lemon/cycle_canceling.h
author Peter Kovacs <kpeter@inf.elte.hu>
Fri, 13 Nov 2009 00:10:33 +0100
changeset 881 aef153f430e1
parent 880 0643a9c2c3ae
child 882 277ef0218f0c
permissions -rw-r--r--
Entirely rework cycle canceling algorithms (#180)

- Move the cycle canceling algorithms (CycleCanceling, CancelAndTighten)
into one class (CycleCanceling).
- Add a Method parameter to the run() function to be able to select
the used cycle canceling method.
- Use the new interface similarly to NetworkSimplex.
- Rework the implementations using an efficient internal structure
for handling the residual network.
This improvement made the codes much faster.
- Handle GEQ supply type (LEQ is not supported).
- Handle infinite upper bounds.
- Handle negative costs (for arcs of finite upper bound).
- Extend the documentation.
kpeter@880
     1
/* -*- C++ -*-
kpeter@880
     2
 *
kpeter@880
     3
 * This file is a part of LEMON, a generic C++ optimization library
kpeter@880
     4
 *
kpeter@880
     5
 * Copyright (C) 2003-2008
kpeter@880
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
kpeter@880
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
kpeter@880
     8
 *
kpeter@880
     9
 * Permission to use, modify and distribute this software is granted
kpeter@880
    10
 * provided that this copyright notice appears in all copies. For
kpeter@880
    11
 * precise terms see the accompanying LICENSE file.
kpeter@880
    12
 *
kpeter@880
    13
 * This software is provided "AS IS" with no warranty of any kind,
kpeter@880
    14
 * express or implied, and with no claim as to its suitability for any
kpeter@880
    15
 * purpose.
kpeter@880
    16
 *
kpeter@880
    17
 */
kpeter@880
    18
kpeter@880
    19
#ifndef LEMON_CYCLE_CANCELING_H
kpeter@880
    20
#define LEMON_CYCLE_CANCELING_H
kpeter@880
    21
kpeter@881
    22
/// \ingroup min_cost_flow_algs
kpeter@880
    23
/// \file
kpeter@881
    24
/// \brief Cycle-canceling algorithms for finding a minimum cost flow.
kpeter@880
    25
kpeter@880
    26
#include <vector>
kpeter@881
    27
#include <limits>
kpeter@881
    28
kpeter@881
    29
#include <lemon/core.h>
kpeter@881
    30
#include <lemon/maps.h>
kpeter@881
    31
#include <lemon/path.h>
kpeter@881
    32
#include <lemon/math.h>
kpeter@881
    33
#include <lemon/static_graph.h>
kpeter@880
    34
#include <lemon/adaptors.h>
kpeter@880
    35
#include <lemon/circulation.h>
kpeter@880
    36
#include <lemon/bellman_ford.h>
kpeter@880
    37
#include <lemon/howard.h>
kpeter@880
    38
kpeter@880
    39
namespace lemon {
kpeter@880
    40
kpeter@881
    41
  /// \addtogroup min_cost_flow_algs
kpeter@880
    42
  /// @{
kpeter@880
    43
kpeter@881
    44
  /// \brief Implementation of cycle-canceling algorithms for
kpeter@881
    45
  /// finding a \ref min_cost_flow "minimum cost flow".
kpeter@880
    46
  ///
kpeter@881
    47
  /// \ref CycleCanceling implements three different cycle-canceling
kpeter@881
    48
  /// algorithms for finding a \ref min_cost_flow "minimum cost flow".
kpeter@881
    49
  /// The most efficent one (both theoretically and practically)
kpeter@881
    50
  /// is the \ref CANCEL_AND_TIGHTEN "Cancel and Tighten" algorithm,
kpeter@881
    51
  /// thus it is the default method.
kpeter@881
    52
  /// It is strongly polynomial, but in practice, it is typically much
kpeter@881
    53
  /// slower than the scaling algorithms and NetworkSimplex.
kpeter@880
    54
  ///
kpeter@881
    55
  /// Most of the parameters of the problem (except for the digraph)
kpeter@881
    56
  /// can be given using separate functions, and the algorithm can be
kpeter@881
    57
  /// executed using the \ref run() function. If some parameters are not
kpeter@881
    58
  /// specified, then default values will be used.
kpeter@880
    59
  ///
kpeter@881
    60
  /// \tparam GR The digraph type the algorithm runs on.
kpeter@881
    61
  /// \tparam V The number type used for flow amounts, capacity bounds
kpeter@881
    62
  /// and supply values in the algorithm. By default, it is \c int.
kpeter@881
    63
  /// \tparam C The number type used for costs and potentials in the
kpeter@881
    64
  /// algorithm. By default, it is the same as \c V.
kpeter@880
    65
  ///
kpeter@881
    66
  /// \warning Both number types must be signed and all input data must
kpeter@881
    67
  /// be integer.
kpeter@881
    68
  /// \warning This algorithm does not support negative costs for such
kpeter@881
    69
  /// arcs that have infinite upper bound.
kpeter@880
    70
  ///
kpeter@881
    71
  /// \note For more information about the three available methods,
kpeter@881
    72
  /// see \ref Method.
kpeter@881
    73
#ifdef DOXYGEN
kpeter@881
    74
  template <typename GR, typename V, typename C>
kpeter@881
    75
#else
kpeter@881
    76
  template <typename GR, typename V = int, typename C = V>
kpeter@881
    77
#endif
kpeter@880
    78
  class CycleCanceling
kpeter@880
    79
  {
kpeter@881
    80
  public:
kpeter@880
    81
kpeter@881
    82
    /// The type of the digraph
kpeter@881
    83
    typedef GR Digraph;
kpeter@881
    84
    /// The type of the flow amounts, capacity bounds and supply values
kpeter@881
    85
    typedef V Value;
kpeter@881
    86
    /// The type of the arc costs
kpeter@881
    87
    typedef C Cost;
kpeter@880
    88
kpeter@880
    89
  public:
kpeter@880
    90
kpeter@881
    91
    /// \brief Problem type constants for the \c run() function.
kpeter@881
    92
    ///
kpeter@881
    93
    /// Enum type containing the problem type constants that can be
kpeter@881
    94
    /// returned by the \ref run() function of the algorithm.
kpeter@881
    95
    enum ProblemType {
kpeter@881
    96
      /// The problem has no feasible solution (flow).
kpeter@881
    97
      INFEASIBLE,
kpeter@881
    98
      /// The problem has optimal solution (i.e. it is feasible and
kpeter@881
    99
      /// bounded), and the algorithm has found optimal flow and node
kpeter@881
   100
      /// potentials (primal and dual solutions).
kpeter@881
   101
      OPTIMAL,
kpeter@881
   102
      /// The digraph contains an arc of negative cost and infinite
kpeter@881
   103
      /// upper bound. It means that the objective function is unbounded
kpeter@881
   104
      /// on that arc, however, note that it could actually be bounded
kpeter@881
   105
      /// over the feasible flows, but this algroithm cannot handle
kpeter@881
   106
      /// these cases.
kpeter@881
   107
      UNBOUNDED
kpeter@881
   108
    };
kpeter@881
   109
kpeter@881
   110
    /// \brief Constants for selecting the used method.
kpeter@881
   111
    ///
kpeter@881
   112
    /// Enum type containing constants for selecting the used method
kpeter@881
   113
    /// for the \ref run() function.
kpeter@881
   114
    ///
kpeter@881
   115
    /// \ref CycleCanceling provides three different cycle-canceling
kpeter@881
   116
    /// methods. By default, \ref CANCEL_AND_TIGHTEN "Cancel and Tighten"
kpeter@881
   117
    /// is used, which proved to be the most efficient and the most robust
kpeter@881
   118
    /// on various test inputs.
kpeter@881
   119
    /// However, the other methods can be selected using the \ref run()
kpeter@881
   120
    /// function with the proper parameter.
kpeter@881
   121
    enum Method {
kpeter@881
   122
      /// A simple cycle-canceling method, which uses the
kpeter@881
   123
      /// \ref BellmanFord "Bellman-Ford" algorithm with limited iteration
kpeter@881
   124
      /// number for detecting negative cycles in the residual network.
kpeter@881
   125
      SIMPLE_CYCLE_CANCELING,
kpeter@881
   126
      /// The "Minimum Mean Cycle-Canceling" algorithm, which is a
kpeter@881
   127
      /// well-known strongly polynomial method. It improves along a
kpeter@881
   128
      /// \ref min_mean_cycle "minimum mean cycle" in each iteration.
kpeter@881
   129
      /// Its running time complexity is O(n<sup>2</sup>m<sup>3</sup>log(n)).
kpeter@881
   130
      MINIMUM_MEAN_CYCLE_CANCELING,
kpeter@881
   131
      /// The "Cancel And Tighten" algorithm, which can be viewed as an
kpeter@881
   132
      /// improved version of the previous method.
kpeter@881
   133
      /// It is faster both in theory and in practice, its running time
kpeter@881
   134
      /// complexity is O(n<sup>2</sup>m<sup>2</sup>log(n)).
kpeter@881
   135
      CANCEL_AND_TIGHTEN
kpeter@881
   136
    };
kpeter@880
   137
kpeter@880
   138
  private:
kpeter@880
   139
kpeter@881
   140
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
kpeter@881
   141
    
