lemon/cycle_canceling.h
author Peter Kovacs <kpeter@inf.elte.hu>
Fri, 13 Nov 2009 00:10:33 +0100
changeset 881 aef153f430e1
parent 880 0643a9c2c3ae
child 882 277ef0218f0c
permissions -rw-r--r--
Entirely rework cycle canceling algorithms (#180)

- Move the cycle canceling algorithms (CycleCanceling, CancelAndTighten)
into one class (CycleCanceling).
- Add a Method parameter to the run() function to be able to select
the used cycle canceling method.
- Use the new interface similarly to NetworkSimplex.
- Rework the implementations using an efficient internal structure
for handling the residual network.
This improvement made the codes much faster.
- Handle GEQ supply type (LEQ is not supported).
- Handle infinite upper bounds.
- Handle negative costs (for arcs of finite upper bound).
- Extend the documentation.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_CYCLE_CANCELING_H
    20 #define LEMON_CYCLE_CANCELING_H
    21 
    22 /// \ingroup min_cost_flow_algs
    23 /// \file
    24 /// \brief Cycle-canceling algorithms for finding a minimum cost flow.
    25 
    26 #include <vector>
    27 #include <limits>
    28 
    29 #include <lemon/core.h>
    30 #include <lemon/maps.h>
    31 #include <lemon/path.h>
    32 #include <lemon/math.h>
    33 #include <lemon/static_graph.h>
    34 #include <lemon/adaptors.h>
    35 #include <lemon/circulation.h>
    36 #include <lemon/bellman_ford.h>
    37 #include <lemon/howard.h>
    38 
    39 namespace lemon {
    40 
    41   /// \addtogroup min_cost_flow_algs
    42   /// @{
    43 
    44   /// \brief Implementation of cycle-canceling algorithms for
    45   /// finding a \ref min_cost_flow "minimum cost flow".
    46   ///
    47   /// \ref CycleCanceling implements three different cycle-canceling
    48   /// algorithms for finding a \ref min_cost_flow "minimum cost flow".
    49   /// The most efficent one (both theoretically and practically)
    50   /// is the \ref CANCEL_AND_TIGHTEN "Cancel and Tighten" algorithm,
    51   /// thus it is the default method.
    52   /// It is strongly polynomial, but in practice, it is typically much
    53   /// slower than the scaling algorithms and NetworkSimplex.
    54   ///
    55   /// Most of the parameters of the problem (except for the digraph)
    56   /// can be given using separate functions, and the algorithm can be
    57   /// executed using the \ref run() function. If some parameters are not
    58   /// specified, then default values will be used.
    59   ///
    60   /// \tparam GR The digraph type the algorithm runs on.
    61   /// \tparam V The number type used for flow amounts, capacity bounds
    62   /// and supply values in the algorithm. By default, it is \c int.
    63   /// \tparam C The number type used for costs and potentials in the
    64   /// algorithm. By default, it is the same as \c V.
    65   ///
    66   /// \warning Both number types must be signed and all input data must
    67   /// be integer.
    68   /// \warning This algorithm does not support negative costs for such
    69   /// arcs that have infinite upper bound.
    70   ///
    71   /// \note For more information about the three available methods,
    72   /// see \ref Method.
    73 #ifdef DOXYGEN
    74   template <typename GR, typename V, typename C>
    75 #else
    76   template <typename GR, typename V = int, typename C = V>
    77 #endif
    78   class CycleCanceling
    79   {
    80   public:
    81 
    82     /// The type of the digraph
    83     typedef GR Digraph;
    84     /// The type of the flow amounts, capacity bounds and supply values
    85     typedef V Value;
    86     /// The type of the arc costs
    87     typedef C Cost;
    88 
    89   public:
    90 
    91     /// \brief Problem type constants for the \c run() function.
    92     ///
    93     /// Enum type containing the problem type constants that can be
    94     /// returned by the \ref run() function of the algorithm.
    95     enum ProblemType {
    96       /// The problem has no feasible solution (flow).
    97       INFEASIBLE,
    98       /// The problem has optimal solution (i.e. it is feasible and
    99       /// bounded), and the algorithm has found optimal flow and node
   100       /// potentials (primal and dual solutions).
   101       OPTIMAL,
   102       /// The digraph contains an arc of negative cost and infinite
   103       /// upper bound. It means that the objective function is unbounded
   104       /// on that arc, however, note that it could actually be bounded
   105       /// over the feasible flows, but this algroithm cannot handle
   106       /// these cases.
   107       UNBOUNDED
   108     };
   109 
   110     /// \brief Constants for selecting the used method.
   111     ///
   112     /// Enum type containing constants for selecting the used method
   113     /// for the \ref run() function.
   114     ///
   115     /// \ref CycleCanceling provides three different cycle-canceling
   116     /// methods. By default, \ref CANCEL_AND_TIGHTEN "Cancel and Tighten"
   117     /// is used, which proved to be the most efficient and the most robust
   118     /// on various test inputs.
   119     /// However, the other methods can be selected using the \ref run()
   120     /// function with the proper parameter.
   121     enum Method {
   122       /// A simple cycle-canceling method, which uses the
   123       /// \ref BellmanFord "Bellman-Ford" algorithm with limited iteration
   124       /// number for detecting negative cycles in the residual network.
   125       SIMPLE_CYCLE_CANCELING,
   126       /// The "Minimum Mean Cycle-Canceling" algorithm, which is a
   127       /// well-known strongly polynomial method. It improves along a
   128       /// \ref min_mean_cycle "minimum mean cycle" in each iteration.
