Location: LEMON/LEMON-main/lemon/network_simplex.h - annotation
Load file history
Use XTI implementation instead of ATI in NetworkSimplex (#234)
XTI (eXtended Threaded Index) is an imporved version of the widely
known ATI (Augmented Threaded Index) method for storing and updating
the spanning tree structure in Network Simplex algorithms.
In the ATI data structure three indices are stored for each node:
predecessor, thread and depth. In the XTI data structure depth is
replaced by the number of successors and the last successor
(according to the thread index).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 | r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r603:425cc8328c0e r603:425cc8328c0e r603:425cc8328c0e r603:425cc8328c0e r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r603:425cc8328c0e r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r603:425cc8328c0e r603:425cc8328c0e r603:425cc8328c0e r601:e8349c6f12ca r603:425cc8328c0e r603:425cc8328c0e r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r603:425cc8328c0e r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r603:425cc8328c0e r601:e8349c6f12ca r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r603:425cc8328c0e r603:425cc8328c0e r601:e8349c6f12ca r603:425cc8328c0e r603:425cc8328c0e r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r603:425cc8328c0e r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r601:e8349c6f12ca r601:e8349c6f12ca r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r601:e8349c6f12ca r601:e8349c6f12ca r604:8c3112a66878 r604:8c3112a66878 r601:e8349c6f12ca r604:8c3112a66878 r604:8c3112a66878 r601:e8349c6f12ca r601:e8349c6f12ca r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r601:e8349c6f12ca r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r601:e8349c6f12ca r604:8c3112a66878 r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r604:8c3112a66878 r604:8c3112a66878 r601:e8349c6f12ca r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r601:e8349c6f12ca r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r604:8c3112a66878 r604:8c3112a66878 r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r604:8c3112a66878 r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r604:8c3112a66878 r604:8c3112a66878 r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r603:425cc8328c0e r603:425cc8328c0e r603:425cc8328c0e r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca r601:e8349c6f12ca | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_NETWORK_SIMPLEX_H
#define LEMON_NETWORK_SIMPLEX_H
/// \ingroup min_cost_flow
///
/// \file
/// \brief Network simplex algorithm for finding a minimum cost flow.
#include <vector>
#include <limits>
#include <algorithm>
#include <lemon/core.h>
#include <lemon/math.h>
namespace lemon {
/// \addtogroup min_cost_flow
/// @{
/// \brief Implementation of the primal network simplex algorithm
/// for finding a \ref min_cost_flow "minimum cost flow".
///
/// \ref NetworkSimplex implements the primal network simplex algorithm
/// for finding a \ref min_cost_flow "minimum cost flow".
///
/// \tparam Digraph The digraph type the algorithm runs on.
/// \tparam LowerMap The type of the lower bound map.
/// \tparam CapacityMap The type of the capacity (upper bound) map.
/// \tparam CostMap The type of the cost (length) map.
/// \tparam SupplyMap The type of the supply map.
///
/// \warning
/// - Arc capacities and costs should be \e non-negative \e integers.
/// - Supply values should be \e signed \e integers.
/// - The value types of the maps should be convertible to each other.
/// - \c CostMap::Value must be signed type.
///
/// \note \ref NetworkSimplex provides five different pivot rule
/// implementations that significantly affect the efficiency of the
/// algorithm.
/// By default "Block Search" pivot rule is used, which proved to be
/// by far the most efficient according to our benchmark tests.
/// However another pivot rule can be selected using \ref run()
/// function with the proper parameter.
