>(_pi[_node_id[n]]);
   731     }
   732 
   733     /// \brief Return the potential map (the dual solution).
   734     ///
   735     /// This function copies the potential (dual value) of each node
   736     /// into the given map.
   737     /// The \c Cost type of the algorithm must be convertible to the
   738     /// \c Value type of the map.
   739     ///
   740     /// \pre \ref run() must be called before using this function.
   741     template <typename PotentialMap>
   742     void potentialMap(PotentialMap &map) const {
   743       for (NodeIt n(_graph); n != INVALID; ++n) {
   744         map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
   745       }
   746     }
   747 
   748     /// @}
   749 
   750   private:
   751 
   752     // Initialize the algorithm
   753     ProblemType init() {
   754       if (_res_node_num <= 1) return INFEASIBLE;
   755 
   756       // Check the sum of supply values
   757       _sum_supply = 0;
   758       for (int i = 0; i != _root; ++i) {
   759         _sum_supply += _supply[i];
   760       }
   761       if (_sum_supply > 0) return INFEASIBLE;
   762 
   763 
   764       // Initialize vectors
   765       for (int i = 0; i != _res_node_num; ++i) {
   766         _pi[i] = 0;
   767         _excess[i] = _supply[i];
   768       }
   769 
   770       // Remove infinite upper bounds and check negative arcs
   771       const Value MAX = std::numeric_limits<Value>::max();
   772       int last_out;
   773       if (_have_lower) {
   774         for (int i = 0; i != _root; ++i) {
   775           last_out = _first_out[i+1];
   776           for (int j = _first_out[i]; j != last_out; ++j) {
   777             if (_forward[j]) {
   778               Value c = _scost[j] < 0 ? _upper[j] : _lower[j];
   779               if (c >= MAX) return UNBOUNDED;
   780               _excess[i] -= c;
   781               _excess[_target[j]] += c;
   782             }
   783           }
   784         }
   785       } else {
   786         for (int i = 0; i != _root; ++i) {
   787           last_out = _first_out[i+1];
   788           for (int j = _first_out[i]; j != last_out; ++j) {
   789             if (_forward[j] && _scost[j] < 0) {
   790               Value c = _upper[j];
   791               if (c >= MAX) return UNBOUNDED;
   792               _excess[i] -= c;
   793               _excess[_target[j]] += c;
   794             }
   795           }
   796         }
   797       }
   798       Value ex, max_cap = 0;
   799       for (int i = 0; i != _res_node_num; ++i) {
   800         ex = _excess[i];
   801         _excess[i] = 0;
   802         if (ex < 0) max_cap -= ex;
   803       }
   804       for (int j = 0; j != _res_arc_num; ++j) {
   805         if (_upper[j] >= MAX) _upper[j] = max_cap;
   806       }
   807 
   808       // Initialize the large cost vector and the epsilon parameter
   809       _epsilon = 0;
   810       LargeCost lc;
   811       for (int i = 0; i != _root; ++i) {
   812         last_out = _first_out[i+1];
   813         for (int j = _first_out[i]; j != last_out; ++j) {
   814           lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha;
   815           _cost[j] = lc;
   816           if (lc > _epsilon) _epsilon = lc;
   817         }
   818       }
   819       _epsilon /= _alpha;
   820 
   821       // Initialize maps for Circulation and remove non-zero lower bounds
   822       ConstMap<Arc, Value> low(0);
   823       typedef typename Digraph::template ArcMap<Value> ValueArcMap;
   824       typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
   825       ValueArcMap cap(_graph), flow(_graph);
   826       ValueNodeMap sup(_graph);
   827       for (NodeIt n(_graph); n != INVALID; ++n) {
   828         sup[n] = _supply[_node_id[n]];
   829       }
   830       if (_have_lower) {
   831         for (ArcIt a(_graph); a != INVALID; ++a) {
   832           int j = _arc_idf[a];
   833           Value c = _lower[j];
   834           cap[a] = _upper[j] - c;
   835           sup[_graph.source(a)] -= c;
   836           sup[_graph.target(a)] += c;
   837         }
   838       } else {
   839         for (ArcIt a(_graph); a != INVALID; ++a) {
   840           cap[a] = _upper[_arc_idf[a]];
   841         }
   842       }
   843 
   844       _sup_node_num = 0;
   845       for (NodeIt n(_graph); n != INVALID; ++n) {
   846         if (sup[n] > 0) ++_sup_node_num;
   847       }
   848 
   849       // Find a feasible flow using Circulation
   850       Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
   851         circ(_graph, low, cap, sup);