kpeter@881
   142
    typedef std::vector<int> IntVector;
kpeter@881
   143
    typedef std::vector<char> CharVector;
kpeter@881
   144
    typedef std::vector<double> DoubleVector;
kpeter@881
   145
    typedef std::vector<Value> ValueVector;
kpeter@881
   146
    typedef std::vector<Cost> CostVector;
kpeter@880
   147
kpeter@881
   148
  private:
kpeter@881
   149
  
kpeter@881
   150
    template <typename KT, typename VT>
kpeter@881
   151
    class VectorMap {
kpeter@880
   152
    public:
kpeter@881
   153
      typedef KT Key;
kpeter@881
   154
      typedef VT Value;
kpeter@881
   155
      
kpeter@881
   156
      VectorMap(std::vector<Value>& v) : _v(v) {}
kpeter@881
   157
      
kpeter@881
   158
      const Value& operator[](const Key& key) const {
kpeter@881
   159
        return _v[StaticDigraph::id(key)];
kpeter@880
   160
      }
kpeter@880
   161
kpeter@881
   162
      Value& operator[](const Key& key) {
kpeter@881
   163
        return _v[StaticDigraph::id(key)];
kpeter@881
   164
      }
kpeter@881
   165
      
kpeter@881
   166
      void set(const Key& key, const Value& val) {
kpeter@881
   167
        _v[StaticDigraph::id(key)] = val;
kpeter@881
   168
      }
kpeter@881
   169
kpeter@881
   170
    private:
kpeter@881
   171
      std::vector<Value>& _v;
kpeter@881
   172
    };
kpeter@881
   173
kpeter@881
   174
    typedef VectorMap<StaticDigraph::Node, Cost> CostNodeMap;
kpeter@881
   175
    typedef VectorMap<StaticDigraph::Arc, Cost> CostArcMap;
kpeter@880
   176
kpeter@880
   177
  private:
kpeter@880
   178
kpeter@880
   179
kpeter@881
   180
    // Data related to the underlying digraph
kpeter@881
   181
    const GR &_graph;
kpeter@881
   182
    int _node_num;
kpeter@881
   183
    int _arc_num;
kpeter@881
   184
    int _res_node_num;
kpeter@881
   185
    int _res_arc_num;
kpeter@881
   186
    int _root;
kpeter@880
   187
kpeter@881
   188
    // Parameters of the problem
kpeter@881
   189
    bool _have_lower;
kpeter@881
   190
    Value _sum_supply;
kpeter@880
   191
kpeter@881
   192
    // Data structures for storing the digraph
kpeter@881
   193
    IntNodeMap _node_id;
kpeter@881
   194
    IntArcMap _arc_idf;
kpeter@881
   195
    IntArcMap _arc_idb;
kpeter@881
   196
    IntVector _first_out;
kpeter@881
   197
    CharVector _forward;
kpeter@881
   198
    IntVector _source;
kpeter@881
   199
    IntVector _target;
kpeter@881
   200
    IntVector _reverse;
kpeter@880
   201
kpeter@881
   202
    // Node and arc data
kpeter@881
   203
    ValueVector _lower;
kpeter@881
   204
    ValueVector _upper;
kpeter@881
   205
    CostVector _cost;
kpeter@881
   206
    ValueVector _supply;
kpeter@881
   207
kpeter@881
   208
    ValueVector _res_cap;
kpeter@881
   209
    CostVector _pi;
kpeter@881
   210
kpeter@881
   211
    // Data for a StaticDigraph structure
kpeter@881
   212
    typedef std::pair<int, int> IntPair;
kpeter@881
   213
    StaticDigraph _sgr;
kpeter@881
   214
    std::vector<IntPair> _arc_vec;
kpeter@881
   215
    std::vector<Cost> _cost_vec;
kpeter@881
   216
    IntVector _id_vec;
kpeter@881
   217
    CostArcMap _cost_map;
kpeter@881
   218
    CostNodeMap _pi_map;
kpeter@881
   219
  
kpeter@881
   220
  public:
kpeter@881
   221
  
kpeter@881
   222
    /// \brief Constant for infinite upper bounds (capacities).
kpeter@881
   223
    ///
kpeter@881
   224
    /// Constant for infinite upper bounds (capacities).
kpeter@881
   225
    /// It is \c std::numeric_limits<Value>::infinity() if available,
kpeter@881
   226
    /// \c std::numeric_limits<Value>::max() otherwise.
kpeter@881
   227
    const Value INF;
kpeter@880
   228
kpeter@880
   229
  public:
kpeter@880
   230
kpeter@881
   231
    /// \brief Constructor.
kpeter@880
   232
    ///
kpeter@881
   233
    /// The constructor of the class.
kpeter@880
   234
    ///
kpeter@881
   235
    /// \param graph The digraph the algorithm runs on.
kpeter@881
   236
    CycleCanceling(const GR& graph) :
kpeter@881
   237
      _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
kpeter@881
   238
      _cost_map(_cost_vec), _pi_map(_pi),
kpeter@881
   239
      INF(std::numeric_limits<Value>::has_infinity ?
kpeter@881
   240
          std::numeric_limits<Value>::infinity() :
kpeter@881
   241
          std::numeric_limits<Value>::max())
kpeter@880
   242
    {
kpeter@881
   243
      // Check the number types
kpeter@881
   244
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
kpeter@881
   245
        "The flow type of CycleCanceling must be signed");
kpeter@881
   246
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
kpeter@881
   247
        "The cost type of CycleCanceling must be signed");
kpeter@881
   248
kpeter@881
   249
      // Resize vectors
kpeter@881
   250
      _node_num = countNodes(_graph);
kpeter@881
   251
      _arc_num = countArcs(_graph);
kpeter@881
   252
      _res_node_num = _node_num + 1;
kpeter@881
   253
      _res_arc_num = 2 * (_arc_num + _node_num);
kpeter@881
   254
      _root = _node_num;
kpeter@881
   255
kpeter@881
   256
      _first_out.resize(_res_node_num + 1);
kpeter@881
   257
      _forward.resize(_res_arc_num);
kpeter@881
   258
      _source.resize(_res_arc_num);
kpeter@881
   259
      _target.resize(_res_arc_num);
kpeter@881
   260
      _reverse.resize(_res_arc_num);
kpeter@881
   261
kpeter@881
   262
      _lower.resize(_res_arc_num);
kpeter@881
   263
      _upper.resize(_res_arc_num);
kpeter@881
   264
      _cost.resize(_res_arc_num);
kpeter@881
   265
      _supply.resize(_res_node_num);
kpeter@881
   266
      