#ifdef DOXYGEN
template < typename Digraph,
typename LowerMap,
typename CapacityMap,
typename CostMap,
typename SupplyMap >
#else
template < typename Digraph,
typename LowerMap = typename Digraph::template ArcMap<int>,
typename CapacityMap = typename Digraph::template ArcMap<int>,
typename CostMap = typename Digraph::template ArcMap<int>,
typename SupplyMap = typename Digraph::template NodeMap<int> >
#endif
class NetworkSimplex
{
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
typedef typename CapacityMap::Value Capacity;
typedef typename CostMap::Value Cost;
typedef typename SupplyMap::Value Supply;
typedef std::vector<Arc> ArcVector;
typedef std::vector<Node> NodeVector;
typedef std::vector<int> IntVector;
typedef std::vector<bool> BoolVector;
typedef std::vector<Capacity> CapacityVector;
typedef std::vector<Cost> CostVector;
typedef std::vector<Supply> SupplyVector;
public:
/// The type of the flow map
typedef typename Digraph::template ArcMap<Capacity> FlowMap;
/// The type of the potential map
typedef typename Digraph::template NodeMap<Cost> PotentialMap;
public:
/// Enum type for selecting the pivot rule used by \ref run()
enum PivotRuleEnum {
FIRST_ELIGIBLE_PIVOT,
BEST_ELIGIBLE_PIVOT,
BLOCK_SEARCH_PIVOT,
CANDIDATE_LIST_PIVOT,
ALTERING_LIST_PIVOT
};
private:
// State constants for arcs
enum ArcStateEnum {
STATE_UPPER = -1,
STATE_TREE = 0,
STATE_LOWER = 1
};
private:
// References for the original data
const Digraph &_graph;
const LowerMap *_orig_lower;
const CapacityMap &_orig_cap;
const CostMap &_orig_cost;
const SupplyMap *_orig_supply;
Node _orig_source;
Node _orig_target;
Capacity _orig_flow_value;
// Result maps
FlowMap *_flow_map;
PotentialMap *_potential_map;
bool _local_flow;
bool _local_potential;
// The number of nodes and arcs in the original graph
int _node_num;
int _arc_num;
// Data structures for storing the graph
IntNodeMap _node_id;
ArcVector _arc_ref;
IntVector _source;
IntVector _target;
// Node and arc maps
CapacityVector _cap;
CostVector _cost;
CostVector _supply;
CapacityVector _flow;
CostVector _pi;
// Data for storing the spanning tree structure
IntVector _parent;
IntVector _pred;
IntVector _thread;
IntVector _rev_thread;
IntVector _succ_num;
IntVector _last_succ;
IntVector _dirty_revs;
BoolVector _forward;
IntVector _state;
int _root;
// Temporary data used in the current pivot iteration
int in_arc, join, u_in, v_in, u_out, v_out;
int first, second, right, last;
int stem, par_stem, new_stem;
Capacity delta;
private:
/// \brief Implementation of the "First Eligible" pivot rule for the
/// \ref NetworkSimplex "network simplex" algorithm.
///
/// This class implements the "First Eligible" pivot rule
/// for the \ref NetworkSimplex "network simplex" algorithm.
///
/// For more information see \ref NetworkSimplex::run().
class FirstEligiblePivotRule
{
private:
// References to the NetworkSimplex class
const IntVector &_source;
const IntVector &_target;
const CostVector &_cost;
const IntVector &_state;
const CostVector &_pi;
int &_in_arc;
int _arc_num;
// Pivot rule data
int _next_arc;
public:
/// Constructor
FirstEligiblePivotRule(NetworkSimplex &ns) :
_source(ns._source), _target(ns._target),
_cost(ns._cost), _state(ns._state), _pi(ns._pi),
_in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0)
{}
/// Find next entering arc
bool findEnteringArc() {
Cost c;
for (int e = _next_arc; e < _arc_num; ++e) {
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
if (c < 0) {
_in_arc = e;
_next_arc = e + 1;
return true;
}
}
for (int e = 0; e < _next_arc; ++e) {
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
if (c < 0) {
_in_arc = e;
_next_arc = e + 1;
return true;
}
}
return false;
}
}; //class FirstEligiblePivotRule
/// \brief Implementation of the "Best Eligible" pivot rule for the
/// \ref NetworkSimplex "network simplex" algorithm.