   852       if (!circ.flowMap(flow).run()) return INFEASIBLE;
   853 
   854       // Set residual capacities and handle GEQ supply type
   855       if (_sum_supply < 0) {
   856         for (ArcIt a(_graph); a != INVALID; ++a) {
   857           Value fa = flow[a];
   858           _res_cap[_arc_idf[a]] = cap[a] - fa;
   859           _res_cap[_arc_idb[a]] = fa;
   860           sup[_graph.source(a)] -= fa;
   861           sup[_graph.target(a)] += fa;
   862         }
   863         for (NodeIt n(_graph); n != INVALID; ++n) {
   864           _excess[_node_id[n]] = sup[n];
   865         }
   866         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   867           int u = _target[a];
   868           int ra = _reverse[a];
   869           _res_cap[a] = -_sum_supply + 1;
   870           _res_cap[ra] = -_excess[u];
   871           _cost[a] = 0;
   872           _cost[ra] = 0;
   873           _excess[u] = 0;
   874         }
   875       } else {
   876         for (ArcIt a(_graph); a != INVALID; ++a) {
   877           Value fa = flow[a];
   878           _res_cap[_arc_idf[a]] = cap[a] - fa;
   879           _res_cap[_arc_idb[a]] = fa;
   880         }
   881         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   882           int ra = _reverse[a];
   883           _res_cap[a] = 0;
   884           _res_cap[ra] = 0;
   885           _cost[a] = 0;
   886           _cost[ra] = 0;
   887         }
   888       }
   889 
   890       return OPTIMAL;
   891     }
   892 
   893     // Execute the algorithm and transform the results
   894     void start(Method method) {
   895       // Maximum path length for partial augment
   896       const int MAX_PATH_LENGTH = 4;
   897 
   898       // Initialize data structures for buckets
   899       _max_rank = _alpha * _res_node_num;
   900       _buckets.resize(_max_rank);
   901       _bucket_next.resize(_res_node_num + 1);
   902       _bucket_prev.resize(_res_node_num + 1);
   903       _rank.resize(_res_node_num + 1);
   904 
   905       // Execute the algorithm
   906       switch (method) {
   907         case PUSH:
   908           startPush();
   909           break;
   910         case AUGMENT:
   911           startAugment();
   912           break;
   913         case PARTIAL_AUGMENT:
   914           startAugment(MAX_PATH_LENGTH);
   915           break;
   916       }
   917 
   918       // Compute node potentials for the original costs
   919       _arc_vec.clear();
   920       _cost_vec.clear();
   921       for (int j = 0; j != _res_arc_num; ++j) {
   922         if (_res_cap[j] > 0) {
   923           _arc_vec.push_back(IntPair(_source[j], _target[j]));
   924           _cost_vec.push_back(_scost[j]);
   925         }
   926       }
   927       _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
   928 
   929       typename BellmanFord<StaticDigraph, LargeCostArcMap>
   930         ::template SetDistMap<LargeCostNodeMap>::Create bf(_sgr, _cost_map);
   931       bf.distMap(_pi_map);
   932       bf.init(0);
   933       bf.start();
   934 
   935       // Handle non-zero lower bounds
   936       if (_have_lower) {
   937         int limit = _first_out[_root];
   938         for (int j = 0; j != limit; ++j) {
   939           if (!_forward[j]) _res_cap[j] += _lower[j];
   940         }
   941       }
   942     }
   943 
   944     // Initialize a cost scaling phase
   945     void initPhase() {
   946       // Saturate arcs not satisfying the optimality condition
   947       for (int u = 0; u != _res_node_num; ++u) {
   948         int last_out = _first_out[u+1];
   949         LargeCost pi_u = _pi[u];
   950         for (int a = _first_out[u]; a != last_out; ++a) {
   951           int v = _target[a];
   952           if (_res_cap[a] > 0 && _cost[a] + pi_u - _pi[v] < 0) {
   953             Value delta = _res_cap[a];
   954             _excess[u] -= delta;
   955             _excess[v] += delta;
   956             _res_cap[a] = 0;
   957             _res_cap[_reverse[a]] += delta;
   958           }
   959         }
   960       }
   961 
   962       // Find active nodes (i.e. nodes with positive excess)
   963       for (int u = 0; u != _res_node_num; ++u) {
   964         if (_excess[u] > 0) _active_nodes.push_back(u);
   965       }
   966 
   967       // Initialize the next arcs
   968       for (int u = 0; u != _res_node_num; ++u) {
   969         _next_out[u] = _first_out[u];
   970       }
   971     }
   972 
   973     // Early termination heuristic
   974     bool earlyTermination() {
   975       const double EARLY_TERM_FACTOR = 3.0;