kpeter@881
   267
      _res_cap.resize(_res_arc_num);
kpeter@881
   268
      _pi.resize(_res_node_num);
kpeter@881
   269
kpeter@881
   270
      _arc_vec.reserve(_res_arc_num);
kpeter@881
   271
      _cost_vec.reserve(_res_arc_num);
kpeter@881
   272
      _id_vec.reserve(_res_arc_num);
kpeter@881
   273
kpeter@881
   274
      // Copy the graph
kpeter@881
   275
      int i = 0, j = 0, k = 2 * _arc_num + _node_num;
kpeter@881
   276
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
kpeter@881
   277
        _node_id[n] = i;
kpeter@880
   278
      }
kpeter@881
   279
      i = 0;
kpeter@881
   280
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
kpeter@881
   281
        _first_out[i] = j;
kpeter@881
   282
        for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
kpeter@881
   283
          _arc_idf[a] = j;
kpeter@881
   284
          _forward[j] = true;
kpeter@881
   285
          _source[j] = i;
kpeter@881
   286
          _target[j] = _node_id[_graph.runningNode(a)];
kpeter@880
   287
        }
kpeter@881
   288
        for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
kpeter@881
   289
          _arc_idb[a] = j;
kpeter@881
   290
          _forward[j] = false;
kpeter@881
   291
          _source[j] = i;
kpeter@881
   292
          _target[j] = _node_id[_graph.runningNode(a)];
kpeter@881
   293
        }
kpeter@881
   294
        _forward[j] = false;
kpeter@881
   295
        _source[j] = i;
kpeter@881
   296
        _target[j] = _root;
kpeter@881
   297
        _reverse[j] = k;
kpeter@881
   298
        _forward[k] = true;
kpeter@881
   299
        _source[k] = _root;
kpeter@881
   300
        _target[k] = i;
kpeter@881
   301
        _reverse[k] = j;
kpeter@881
   302
        ++j; ++k;
kpeter@880
   303
      }
kpeter@881
   304
      _first_out[i] = j;
kpeter@881
   305
      _first_out[_res_node_num] = k;
kpeter@881
   306
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@881
   307
        int fi = _arc_idf[a];
kpeter@881
   308
        int bi = _arc_idb[a];
kpeter@881
   309
        _reverse[fi] = bi;
kpeter@881
   310
        _reverse[bi] = fi;
kpeter@881
   311
      }
kpeter@881
   312
      
kpeter@881
   313
      // Reset parameters
kpeter@881
   314
      reset();
kpeter@880
   315
    }
kpeter@880
   316
kpeter@881
   317
    /// \name Parameters
kpeter@881
   318
    /// The parameters of the algorithm can be specified using these
kpeter@881
   319
    /// functions.
kpeter@881
   320
kpeter@881
   321
    /// @{
kpeter@881
   322
kpeter@881
   323
    /// \brief Set the lower bounds on the arcs.
kpeter@880
   324
    ///
kpeter@881
   325
    /// This function sets the lower bounds on the arcs.
kpeter@881
   326
    /// If it is not used before calling \ref run(), the lower bounds
kpeter@881
   327
    /// will be set to zero on all arcs.
kpeter@880
   328
    ///
kpeter@881
   329
    /// \param map An arc map storing the lower bounds.
kpeter@881
   330
    /// Its \c Value type must be convertible to the \c Value type
kpeter@881
   331
    /// of the algorithm.
kpeter@881
   332
    ///
kpeter@881
   333
    /// \return <tt>(*this)</tt>
kpeter@881
   334
    template <typename LowerMap>
kpeter@881
   335
    CycleCanceling& lowerMap(const LowerMap& map) {
kpeter@881
   336
      _have_lower = true;
kpeter@881
   337
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@881
   338
        _lower[_arc_idf[a]] = map[a];
kpeter@881
   339
        _lower[_arc_idb[a]] = map[a];
kpeter@880
   340
      }
kpeter@880
   341
      return *this;
kpeter@880
   342
    }
kpeter@880
   343
kpeter@881
   344
    /// \brief Set the upper bounds (capacities) on the arcs.
kpeter@880
   345
    ///
kpeter@881
   346
    /// This function sets the upper bounds (capacities) on the arcs.
kpeter@881
   347
    /// If it is not used before calling \ref run(), the upper bounds
kpeter@881
   348
    /// will be set to \ref INF on all arcs (i.e. the flow value will be
kpeter@881
   349
    /// unbounded from above).
kpeter@880
   350
    ///
kpeter@881
   351
    /// \param map An arc map storing the upper bounds.
kpeter@881
   352
    /// Its \c Value type must be convertible to the \c Value type
kpeter@881
   353
    /// of the algorithm.
kpeter@881
   354
    ///
kpeter@881
   355
    /// \return <tt>(*this)</tt>
kpeter@881
   356
    template<typename UpperMap>
kpeter@881
   357
    CycleCanceling& upperMap(const UpperMap& map) {
kpeter@881
   358
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@881
   359
        _upper[_arc_idf[a]] = map[a];
kpeter@880
   360
      }
kpeter@880
   361
      return *this;
kpeter@880
   362
    }
kpeter@880
   363
kpeter@881
   364
    /// \brief Set the costs of the arcs.
kpeter@881
   365
    ///
kpeter@881
   366
    /// This function sets the costs of the arcs.
kpeter@881
   367
    /// If it is not used before calling \ref run(), the costs
kpeter@881
   368
    /// will be set to \c 1 on all arcs.
kpeter@881
   369
    ///
kpeter@881
   370
    /// \param map An arc map storing the costs.
kpeter@881
   371
    /// Its \c Value type must be convertible to the \c Cost type
kpeter@881
   372
    /// of the algorithm.
kpeter@881
   373
    ///
kpeter@881
   374
    /// \return <tt>(*this)</tt>
kpeter@881
   375
    template<typename CostMap>
kpeter@881
   376
    CycleCanceling& costMap(const CostMap& map) {
kpeter@881
   377
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@881
   378
        _cost[_arc_idf[a]] =  map[a];
kpeter@881
   379
        _cost[_arc_idb[a]] = -map[a];
kpeter@881
   380
      }
kpeter@881
   381
      return *this;
kpeter@881
   382
    }
kpeter@881
   383
kpeter@881
   384
    /// \brief Set the supply values of the nodes.
kpeter@881
   385
    ///
kpeter@881
   386
    /// This function sets the supply values of the nodes.
kpeter@881
   387
    /// If neither this function nor \ref stSupply() is used before
kpeter@881
   388
    /// calling \ref run(), the supply of each node will be set to zero.
kpeter@881
   389
    ///
kpeter@881
   390
    /// \param map A node map storing the supply values.
kpeter@881
   391
    /// Its \c Value type must be convertible to the \c Value type
kpeter@881
   392
    /// of the algorithm.
kpeter@881
   393
    ///
kpeter@881
   394
    /// \return <tt>(*this)</tt>
kpeter@881
   395
    template<typename SupplyMap>
kpeter@881
   396
    CycleCanceling& supplyMap(const SupplyMap& map) {
kpeter@881
   397
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@881
   398
        _supply[_node_id[n]] = map[n];
kpeter@881
   399
      }
kpeter@881
   400
      return *this;
kpeter@881
   401
    }
kpeter@881
   402
kpeter@881
   403
    /// \brief Set single source and target nodes and a supply value.
kpeter@881
   404
    ///
kpeter@881
   405
    /// This function sets a single source node and a single target node
kpeter@881
   406
    /// and the required flow value.
kpeter@881
   407
    /// If neither this function nor \ref supplyMap() is used before
kpeter@881
   408
    /// calling \ref run(), the supply of each node will be set to zero.
kpeter@881
   409
    ///
kpeter@881
   410
    /// Using this function has the same effect as using \ref supplyMap()
kpeter@881
   411
    /// with such a map in which \c k is assigned to \c s, \c -k is
kpeter@881
   412
    /// assigned to \c t and all other nodes have zero supply value.
kpeter@881
   413
    ///
kpeter@881
   414
    /// \param s The source node.
kpeter@881
   415
    /// \param t The target node.
kpeter@881
   416
    /// \param k The required amount of flow from node \c s to node \c t
kpeter@881
   417
    /// (i.e. the supply of \c s and the demand of \c t).
kpeter@881
   418
    ///
kpeter@881
   419
    /// \return <tt>(*this)</tt>
kpeter@881
   420
    CycleCanceling& stSupply(const Node& s, const Node& t, Value k) {
kpeter@881
   421
      for (int i = 0; i != _res_node_num; ++i) {
kpeter@881
   422
        _supply[i] = 0;
kpeter@881
   423
      }
kpeter@881
   424
      _supply[_node_id[s]] =  k;
kpeter@881
   425
      _supply[_node_id[t]] = -k;
kpeter@881
   426
      return *this;
kpeter@881
   427
    }
kpeter@881
   428
    