///
/// This class implements the "Best Eligible" pivot rule
/// for the \ref NetworkSimplex "network simplex" algorithm.
///
/// For more information see \ref NetworkSimplex::run().
class BestEligiblePivotRule
{
private:
// References to the NetworkSimplex class
const IntVector &_source;
const IntVector &_target;
const CostVector &_cost;
const IntVector &_state;
const CostVector &_pi;
int &_in_arc;
int _arc_num;
public:
/// Constructor
BestEligiblePivotRule(NetworkSimplex &ns) :
_source(ns._source), _target(ns._target),
_cost(ns._cost), _state(ns._state), _pi(ns._pi),
_in_arc(ns.in_arc), _arc_num(ns._arc_num)
{}
/// Find next entering arc
bool findEnteringArc() {
Cost c, min = 0;
for (int e = 0; e < _arc_num; ++e) {
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
if (c < min) {
min = c;
_in_arc = e;
}
}
return min < 0;
}
}; //class BestEligiblePivotRule
/// \brief Implementation of the "Block Search" pivot rule for the
/// \ref NetworkSimplex "network simplex" algorithm.
///
/// This class implements the "Block Search" pivot rule
/// for the \ref NetworkSimplex "network simplex" algorithm.
///
/// For more information see \ref NetworkSimplex::run().
class BlockSearchPivotRule
{
private:
// References to the NetworkSimplex class
const IntVector &_source;
const IntVector &_target;
const CostVector &_cost;
const IntVector &_state;
const CostVector &_pi;
int &_in_arc;
int _arc_num;
// Pivot rule data
int _block_size;
int _next_arc;
public:
/// Constructor
BlockSearchPivotRule(NetworkSimplex &ns) :
_source(ns._source), _target(ns._target),
_cost(ns._cost), _state(ns._state), _pi(ns._pi),
_in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0)
{
// The main parameters of the pivot rule
const double BLOCK_SIZE_FACTOR = 2.0;
const int MIN_BLOCK_SIZE = 10;
_block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_arc_num)),
MIN_BLOCK_SIZE );
}
/// Find next entering arc
bool findEnteringArc() {
Cost c, min = 0;
int cnt = _block_size;
int e, min_arc = _next_arc;
for (e = _next_arc; e < _arc_num; ++e) {
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
if (c < min) {
min = c;
min_arc = e;
}
if (--cnt == 0) {
if (min < 0) break;
cnt = _block_size;
}
}
if (min == 0 || cnt > 0) {
for (e = 0; e < _next_arc; ++e) {
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
if (c < min) {
min = c;
min_arc = e;
}
if (--cnt == 0) {
if (min < 0) break;
cnt = _block_size;
}
}
}
if (min >= 0) return false;
_in_arc = min_arc;
_next_arc = e;
return true;
}
}; //class BlockSearchPivotRule
/// \brief Implementation of the "Candidate List" pivot rule for the
/// \ref NetworkSimplex "network simplex" algorithm.
///
/// This class implements the "Candidate List" pivot rule
/// for the \ref NetworkSimplex "network simplex" algorithm.
///
/// For more information see \ref NetworkSimplex::run().
class CandidateListPivotRule
{
private:
// References to the NetworkSimplex class
const IntVector &_source;
const IntVector &_target;
const CostVector &_cost;
const IntVector &_state;
const CostVector &_pi;
int &_in_arc;
int _arc_num;
// Pivot rule data
IntVector _candidates;
int _list_length, _minor_limit;
int _curr_length, _minor_count;
int _next_arc;
public:
/// Constructor
CandidateListPivotRule(NetworkSimplex &ns) :
_source(ns._source), _target(ns._target),
_cost(ns._cost), _state(ns._state), _pi(ns._pi),
_in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0)
{
// The main parameters of the pivot rule
const double LIST_LENGTH_FACTOR = 1.0;
const int MIN_LIST_LENGTH = 10;
const double MINOR_LIMIT_FACTOR = 0.1;
const int MIN_MINOR_LIMIT = 3;
_list_length = std::max( int(LIST_LENGTH_FACTOR * sqrt(_arc_num)),
MIN_LIST_LENGTH );
_minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length),
MIN_MINOR_LIMIT );
_curr_length = _minor_count = 0;
_candidates.resize(_list_length);
}
/// Find next entering arc
bool findEnteringArc() {
Cost min, c;
int e, min_arc = _next_arc;
if (_curr_length > 0 && _minor_count < _minor_limit) {
// Minor iteration: select the best eligible arc from the
// current candidate list
++_minor_count;
min = 0;
for (int i = 0; i < _curr_length; ++i) {
e = _candidates[i];
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
if (c < min) {
min = c;
min_arc = e;
}
if (c >= 0) {
_candidates[i--] = _candidates[--_curr_length];
}
}
if (min < 0) {
_in_arc = min_arc;
return true;
}
}
// Major iteration: build a new candidate list
min = 0;
_curr_length = 0;
for (e = _next_arc; e < _arc_num; ++e) {
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
if (c < 0) {
_candidates[_curr_length++] = e;
if (c < min) {
min = c;
min_arc = e;
}
if (_curr_length == _list_length) break;
}
}
if (_curr_length < _list_length) {
for (e = 0; e < _next_arc; ++e) {
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
if (c < 0) {
_candidates[_curr_length++] = e;
if (c < min) {
min = c;
min_arc = e;
}
if (_curr_length == _list_length) break;
}
}
}
if (_curr_length == 0) return false;
_minor_count = 1;
_in_arc = min_arc;
_next_arc = e;
return true;
}
}; //class CandidateListPivotRule
/// \brief Implementation of the "Altering Candidate List" pivot rule
/// for the \ref NetworkSimplex "network simplex" algorithm.
///
/// This class implements the "Altering Candidate List" pivot rule
/// for the \ref NetworkSimplex "network simplex" algorithm.
///
/// For more information see \ref NetworkSimplex::run().
class AlteringListPivotRule
{
private:
// References to the NetworkSimplex class
const IntVector &_source;
const IntVector &_target;
const CostVector &_cost;
const IntVector &_state;
const CostVector &_pi;
int &_in_arc;
int _arc_num;
// Pivot rule data
int _block_size, _head_length, _curr_length;
int _next_arc;
IntVector _candidates;
CostVector _cand_cost;
// Functor class to compare arcs during sort of the candidate list
class SortFunc
{
private:
const CostVector &_map;
public:
SortFunc(const CostVector &map) : _map(map) {}
bool operator()(int left, int right) {
return _map[left] > _map[right];
}
};
SortFunc _sort_func;
public:
/// Constructor
AlteringListPivotRule(NetworkSimplex &ns) :
_source(ns._source), _target(ns._target),
_cost(ns._cost), _state(ns._state), _pi(ns._pi),
_in_arc(ns.in_arc), _arc_num(ns._arc_num),
_next_arc(0), _cand_cost(ns._arc_num), _sort_func(_cand_cost)
{
// The main parameters of the pivot rule
const double BLOCK_SIZE_FACTOR = 1.5;
const int MIN_BLOCK_SIZE = 10;
const double HEAD_LENGTH_FACTOR = 0.1;
const int MIN_HEAD_LENGTH = 3;
_block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_arc_num)),
MIN_BLOCK_SIZE );
_head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size),
MIN_HEAD_LENGTH );
_candidates.resize(_head_length + _block_size);
_curr_length = 0;
}
/// Find next entering arc
bool findEnteringArc() {
// Check the current candidate list
int e;
for (int i = 0; i < _curr_length; ++i) {
e = _candidates[i];
_cand_cost[e] = _state[e] *
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
if (_cand_cost[e] >= 0) {
_candidates[i--] = _candidates[--_curr_length];
}
}
// