lemon/cost_scaling.h
author Alpar Juttner <alpar@cs.elte.hu>
Mon, 10 Jan 2011 09:34:50 +0100
changeset 1026 9312d6c89d02
parent 1025 140c953ad5d1
parent 1023 e0cef67fe565
child 1042 773dd96ecdd8
permissions -rw-r--r--
Merge
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2010
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_COST_SCALING_H
    20 #define LEMON_COST_SCALING_H
    21 
    22 /// \ingroup min_cost_flow_algs
    23 /// \file
    24 /// \brief Cost scaling algorithm for finding a minimum cost flow.
    25 
    26 #include <vector>
    27 #include <deque>
    28 #include <limits>
    29 
    30 #include <lemon/core.h>
    31 #include <lemon/maps.h>
    32 #include <lemon/math.h>
    33 #include <lemon/static_graph.h>
    34 #include <lemon/circulation.h>
    35 #include <lemon/bellman_ford.h>
    36 
    37 namespace lemon {
    38 
    39   /// \brief Default traits class of CostScaling algorithm.
    40   ///
    41   /// Default traits class of CostScaling algorithm.
    42   /// \tparam GR Digraph type.
    43   /// \tparam V The number type used for flow amounts, capacity bounds
    44   /// and supply values. By default it is \c int.
    45   /// \tparam C The number type used for costs and potentials.
    46   /// By default it is the same as \c V.
    47 #ifdef DOXYGEN
    48   template <typename GR, typename V = int, typename C = V>
    49 #else
    50   template < typename GR, typename V = int, typename C = V,
    51              bool integer = std::numeric_limits<C>::is_integer >
    52 #endif
    53   struct CostScalingDefaultTraits
    54   {
    55     /// The type of the digraph
    56     typedef GR Digraph;
    57     /// The type of the flow amounts, capacity bounds and supply values
    58     typedef V Value;
    59     /// The type of the arc costs
    60     typedef C Cost;
    61 
    62     /// \brief The large cost type used for internal computations
    63     ///
    64     /// The large cost type used for internal computations.
    65     /// It is \c long \c long if the \c Cost type is integer,
    66     /// otherwise it is \c double.
    67     /// \c Cost must be convertible to \c LargeCost.
    68     typedef double LargeCost;
    69   };
    70 
    71   // Default traits class for integer cost types
    72   template <typename GR, typename V, typename C>
    73   struct CostScalingDefaultTraits<GR, V, C, true>
    74   {
    75     typedef GR Digraph;
    76     typedef V Value;
    77     typedef C Cost;
    78 #ifdef LEMON_HAVE_LONG_LONG
    79     typedef long long LargeCost;
    80 #else
    81     typedef long LargeCost;
    82 #endif
    83   };
    84 
    85 
    86   /// \addtogroup min_cost_flow_algs
    87   /// @{
    88 
    89   /// \brief Implementation of the Cost Scaling algorithm for
    90   /// finding a \ref min_cost_flow "minimum cost flow".
    91   ///
    92   /// \ref CostScaling implements a cost scaling algorithm that performs
    93   /// push/augment and relabel operations for finding a \ref min_cost_flow
    94   /// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation,
    95   /// \ref goldberg97efficient, \ref bunnagel98efficient.
    96   /// It is a highly efficient primal-dual solution method, which
    97   /// can be viewed as the generalization of the \ref Preflow
    98   /// "preflow push-relabel" algorithm for the maximum flow problem.
    99   ///
   100   /// In general, \ref NetworkSimplex and \ref CostScaling are the fastest
   101   /// implementations available in LEMON for this problem.
   102   ///
   103   /// Most of the parameters of the problem (except for the digraph)
   104   /// can be given using separate functions, and the algorithm can be
   105   /// executed using the \ref run() function. If some parameters are not
   106   /// specified, then default values will be used.
   107   ///
   108   /// \tparam GR The digraph type the algorithm runs on.
   109   /// \tparam V The number type used for flow amounts, capacity bounds
   110   /// and supply values in the algorithm. By default, it is \c int.
   111   /// \tparam C The number type used for costs and potentials in the
   112   /// algorithm. By default, it is the same as \c V.
   113   /// \tparam TR The traits class that defines various types used by the
   114   /// algorithm. By default, it is \ref CostScalingDefaultTraits
   115   /// "CostScalingDefaultTraits<GR, V, C>".
   116   /// In most cases, this parameter should not be set directly,
   117   /// consider to use the named template parameters instead.
   118   ///
   119   /// \warning Both \c V and \c C must be signed number types.
   120   /// \warning All input data (capacities, supply values, and costs) must
   121   /// be integer.
   122   /// \warning This algorithm does not support negative costs for
   123   /// arcs having infinite upper bound.
   124   ///
   125   /// \note %CostScaling provides three different internal methods,
   126   /// from which the most efficient one is used by default.
   127   /// For more information, see \ref Method.
   128 #ifdef DOXYGEN
   129   template <typename GR, typename V, typename C, typename TR>
   130 #else
   131   template < typename GR, typename V = int, typename C = V,
   132              typename TR = CostScalingDefaultTraits<GR, V, C> >
   133 #endif
   134   class CostScaling
   135   {
   136   public:
   137 
   138     /// The type of the digraph
   139     typedef typename TR::Digraph Digraph;
   140     /// The type of the flow amounts, capacity bounds and supply values
   141     typedef typename TR::Value Value;
   142     /// The type of the arc costs
   143     typedef typename TR::Cost Cost;
   144 
   145     /// \brief The large cost type
   146     ///
   147     /// The large cost type used for internal computations.
   148     /// By default, it is \c long \c long if the \c Cost type is integer,
   149     /// otherwise it is \c double.
   150     typedef typename TR::LargeCost LargeCost;
   151 
   152     /// The \ref CostScalingDefaultTraits "traits class" of the algorithm
   153     typedef TR Traits;
   154 
   155   public:
   156 
   157     /// \brief Problem type constants for the \c run() function.
   158     ///
   159     /// Enum type containing the problem type constants that can be
   160     /// returned by the \ref run() function of the algorithm.
   161     enum ProblemType {
   162       /// The problem has no feasible solution (flow).