kpeter@881
   429
    /// @}
kpeter@881
   430
kpeter@880
   431
    /// \name Execution control
kpeter@881
   432
    /// The algorithm can be executed using \ref run().
kpeter@880
   433
kpeter@880
   434
    /// @{
kpeter@880
   435
kpeter@880
   436
    /// \brief Run the algorithm.
kpeter@880
   437
    ///
kpeter@881
   438
    /// This function runs the algorithm.
kpeter@881
   439
    /// The paramters can be specified using functions \ref lowerMap(),
kpeter@881
   440
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
kpeter@881
   441
    /// For example,
kpeter@881
   442
    /// \code
kpeter@881
   443
    ///   CycleCanceling<ListDigraph> cc(graph);
kpeter@881
   444
    ///   cc.lowerMap(lower).upperMap(upper).costMap(cost)
kpeter@881
   445
    ///     .supplyMap(sup).run();
kpeter@881
   446
    /// \endcode
kpeter@880
   447
    ///
kpeter@881
   448
    /// This function can be called more than once. All the parameters
kpeter@881
   449
    /// that have been given are kept for the next call, unless
kpeter@881
   450
    /// \ref reset() is called, thus only the modified parameters
kpeter@881
   451
    /// have to be set again. See \ref reset() for examples.
kpeter@881
   452
    /// However, the underlying digraph must not be modified after this
kpeter@881
   453
    /// class have been constructed, since it copies and extends the graph.
kpeter@880
   454
    ///
kpeter@881
   455
    /// \param method The cycle-canceling method that will be used.
kpeter@881
   456
    /// For more information, see \ref Method.
kpeter@881
   457
    ///
kpeter@881
   458
    /// \return \c INFEASIBLE if no feasible flow exists,
kpeter@881
   459
    /// \n \c OPTIMAL if the problem has optimal solution
kpeter@881
   460
    /// (i.e. it is feasible and bounded), and the algorithm has found
kpeter@881
   461
    /// optimal flow and node potentials (primal and dual solutions),
kpeter@881
   462
    /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
kpeter@881
   463
    /// and infinite upper bound. It means that the objective function
kpeter@881
   464
    /// is unbounded on that arc, however, note that it could actually be
kpeter@881
   465
    /// bounded over the feasible flows, but this algroithm cannot handle
kpeter@881
   466
    /// these cases.
kpeter@881
   467
    ///
kpeter@881
   468
    /// \see ProblemType, Method
kpeter@881
   469
    ProblemType run(Method method = CANCEL_AND_TIGHTEN) {
kpeter@881
   470
      ProblemType pt = init();
kpeter@881
   471
      if (pt != OPTIMAL) return pt;
kpeter@881
   472
      start(method);
kpeter@881
   473
      return OPTIMAL;
kpeter@881
   474
    }
kpeter@881
   475
kpeter@881
   476
    /// \brief Reset all the parameters that have been given before.
kpeter@881
   477
    ///
kpeter@881
   478
    /// This function resets all the paramaters that have been given
kpeter@881
   479
    /// before using functions \ref lowerMap(), \ref upperMap(),
kpeter@881
   480
    /// \ref costMap(), \ref supplyMap(), \ref stSupply().
kpeter@881
   481
    ///
kpeter@881
   482
    /// It is useful for multiple run() calls. If this function is not
kpeter@881
   483
    /// used, all the parameters given before are kept for the next
kpeter@881
   484
    /// \ref run() call.
kpeter@881
   485
    /// However, the underlying digraph must not be modified after this
kpeter@881
   486
    /// class have been constructed, since it copies and extends the graph.
kpeter@881
   487
    ///
kpeter@881
   488
    /// For example,
kpeter@881
   489
    /// \code
kpeter@881
   490
    ///   CycleCanceling<ListDigraph> cs(graph);
kpeter@881
   491
    ///
kpeter@881
   492
    ///   // First run
kpeter@881
   493
    ///   cc.lowerMap(lower).upperMap(upper).costMap(cost)
kpeter@881
   494
    ///     .supplyMap(sup).run();
kpeter@881
   495
    ///
kpeter@881
   496
    ///   // Run again with modified cost map (reset() is not called,
kpeter@881
   497
    ///   // so only the cost map have to be set again)
kpeter@881
   498
    ///   cost[e] += 100;
kpeter@881
   499
    ///   cc.costMap(cost).run();
kpeter@881
   500
    ///
kpeter@881
   501
    ///   // Run again from scratch using reset()
kpeter@881
   502
    ///   // (the lower bounds will be set to zero on all arcs)
kpeter@881
   503
    ///   cc.reset();
kpeter@881
   504
    ///   cc.upperMap(capacity).costMap(cost)
kpeter@881
   505
    ///     .supplyMap(sup).run();
kpeter@881
   506
    /// \endcode
kpeter@881
   507
    ///
kpeter@881
   508
    /// \return <tt>(*this)</tt>
kpeter@881
   509
    CycleCanceling& reset() {
kpeter@881
   510
      for (int i = 0; i != _res_node_num; ++i) {
kpeter@881
   511
        _supply[i] = 0;
kpeter@881
   512
      }
kpeter@881
   513
      int limit = _first_out[_root];
kpeter@881
   514
      for (int j = 0; j != limit; ++j) {
kpeter@881
   515
        _lower[j] = 0;
kpeter@881
   516
        _upper[j] = INF;
kpeter@881
   517
        _cost[j] = _forward[j] ? 1 : -1;
kpeter@881
   518
      }
kpeter@881
   519
      for (int j = limit; j != _res_arc_num; ++j) {
kpeter@881
   520
        _lower[j] = 0;
kpeter@881
   521
        _upper[j] = INF;
kpeter@881
   522
        _cost[j] = 0;
kpeter@881
   523
        _cost[_reverse[j]] = 0;
kpeter@881
   524
      }      
kpeter@881
   525
      _have_lower = false;
kpeter@881
   526
      return *this;
kpeter@880
   527
    }
kpeter@880
   528
kpeter@880
   529
    /// @}
kpeter@880
   530
kpeter@880
   531
    /// \name Query Functions
kpeter@881
   532
    /// The results of the algorithm can be obtained using these
kpeter@880
   533
    /// functions.\n
kpeter@881
   534
    /// The \ref run() function must be called before using them.
kpeter@880
   535
kpeter@880
   536
    /// @{
kpeter@880
   537
kpeter@881
   538
    /// \brief Return the total cost of the found flow.
kpeter@880
   539
    ///
kpeter@881
   540
    /// This function returns the total cost of the found flow.
kpeter@881
   541
    /// Its complexity is O(e).
kpeter@881
   542
    ///
kpeter@881
   543
    /// \note The return type of the function can be specified as a
kpeter@881
   544
    /// template parameter. For example,
kpeter@881
   545
    /// \code
kpeter@881
   546
    ///   cc.totalCost<double>();
kpeter@881
   547
    /// \endcode
kpeter@881
   548
    /// It is useful if the total cost cannot be stored in the \c Cost
kpeter@881
   549
    /// type of the algorithm, which is the default return type of the
kpeter@881
   550
    /// function.
kpeter@880
   551
    ///
kpeter@880
   552
    /// \pre \ref run() must be called before using this function.
kpeter@881
   553
    template <typename Number>
kpeter@881
   554
    Number totalCost() const {
kpeter@881
   555
      Number c = 0;
kpeter@881
   556
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@881
   557
        int i = _arc_idb[a];
kpeter@881
   558
        c += static_cast<Number>(_res_cap[i]) *
kpeter@881
   559
             (-static_cast<Number>(_cost[i]));
kpeter@881
   560
      }
kpeter@881
   561
      return c;
kpeter@880
   562
    }
kpeter@880
   563
kpeter@881
   564
#ifndef DOXYGEN
kpeter@881
   565
    Cost totalCost() const {
kpeter@881
   566
      return totalCost<Cost>();
kpeter@880
   567
    }
kpeter@881
   568
#endif
kpeter@880
   569
kpeter@880
   570
    /// \brief Return the flow on the given arc.
kpeter@880
   571
    ///
kpeter@881
   572
    /// This function returns the flow on the given arc.
kpeter@880
   573
    ///
kpeter@880
   574
    /// \pre \ref run() must be called before using this function.
kpeter@881
   575
    Value flow(const Arc& a) const {
kpeter@881
   576
      return _res_cap[_arc_idb[a]];
kpeter@880
   577
    }
kpeter@880
   578
kpeter@881
   579
    /// \brief Return the flow map (the primal solution).
kpeter@880
   580
    ///
kpeter@881
   581
    /// This function copies the flow value on each arc into the given
kpeter@881
   582
    /// map. The \c Value type of the algorithm must be convertible to
kpeter@881
   583
    /// the \c Value type of the map.
kpeter@880
   584
    ///
kpeter@880
   585
    /// \pre \ref run() must be called before using this function.
kpeter@881
   586
    template <typename FlowMap>
kpeter@881
   587
    void flowMap(FlowMap &map) const {
kpeter@881
   588
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@881
   589
        map.set(a, _res_cap[_arc_idb[a]]);
kpeter@881
   590
      }
kpeter@880
   591
    }
kpeter@880
   592
kpeter@881
   593
    /// \brief Return the potential (dual value) of the given node.
kpeter@880
   594
    ///
kpeter@881
   595
    /// This function returns the potential (dual value) of the
kpeter@881
   596
    /// given node.
kpeter@880
   597
    ///
kpeter@880
   598
    /// \pre \ref run() must be called before using this function.
kpeter@881
   599
    Cost potential(const Node& n) const {
kpeter@881
   600
      return static_cast<Cost>(_pi[_node_id[n]]);
kpeter@881
   601
    }
kpeter@881
   602
kpeter@881
   603
    /// \brief Return the potential map (the dual solution).
kpeter@881
   604
    ///
kpeter@881
   605
    /// This function copies the potential (dual value) of each node
kpeter@881
   606
    /// into the given map.
kpeter@881
   607
    /// The \c Cost type of the algorithm must be convertible to the
kpeter@881
   608
    /// \c Value type of the map.
kpeter@881
   609
    ///
kpeter@881
   610
    /// \pre \ref run() must be called before using this function.
kpeter@881
   611
    template <typename PotentialMap>
kpeter@881
   612
    void potentialMap(PotentialMap &map) const {
kpeter@881
   613
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@881
   614
        map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
kpeter@881
   615
      }
kpeter@880
   616
    }
kpeter@880
   617
kpeter@880
   618
    /// @}
kpeter@880
   619
kpeter@880
   620
  private:
kpeter@880
   621
kpeter@881
   622
    // Initialize the algorithm
kpeter@881
   623
    ProblemType init() {
kpeter@881
   624
      if (_res_node_num <= 1) return INFEASIBLE;
kpeter@880
   625
kpeter@881
   626
      // Check the sum of supply values
kpeter@881
   627
      _sum_supply = 0;
kpeter@881
   628
      for (int i = 0; i != _root; ++i) {
kpeter@881
   629
        _sum_supply += _supply[i];
kpeter@880
   630
      }
kpeter@881
   631
      if (_sum_supply > 0) return INFEASIBLE;
kpeter@881
   632
      
kpeter@881
   633
kpeter@881
   634
      // Initialize vectors
kpeter@881
   635
      for (int i = 0; i != _res_node_num; ++i) {
kpeter@881
   636
        _pi[i] = 0;
kpeter@881
   637
      }
kpeter@881
   638
      ValueVector excess(_supply);
kpeter@881
   639
      
kpeter@881
   640
      // Remove infinite upper bounds and check negative arcs
kpeter@881
   641
      const Value MAX = std::numeric_limits<Value>::max();
kpeter@881
   642
      int last_out;
kpeter@881
   643
      if (_have_lower) {
kpeter@881
   644
        for (int i = 0; i != _root; ++i) {
kpeter@881
   645
          last_out = _first_out[i+1];
kpeter@881
   646
          for (int j = _first_out[i]; j != last_out; ++j) {
kpeter@881
   647
            if (_forward[j]) {
kpeter@881
   648
              Value c = _cost[j] < 0 ? _upper[j] : _lower[j];
kpeter@881
   649
              if (c >= MAX) return UNBOUNDED;
kpeter@881
   650
              excess[i] -= c;
kpeter@881
   651
              excess[_target[j]] += c;
kpeter@881
   652
            }
kpeter@881
   653
          }
kpeter@881
   654
        }
kpeter@881
   655
      } else {
kpeter@881
   656
        for (int i = 0; i != _root; ++i) {
kpeter@881
   657
          last_out = _first_out[i+1];
kpeter@881
   658
          for (int j = _first_out[i]; j != last_out; ++j) {
kpeter@881
   659
            if (_forward[j] && _cost[j] < 0) {
kpeter@881
   660
              Value c = _upper[j];
kpeter@881
   661
              if (c >= MAX) return UNBOUNDED;
kpeter@881
   662
              excess[i] -= c;
kpeter@881
   663
              excess[_target[j]] += c;
kpeter@881
   664
            }
kpeter@881
   665
          }
kpeter@881
   666
        }
kpeter@881
   667
      }
kpeter@881
   668
      Value ex, max_cap = 0;
kpeter@881
   669
      for (int i = 0; i != _res_node_num; ++i) {
kpeter@881
   670
        ex = excess[i];
kpeter@881
   671
        if (ex < 0) max_cap -= ex;
kpeter@881
   672
      }
kpeter@881
   673
      for (int j = 0; j != _res_arc_num; ++j) {
kpeter@881
   674
        if (_upper[j] >= MAX) _upper[j] = max_cap;
kpeter@880
   675
      }
kpeter@880
   676
kpeter@881
   677
      // Initialize maps for Circulation and remove non-zero lower bounds
kpeter@881
   678
      ConstMap<Arc, Value> low(0);
kpeter@881
   679
      typedef typename Digraph::template ArcMap<Value> ValueArcMap;
kpeter@881
   680
      typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
kpeter@881
   681
      ValueArcMap cap(_graph), flow(_graph);
kpeter@881
   682
      ValueNodeMap sup(_graph);
kpeter@881
   683
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@881
   684
        sup[n] = _supply[_node_id[n]];
kpeter@881
   685
      }
kpeter@881
   686
      if (_have_lower) {
kpeter@881
   687
        for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@881
   688
          int j = _arc_idf[a];
kpeter@881
   689
          Value c = _lower[j];
kpeter@881
   690
          cap[a] = _upper[j] - c;
kpeter@881
   691
          sup[_graph.source(a)] -= c;
kpeter@881
   692
          sup[_graph.target(a)] += c;
kpeter@881
   693
        }
kpeter@881
   694
      } else {
kpeter@881
   695
        for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@881
   696
          cap[a] = _upper[_arc_idf[a]];
kpeter@881
   697
        }
kpeter@881
   698
      }
kpeter@880
   699
kpeter@881
   700
      // Find a feasible flow using Circulation
kpeter@881
   701
      Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
kpeter@881
   702
        circ(_graph, low, cap, sup);
kpeter@881
   703
      if (!circ.flowMap(flow).run()) return INFEASIBLE;
kpeter@881
   704
kpeter@881
   705
      // Set residual capacities and handle GEQ supply type
kpeter@881
   706
      if (_sum_supply < 0) {
kpeter@881
   707
        for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@881
   708
          Value fa = flow[a];
kpeter@881
   709
          _res_cap[_arc_idf[a]] = cap[a] - fa;
kpeter@881
   710
          _res_cap[_arc_idb[a]] = fa;
kpeter@881
   711
          sup[_graph.source(a)] -= fa;
kpeter@881
   712
          sup[_graph.target(a)] += fa;
kpeter@881
   713
        }
kpeter@881
   714
        for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@881
   715
          excess[_node_id[n]] = sup[n];
kpeter@881
   716
        }
kpeter@881
   717
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
kpeter@881
   718
          int u = _target[a];
kpeter@881
   719
          int ra = _reverse[a];
kpeter@881
   720
          _res_cap[a] = -_sum_supply + 1;
kpeter@881
   721
          _res_cap[ra] = -excess[u];
kpeter@881
   722
          _cost[a] = 0;
kpeter@881
   723
          _cost[ra] = 0;
kpeter@881
   724
        }
kpeter@881
   725
      } else {
kpeter@881
   726
        for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@881
   727
          Value fa = flow[a];
kpeter@881
   728
          _res_cap[_arc_idf[a]] = cap[a] - fa;
kpeter@881
   729
          _res_cap[_arc_idb[a]] = fa;
kpeter@881
   730
        }
kpeter@881
   731
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
kpeter@881
   732
          int ra = _reverse[a];
kpeter@881
   733
          _res_cap[a] = 1;
kpeter@881
   734
          _res_cap[ra] = 0;
kpeter@881
   735
          _cost[a] = 0;
kpeter@881
   736
          _cost[ra] = 0;
kpeter@881
   737
        }
kpeter@881
   738
      }
kpeter@881
   739
      
kpeter@881
   740
      return OPTIMAL;
kpeter@881
   741
    }
kpeter@881
   742
    
kpeter@881
   743
    // Build a StaticDigraph structure containing the current
kpeter@881
   744
    // residual network
kpeter@881
   745
    void buildResidualNetwork() {
kpeter@881
   746
      _arc_vec.clear();
kpeter@881
   747
      _cost_vec.clear();
kpeter@881
   748
      _id_vec.clear();
kpeter@881
   749
      for (int j = 0; j != _res_arc_num; ++j) {
kpeter@881
   750
        if (_res_cap[j] > 0) {
kpeter@881
   751
          _arc_vec.push_back(IntPair(_source[j], _target[j]));
kpeter@881
   752
          _cost_vec.push_back(_cost[j]);
kpeter@881
   753
          _id_vec.push_back(j);
kpeter@881
   754
        }
kpeter@881
   755
      }
kpeter@881
   756
      _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
kpeter@880
   757
    }
kpeter@880
   758
kpeter@881
   759
    // Execute the algorithm and transform the results
kpeter@881
   760
    void start(Method method) {
kpeter@881
   761
      // Execute the algorithm
kpeter@881
   762
      switch (method) {
kpeter@881
   763
        case SIMPLE_CYCLE_CANCELING:
kpeter@881
   764
          startSimpleCycleCanceling();
kpeter@881
   765
          break;
kpeter@881
   766
        case MINIMUM_MEAN_CYCLE_CANCELING:
kpeter@881
   767
          startMinMeanCycleCanceling();
kpeter@881
   768
          break;
kpeter@881
   769
        case CANCEL_AND_TIGHTEN:
kpeter@881
   770
          startCancelAndTighten();
kpeter@881
   771
          break;
kpeter@881
   772
      }
kpeter@880
   773
kpeter@881
   774
      // Compute node potentials
kpeter@881
   775
      if (method != SIMPLE_CYCLE_CANCELING) {
kpeter@881
   776
        buildResidualNetwork();
kpeter@881
   777
        typename BellmanFord<StaticDigraph, CostArcMap>
kpeter@881
   778
          ::template SetDistMap<CostNodeMap>::Create bf(_sgr, _cost_map);
kpeter@881
   779
        bf.distMap(_pi_map);
kpeter@881
   780
        bf.init(0);
kpeter@881
   781
        bf.start();
kpeter@880
   782
      }
kpeter@881
   783
kpeter@881
   784
      // Handle non-zero lower bounds
kpeter@881
   785
      if (_have_lower) {
kpeter@881
   786
        int limit = _first_out[_root];
kpeter@881
   787
        for (int j = 0; j != limit; ++j) {
kpeter@881
   788
          if (!_forward[j]) _res_cap[j] += _lower[j];
kpeter@881
   789
        }
kpeter@881
   790
      }
kpeter@880
   791
    }
kpeter@880
   792
kpeter@881
   793
    // Execute the "Simple Cycle Canceling" method
kpeter@881
   794
    void startSimpleCycleCanceling() {
kpeter@881
   795
      // Constants for computing the iteration limits
kpeter@881
   796
      const int BF_FIRST_LIMIT  = 2;
kpeter@881
   797
      const double BF_LIMIT_FACTOR = 1.5;
kpeter@881
   798
      
kpeter@881
   799
      typedef VectorMap<StaticDigraph::Arc, Value> FilterMap;
kpeter@881
   800
      typedef FilterArcs<StaticDigraph, FilterMap> ResDigraph;
kpeter@881
   801
      typedef VectorMap<StaticDigraph::Node, StaticDigraph::Arc> PredMap;
kpeter@881
   802
      typedef typename BellmanFord<ResDigraph, CostArcMap>
kpeter@881
   803
        ::template SetDistMap<CostNodeMap>
kpeter@881
   804
        ::template SetPredMap<PredMap>::Create BF;
kpeter@881
   805
      
kpeter@881
   806
      // Build the residual network
kpeter@881
   807
      _arc_vec.clear();
kpeter@881
   808
      _cost_vec.clear();
kpeter@881
   809
      for (int j = 0; j != _res_arc_num; ++j) {
kpeter@881
   810
        _arc_vec.push_back(IntPair(_source[j], _target[j]));
kpeter@881
   811
        _cost_vec.push_back(_cost[j]);
kpeter@881
   812
      }
kpeter@881
   813
      _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
kpeter@881
   814
kpeter@881
   815
      FilterMap filter_map(_res_cap);
kpeter@881
   816
      ResDigraph rgr(_sgr, filter_map);
kpeter@881
   817
      std::vector<int> cycle;
kpeter@881
   818
      std::vector<StaticDigraph::Arc> pred(_res_arc_num);
kpeter@881
   819
      PredMap pred_map(pred);
kpeter@881
   820
      BF bf(rgr, _cost_map);
kpeter@881
   821
      bf.distMap(_pi_map).predMap(pred_map);
kpeter@880
   822
kpeter@880
   823
      int length_bound = BF_FIRST_LIMIT;
kpeter@880
   824
      bool optimal = false;
kpeter@880
   825
      while (!optimal) {
kpeter@880
   826
        bf.init(0);
kpeter@880
   827
        int iter_num = 0;
kpeter@880
   828
        bool cycle_found = false;
kpeter@880
   829
        while (!cycle_found) {
kpeter@881
   830
          // Perform some iterations of the Bellman-Ford algorithm
kpeter@881
   831
          int curr_iter_num = iter_num + length_bound <= _node_num ?
kpeter@881
   832
            length_bound : _node_num - iter_num;
kpeter@880
   833
          iter_num += curr_iter_num;
kpeter@880
   834
          int real_iter_num = curr_iter_num;
kpeter@880
   835
          for (int i = 0; i < curr_iter_num; ++i) {
kpeter@880
   836
            if (bf.processNextWeakRound()) {
kpeter@880
   837
              real_iter_num = i;
kpeter@880
   838
              break;
kpeter@880
   839
            }
kpeter@880
   840
          }
kpeter@880
   841
          if (real_iter_num < curr_iter_num) {
kpeter@880
   842
            // Optimal flow is found
kpeter@880
   843
            optimal = true;
kpeter@880
   844
            break;
kpeter@880
   845
          } else {
kpeter@881
   846
            // Search for node disjoint negative cycles
kpeter@881
   847
            std::vector<int> state(_res_node_num, 0);
kpeter@880
   848
            int id = 0;
kpeter@881
   849
            for (int u = 0; u != _res_node_num; ++u) {
kpeter@881
   850
              if (state[u] != 0) continue;
kpeter@881
   851
              ++id;
kpeter@881
   852
              int v = u;
kpeter@881
   853
              for (; v != -1 && state[v] == 0; v = pred[v] == INVALID ?
kpeter@881
   854
                   -1 : rgr.id(rgr.source(pred[v]))) {
kpeter@881
   855
                state[v] = id;
kpeter@880
   856
              }
kpeter@881
   857
              if (v != -1 && state[v] == id) {
kpeter@881
   858
                // A negative cycle is found
kpeter@880
   859
                cycle_found = true;
kpeter@880
   860
                cycle.clear();
kpeter@881
   861
                StaticDigraph::Arc a = pred[v];
kpeter@881
   862
                Value d, delta = _res_cap[rgr.id(a)];
kpeter@881
   863
                cycle.push_back(rgr.id(a));
kpeter@881
   864
                while (rgr.id(rgr.source(a)) != v) {
kpeter@881
   865
                  a = pred_map[rgr.source(a)];
kpeter@881
   866
                  d = _res_cap[rgr.id(a)];
kpeter@881
   867
                  if (d < delta) delta = d;
kpeter@881
   868
                  cycle.push_back(rgr.id(a));
kpeter@880
   869
                }
kpeter@880
   870
kpeter@881
   871
                // Augment along the cycle
kpeter@881
   872
                for (int i = 0; i < int(cycle.size()); ++i) {
kpeter@881
   873
                  int j = cycle[i];
kpeter@881
   874
                  _res_cap[j] -= delta;
kpeter@881
   875
                  _res_cap[_reverse[j]] += delta;
kpeter@881
   876
                }
kpeter@880
   877
              }
kpeter@880
   878
            }
kpeter@880
   879
          }
kpeter@880
   880
kpeter@881
   881
          // Increase iteration limit if no cycle is found
kpeter@881
   882
          if (!cycle_found) {
kpeter@881
   883
            length_bound = static_cast<int>(length_bound * BF_LIMIT_FACTOR);
kpeter@881
   884
          }
kpeter@880
   885
        }
kpeter@880
   886
      }
kpeter@880
   887
    }
kpeter@880
   888
kpeter@881
   889
    // Execute the "Minimum Mean Cycle Canceling" method
kpeter@881
   890
    void startMinMeanCycleCanceling() {
kpeter@881
   891
      typedef SimplePath<StaticDigraph> SPath;
kpeter@881
   892
      typedef typename SPath::ArcIt SPathArcIt;
kpeter@881
   893
      typedef typename Howard<StaticDigraph, CostArcMap>
kpeter@881
   894
        ::template SetPath<SPath>::Create MMC;
kpeter@881
   895
      