   976 
   977       // Build a static residual graph
   978       _arc_vec.clear();
   979       _cost_vec.clear();
   980       for (int j = 0; j != _res_arc_num; ++j) {
   981         if (_res_cap[j] > 0) {
   982           _arc_vec.push_back(IntPair(_source[j], _target[j]));
   983           _cost_vec.push_back(_cost[j] + 1);
   984         }
   985       }
   986       _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
   987 
   988       // Run Bellman-Ford algorithm to check if the current flow is optimal
   989       BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map);
   990       bf.init(0);
   991       bool done = false;
   992       int K = int(EARLY_TERM_FACTOR * std::sqrt(double(_res_node_num)));
   993       for (int i = 0; i < K && !done; ++i) {
   994         done = bf.processNextWeakRound();
   995       }
   996       return done;
   997     }
   998 
   999     // Global potential update heuristic
  1000     void globalUpdate() {
  1001       int bucket_end = _root + 1;
  1002 
  1003       // Initialize buckets
  1004       for (int r = 0; r != _max_rank; ++r) {
  1005         _buckets[r] = bucket_end;
  1006       }
  1007       Value total_excess = 0;
  1008       for (int i = 0; i != _res_node_num; ++i) {
  1009         if (_excess[i] < 0) {
  1010           _rank[i] = 0;
  1011           _bucket_next[i] = _buckets[0];
  1012           _bucket_prev[_buckets[0]] = i;
  1013           _buckets[0] = i;
  1014         } else {
  1015           total_excess += _excess[i];
  1016           _rank[i] = _max_rank;
  1017         }
  1018       }
  1019       if (total_excess == 0) return;
  1020 
  1021       // Search the buckets
  1022       int r = 0;
  1023       for ( ; r != _max_rank; ++r) {
  1024         while (_buckets[r] != bucket_end) {
  1025           // Remove the first node from the current bucket
  1026           int u = _buckets[r];
  1027           _buckets[r] = _bucket_next[u];
  1028 
  1029           // Search the incomming arcs of u
  1030           LargeCost pi_u = _pi[u];
  1031           int last_out = _first_out[u+1];
  1032           for (int a = _first_out[u]; a != last_out; ++a) {
  1033             int ra = _reverse[a];
  1034             if (_res_cap[ra] > 0) {
  1035               int v = _source[ra];
  1036               int old_rank_v = _rank[v];
  1037               if (r < old_rank_v) {
  1038                 // Compute the new rank of v
  1039                 LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon;
  1040                 int new_rank_v = old_rank_v;
  1041                 if (nrc < LargeCost(_max_rank))
  1042                   new_rank_v = r + 1 + int(nrc);
  1043 
  1044                 // Change the rank of v
  1045                 if (new_rank_v < old_rank_v) {
  1046                   _rank[v] = new_rank_v;
  1047                   _next_out[v] = _first_out[v];
  1048 
  1049                   // Remove v from its old bucket
  1050                   if (old_rank_v < _max_rank) {
  1051                     if (_buckets[old_rank_v] == v) {
  1052                       _buckets[old_rank_v] = _bucket_next[v];
  1053                     } else {
  1054                       _bucket_next[_bucket_prev[v]] = _bucket_next[v];
  1055                       _bucket_prev[_bucket_next[v]] = _bucket_prev[v];
  1056                     }
  1057                   }
  1058 
  1059                   // Insert v to its new bucket
  1060                   _bucket_next[v] = _buckets[new_rank_v];
  1061                   _bucket_prev[_buckets[new_rank_v]] = v;
  1062                   _buckets[new_rank_v] = v;
  1063                 }
  1064               }
  1065             }
  1066           }
  1067 
  1068           // Finish search if there are no more active nodes
  1069           if (_excess[u] > 0) {
  1070             total_excess -= _excess[u];
  1071             if (total_excess <= 0) break;
  1072           }
  1073         }
  1074         if (total_excess <= 0) break;
  1075       }
  1076 
  1077       // Relabel nodes
  1078       for (int u = 0; u != _res_node_num; ++u) {
  1079         int k = std::min(_rank[u], r);
  1080         if (k > 0) {
  1081           _pi[u] -= _epsilon * k;
  1082           _next_out[u] = _first_out[u];
  1083         }
  1084       }
  1085     }
  1086 
  1087     /// Execute the algorithm performing augment and relabel operations
  1088     void startAugment(int max_length = std::numeric_limits<int>::max()) {
  1089       // Paramters for heuristics
  1090       const int EARLY_TERM_EPSILON_LIMIT = 1000;