   163       INFEASIBLE,
   164       /// The problem has optimal solution (i.e. it is feasible and
   165       /// bounded), and the algorithm has found optimal flow and node
   166       /// potentials (primal and dual solutions).
   167       OPTIMAL,
   168       /// The digraph contains an arc of negative cost and infinite
   169       /// upper bound. It means that the objective function is unbounded
   170       /// on that arc, however, note that it could actually be bounded
   171       /// over the feasible flows, but this algroithm cannot handle
   172       /// these cases.
   173       UNBOUNDED
   174     };
   175 
   176     /// \brief Constants for selecting the internal method.
   177     ///
   178     /// Enum type containing constants for selecting the internal method
   179     /// for the \ref run() function.
   180     ///
   181     /// \ref CostScaling provides three internal methods that differ mainly
   182     /// in their base operations, which are used in conjunction with the
   183     /// relabel operation.
   184     /// By default, the so called \ref PARTIAL_AUGMENT
   185     /// "Partial Augment-Relabel" method is used, which turned out to be
   186     /// the most efficient and the most robust on various test inputs.
   187     /// However, the other methods can be selected using the \ref run()
   188     /// function with the proper parameter.
   189     enum Method {
   190       /// Local push operations are used, i.e. flow is moved only on one
   191       /// admissible arc at once.
   192       PUSH,
   193       /// Augment operations are used, i.e. flow is moved on admissible
   194       /// paths from a node with excess to a node with deficit.
   195       AUGMENT,
   196       /// Partial augment operations are used, i.e. flow is moved on
   197       /// admissible paths started from a node with excess, but the
   198       /// lengths of these paths are limited. This method can be viewed
   199       /// as a combined version of the previous two operations.
   200       PARTIAL_AUGMENT
   201     };
   202 
   203   private:
   204 
   205     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
   206 
   207     typedef std::vector<int> IntVector;
   208     typedef std::vector<Value> ValueVector;
   209     typedef std::vector<Cost> CostVector;
   210     typedef std::vector<LargeCost> LargeCostVector;
   211     typedef std::vector<char> BoolVector;
   212     // Note: vector<char> is used instead of vector<bool> for efficiency reasons
   213 
   214   private:
   215 
   216     template <typename KT, typename VT>
   217     class StaticVectorMap {
   218     public:
   219       typedef KT Key;
   220       typedef VT Value;
   221 
   222       StaticVectorMap(std::vector<Value>& v) : _v(v) {}
   223 
   224       const Value& operator[](const Key& key) const {
   225         return _v[StaticDigraph::id(key)];
   226       }
   227 
   228       Value& operator[](const Key& key) {
   229         return _v[StaticDigraph::id(key)];
   230       }
   231 
   232       void set(const Key& key, const Value& val) {
   233         _v[StaticDigraph::id(key)] = val;
   234       }
   235 
   236     private:
   237       std::vector<Value>& _v;
   238     };
   239 
   240     typedef StaticVectorMap<StaticDigraph::Node, LargeCost> LargeCostNodeMap;
   241     typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap;
   242 
   243   private:
   244 
   245     // Data related to the underlying digraph
   246     const GR &_graph;
   247     int _node_num;
   248     int _arc_num;
   249     int _res_node_num;
   250     int _res_arc_num;
   251     int _root;
   252 
   253     // Parameters of the problem
   254     bool _have_lower;
   255     Value _sum_supply;
   256     int _sup_node_num;
   257 
   258     // Data structures for storing the digraph
   259     IntNodeMap _node_id;
   260     IntArcMap _arc_idf;
   261     IntArcMap _arc_idb;
   262     IntVector _first_out;
   263     BoolVector _forward;
   264     IntVector _source;
   265     IntVector _target;
   266     IntVector _reverse;
   267 
   268     // Node and arc data
   269     ValueVector _lower;
   270     ValueVector _upper;
   271     CostVector _scost;
   272     ValueVector _supply;
   273 
   274     ValueVector _res_cap;
   275     LargeCostVector _cost;
   276     LargeCostVector _pi;
   277     ValueVector _excess;
   278     IntVector _next_out;
   279     std::deque<int> _active_nodes;
   280 
   281     // Data for scaling
   282     LargeCost _epsilon;
   283     int _alpha;
   284 
   285     IntVector _buckets;
   286     IntVector _bucket_next;
   287     IntVector _bucket_prev;
   288     IntVector _rank;
   289     int _max_rank;
   290 
   291     // Data for a StaticDigraph structure
   292     typedef std::pair<int, int> IntPair;
   293     StaticDigraph _sgr;
   294     std::vector<IntPair> _arc_vec;
   295     std::vector<LargeCost> _cost_vec;
   296     LargeCostArcMap _cost_map;
   297     LargeCostNodeMap _pi_map;
   298 
   299   public:
   300 
   301     /// \brief Constant for infinite upper bounds (capacities).
   302     ///
   303     /// Constant for infinite upper bounds (capacities).
   304     /// It is \c std::numeric_limits<Value>::infinity() if available,
   305     /// \c std::numeric_limits<Value>::max() otherwise.
   306     const Value INF;
   307 
   308   public:
   309 
   310     /// \name Named Template Parameters
   311     /// @{
   312 
   313     template <typename T>
   314     struct SetLargeCostTraits : public Traits {
   315       typedef T LargeCost;
   316     };
   317 
   318     /// \brief \ref named-templ-param "Named parameter" for setting
   319     /// \c LargeCost type.
   320     ///
   321     /// \ref named-templ-param "Named parameter" for setting \c LargeCost
   322     /// type, which is used for internal computations in the algorithm.
   323     /// \c Cost must be convertible to \c LargeCost.
   324     template <typename T>
   325     struct SetLargeCost
   326       : public CostScaling<GR, V, C, SetLargeCostTraits<T> > {
   327       typedef  CostScaling<GR, V, C, SetLargeCostTraits<T> > Create;
   328     };
   329 
   330     /// @}
   331 
   332   protected:
   333 
   334     CostScaling() {}
   335 
   336   public:
   337 
   338     /// \brief Constructor.
   339     ///
   340     /// The constructor of the class.
   341     ///
   342     /// \param graph The digraph the algorithm runs on.
   343     CostScaling(const GR& graph) :
   344       _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
   345       _cost_map(_cost_vec), _pi_map(_pi),
   346       INF(std::numeric_limits<Value>::has_infinity ?
   347           std::numeric_limits<Value>::infinity() :
   348           std::numeric_limits<Value>::max())
   349     {
   350       // Check the number types
   351       LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
   352         "The flow type of CostScaling must be signed");
   353       LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
   354         "The cost type of CostScaling must be signed");
   355 
   356       // Reset data structures
   357       reset();
   358     }
   359 
   360     /// \name Parameters
   361     /// The parameters of the algorithm can be specified using these
   362     /// functions.
   363 
   364     /// @{
   365 
   366     /// \brief Set the lower bounds on the arcs.
   367     ///
   368     /// This function sets the lower bounds on the arcs.
   369     /// If it is not used before calling \ref run(), the lower bounds
   370     /// will be set to zero on all arcs.
   371     ///
   372     /// \param map An arc map storing the lower bounds.
   373     /// Its \c Value type must be convertible to the \c Value type
   374     /// of the algorithm.
   375     ///
   376     /// \return <tt>(*this)</tt>
   377     template <typename LowerMap>
   378     CostScaling& lowerMap(const LowerMap& map) {
   379       _have_lower = true;
   380       for (ArcIt a(_graph); a != INVALID; ++a) {
   381         _lower[_arc_idf[a]] = map[a];
   382         _lower[_arc_idb[a]] = map[a];
   383       }
   384       return *this;
   385     }
   386 
   387     /// \brief Set the upper bounds (capacities) on the arcs.
   388     ///
   389     /// This function sets the upper bounds (capacities) on the arcs.
   390     /// If it is not used before calling \ref run(), the upper bounds
   391     /// will be set to \ref INF on all arcs (i.e. the flow value will be
   392     /// unbounded from above).
   393     ///
   394     /// \param map An arc map storing the upper bounds.
   395     /// Its \c Value type must be convertible to the \c Value type
   396     /// of the algorithm.
   397     ///
   398     /// \return <tt>(*this)</tt>
   399     template<typename UpperMap>
   400     CostScaling& upperMap(const UpperMap& map) {
   401       for (ArcIt a(_graph); a != INVALID; ++a) {
   402         _upper[_arc_idf[a]] = map[a];
   403       }
   404       return *this;
   405     }
   406 
   407     /// \brief Set the costs of the arcs.
   408     ///
   409     /// This function sets the costs of the arcs.
   410     /// If it is not used before calling \ref run(), the costs
   411     /// will be set to \c 1 on all arcs.
   412     ///
   413     /// \param map An arc map storing the costs.
   414     /// Its \c Value type must be convertible to the \c Cost type
   415     /// of the algorithm.
   416     ///
   417     /// \return <tt>(*this)</tt>
   418     template<typename CostMap>
   419     CostScaling& costMap(const CostMap& map) {
   420       for (ArcIt a(_graph); a != INVALID; ++a) {
   421         _scost[_arc_idf[a]] =  map[a];
   422         _scost[_arc_idb[a]] = -map[a];
   423       }
   424       return *this;
   425     }
   426 
   427     /// \brief Set the supply values of the nodes.
   428     ///
   429     /// This function sets the supply values of the nodes.
   430     /// If neither this function nor \ref stSupply() is used before
   431     /// calling \ref run(), the supply of each node will be set to zero.
   432     ///
   433     /// \param map A node map storing the supply values.
   434     /// Its \c Value type must be convertible to the \c Value type
   435     /// of the algorithm.
   436     ///
   437     /// \return <tt>(*this)</tt>
   438     template<typename SupplyMap>
   439     CostScaling& supplyMap(const SupplyMap& map) {
   440       for (NodeIt n(_graph); n != INVALID; ++n) {
   441         _supply[_node_id[n]] = map[n];
   442       }
   443       return *this;
   444     }
   445 
   446     /// \brief Set single source and target nodes and a supply value.
   447     ///
   448     /// This function sets a single source node and a single target node
   449     /// and the required flow value.
   450     /// If neither this function nor \ref supplyMap() is used before
   451     /// calling \ref run(), the supply of each node will be set to zero.
   452     ///
   453     /// Using this function has the same effect as using \ref supplyMap()
   454     /// with a map in which \c k is assigned to \c s, \c -k is
   455     /// assigned to \c t and all other nodes have zero supply value.
   456     ///
   457     /// \param s The source node.
   458     /// \param t The target node.
   459     /// \param k The required amount of flow from node \c s to node \c t
   460     /// (i.e. the supply of \c s and the demand of \c t).
   461     ///
   462     /// \return <tt>(*this)</tt>
   463     CostScaling& stSupply(const Node& s, const Node& t, Value k) {
   464       for (int i = 0; i != _res_node_num; ++i) {
   465         _supply[i] = 0;
   466       }
   467       _supply[_node_id[s]] =  k;
   468       _supply[_node_id[t]] = -k;
   469       return *this;
   470     }
   471 
   472     /// @}
   473 
   474     /// \name Execution control
   475     /// The algorithm can be executed using \ref run().
   476 
   477     /// @{
   478 
   479     /// \brief Run the algorithm.
   480     ///
   481     /// This function runs the algorithm.
   482     /// The paramters can be specified using functions \ref lowerMap(),
   483     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
   484     /// For example,
   485     /// \code
   486     ///   CostScaling<ListDigraph> cs(graph);
   487     ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
   488     ///     .supplyMap(sup).run();
   489     /// \endcode
   490     ///
   491     /// This function can be called more than once. All the given parameters
   492     /// are kept for the next call, unless \ref resetParams() or \ref reset()
   493     /// is used, thus only the modified parameters have to be set again.
   494     /// If the underlying digraph was also modified after the construction
   495     /// of the class (or the last \ref reset() call), then the \ref reset()
   496     /// function must be called.
   497     ///
   498     /// \param method The internal method that will be used in the
   499     /// algorithm. For more information, see \ref Method.
   500     /// \param factor The cost scaling factor. It must be larger than one.
   501     ///
   502     /// \return \c INFEASIBLE if no feasible flow exists,
   503     /// \n \c OPTIMAL if the problem has optimal solution
   504     /// (i.e. it is feasible and bounded), and the algorithm has found
   505     /// optimal flow and node potentials (primal and dual solutions),
   506     /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
   507     /// and infinite upper bound. It means that the objective function
   508     /// is unbounded on that arc, however, note that it could actually be
   509     /// bounded over the feasible flows, but this algroithm cannot handle
   510     /// these cases.
   511     ///
   512     /// \see ProblemType, Method
   513     /// \see resetParams(), reset()
   514     ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 8) {
   515       _alpha = factor;
   516       ProblemType pt = init();
   517       if (pt != OPTIMAL) return pt;
   518       start(method);
   519       return OPTIMAL;
   520     }
   521 
   522     /// \brief Reset all the parameters that have been given before.
   523     ///
   524     /// This function resets all the paramaters that have been given
   525     /// before using functions \ref lowerMap(), \ref upperMap(),
   526     /// \ref costMap(), \ref supplyMap(), \ref stSupply().
   527     ///
   528     /// It is useful for multiple \ref run() calls. Basically, all the given
   529     /// parameters are kept for the next \ref run() call, unless
   530     /// \ref resetParams() or \ref reset() is used.
   531     /// If the underlying digraph was also modified after the construction
   532     /// of the class or the last \ref reset() call, then the \ref reset()
   533     /// function must be used, otherwise \ref resetParams() is sufficient.
   534     ///
   535     /// For example,
   536     /// \code
   537     ///   CostScaling<ListDigraph> cs(graph);
   538     ///
   539     ///   // First run
   540     ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
   541     ///     .supplyMap(sup).run();
   542     ///
   543     ///   // Run again with modified cost map (resetParams() is not called,
   544     ///   // so only the cost map have to be set again)
   545     ///   cost[e] += 100;
   546     ///   cs.costMap(cost).run();
   547     ///
   548     ///   // Run again from scratch using resetParams()
   549     ///   // (the lower bounds will be set to zero on all arcs)
   550     ///   cs.resetParams();
   551     ///   cs.upperMap(capacity).costMap(cost)
   552     ///     .supplyMap(sup).run();
   553     /// \endcode
   554     ///
   555     /// \return <tt>(*this)</tt>
   556     ///
   557     /// \see reset(), run()
   558     CostScaling& resetParams() {
   559       for (int i = 0; i != _res_node_num; ++i) {
   560         _supply[i] = 0;
   561       }
   562       int limit = _first_out[_root];
   563       for (int j = 0; j != limit; ++j) {
   564         _lower[j] = 0;
   565         _upper[j] = INF;
   566         _scost[j] = _forward[j] ? 1 : -1;
   567       }
   568       for (int j = limit; j != _res_arc_num; ++j) {
   569         _lower[j] = 0;
   570         _upper[j] = INF;
   571         _scost[j] = 0;
   572         _scost[_reverse[j]] = 0;
   573       }
   574       _have_lower = false;
   575       return *this;
   576     }
   577 
   578     /// \brief Reset all the parameters that have been given before.
   579     ///
   580     /// This function resets all the paramaters that have been given
   581     /// before using functions \ref lowerMap(), \ref upperMap(),
   582     /// \ref costMap(), \ref supplyMap(), \ref stSupply().
   583     ///
   584     /// It is useful for multiple run() calls. If this function is not
   585     /// used, all the parameters given before are kept for the next
   586     /// \ref run() call.
   587     /// However, the underlying digraph must not be modified after this
   588     /// class have been constructed, since it copies and extends the graph.
   589     /// \return <tt>(*this)</tt>
   590     CostScaling& reset() {
   591       // Resize vectors
   592       _node_num = countNodes(_graph);
   593       _arc_num = countArcs(_graph);
   594       _res_node_num = _node_num + 1;
   595       _res_arc_num = 2 * (_arc_num + _node_num);
   596       _root = _node_num;
   597 
   598       _first_out.resize(_res_node_num + 1);
   599       _forward.resize(_res_arc_num);
   600       _source.resize(_res_arc_num);
   601       _target.resize(_res_arc_num);
   602       _reverse.resize(_res_arc_num);
   603 
   604       _lower.resize(_res_arc_num);
   605       _upper.resize(_res_arc_num);
   606       _scost.resize(_res_arc_num);
   607       _supply.resize(_res_node_num);
   608 
   609       _res_cap.resize(_res_arc_num);
   610       _cost.resize(_res_arc_num);
   611       _pi.resize(_res_node_num);
   612       _excess.resize(_res_node_num);
   613       _next_out.resize(_res_node_num);
   614 
   615       _arc_vec.reserve(_res_arc_num);
   616       _cost_vec.reserve(_res_arc_num);
   617 
   618       // Copy the graph
   619       int i = 0, j = 0, k = 2 * _arc_num + _node_num;
   620       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   621         _node_id[n] = i;
   622       }
   623       i = 0;
   624       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   625         _first_out[i] = j;
   626         for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   627           _arc_idf[a] = j;
   628           _forward[j] = true;
   629           _source[j] = i;
   630           _target[j] = _node_id[_graph.runningNode(a)];
   631         }
   632         for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   633           _arc_idb[a] = j;
   634           _forward[j] = false;
   635           _source[j] = i;
   636           _target[j] = _node_id[_graph.runningNode(a)];
   637         }
   638         _forward[j] = false;
   639         _source[j] = i;
   640         _target[j] = _root;
   641         _reverse[j] = k;
   642         _forward[k] = true;
   643         _source[k] = _root;
   644         _target[k] = i;
   645         _reverse[k] = j;
   646         ++j; ++k;
   647       }
   648       _first_out[i] = j;
   649       _first_out[_res_node_num] = k;
   650       for (ArcIt a(_graph); a != INVALID; ++a) {
   651         int fi = _arc_idf[a];
   652         int bi = _arc_idb[a];
   653         _reverse[fi] = bi;
   654         _reverse[bi] = fi;
   655       }
   656 
   657       // Reset parameters
   658       resetParams();
   659       return *this;
   660     }
   661 
   662     /// @}
   663 
   664     /// \name Query Functions
   665     /// The results of the algorithm can be obtained using these
   666     /// functions.\n
   667     /// The \ref run() function must be called before using them.
   668 
   669     /// @{
   670 
   671     /// \brief Return the total cost of the found flow.
   672     ///
   673     /// This function returns the total cost of the found flow.
   674     /// Its complexity is O(e).
   675     ///
   676     /// \note The return type of the function can be specified as a
   677     /// template parameter. For example,
   678     /// \code
   679     ///   cs.totalCost<double>();
   680     /// \endcode
   681     /// It is useful if the total cost cannot be stored in the \c Cost
   682     /// type of the algorithm, which is the default return type of the
   683     /// function.
   684     ///
   685     /// \pre \ref run() must be called before using this function.
   686     template <typename Number>
   687     Number totalCost() const {
   688       Number c = 0;
   689       for (ArcIt a(_graph); a != INVALID; ++a) {
   690         int i = _arc_idb[a];
   691         c += static_cast<Number>(_res_cap[i]) *
   692              (-static_cast<Number>(_scost[i]));
   693       }
   694       return c;
   695     }
   696 
   697 #ifndef DOXYGEN
   698     Cost totalCost() const {
   699       return totalCost<Cost>();
   700     }
   701 #endif
   702 
   703     /// \brief Return the flow on the given arc.
   704     ///
   705     /// This function returns the flow on the given arc.
   706     ///
   707     /// \pre \ref run() must be called before using this function.
   708     Value flow(const Arc& a) const {
   709       return _res_cap[_arc_idb[a]];
   710     }
   711 
   712     /// \brief Return the flow map (the primal solution).
   713     ///
   714     /// This function copies the flow value on each arc into the given
   715     /// map. The \c Value type of the algorithm must be convertible to
   716     /// the \c Value type of the map.
   717     ///
   718     /// \pre \ref run() must be called before using this function.
   719     template <typename FlowMap>
   720     void flowMap(FlowMap &map) const {
   721       for (ArcIt a(_graph); a != INVALID; ++a) {
   722         map.set(a, _res_cap[_arc_idb[a]]);
   723       }
   724     }
   725 
   726     /// \brief Return the potential (dual value) of the given node.
   727     ///
   728     /// This function returns the potential (dual value) of the
   729     /// given node.
   730     ///
   731     /// \pre \ref run() must be called before using this function.
   732     Cost potential(const Node& n) const {
   733       return static_cast<Cost>(_pi[_node_id[n]]);
   734     }
   735 
   736     /// \brief Return the potential map (the dual solution).
   737     ///
   738     /// This function copies the potential (dual value) of each node
   739     /// into the given map.
   740     /// The \c Cost type of the algorithm must be convertible to the
   741     /// \c Value type of the map.
   742     ///
   743     /// \pre \ref run() must be called before using this function.
   744     template <typename PotentialMap>
   745     void potentialMap(PotentialMap &map) const {
   746       for (NodeIt n(_graph); n != INVALID; ++n) {
   747         map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
   748       }
   749     }
   750 
   751     /// @}
   752 
   753   private:
   754 
   755     // Initialize the algorithm
   756     ProblemType init() {
   757       if (_res_node_num <= 1) return INFEASIBLE;
   758 
   759       // Check the sum of supply values
   760       _sum_supply = 0;
   761       for (int i = 0; i != _root; ++i) {
   762         _sum_supply += _supply[i];
   763       }
   764       if (_sum_supply > 0) return INFEASIBLE;
   765 
   766 
   767       // Initialize vectors
   768       for (int i = 0; i != _res_node_num; ++i) {
   769         _pi[i] = 0;
   770         _excess[i] = _supply[i];
   771       }
   772 
   773       // Remove infinite upper bounds and check negative arcs
   774       const Value MAX = std::numeric_limits<Value>::max();
   775       int last_out;
   776       if (_have_lower) {
   777         for (int i = 0; i != _root; ++i) {
   778           last_out = _first_out[i+1];
   779           for (int j = _first_out[i]; j != last_out; ++j) {
   780             if (_forward[j]) {
   781               Value c = _scost[j] < 0 ? _upper[j] : _lower[j];
   782               if (c >= MAX) return UNBOUNDED;
   783               _excess[i] -= c;
   784               _excess[_target[j]] += c;
   785             }
   786           }
   787         }
   788       } else {
   789         for (int i = 0; i != _root; ++i) {
   790           last_out = _first_out[i+1];
   791           for (int j = _first_out[i]; j != last_out; ++j) {
   792             if (_forward[j] && _scost[j] < 0) {
   793               Value c = _upper[j];
   794               if (c >= MAX) return UNBOUNDED;
   795               _excess[i] -= c;
   796               _excess[_target[j]] += c;
   797             }
   798           }
   799         }
   800       }
   801       Value ex, max_cap = 0;
   802       for (int i = 0; i != _res_node_num; ++i) {
   803         ex = _excess[i];
   804         _excess[i] = 0;
   805         if (ex < 0) max_cap -= ex;
   806       }
   807       for (int j = 0; j != _res_arc_num; ++j) {
   808         if (_upper[j] >= MAX) _upper[j] = max_cap;
   809       }
   810 
   811       // Initialize the large cost vector and the epsilon parameter
   812       _epsilon = 0;
   813       LargeCost lc;
   814       for (int i = 0; i != _root; ++i) {
   815         last_out = _first_out[i+1];
   816         for (int j = _first_out[i]; j != last_out; ++j) {
   817           lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha;
   818           _cost[j] = lc;
   819           if (lc > _epsilon) _epsilon = lc;
   820         }
   821       }
   822       _epsilon /= _alpha;
   823 
   824       // Initialize maps for Circulation and remove non-zero lower bounds
   825       ConstMap<Arc, Value> low(0);
   826       typedef typename Digraph::template ArcMap<Value> ValueArcMap;
   827       typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
   828       ValueArcMap cap(_graph), flow(_graph);
   829       ValueNodeMap sup(_graph);
   830       for (NodeIt n(_graph); n != INVALID; ++n) {
   831         sup[n] = _supply[_node_id[n]];
   832       }
   833       if (_have_lower) {
   834         for (ArcIt a(_graph); a != INVALID; ++a) {
   835           int j = _arc_idf[a];
   836           Value c = _lower[j];
   837           cap[a] = _upper[j] - c;
   838           sup[_graph.source(a)] -= c;
   839           sup[_graph.target(a)] += c;
   840         }
   841       } else {
   842         for (ArcIt a(_graph); a != INVALID; ++a) {
   843           cap[a] = _upper[_arc_idf[a]];
   844         }
   845       }
   846 
   847       _sup_node_num = 0;
   848       for (NodeIt n(_graph); n != INVALID; ++n) {
   849         if (sup[n] > 0) ++_sup_node_num;
   850       }
   851 
   852       // Find a feasible flow using Circulation
   853       Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
   854         circ(_graph, low, cap, sup);
   855       if (!circ.flowMap(flow).run()) return INFEASIBLE;
   856 
   857       // Set residual capacities and handle GEQ supply type
   858       if (_sum_supply < 0) {
   859         for (ArcIt a(_graph); a != INVALID; ++a) {
   860           Value fa = flow[a];
   861           _res_cap[_arc_idf[a]] = cap[a] - fa;
   862           _res_cap[_arc_idb[a]] = fa;
   863           sup[_graph.source(a)] -= fa;
   864           sup[_graph.target(a)] += fa;
   865         }
   866         for (NodeIt n(_graph); n != INVALID; ++n) {
   867           _excess[_node_id[n]] = sup[n];
   868         }
   869         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   870           int u = _target[a];
   871           int ra = _reverse[a];
   872           _res_cap[a] = -_sum_supply + 1;
   873           _res_cap[ra] = -_excess[u];
   874           _cost[a] = 0;
   875           _cost[ra] = 0;
   876           _excess[u] = 0;
   877         }
   878       } else {
   879         for (ArcIt a(_graph); a != INVALID; ++a) {
   880           Value fa = flow[a];
   881           _res_cap[_arc_idf[a]] = cap[a] - fa;
   882           _res_cap[_arc_idb[a]] = fa;
   883         }
   884         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   885           int ra = _reverse[a];
   886           _res_cap[a] = 0;
   887           _res_cap[ra] = 0;
   888           _cost[a] = 0;
   889           _cost[ra] = 0;
   890         }
   891       }
   892 
   893       return OPTIMAL;
   894     }
   895 
   896     // Execute the algorithm and transform the results
   897     void start(Method method) {
   898       // Maximum path length for partial augment
   899       const int MAX_PATH_LENGTH = 4;
   900 
   901       // Initialize data structures for buckets
   902       _max_rank = _alpha * _res_node_num;
   903       _buckets.resize(_max_rank);
   904       _bucket_next.resize(_res_node_num + 1);
   905       _bucket_prev.resize(_res_node_num + 1);
   906       _rank.resize(_res_node_num + 1);
   907 
   908       // Execute the algorithm
   909       switch (method) {
   910         case PUSH:
   911           startPush();
   912           break;
   913         case AUGMENT:
   914           startAugment();
   915           break;
   916         case PARTIAL_AUGMENT:
   917           startAugment(MAX_PATH_LENGTH);
   918           break;
   919       }
   920 
   921       // Compute node potentials for the original costs
   922       _arc_vec.clear();
   923       _cost_vec.clear();
   924       for (int j = 0; j != _res_arc_num; ++j) {
   925         if (_res_cap[j] > 0) {
   926           _arc_vec.push_back(IntPair(_source[j], _target[j]));
   927           _cost_vec.push_back(_scost[j]);
   928         }
   929       }
   930       _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
   931 
   932       typename BellmanFord<StaticDigraph, LargeCostArcMap>
   933         ::template SetDistMap<LargeCostNodeMap>::Create bf(_sgr, _cost_map);
   934       bf.distMap(_pi_map);
   935       bf.init(0);
   936       bf.start();
   937 
   938       // Handle non-zero lower bounds
   939       if (_have_lower) {
   940         int limit = _first_out[_root];
   941         for (int j = 0; j != limit; ++j) {
   942           if (!_forward[j]) _res_cap[j] += _lower[j];
   943         }
   944       }
   945     }
   946 
   947     // Initialize a cost scaling phase
   948     void initPhase() {
   949       // Saturate arcs not satisfying the optimality condition
   950       for (int u = 0; u != _res_node_num; ++u) {
   951         int last_out = _first_out[u+1];
   952         LargeCost pi_u = _pi[u];
   953         for (int a = _first_out[u]; a != last_out; ++a) {
   954           int v = _target[a];
   955           if (_res_cap[a] > 0 && _cost[a] + pi_u - _pi[v] < 0) {
   956             Value delta = _res_cap[a];
   957             _excess[u] -= delta;
   958             _excess[v] += delta;
   959             _res_cap[a] = 0;
   960             _res_cap[_reverse[a]] += delta;
   961           }
   962         }
   963       }
   964 
   965       // Find active nodes (i.e. nodes with positive excess)
   966       for (int u = 0; u != _res_node_num; ++u) {
   967         if (_excess[u] > 0) _active_nodes.push_back(u);
   968       }
   969 
   970       // Initialize the next arcs
   971       for (int u = 0; u != _res_node_num; ++u) {
   972         _next_out[u] = _first_out[u];
   973       }
   974     }
   975 
   976     // Early termination heuristic
   977     bool earlyTermination() {
   978       const double EARLY_TERM_FACTOR = 3.0;
   979 
   980       // Build a static residual graph
   981       _arc_vec.clear();
   982       _cost_vec.clear();
   983       for (int j = 0; j != _res_arc_num; ++j) {
   984         if (_res_cap[j] > 0) {
   985           _arc_vec.push_back(IntPair(_source[j], _target[j]));
   986           _cost_vec.push_back(_cost[j] + 1);
   987         }
   988       }
   989       _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
   990 
   991       // Run Bellman-Ford algorithm to check if the current flow is optimal
   992       BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map);
   993       bf.init(0);
   994       bool done = false;
   995       int K = int(EARLY_TERM_FACTOR * std::sqrt(double(_res_node_num)));
   996       for (int i = 0; i < K && !done; ++i) {
   997         done = bf.processNextWeakRound();
   998       }
   999       return done;
  1000     }
  1001 
  1002     // Global potential update heuristic
  1003     void globalUpdate() {
  1004       int bucket_end = _root + 1;
  1005 
  1006       // Initialize buckets
  1007       for (int r = 0; r != _max_rank; ++r) {
  1008         _buckets[r] = bucket_end;
  1009       }
  1010       Value total_excess = 0;
  1011       for (int i = 0; i != _res_node_num; ++i) {
  1012         if (_excess[i] < 0) {
  1013           _rank[i] = 0;
  1014           _bucket_next[i] = _buckets[0];
  1015           _bucket_prev[_buckets[0]] = i;
  1016           _buckets[0] = i;
  1017         } else {
  1018           total_excess += _excess[i];
  1019           _rank[i] = _max_rank;
  1020         }
  1021       }
  1022       if (total_excess == 0) return;
  1023 
  1024       // Search the buckets
  1025       int r = 0;
  1026       for ( ; r != _max_rank; ++r) {
  1027         while (_buckets[r] != bucket_end) {
  1028           // Remove the first node from the current bucket
  1029           int u = _buckets[r];
  1030           _buckets[r] = _bucket_next[u];
  1031 
  1032           // Search the incomming arcs of u
  1033           LargeCost pi_u = _pi[u];
  1034           int last_out = _first_out[u+1];
  1035           for (int a = _first_out[u]; a != last_out; ++a) {
  1036             int ra = _reverse[a];
  1037             if (_res_cap[ra] > 0) {
  1038               int v = _source[ra];
  1039               int old_rank_v = _rank[v];
  1040               if (r < old_rank_v) {
  1041                 // Compute the new rank of v
  1042                 LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon;
  1043                 int new_rank_v = old_rank_v;
  1044                 if (nrc < LargeCost(_max_rank))
  1045                   new_rank_v = r + 1 + int(nrc);
  1046 
  1047                 // Change the rank of v
  1048                 if (new_rank_v < old_rank_v) {
  1049                   _rank[v] = new_rank_v;
  1050                   _next_out[v] = _first_out[v];
  1051 
  1052                   // Remove v from its old bucket
  1053                   if (old_rank_v < _max_rank) {
  1054                     if (_buckets[old_rank_v] == v) {
  1055                       _buckets[old_rank_v] = _bucket_next[v];
  1056                     } else {
  1057                       _bucket_next[_bucket_prev[v]] = _bucket_next[v];
  1058                       _bucket_prev[_bucket_next[v]] = _bucket_prev[v];
  1059                     }
  1060                   }
  1061 
  1062                   // Insert v to its new bucket
  1063                   _bucket_next[v] = _buckets[new_rank_v];
  1064                   _bucket_prev[_buckets[new_rank_v]] = v;
  1065                   _buckets[new_rank_v] = v;
  1066                 }
  1067               }
  1068             }
  1069           }
  1070 
  1071           // Finish search if there are no more active nodes
  1072           if (_excess[u] > 0) {
  1073             total_excess -= _excess[u];
  1074             if (total_excess <= 0) break;
  1075           }
  1076         }
  1077         if (total_excess <= 0) break;
  1078       }
  1079 
  1080       // Relabel nodes
  1081       for (int u = 0; u != _res_node_num; ++u) {
  1082         int k = std::min(_rank[u], r);
  1083         if (k > 0) {
  1084           _pi[u] -= _epsilon * k;
  1085           _next_out[u] = _first_out[u];
  1086         }
  1087       }
  1088     }
  1089 
  1090     /// Execute the algorithm performing augment and relabel operations
  1091     void startAugment(int max_length = std::numeric_limits<int>::max()) {
  1092       // Paramters for heuristics
  1093       const int EARLY_TERM_EPSILON_LIMIT = 1000;
  1094       const double GLOBAL_UPDATE_FACTOR = 3.0;
  1095 
  1096       const int global_update_freq = int(GLOBAL_UPDATE_FACTOR *
  1097         (_res_node_num + _sup_node_num * _sup_node_num));
  1098       int next_update_limit = global_update_freq;
  1099 
  1100       int relabel_cnt = 0;
  1101 
  1102       // Perform cost scaling phases
  1103       std::vector<int> path;
  1104       for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
  1105                                         1 : _epsilon / _alpha )
  1106       {
  1107         // Early termination heuristic
  1108         if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
  1109           if (earlyTermination()) break;
  1110         }
  1111 
  1112         // Initialize current phase
  1113         initPhase();
  1114 
  1115         // Perform partial augment and relabel operations
  1116         while (true) {
  1117           // Select an active node (FIFO selection)
  1118           while (_active_nodes.size() > 0 &&
  1119                  _excess[_active_nodes.front()] <= 0) {
  1120             _active_nodes.pop_front();
  1121           }
  1122           if (_active_nodes.size() == 0) break;
  1123           int start = _active_nodes.front();
  1124 
  1125           // Find an augmenting path from the start node
  1126           path.clear();
  1127           int tip = start;
  1128           while (_excess[tip] >= 0 && int(path.size()) < max_length) {
  1129             int u;
  1130             LargeCost min_red_cost, rc, pi_tip = _pi[tip];
  1131             int last_out = _first_out[tip+1];
  1132             for (int a = _next_out[tip]; a != last_out; ++a) {
  1133               u = _target[a];
  1134               if (_res_cap[a] > 0 && _cost[a] + pi_tip - _pi[u] < 0) {
  1135                 path.push_back(a);
  1136                 _next_out[tip] = a;
  1137                 tip = u;
  1138                 goto next_step;
  1139               }
  1140             }
  1141 
  1142             // Relabel tip node
  1143             min_red_cost = std::numeric_limits<LargeCost>::max();
  1144             if (tip != start) {
  1145               int ra = _reverse[path.back()];
  1146               min_red_cost = _cost[ra] + pi_tip - _pi[_target[ra]];
  1147             }
  1148             for (int a = _first_out[tip]; a != last_out; ++a) {
  1149               rc = _cost[a] + pi_tip - _pi[_target[a]];
  1150               if (_res_cap[a] > 0 && rc < min_red_cost) {
  1151                 min_red_cost = rc;
  1152               }
  1153             }
  1154             _pi[tip] -= min_red_cost + _epsilon;
  1155             _next_out[tip] = _first_out[tip];
  1156             ++relabel_cnt;
  1157 
  1158             // Step back
  1159             if (tip != start) {
  1160               tip = _source[path.back()];
  1161               path.pop_back();
  1162             }
  1163 
  1164           next_step: ;
  1165           }
  1166 
  1167           // Augment along the found path (as much flow as possible)
  1168           Value delta;
  1169           int pa, u, v = start;
  1170           for (int i = 0; i != int(path.size()); ++i) {
  1171             pa = path[i];
  1172             u = v;
  1173             v = _target[pa];
  1174             delta = std::min(_res_cap[pa], _excess[u]);
  1175             _res_cap[pa] -= delta;
  1176             _res_cap[_reverse[pa]] += delta;
  1177             _excess[u] -= delta;
  1178             _excess[v] += delta;
  1179             if (_excess[v] > 0 && _excess[v] <= delta)
  1180               _active_nodes.push_back(v);
  1181           }
  1182 
  1183           // Global update heuristic
  1184           if (relabel_cnt >= next_update_limit) {
  1185             globalUpdate();
  1186             next_update_limit += global_update_freq;
  1187           }
  1188         }
  1189       }
  1190     }
  1191 
  1192     /// Execute the algorithm performing push and relabel operations
  1193     void startPush() {
  1194       // Paramters for heuristics
  1195       const int EARLY_TERM_EPSILON_LIMIT = 1000;
  1196       const double GLOBAL_UPDATE_FACTOR = 2.0;
  1197 
  1198       const int global_update_freq = int(GLOBAL_UPDATE_FACTOR *
  1199         (_res_node_num + _sup_node_num * _sup_node_num));
  1200       int next_update_limit = global_update_freq;
  1201 
  1202       int relabel_cnt = 0;
  1203 
  1204       // Perform cost scaling phases
  1205       BoolVector hyper(_res_node_num, false);
  1206       LargeCostVector hyper_cost(_res_node_num);
  1207       for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
  1208                                         1 : _epsilon / _alpha )
  1209       {
  1210         // Early termination heuristic
  1211         if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
  1212           if (earlyTermination()) break;
  1213         }
  1214 
  1215         // Initialize current phase
  1216         initPhase();
  1217 
  1218         // Perform push and relabel operations
  1219         while (_active_nodes.size() > 0) {
  1220           LargeCost min_red_cost, rc, pi_n;
  1221           Value delta;
  1222           int n, t, a, last_out = _res_arc_num;
  1223 
  1224         next_node:
  1225           // Select an active node (FIFO selection)
  1226           n = _active_nodes.front();
  1227           last_out = _first_out[n+1];
  1228           pi_n = _pi[n];
  1229 
  1230           // Perform push operations if there are admissible arcs
  1231           if (_excess[n] > 0) {
  1232             for (a = _next_out[n]; a != last_out; ++a) {
  1233               if (_res_cap[a] > 0 &&
  1234                   _cost[a] + pi_n - _pi[_target[a]] < 0) {
  1235                 delta = std::min(_res_cap[a], _excess[n]);
  1236                 t = _target[a];
  1237 
  1238                 // Push-look-ahead heuristic
  1239                 Value ahead = -_excess[t];
  1240                 int last_out_t = _first_out[t+1];
  1241                 LargeCost pi_t = _pi[t];
  1242                 for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
  1243                   if (_res_cap[ta] > 0 &&
  1244                       _cost[ta] + pi_t - _pi[_target[ta]] < 0)
  1245                     ahead += _res_cap[ta];
  1246                   if (ahead >= delta) break;
  1247                 }
  1248                 if (ahead < 0) ahead = 0;
  1249 
  1250                 // Push flow along the arc
  1251                 if (ahead < delta && !hyper[t]) {
  1252                   _res_cap[a] -= ahead;
  1253                   _res_cap[_reverse[a]] += ahead;
  1254                   _excess[n] -= ahead;
  1255                   _excess[t] += ahead;
  1256                   _active_nodes.push_front(t);
  1257                   hyper[t] = true;
  1258                   hyper_cost[t] = _cost[a] + pi_n - pi_t;
  1259                   _next_out[n] = a;
  1260                   goto next_node;
  1261                 } else {
  1262                   _res_cap[a] -= delta;
  1263                   _res_cap[_reverse[a]] += delta;
  1264                   _excess[n] -= delta;
  1265                   _excess[t] += delta;
  1266                   if (_excess[t] > 0 && _excess[t] <= delta)
  1267                     _active_nodes.push_back(t);
  1268                 }
  1269 
  1270                 if (_excess[n] == 0) {
  1271                   _next_out[n] = a;
  1272                   goto remove_nodes;
  1273                 }
  1274               }
  1275             }
  1276             _next_out[n] = a;
  1277           }
  1278 
  1279           // Relabel the node if it is still active (or hyper)
  1280           if (_excess[n] > 0 || hyper[n]) {
  1281              min_red_cost = hyper[n] ? -hyper_cost[n] :
  1282                std::numeric_limits<LargeCost>::max();
  1283             for (int a = _first_out[n]; a != last_out; ++a) {
  1284               rc = _cost[a] + pi_n - _pi[_target[a]];
  1285               if (_res_cap[a] > 0 && rc < min_red_cost) {
  1286                 min_red_cost = rc;
  1287               }
  1288             }
  1289             _pi[n] -= min_red_cost + _epsilon;
  1290             _next_out[n] = _first_out[n];
  1291             hyper[n] = false;
  1292             ++relabel_cnt;
  1293           }
  1294 
  1295           // Remove nodes that are not active nor hyper
  1296         remove_nodes:
  1297           while ( _active_nodes.size() > 0 &&
  1298                   _excess[_active_nodes.front()] <= 0 &&
  1299                   !hyper[_active_nodes.front()] ) {
  1300             _active_nodes.pop_front();
  1301           }
  1302 
  1303           // Global update heuristic
  1304           if (relabel_cnt >= next_update_limit) {
  1305             globalUpdate();
  1306             for (int u = 0; u != _res_node_num; ++u)
  1307               hyper[u] = false;
  1308             next_update_limit += global_update_freq;
  1309           }
  1310         }
  1311       }
  1312     }
  1313 
  1314   }; //class CostScaling
  1315 
  1316   ///@}
  1317 
  1318 } //namespace lemon
  1319 
  1320 #endif //LEMON_COST_SCALING_H