kpeter@881
   896
      SPath cycle;
kpeter@881
   897
      MMC mmc(_sgr, _cost_map);
kpeter@881
   898
      mmc.cycle(cycle);
kpeter@881
   899
      buildResidualNetwork();
kpeter@881
   900
      while (mmc.findMinMean() && mmc.cycleLength() < 0) {
kpeter@881
   901
        // Find the cycle
kpeter@881
   902
        mmc.findCycle();
kpeter@880
   903
kpeter@881
   904
        // Compute delta value
kpeter@881
   905
        Value delta = INF;
kpeter@881
   906
        for (SPathArcIt a(cycle); a != INVALID; ++a) {
kpeter@881
   907
          Value d = _res_cap[_id_vec[_sgr.id(a)]];
kpeter@881
   908
          if (d < delta) delta = d;
kpeter@881
   909
        }
kpeter@880
   910
kpeter@881
   911
        // Augment along the cycle
kpeter@881
   912
        for (SPathArcIt a(cycle); a != INVALID; ++a) {
kpeter@881
   913
          int j = _id_vec[_sgr.id(a)];
kpeter@881
   914
          _res_cap[j] -= delta;
kpeter@881
   915
          _res_cap[_reverse[j]] += delta;
kpeter@881
   916
        }
kpeter@881
   917
kpeter@881
   918
        // Rebuild the residual network        
kpeter@881
   919
        buildResidualNetwork();
kpeter@881
   920
      }
kpeter@881
   921
    }
kpeter@881
   922
kpeter@881
   923
    // Execute the "Cancel And Tighten" method
kpeter@881
   924
    void startCancelAndTighten() {
kpeter@881
   925
      // Constants for the min mean cycle computations
kpeter@881
   926
      const double LIMIT_FACTOR = 1.0;
kpeter@881
   927
      const int MIN_LIMIT = 5;
kpeter@881
   928
kpeter@881
   929
      // Contruct auxiliary data vectors
kpeter@881
   930
      DoubleVector pi(_res_node_num, 0.0);
kpeter@881
   931
      IntVector level(_res_node_num);
kpeter@881
   932
      CharVector reached(_res_node_num);
kpeter@881
   933
      CharVector processed(_res_node_num);
kpeter@881
   934
      IntVector pred_node(_res_node_num);
kpeter@881
   935
      IntVector pred_arc(_res_node_num);
kpeter@881
   936
      std::vector<int> stack(_res_node_num);
kpeter@881
   937
      std::vector<int> proc_vector(_res_node_num);
kpeter@881
   938
kpeter@881
   939
      // Initialize epsilon
kpeter@881
   940
      double epsilon = 0;
kpeter@881
   941
      for (int a = 0; a != _res_arc_num; ++a) {
kpeter@881
   942
        if (_res_cap[a] > 0 && -_cost[a] > epsilon)
kpeter@881
   943
          epsilon = -_cost[a];
kpeter@881
   944
      }
kpeter@881
   945
kpeter@881
   946
      // Start phases
kpeter@881
   947
      Tolerance<double> tol;
kpeter@881
   948
      tol.epsilon(1e-6);
kpeter@881
   949
      int limit = int(LIMIT_FACTOR * std::sqrt(double(_res_node_num)));
kpeter@881
   950
      if (limit < MIN_LIMIT) limit = MIN_LIMIT;
kpeter@881
   951
      int iter = limit;
kpeter@881
   952
      while (epsilon * _res_node_num >= 1) {
kpeter@881
   953
        // Find and cancel cycles in the admissible network using DFS
kpeter@881
   954
        for (int u = 0; u != _res_node_num; ++u) {
kpeter@881
   955
          reached[u] = false;
kpeter@881
   956
          processed[u] = false;
kpeter@881
   957
        }
kpeter@881
   958
        int stack_head = -1;
kpeter@881
   959
        int proc_head = -1;
kpeter@881
   960
        for (int start = 0; start != _res_node_num; ++start) {
kpeter@881
   961
          if (reached[start]) continue;
kpeter@881
   962
kpeter@881
   963
          // New start node
kpeter@881
   964
          reached[start] = true;
kpeter@881
   965
          pred_arc[start] = -1;
kpeter@881
   966
          pred_node[start] = -1;
kpeter@881
   967
kpeter@881
   968
          // Find the first admissible outgoing arc
kpeter@881
   969
          double p = pi[start];
kpeter@881
   970
          int a = _first_out[start];
kpeter@881
   971
          int last_out = _first_out[start+1];
kpeter@881
   972
          for (; a != last_out && (_res_cap[a] == 0 ||
kpeter@881
   973
               !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
kpeter@881
   974
          if (a == last_out) {
kpeter@881
   975
            processed[start] = true;
kpeter@881
   976
            proc_vector[++proc_head] = start;
kpeter@881
   977
            continue;
kpeter@881
   978
          }
kpeter@881
   979
          stack[++stack_head] = a;
kpeter@881
   980
kpeter@881
   981
          while (stack_head >= 0) {
kpeter@881
   982
            int sa = stack[stack_head];
kpeter@881
   983
            int u = _source[sa];
kpeter@881
   984
            int v = _target[sa];
kpeter@881
   985
kpeter@881
   986
            if (!reached[v]) {
kpeter@881
   987
              // A new node is reached
kpeter@881
   988
              reached[v] = true;
kpeter@881
   989
              pred_node[v] = u;
kpeter@881
   990
              pred_arc[v] = sa;
kpeter@881
   991
              p = pi[v];
kpeter@881
   992
              a = _first_out[v];
kpeter@881
   993
              last_out = _first_out[v+1];
kpeter@881
   994
              for (; a != last_out && (_res_cap[a] == 0 ||
kpeter@881
   995
                   !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
kpeter@881
   996
              stack[++stack_head] = a == last_out ? -1 : a;
kpeter@881
   997
            } else {
kpeter@881
   998
              if (!processed[v]) {
kpeter@881
   999
                // A cycle is found
kpeter@881
  1000
                int n, w = u;
kpeter@881
  1001
                Value d, delta = _res_cap[sa];
kpeter@881
  1002
                for (n = u; n != v; n = pred_node[n]) {
kpeter@881
  1003
                  d = _res_cap[pred_arc[n]];
kpeter@881
  1004
                  if (d <= delta) {
kpeter@881
  1005
                    delta = d;
kpeter@881
  1006
                    w = pred_node[n];
kpeter@881
  1007
                  }
kpeter@881
  1008
                }
kpeter@881
  1009
kpeter@881
  1010
                // Augment along the cycle
kpeter@881
  1011
                _res_cap[sa] -= delta;
kpeter@881
  1012
                _res_cap[_reverse[sa]] += delta;
kpeter@881
  1013
                for (n = u; n != v; n = pred_node[n]) {
kpeter@881
  1014
                  int pa = pred_arc[n];
kpeter@881
  1015
                  _res_cap[pa] -= delta;
kpeter@881
  1016
                  _res_cap[_reverse[pa]] += delta;
kpeter@881
  1017
                }
kpeter@881
  1018
                for (n = u; stack_head > 0 && n != w; n = pred_node[n]) {
kpeter@881
  1019
                  --stack_head;
kpeter@881
  1020
                  reached[n] = false;
kpeter@881
  1021
                }
kpeter@881
  1022
                u = w;
kpeter@881
  1023
              }
kpeter@881
  1024
              v = u;
kpeter@881
  1025
kpeter@881
  1026
              // Find the next admissible outgoing arc
kpeter@881
  1027
              p = pi[v];
kpeter@881
  1028
              a = stack[stack_head] + 1;
kpeter@881
  1029
              last_out = _first_out[v+1];
kpeter@881
  1030
              for (; a != last_out && (_res_cap[a] == 0 ||
kpeter@881
  1031
                   !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
kpeter@881
  1032
              stack[stack_head] = a == last_out ? -1 : a;
kpeter@881
  1033
            }
kpeter@881
  1034
kpeter@881
  1035
            while (stack_head >= 0 && stack[stack_head] == -1) {
kpeter@881
  1036
              processed[v] = true;
kpeter@881
  1037
              proc_vector[++proc_head] = v;
kpeter@881
  1038
              if (--stack_head >= 0) {
kpeter@881
  1039
                // Find the next admissible outgoing arc
kpeter@881
  1040
                v = _source[stack[stack_head]];
kpeter@881
  1041
                p = pi[v];
kpeter@881
  1042
                a = stack[stack_head] + 1;
kpeter@881
  1043
                last_out = _first_out[v+1];
kpeter@881
  1044
                for (; a != last_out && (_res_cap[a] == 0 ||
kpeter@881
  1045
                     !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
kpeter@881
  1046
                stack[stack_head] = a == last_out ? -1 : a;
kpeter@881
  1047
              }
kpeter@881
  1048
            }
kpeter@881
  1049
          }
kpeter@881
  1050
        }
kpeter@881
  1051
kpeter@881
  1052
        // Tighten potentials and epsilon
kpeter@881
  1053
        if (--iter > 0) {
kpeter@881
  1054
          for (int u = 0; u != _res_node_num; ++u) {
kpeter@881
  1055
            level[u] = 0;
kpeter@881
  1056
          }
kpeter@881
  1057
          for (int i = proc_head; i > 0; --i) {
kpeter@881
  1058
            int u = proc_vector[i];
kpeter@881
  1059
            double p = pi[u];
kpeter@881
  1060
            int l = level[u] + 1;
kpeter@881
  1061
            int last_out = _first_out[u+1];
kpeter@881
  1062
            for (int a = _first_out[u]; a != last_out; ++a) {
kpeter@881
  1063
              int v = _target[a];
kpeter@881
  1064
              if (_res_cap[a] > 0 && tol.negative(_cost[a] + p - pi[v]) &&
kpeter@881
  1065
                  l > level[v]) level[v] = l;
kpeter@881
  1066
            }
kpeter@880
  1067
          }
kpeter@880
  1068
kpeter@881
  1069
          // Modify potentials
kpeter@881
  1070
          double q = std::numeric_limits<double>::max();
kpeter@881
  1071
          for (int u = 0; u != _res_node_num; ++u) {
kpeter@881
  1072
            int lu = level[u];
kpeter@881
  1073
            double p, pu = pi[u];
kpeter@881
  1074
            int last_out = _first_out[u+1];
kpeter@881
  1075
            for (int a = _first_out[u]; a != last_out; ++a) {
kpeter@881
  1076
              if (_res_cap[a] == 0) continue;
kpeter@881
  1077
              int v = _target[a];
kpeter@881
  1078
              int ld = lu - level[v];
kpeter@881
  1079
              if (ld > 0) {
kpeter@881
  1080
                p = (_cost[a] + pu - pi[v] + epsilon) / (ld + 1);
kpeter@881
  1081
                if (p < q) q = p;
kpeter@881
  1082
              }
kpeter@881
  1083
            }
kpeter@881
  1084
          }
kpeter@881
  1085
          for (int u = 0; u != _res_node_num; ++u) {
kpeter@881
  1086
            pi[u] -= q * level[u];
kpeter@881
  1087
          }
kpeter@880
  1088
kpeter@881
  1089
          // Modify epsilon
kpeter@881
  1090
          epsilon = 0;
kpeter@881
  1091
          for (int u = 0; u != _res_node_num; ++u) {
kpeter@881
  1092
            double curr, pu = pi[u];
kpeter@881
  1093
            int last_out = _first_out[u+1];
kpeter@881
  1094
            for (int a = _first_out[u]; a != last_out; ++a) {
kpeter@881
  1095
              if (_res_cap[a] == 0) continue;
kpeter@881
  1096
              curr = _cost[a] + pu - pi[_target[a]];
kpeter@881
  1097
              if (-curr > epsilon) epsilon = -curr;
kpeter@881
  1098
            }
kpeter@881
  1099
          }
kpeter@881
  1100
        } else {
kpeter@881
  1101
          typedef Howard<StaticDigraph, CostArcMap> MMC;
kpeter@881
  1102
          typedef typename BellmanFord<StaticDigraph, CostArcMap>
kpeter@881
  1103
            ::template SetDistMap<CostNodeMap>::Create BF;
kpeter@881
  1104
kpeter@881
  1105
          // Set epsilon to the minimum cycle mean
kpeter@881
  1106
          buildResidualNetwork();
kpeter@881
  1107
          MMC mmc(_sgr, _cost_map);
kpeter@881
  1108
          mmc.findMinMean();
kpeter@881
  1109
          epsilon = -mmc.cycleMean();
kpeter@881
  1110
          Cost cycle_cost = mmc.cycleLength();
kpeter@881
  1111
          int cycle_size = mmc.cycleArcNum();
kpeter@881
  1112
          
kpeter@881
  1113
          // Compute feasible potentials for the current epsilon
kpeter@881
  1114
          for (int i = 0; i != int(_cost_vec.size()); ++i) {
kpeter@881
  1115
            _cost_vec[i] = cycle_size * _cost_vec[i] - cycle_cost;
kpeter@881
  1116
          }
kpeter@881
  1117
          BF bf(_sgr, _cost_map);
kpeter@881
  1118
          bf.distMap(_pi_map);
kpeter@881
  1119
          bf.init(0);
kpeter@881
  1120
          bf.start();
kpeter@881
  1121
          for (int u = 0; u != _res_node_num; ++u) {
kpeter@881
  1122
            pi[u] = static_cast<double>(_pi[u]) / cycle_size;
kpeter@881
  1123
          }
kpeter@881
  1124
        
kpeter@881
  1125
          iter = limit;
kpeter@880
  1126
        }
kpeter@880
  1127
      }
kpeter@880
  1128
    }
kpeter@880
  1129
kpeter@880
  1130
  }; //class CycleCanceling
kpeter@880
  1131
kpeter@880
  1132
  ///@}
kpeter@880
  1133
kpeter@880
  1134
} //namespace lemon
kpeter@880
  1135
kpeter@880
  1136
#endif //LEMON_CYCLE_CANCELING_H