  1091       const double GLOBAL_UPDATE_FACTOR = 3.0;
  1092 
  1093       const int global_update_freq = int(GLOBAL_UPDATE_FACTOR *
  1094         (_res_node_num + _sup_node_num * _sup_node_num));
  1095       int next_update_limit = global_update_freq;
  1096 
  1097       int relabel_cnt = 0;
  1098 
  1099       // Perform cost scaling phases
  1100       std::vector<int> path;
  1101       for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
  1102                                         1 : _epsilon / _alpha )
  1103       {
  1104         // Early termination heuristic
  1105         if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
  1106           if (earlyTermination()) break;
  1107         }
  1108 
  1109         // Initialize current phase
  1110         initPhase();
  1111 
  1112         // Perform partial augment and relabel operations
  1113         while (true) {
  1114           // Select an active node (FIFO selection)
  1115           while (_active_nodes.size() > 0 &&
  1116                  _excess[_active_nodes.front()] <= 0) {
  1117             _active_nodes.pop_front();
  1118           }
  1119           if (_active_nodes.size() == 0) break;
  1120           int start = _active_nodes.front();
  1121 
  1122           // Find an augmenting path from the start node
  1123           path.clear();
  1124           int tip = start;
  1125           while (_excess[tip] >= 0 && int(path.size()) < max_length) {
  1126             int u;
  1127             LargeCost min_red_cost, rc, pi_tip = _pi[tip];
  1128             int last_out = _first_out[tip+1];
  1129             for (int a = _next_out[tip]; a != last_out; ++a) {
  1130               u = _target[a];
  1131               if (_res_cap[a] > 0 && _cost[a] + pi_tip - _pi[u] < 0) {
  1132                 path.push_back(a);
  1133                 _next_out[tip] = a;
  1134                 tip = u;
  1135                 goto next_step;
  1136               }
  1137             }
  1138 
  1139             // Relabel tip node
  1140             min_red_cost = std::numeric_limits<LargeCost>::max();
  1141             if (tip != start) {
  1142               int ra = _reverse[path.back()];
  1143               min_red_cost = _cost[ra] + pi_tip - _pi[_target[ra]];
  1144             }
  1145             for (int a = _first_out[tip]; a != last_out; ++a) {
  1146               rc = _cost[a] + pi_tip - _pi[_target[a]];
  1147               if (_res_cap[a] > 0 && rc < min_red_cost) {
  1148                 min_red_cost = rc;
  1149               }
  1150             }
  1151             _pi[tip] -= min_red_cost + _epsilon;
  1152             _next_out[tip] = _first_out[tip];
  1153             ++relabel_cnt;
  1154 
  1155             // Step back
  1156             if (tip != start) {
  1157               tip = _source[path.back()];
  1158               path.pop_back();
  1159             }
  1160 
  1161           next_step: ;
  1162           }
  1163 
  1164           // Augment along the found path (as much flow as possible)
  1165           Value delta;
  1166           int pa, u, v = start;
  1167           for (int i = 0; i != int(path.size()); ++i) {
  1168             pa = path[i];
  1169             u = v;
  1170             v = _target[pa];
  1171             delta = std::min(_res_cap[pa], _excess[u]);
  1172             _res_cap[pa] -= delta;
  1173             _res_cap[_reverse[pa]] += delta;
  1174             _excess[u] -= delta;
  1175             _excess[v] += delta;
  1176             if (_excess[v] > 0 && _excess[v] <= delta)
  1177               _active_nodes.push_back(v);
  1178           }
  1179 
  1180           // Global update heuristic
  1181           if (relabel_cnt >= next_update_limit) {
  1182             globalUpdate();
  1183             next_update_limit += global_update_freq;
  1184           }
  1185         }
  1186       }
  1187     }
  1188 
  1189     /// Execute the algorithm performing push and relabel operations
  1190     void startPush() {
  1191       // Paramters for heuristics
  1192       const int EARLY_TERM_EPSILON_LIMIT = 1000;
  1193       const double GLOBAL_UPDATE_FACTOR = 2.0;
  1194 
  1195       const int global_update_freq = int(GLOBAL_UPDATE_FACTOR *
  1196         (_res_node_num + _sup_node_num * _sup_node_num));
  1197       int next_update_limit = global_update_freq;
  1198 
  1199       int relabel_cnt = 0;
  1200 
  1201       // Perform cost scaling phases
  1202       BoolVector hyper(_res_node_num, false);
  1203       LargeCostVector hyper_cost(_res_node_num);
  1204       for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
  1205                                         1 : _epsilon / _alpha )
  1206       {
  1207         // Early termination heuristic
  1208         if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
  1209           if (earlyTermination()) break;
  1210         }
  1211 
  1212         // Initialize current phase
  1213         initPhase();
  1214 
  1215         // Perform push and relabel operations
  1216         while (_active_nodes.size() > 0) {
  1217           LargeCost min_red_cost, rc, pi_n;
  1218           Value delta;
  1219           int n, t, a, last_out = _res_arc_num;
  1220 
  1221         next_node:
  1222           // Select an active node (FIFO selection)
  1223           n = _active_nodes.front();
  1224           last_out = _first_out[n+1];
  1225           pi_n = _pi[n];
  1226 
  1227           // Perform push operations if there are admissible arcs
  1228           if (_excess[n] > 0) {
  1229             for (a = _next_out[n]; a != last_out; ++a) {
  1230               if (_res_cap[a] > 0 &&
  1231                   _cost[a] + pi_n - _pi[_target[a]] < 0) {
  1232                 delta = std::min(_res_cap[a], _excess[n]);
  1233                 t = _target[a];
  1234 
  1235                 // Push-look-ahead heuristic
  1236                 Value ahead = -_excess[t];
  1237                 int last_out_t = _first_out[t+1];
  1238                 LargeCost pi_t = _pi[t];
  1239                 for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
  1240                   if (_res_cap[ta] > 0 &&
  1241                       _cost[ta] + pi_t - _pi[_target[ta]] < 0)
  1242                     ahead += _res_cap[ta];
  1243                   if (ahead >= delta) break;
  1244                 }
  1245                 if (ahead < 0) ahead = 0;
  1246 
  1247                 // Push flow along the arc
  1248                 if (ahead < delta && !hyper[t]) {
  1249                   _res_cap[a] -= ahead;
  1250                   _res_cap[_reverse[a]] += ahead;
  1251                   _excess[n] -= ahead;
  1252                   _excess[t] += ahead;
  1253                   _active_nodes.push_front(t);
  1254                   hyper[t] = true;
  1255                   hyper_cost[t] = _cost[a] + pi_n - pi_t;
  1256                   _next_out[n] = a;
  1257                   goto next_node;
  1258                 } else {
  1259                   _res_cap[a] -= delta;
  1260                   _res_cap[_reverse[a]] += delta;
  1261                   _excess[n] -= delta;
  1262                   _excess[t] += delta;
  1263                   if (_excess[t] > 0 && _excess[t] <= delta)
  1264                     _active_nodes.push_back(t);
  1265                 }
  1266 
  1267                 if (_excess[n] == 0) {
  1268                   _next_out[n] = a;
  1269                   goto remove_nodes;
  1270                 }
  1271               }
  1272             }
  1273             _next_out[n] = a;
  1274           }
  1275 
  1276           // Relabel the node if it is still active (or hyper)
  1277           if (_excess[n] > 0 || hyper[n]) {
  1278              min_red_cost = hyper[n] ? -hyper_cost[n] :
  1279                std::numeric_limits<LargeCost>::max();
  1280             for (int a = _first_out[n]; a != last_out; ++a) {
  1281               rc = _cost[a] + pi_n - _pi[_target[a]];
  1282               if (_res_cap[a] > 0 && rc < min_red_cost) {
  1283                 min_red_cost = rc;
  1284               }
  1285             }
  1286             _pi[n] -= min_red_cost + _epsilon;
  1287             _next_out[n] = _first_out[n];
  1288             hyper[n] = false;
  1289             ++relabel_cnt;
  1290           }
  1291 
  1292           // Remove nodes that are not active nor hyper
  1293         remove_nodes:
  1294           while ( _active_nodes.size() > 0 &&
  1295                   _excess[_active_nodes.front()] <= 0 &&
  1296                   !hyper[_active_nodes.front()] ) {
  1297             _active_nodes.pop_front();
  1298           }
  1299 
  1300           // Global update heuristic
  1301           if (relabel_cnt >= next_update_limit) {
  1302             globalUpdate();
  1303             for (int u = 0; u != _res_node_num; ++u)
  1304               hyper[u] = false;
  1305             next_update_limit += global_update_freq;
  1306           }
  1307         }
  1308       }
  1309     }
  1310 
  1311   }; //class CostScaling
  1312 
  1313   ///@}
  1314 
  1315 } //namespace lemon
  1316 
  1317 #endif //LEMON_COST_SCALING_H