   129       /// Its running time complexity is O(n<sup>2</sup>m<sup>3</sup>log(n)).
   130       MINIMUM_MEAN_CYCLE_CANCELING,
   131       /// The "Cancel And Tighten" algorithm, which can be viewed as an
   132       /// improved version of the previous method.
   133       /// It is faster both in theory and in practice, its running time
   134       /// complexity is O(n<sup>2</sup>m<sup>2</sup>log(n)).
   135       CANCEL_AND_TIGHTEN
   136     };
   137 
   138   private:
   139 
   140     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
   141     
   142     typedef std::vector<int> IntVector;
   143     typedef std::vector<char> CharVector;
   144     typedef std::vector<double> DoubleVector;
   145     typedef std::vector<Value> ValueVector;
   146     typedef std::vector<Cost> CostVector;
   147 
   148   private:
   149   
   150     template <typename KT, typename VT>
   151     class VectorMap {
   152     public:
   153       typedef KT Key;
   154       typedef VT Value;
   155       
   156       VectorMap(std::vector<Value>& v) : _v(v) {}
   157       
   158       const Value& operator[](const Key& key) const {
   159         return _v[StaticDigraph::id(key)];
   160       }
   161 
   162       Value& operator[](const Key& key) {
   163         return _v[StaticDigraph::id(key)];
   164       }
   165       
   166       void set(const Key& key, const Value& val) {
   167         _v[StaticDigraph::id(key)] = val;
   168       }
   169 
   170     private:
   171       std::vector<Value>& _v;
   172     };
   173 
   174     typedef VectorMap<StaticDigraph::Node, Cost> CostNodeMap;
   175     typedef VectorMap<StaticDigraph::Arc, Cost> CostArcMap;
   176 
   177   private:
   178 
   179 
   180     // Data related to the underlying digraph
   181     const GR &_graph;
   182     int _node_num;
   183     int _arc_num;
   184     int _res_node_num;
   185     int _res_arc_num;
   186     int _root;
   187 
   188     // Parameters of the problem
   189     bool _have_lower;
   190     Value _sum_supply;
   191 
   192     // Data structures for storing the digraph
   193     IntNodeMap _node_id;
   194     IntArcMap _arc_idf;
   195     IntArcMap _arc_idb;
   196     IntVector _first_out;
   197     CharVector _forward;
   198     IntVector _source;
   199     IntVector _target;
   200     IntVector _reverse;
   201 
   202     // Node and arc data
   203     ValueVector _lower;
   204     ValueVector _upper;
   205     CostVector _cost;
   206     ValueVector _supply;
   207 
   208     ValueVector _res_cap;
   209     CostVector _pi;
   210 
   211     // Data for a StaticDigraph structure
   212     typedef std::pair<int, int> IntPair;
   213     StaticDigraph _sgr;
   214     std::vector<IntPair> _arc_vec;
   215     std::vector<Cost> _cost_vec;
   216     IntVector _id_vec;
   217     CostArcMap _cost_map;
   218     CostNodeMap _pi_map;
   219   
   220   public:
   221   
   222     /// \brief Constant for infinite upper bounds (capacities).
   223     ///
   224     /// Constant for infinite upper bounds (capacities).
   225     /// It is \c std::numeric_limits<Value>::infinity() if available,
   226     /// \c std::numeric_limits<Value>::max() otherwise.
   227     const Value INF;
   228 
   229   public:
   230 
   231     /// \brief Constructor.
   232     ///
   233     /// The constructor of the class.
   234     ///
   235     /// \param graph The digraph the algorithm runs on.
   236     CycleCanceling(const GR& graph) :
   237       _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
   238       _cost_map(_cost_vec), _pi_map(_pi),
   239       INF(std::numeric_limits<Value>::has_infinity ?
   240           std::numeric_limits<Value>::infinity() :
   241           std::numeric_limits<Value>::max())
   242     {
   243       // Check the number types
   244       LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
   245         "The flow type of CycleCanceling must be signed");
   246       LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
   247         "The cost type of CycleCanceling must be signed");
   248 
   249       // Resize vectors
   250       _node_num = countNodes(_graph);
   251       _arc_num = countArcs(_graph);
   252       _res_node_num = _node_num + 1;
   253       _res_arc_num = 2 * (_arc_num + _node_num);
   254       _root = _node_num;
   255 
   256       _first_out.resize(_res_node_num + 1);
   257       _forward.resize(_res_arc_num);
   258       _source.resize(_res_arc_num);
   259       _target.resize(_res_arc_num);
   260       _reverse.resize(_res_arc_num);
   261 
   262       _lower.resize(_res_arc_num);
   263       _upper.resize(_res_arc_num);
   264       _cost.resize(_res_arc_num);
   265       _supply.resize(_res_node_num);
   266       
   267       _res_cap.resize(_res_arc_num);
   268       _pi.resize(_res_node_num);
   269 
   270       _arc_vec.reserve(_res_arc_num);
   271       _cost_vec.reserve(_res_arc_num);
   272       _id_vec.reserve(_res_arc_num);
   273 
   274       // Copy the graph
   275       int i = 0, j = 0, k = 2 * _arc_num + _node_num;
   276       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   277         _node_id[n] = i;
   278       }
   279       i = 0;
   280       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   281         _first_out[i] = j;
   282         for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   283           _arc_idf[a] = j;
   284           _forward[j] = true;
   285           _source[j] = i;
   286           _target[j] = _node_id[_graph.runningNode(a)];
   287         }
   288         for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   289           _arc_idb[a] = j;
   290           _forward[j] = false;
   291           _source[j] = i;
   292           _target[j] = _node_id[_graph.runningNode(a)];
   293         }
   294         _forward[j] = false;
   295         _source[j] = i;
   296         _target[j] = _root;
   297         _reverse[j] = k;
   298         _forward[k] = true;
   299         _source[k] = _root;
   300         _target[k] = i;
   301         _reverse[k] = j;
   302         ++j; ++k;
   303       }
   304       _first_out[i] = j;
   305       _first_out[_res_node_num] = k;
   306       for (ArcIt a(_graph); a != INVALID; ++a) {
   307         int fi = _arc_idf[a];
   308         int bi = _arc_idb[a];
   309         _reverse[fi] = bi;
   310         _reverse[bi] = fi;
   311       }
   312       
   313       // Reset parameters
   314       reset();
   315     }
   316 
   317     /// \name Parameters
   318     /// The parameters of the algorithm can be specified using these
   319     /// functions.
   320 
   321     /// @{
   322 
   323     /// \brief Set the lower bounds on the arcs.
   324     ///
   325     /// This function sets the lower bounds on the arcs.
   326     /// If it is not used before calling \ref run(), the lower bounds
   327     /// will be set to zero on all arcs.
   328     ///
   329     /// \param map An arc map storing the lower bounds.
   330     /// Its \c Value type must be convertible to the \c Value type
   331     /// of the algorithm.
   332     ///
   333     /// \return <tt>(*this)</tt>
   334     template <typename LowerMap>
   335     CycleCanceling& lowerMap(const LowerMap& map) {
   336       _have_lower = true;
   337       for (ArcIt a(_graph); a != INVALID; ++a) {
   338         _lower[_arc_idf[a]] = map[a];
   339         _lower[_arc_idb[a]] = map[a];
   340       }
   341       return *this;
   342     }
   343 
   344     /// \brief Set the upper bounds (capacities) on the arcs.
   345     ///
   346     /// This function sets the upper bounds (capacities) on the arcs.
   347     /// If it is not used before calling \ref run(), the upper bounds
   348     /// will be set to \ref INF on all arcs (i.e. the flow value will be
   349     /// unbounded from above).
   350     ///
   351     /// \param map An arc map storing the upper bounds.
   352     /// Its \c Value type must be convertible to the \c Value type
   353     /// of the algorithm.
   354     ///
   355     /// \return <tt>(*this)</tt>
   356     template<typename UpperMap>
   357     CycleCanceling& upperMap(const UpperMap& map) {
   358       for (ArcIt a(_graph); a != INVALID; ++a) {
   359         _upper[_arc_idf[a]] = map[a];
   360       }
   361       return *this;
   362     }
   363 
   364     /// \brief Set the costs of the arcs.
   365     ///
   366     /// This function sets the costs of the arcs.
   367     /// If it is not used before calling \ref run(), the costs
   368     /// will be set to \c 1 on all arcs.
   369     ///
   370     /// \param map An arc map storing the costs.
   371     /// Its \c Value type must be convertible to the \c Cost type
   372     /// of the algorithm.
   373     ///
   374     /// \return <tt>(*this)</tt>
   375     template<typename CostMap>
   376     CycleCanceling& costMap(const CostMap& map) {
   377       for (ArcIt a(_graph); a != INVALID; ++a) {
   378         _cost[_arc_idf[a]] =  map[a];
   379         _cost[_arc_idb[a]] = -map[a];
   380       }
   381       return *this;
   382     }
   383 
   384     /// \brief Set the supply values of the nodes.
   385     ///
   386     /// This function sets the supply values of the nodes.
   387     /// If neither this function nor \ref stSupply() is used before
   388     /// calling \ref run(), the supply of each node will be set to zero.
   389     ///
   390     /// \param map A node map storing the supply values.
   391     /// Its \c Value type must be convertible to the \c Value type
   392     /// of the algorithm.
   393     ///
   394     /// \return <tt>(*this)</tt>
   395     template<typename SupplyMap>
   396     CycleCanceling& supplyMap(const SupplyMap& map) {
   397       for (NodeIt n(_graph); n != INVALID; ++n) {
   398         _supply[_node_id[n]] = map[n];
   399       }
   400       return *this;
   401     }
   402 
   403     /// \brief Set single source and target nodes and a supply value.
   404     ///
   405     /// This function sets a single source node and a single target node
   406     /// and the required flow value.
   407     /// If neither this function nor \ref supplyMap() is used before
   408     /// calling \ref run(), the supply of each node will be set to zero.
   409     ///
   410     /// Using this function has the same effect as using \ref supplyMap()
   411     /// with such a map in which \c k is assigned to \c s, \c -k is
   412     /// assigned to \c t and all other nodes have zero supply value.
   413     ///
   414     /// \param s The source node.
   415     /// \param t The target node.
   416     /// \param k The required amount of flow from node \c s to node \c t
   417     /// (i.e. the supply of \c s and the demand of \c t).
   418     ///
   419     /// \return <tt>(*this)</tt>
   420     CycleCanceling& stSupply(const Node& s, const Node& t, Value k) {
   421       for (int i = 0; i != _res_node_num; ++i) {
   422         _supply[i] = 0;
   423       }
   424       _supply[_node_id[s]] =  k;
   425       _supply[_node_id[t]] = -k;
   426       return *this;
   427     }
   428     
   429     /// @}
   430 
   431     /// \name Execution control
   432     /// The algorithm can be executed using \ref run().
   433 
   434     /// @{
   435 
   436     /// \brief Run the algorithm.
   437     ///
   438     /// This function runs the algorithm.
   439     /// The paramters can be specified using functions \ref lowerMap(),
   440     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
   441     /// For example,
   442     /// \code
   443     ///   CycleCanceling<ListDigraph> cc(graph);
   444     ///   cc.lowerMap(lower).upperMap(upper).costMap(cost)
   445     ///     .supplyMap(sup).run();
   446     /// \endcode
   447     ///
   448     /// This function can be called more than once. All the parameters
   449     /// that have been given are kept for the next call, unless
   450     /// \ref reset() is called, thus only the modified parameters
   451     /// have to be set again. See \ref reset() for examples.
   452     /// However, the underlying digraph must not be modified after this
   453     /// class have been constructed, since it copies and extends the graph.
   454     ///
   455     /// \param method The cycle-canceling method that will be used.
   456     /// For more information, see \ref Method.
   457     ///
   458     /// \return \c INFEASIBLE if no feasible flow exists,
   459     /// \n \c OPTIMAL if the problem has optimal solution
   460     /// (i.e. it is feasible and bounded), and the algorithm has found
   461     /// optimal flow and node potentials (primal and dual solutions),
   462     /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
   463     /// and infinite upper bound. It means that the objective function
   464     /// is unbounded on that arc, however, note that it could actually be
   465     /// bounded over the feasible flows, but this algroithm cannot handle
   466     /// these cases.
   467     ///
   468     /// \see ProblemType, Method
   469     ProblemType run(Method method = CANCEL_AND_TIGHTEN) {
   470       ProblemType pt = init();
   471       if (pt != OPTIMAL) return pt;
   472       start(method);
   473       return OPTIMAL;
   474     }
   475 
   476     /// \brief Reset all the parameters that have been given before.
   477     ///
   478     /// This function resets all the paramaters that have been given
   479     /// before using functions \ref lowerMap(), \ref upperMap(),
   480     /// \ref costMap(), \ref supplyMap(), \ref stSupply().
   481     ///
   482     /// It is useful for multiple run() calls. If this function is not
   483     /// used, all the parameters given before are kept for the next
   484     /// \ref run() call.
   485     /// However, the underlying digraph must not be modified after this
   486     /// class have been constructed, since it copies and extends the graph.
   487     ///
   488     /// For example,
   489     /// \code
   490     ///   CycleCanceling<ListDigraph> cs(graph);
   491     ///
   492     ///   // First run
   493     ///   cc.lowerMap(lower).upperMap(upper).costMap(cost)
   494     ///     .supplyMap(sup).run();
   495     ///
   496     ///   // Run again with modified cost map (reset() is not called,
   497     ///   // so only the cost map have to be set again)
   498     ///   cost[e] += 100;
   499     ///   cc.costMap(cost).run();
   500     ///
   501     ///   // Run again from scratch using reset()
   502     ///   // (the lower bounds will be set to zero on all arcs)
   503     ///   cc.reset();
   504     ///   cc.upperMap(capacity).costMap(cost)
   505     ///     .supplyMap(sup).run();
   506     /// \endcode
   507     ///
   508     /// \return <tt>(*this)</tt>
   509     CycleCanceling& reset() {
   510       for (int i = 0; i != _res_node_num; ++i) {
   511         _supply[i] = 0;
   512       }
   513       int limit = _first_out[_root];
   514       for (int j = 0; j != limit; ++j) {
   515         _lower[j] = 0;
   516         _upper[j] = INF;
   517         _cost[j] = _forward[j] ? 1 : -1;
   518       }
   519       for (int j = limit; j != _res_arc_num; ++j) {
   520         _lower[j] = 0;
   521         _upper[j] = INF;
   522         _cost[j] = 0;
   523         _cost[_reverse[j]] = 0;
   524       }      
   525       _have_lower = false;
   526       return *this;
   527     }
   528 
   529     /// @}
   530 
   531     /// \name Query Functions
   532     /// The results of the algorithm can be obtained using these
   533     /// functions.\n
   534     /// The \ref run() function must be called before using them.
   535 
   536     /// @{
   537 
   538     /// \brief Return the total cost of the found flow.
   539     ///
   540     /// This function returns the total cost of the found flow.
   541     /// Its complexity is O(e).
   542     ///
   543     /// \note The return type of the function can be specified as a
   544     /// template parameter. For example,
   545     /// \code
   546     ///   cc.totalCost<double>();
   547     /// \endcode
   548     /// It is useful if the total cost cannot be stored in the \c Cost
   549     /// type of the algorithm, which is the default return type of the
   550     /// function.
   551     ///
   552     /// \pre \ref run() must be called before using this function.
   553     template <typename Number>
   554     Number totalCost() const {
   555       Number c = 0;
   556       for (ArcIt a(_graph); a != INVALID; ++a) {
   557         int i = _arc_idb[a];
   558         c += static_cast<Number>(_res_cap[i]) *
   559              (-static_cast<Number>(_cost[i]));
   560       }
   561       return c;
   562     }
   563 
   564 #ifndef DOXYGEN
   565     Cost totalCost() const {
   566       return totalCost<Cost>();
   567     }
   568 #endif
   569 
   570     /// \brief Return the flow on the given arc.
   571     ///
   572     /// This function returns the flow on the given arc.
   573     ///
   574     /// \pre \ref run() must be called before using this function.
   575     Value flow(const Arc& a) const {
   576       return _res_cap[_arc_idb[a]];
   577     }
   578 
   579     /// \brief Return the flow map (the primal solution).
   580     ///
   581     /// This function copies the flow value on each arc into the given
   582     /// map. The \c Value type of the algorithm must be convertible to
   583     /// the \c Value type of the map.
   584     ///
   585     /// \pre \ref run() must be called before using this function.
   586     template <typename FlowMap>
   587     void flowMap(FlowMap &map) const {
   588       for (ArcIt a(_graph); a != INVALID; ++a) {
   589         map.set(a, _res_cap[_arc_idb[a]]);
   590       }
   591     }
   592 
   593     /// \brief Return the potential (dual value) of the given node.
   594     ///
   595     /// This function returns the potential (dual value) of the
   596     /// given node.
   597     ///
   598     /// \pre \ref run() must be called before using this function.
   599     Cost potential(const Node& n) const {
   600       return static_cast<Cost>(_pi[_node_id[n]]);
   601     }
   602 
   603     /// \brief Return the potential map (the dual solution).
   604     ///
   605     /// This function copies the potential (dual value) of each node
   606     /// into the given map.
   607     /// The \c Cost type of the algorithm must be convertible to the
   608     /// \c Value type of the map.
   609     ///
   610     /// \pre \ref run() must be called before using this function.
   611     template <typename PotentialMap>
   612     void potentialMap(PotentialMap &map) const {
   613       for (NodeIt n(_graph); n != INVALID; ++n) {
   614         map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
   615       }
   616     }
   617 
   618     /// @}
   619 
   620   private:
   621 
   622     // Initialize the algorithm
   623     ProblemType init() {
   624       if (_res_node_num <= 1) return INFEASIBLE;
   625 
   626       // Check the sum of supply values
   627       _sum_supply = 0;
   628       for (int i = 0; i != _root; ++i) {
   629         _sum_supply += _supply[i];
   630       }
   631       if (_sum_supply > 0) return INFEASIBLE;
   632       
   633 
   634       // Initialize vectors
   635       for (int i = 0; i != _res_node_num; ++i) {
   636         _pi[i] = 0;
   637       }
   638       ValueVector excess(_supply);
   639       
   640       // Remove infinite upper bounds and check negative arcs
   641       const Value MAX = std::numeric_limits<Value>::max();
   642       int last_out;
   643       if (_have_lower) {
   644         for (int i = 0; i != _root; ++i) {
   645           last_out = _first_out[i+1];
   646           for (int j = _first_out[i]; j != last_out; ++j) {
   647             if (_forward[j]) {
   648               Value c = _cost[j] < 0 ? _upper[j] : _lower[j];
   649               if (c >= MAX) return UNBOUNDED;
   650               excess[i] -= c;
   651               excess[_target[j]] += c;
   652             }
   653           }
   654         }
   655       } else {
   656         for (int i = 0; i != _root; ++i) {
   657           last_out = _first_out[i+1];
   658           for (int j = _first_out[i]; j != last_out; ++j) {
   659             if (_forward[j] && _cost[j] < 0) {
   660               Value c = _upper[j];
   661               if (c >= MAX) return UNBOUNDED;
   662               excess[i] -= c;
   663               excess[_target[j]] += c;
   664             }
   665           }
   666         }
   667       }
   668       Value ex, max_cap = 0;
   669       for (int i = 0; i != _res_node_num; ++i) {
   670         ex = excess[i];
   671         if (ex < 0) max_cap -= ex;
   672       }
   673       for (int j = 0; j != _res_arc_num; ++j) {
   674         if (_upper[j] >= MAX) _upper[j] = max_cap;
   675       }
   676 
   677       // Initialize maps for Circulation and remove non-zero lower bounds
   678       ConstMap<Arc, Value> low(0);
   679       typedef typename Digraph::template ArcMap<Value> ValueArcMap;
   680       typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
   681       ValueArcMap cap(_graph), flow(_graph);
   682       ValueNodeMap sup(_graph);
   683       for (NodeIt n(_graph); n != INVALID; ++n) {
   684         sup[n] = _supply[_node_id[n]];
   685       }
   686       if (_have_lower) {
   687         for (ArcIt a(_graph); a != INVALID; ++a) {
   688           int j = _arc_idf[a];
   689           Value c = _lower[j];
   690           cap[a] = _upper[j] - c;
   691           sup[_graph.source(a)] -= c;
   692           sup[_graph.target(a)] += c;
   693         }
   694       } else {
   695         for (ArcIt a(_graph); a != INVALID; ++a) {
   696           cap[a] = _upper[_arc_idf[a]];
   697         }
   698       }
   699 
   700       // Find a feasible flow using Circulation
   701       Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
   702         circ(_graph, low, cap, sup);
   703       if (!circ.flowMap(flow).run()) return INFEASIBLE;
   704 
   705       // Set residual capacities and handle GEQ supply type
   706       if (_sum_supply < 0) {
   707         for (ArcIt a(_graph); a != INVALID; ++a) {
   708           Value fa = flow[a];
   709           _res_cap[_arc_idf[a]] = cap[a] - fa;
   710           _res_cap[_arc_idb[a]] = fa;
   711           sup[_graph.source(a)] -= fa;
   712           sup[_graph.target(a)] += fa;
   713         }
   714         for (NodeIt n(_graph); n != INVALID; ++n) {
   715           excess[_node_id[n]] = sup[n];
   716         }
   717         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   718           int u = _target[a];
   719           int ra = _reverse[a];
   720           _res_cap[a] = -_sum_supply + 1;
   721           _res_cap[ra] = -excess[u];
   722           _cost[a] = 0;
   723           _cost[ra] = 0;
   724         }
   725       } else {
   726         for (ArcIt a(_graph); a != INVALID; ++a) {
   727           Value fa = flow[a];
   728           _res_cap[_arc_idf[a]] = cap[a] - fa;
   729           _res_cap[_arc_idb[a]] = fa;
   730         }
   731         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   732           int ra = _reverse[a];
   733           _res_cap[a] = 1;
   734           _res_cap[ra] = 0;
   735           _cost[a] = 0;
   736           _cost[ra] = 0;
   737         }
   738       }
   739       
   740       return OPTIMAL;
   741     }
   742     
   743     // Build a StaticDigraph structure containing the current
   744     // residual network
   745     void buildResidualNetwork() {
   746       _arc_vec.clear();
   747       _cost_vec.clear();
   748       _id_vec.clear();
   749       for (int j = 0; j != _res_arc_num; ++j) {
   750         if (_res_cap[j] > 0) {
   751           _arc_vec.push_back(IntPair(_source[j], _target[j]));
   752           _cost_vec.push_back(_cost[j]);
   753           _id_vec.push_back(j);
   754         }
   755       }
   756       _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
   757     }
   758 
   759     // Execute the algorithm and transform the results
   760     void start(Method method) {
   761       // Execute the algorithm
   762       switch (method) {
   763         case SIMPLE_CYCLE_CANCELING:
   764           startSimpleCycleCanceling();
   765           break;
   766         case MINIMUM_MEAN_CYCLE_CANCELING:
   767           startMinMeanCycleCanceling();
   768           break;
   769         case CANCEL_AND_TIGHTEN:
   770           startCancelAndTighten();
   771           break;
   772       }
   773 
   774       // Compute node potentials
   775       if (method != SIMPLE_CYCLE_CANCELING) {
   776         buildResidualNetwork();
   777         typename BellmanFord<StaticDigraph, CostArcMap>
   778           ::template SetDistMap<CostNodeMap>::Create bf(_sgr, _cost_map);
   779         bf.distMap(_pi_map);
   780         bf.init(0);
   781         bf.start();
   782       }
   783 
   784       // Handle non-zero lower bounds
   785       if (_have_lower) {
   786         int limit = _first_out[_root];
   787         for (int j = 0; j != limit; ++j) {
   788           if (!_forward[j]) _res_cap[j] += _lower[j];
   789         }
   790       }
   791     }
   792 
   793     // Execute the "Simple Cycle Canceling" method
   794     void startSimpleCycleCanceling() {
   795       // Constants for computing the iteration limits
   796       const int BF_FIRST_LIMIT  = 2;
   797       const double BF_LIMIT_FACTOR = 1.5;
   798       
   799       typedef VectorMap<StaticDigraph::Arc, Value> FilterMap;
   800       typedef FilterArcs<StaticDigraph, FilterMap> ResDigraph;
   801       typedef VectorMap<StaticDigraph::Node, StaticDigraph::Arc> PredMap;
   802       typedef typename BellmanFord<ResDigraph, CostArcMap>
   803         ::template SetDistMap<CostNodeMap>
   804         ::template SetPredMap<PredMap>::Create BF;
   805       
   806       // Build the residual network
   807       _arc_vec.clear();
   808       _cost_vec.clear();
   809       for (int j = 0; j != _res_arc_num; ++j) {
   810         _arc_vec.push_back(IntPair(_source[j], _target[j]));
   811         _cost_vec.push_back(_cost[j]);
   812       }
   813       _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
   814 
   815       FilterMap filter_map(_res_cap);
   816       ResDigraph rgr(_sgr, filter_map);
   817       std::vector<int> cycle;
   818       std::vector<StaticDigraph::Arc> pred(_res_arc_num);
   819       PredMap pred_map(pred);
   820       BF bf(rgr, _cost_map);
   821       bf.distMap(_pi_map).predMap(pred_map);
   822 
   823       int length_bound = BF_FIRST_LIMIT;
   824       bool optimal = false;
   825       while (!optimal) {
   826         bf.init(0);
   827         int iter_num = 0;
   828         bool cycle_found = false;
   829         while (!cycle_found) {
   830           // Perform some iterations of the Bellman-Ford algorithm
   831           int curr_iter_num = iter_num + length_bound <= _node_num ?
   832             length_bound : _node_num - iter_num;
   833           iter_num += curr_iter_num;
   834           int real_iter_num = curr_iter_num;
   835           for (int i = 0; i < curr_iter_num; ++i) {
   836             if (bf.processNextWeakRound()) {
   837               real_iter_num = i;
   838               break;
   839             }
   840           }
   841           if (real_iter_num < curr_iter_num) {
   842             // Optimal flow is found
   843             optimal = true;
   844             break;
   845           } else {
   846             // Search for node disjoint negative cycles
   847             std::vector<int> state(_res_node_num, 0);
   848             int id = 0;
   849             for (int u = 0; u != _res_node_num; ++u) {
   850               if (state[u] != 0) continue;
   851               ++id;
   852               int v = u;
   853               for (; v != -1 && state[v] == 0; v = pred[v] == INVALID ?
   854                    -1 : rgr.id(rgr.source(pred[v]))) {
   855                 state[v] = id;
   856               }
   857               if (v != -1 && state[v] == id) {
   858                 // A negative cycle is found
   859                 cycle_found = true;
   860                 cycle.clear();
   861                 StaticDigraph::Arc a = pred[v];
   862                 Value d, delta = _res_cap[rgr.id(a)];
   863                 cycle.push_back(rgr.id(a));
   864                 while (rgr.id(rgr.source(a)) != v) {
   865                   a = pred_map[rgr.source(a)];
   866                   d = _res_cap[rgr.id(a)];
   867                   if (d < delta) delta = d;
   868                   cycle.push_back(rgr.id(a));
   869                 }
   870 
   871                 // Augment along the cycle
   872                 for (int i = 0; i < int(cycle.size()); ++i) {
   873                   int j = cycle[i];
   874                   _res_cap[j] -= delta;
   875                   _res_cap[_reverse[j]] += delta;
   876                 }
   877               }
   878             }
   879           }
   880 
   881           // Increase iteration limit if no cycle is found
   882           if (!cycle_found) {
   883             length_bound = static_cast<int>(length_bound * BF_LIMIT_FACTOR);
   884           }
   885         }
   886       }
   887     }
   888 
   889     // Execute the "Minimum Mean Cycle Canceling" method
   890     void startMinMeanCycleCanceling() {
   891       typedef SimplePath<StaticDigraph> SPath;
   892       typedef typename SPath::ArcIt SPathArcIt;
   893       typedef typename Howard<StaticDigraph, CostArcMap>
   894         ::template SetPath<SPath>::Create MMC;
   895       
   896       SPath cycle;
   897       MMC mmc(_sgr, _cost_map);
   898       mmc.cycle(cycle);
   899       buildResidualNetwork();
   900       while (mmc.findMinMean() && mmc.cycleLength() < 0) {
   901         // Find the cycle
   902         mmc.findCycle();
   903 
   904         // Compute delta value
   905         Value delta = INF;
   906         for (SPathArcIt a(cycle); a != INVALID; ++a) {
   907           Value d = _res_cap[_id_vec[_sgr.id(a)]];
   908           if (d < delta) delta = d;
   909         }
   910 
   911         // Augment along the cycle
   912         for (SPathArcIt a(cycle); a != INVALID; ++a) {
   913           int j = _id_vec[_sgr.id(a)];
   914           _res_cap[j] -= delta;
   915           _res_cap[_reverse[j]] += delta;
   916         }
   917 
   918         // Rebuild the residual network        
   919         buildResidualNetwork();
   920       }
   921     }
   922 
   923     // Execute the "Cancel And Tighten" method
   924     void startCancelAndTighten() {
   925       // Constants for the min mean cycle computations
   926       const double LIMIT_FACTOR = 1.0;
   927       const int MIN_LIMIT = 5;
   928 
   929       // Contruct auxiliary data vectors
   930       DoubleVector pi(_res_node_num, 0.0);
   931       IntVector level(_res_node_num);
   932       CharVector reached(_res_node_num);
   933       CharVector processed(_res_node_num);
   934       IntVector pred_node(_res_node_num);
   935       IntVector pred_arc(_res_node_num);
   936       std::vector<int> stack(_res_node_num);
   937       std::vector<int> proc_vector(_res_node_num);
   938 
   939       // Initialize epsilon
   940       double epsilon = 0;
   941       for (int a = 0; a != _res_arc_num; ++a) {
   942         if (_res_cap[a] > 0 && -_cost[a] > epsilon)
   943           epsilon = -_cost[a];
   944       }
   945 
   946       // Start phases
   947       Tolerance<double> tol;
   948       tol.epsilon(1e-6);
   949       int limit = int(LIMIT_FACTOR * std::sqrt(double(_res_node_num)));
   950       if (limit < MIN_LIMIT) limit = MIN_LIMIT;
   951       int iter = limit;
   952       while (epsilon * _res_node_num >= 1) {
   953         // Find and cancel cycles in the admissible network using DFS
   954         for (int u = 0; u != _res_node_num; ++u) {
   955           reached[u] = false;
   956           processed[u] = false;
   957         }
   958         int stack_head = -1;
   959         int proc_head = -1;
   960         for (int start = 0; start != _res_node_num; ++start) {
   961           if (reached[start]) continue;
   962 
   963           // New start node
   964           reached[start] = true;
   965           pred_arc[start] = -1;
   966           pred_node[start] = -1;
   967 
   968           // Find the first admissible outgoing arc
   969           double p = pi[start];
   970           int a = _first_out[start];
   971           int last_out = _first_out[start+1];
   972           for (; a != last_out && (_res_cap[a] == 0 ||
   973                !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
   974           if (a == last_out) {
   975             processed[start] = true;
   976             proc_vector[++proc_head] = start;
   977             continue;
   978           }
   979           stack[++stack_head] = a;
   980 
   981           while (stack_head >= 0) {
   982             int sa = stack[stack_head];
   983             int u = _source[sa];
   984             int v = _target[sa];
   985 
   986             if (!reached[v]) {
   987               // A new node is reached
   988               reached[v] = true;
   989               pred_node[v] = u;
   990               pred_arc[v] = sa;
   991               p = pi[v];
   992               a = _first_out[v];
   993               last_out = _first_out[v+1];
   994               for (; a != last_out && (_res_cap[a] == 0 ||
   995                    !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
   996               stack[++stack_head] = a == last_out ? -1 : a;
   997             } else {
   998               if (!processed[v]) {
   999                 // A cycle is found
  1000                 int n, w = u;
  1001                 Value d, delta = _res_cap[sa];
  1002                 for (n = u; n != v; n = pred_node[n]) {
  1003                   d = _res_cap[pred_arc[n]];
  1004                   if (d <= delta) {
  1005                     delta = d;
  1006                     w = pred_node[n];
  1007                   }
  1008                 }
  1009 
  1010                 // Augment along the cycle
  1011                 _res_cap[sa] -= delta;
  1012                 _res_cap[_reverse[sa]] += delta;
  1013                 for (n = u; n != v; n = pred_node[n]) {
  1014                   int pa = pred_arc[n];
  1015                   _res_cap[pa] -= delta;
  1016                   _res_cap[_reverse[pa]] += delta;
  1017                 }
  1018                 for (n = u; stack_head > 0 && n != w; n = pred_node[n]) {
  1019                   --stack_head;
  1020                   reached[n] = false;
  1021                 }
  1022                 u = w;
  1023               }
  1024               v = u;
  1025 
  1026               // Find the next admissible outgoing arc
  1027               p = pi[v];
  1028               a = stack[stack_head] + 1;
  1029               last_out = _first_out[v+1];
  1030               for (; a != last_out && (_res_cap[a] == 0 ||
  1031                    !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
  1032               stack[stack_head] = a == last_out ? -1 : a;
  1033             }
  1034 
  1035             while (stack_head >= 0 && stack[stack_head] == -1) {
  1036               processed[v] = true;
  1037               proc_vector[++proc_head] = v;
  1038               if (--stack_head >= 0) {
  1039                 // Find the next admissible outgoing arc
  1040                 v = _source[stack[stack_head]];
  1041                 p = pi[v];
  1042                 a = stack[stack_head] + 1;
  1043                 last_out = _first_out[v+1];
  1044                 for (; a != last_out && (_res_cap[a] == 0 ||
  1045                      !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
  1046                 stack[stack_head] = a == last_out ? -1 : a;
  1047               }
  1048             }
  1049           }
  1050         }
  1051 
  1052         // Tighten potentials and epsilon
  1053         if (--iter > 0) {
  1054           for (int u = 0; u != _res_node_num; ++u) {
  1055             level[u] = 0;
  1056           }
  1057           for (int i = proc_head; i > 0; --i) {
  1058             int u = proc_vector[i];
  1059             double p = pi[u];
  1060             int l = level[u] + 1;
  1061             int last_out = _first_out[u+1];
  1062             for (int a = _first_out[u]; a != last_out; ++a) {
  1063               int v = _target[a];
  1064               if (_res_cap[a] > 0 && tol.negative(_cost[a] + p - pi[v]) &&
  1065                   l > level[v]) level[v] = l;
  1066             }
  1067           }
  1068 
  1069           // Modify potentials
  1070           double q = std::numeric_limits<double>::max();
  1071           for (int u = 0; u != _res_node_num; ++u) {
  1072             int lu = level[u];
  1073             double p, pu = pi[u];
  1074             int last_out = _first_out[u+1];
  1075             for (int a = _first_out[u]; a != last_out; ++a) {
  1076               if (_res_cap[a] == 0) continue;
  1077               int v = _target[a];
  1078               int ld = lu - level[v];
  1079               if (ld > 0) {
  1080                 p = (_cost[a] + pu - pi[v] + epsilon) / (ld + 1);
  1081                 if (p < q) q = p;
  1082               }
  1083             }
  1084           }
  1085           for (int u = 0; u != _res_node_num; ++u) {
  1086             pi[u] -= q * level[u];
  1087           }
  1088 
  1089           // Modify epsilon
  1090           epsilon = 0;
  1091           for (int u = 0; u != _res_node_num; ++u) {
  1092             double curr, pu = pi[u];
  1093             int last_out = _first_out[u+1];
  1094             for (int a = _first_out[u]; a != last_out; ++a) {
  1095               if (_res_cap[a] == 0) continue;
  1096               curr = _cost[a] + pu - pi[_target[a]];
  1097               if (-curr > epsilon) epsilon = -curr;
  1098             }
  1099           }
  1100         } else {
  1101           typedef Howard<StaticDigraph, CostArcMap> MMC;
  1102           typedef typename BellmanFord<StaticDigraph, CostArcMap>
  1103             ::template SetDistMap<CostNodeMap>::Create BF;
  1104 
  1105           // Set epsilon to the minimum cycle mean
  1106           buildResidualNetwork();
  1107           MMC mmc(_sgr, _cost_map);
  1108           mmc.findMinMean();
  1109           epsilon = -mmc.cycleMean();
  1110           Cost cycle_cost = mmc.cycleLength();
  1111           int cycle_size = mmc.cycleArcNum();
  1112           
  1113           // Compute feasible potentials for the current epsilon
  1114           for (int i = 0; i != int(_cost_vec.size()); ++i) {
  1115             _cost_vec[i] = cycle_size * _cost_vec[i] - cycle_cost;
  1116           }
  1117           BF bf(_sgr, _cost_map);
  1118           bf.distMap(_pi_map);
  1119           bf.init(0);
  1120           bf.start();
  1121           for (int u = 0; u != _res_node_num; ++u) {
  1122             pi[u] = static_cast<double>(_pi[u]) / cycle_size;
  1123           }
  1124         
  1125           iter = limit;
  1126         }
  1127       }
  1128     }
  1129 
  1130   }; //class CycleCanceling
  1131 
  1132   ///@}
  1133 
  1134 } //namespace lemon
  1135 
  1136 #endif //LEMON_CYCLE_CANCELING_H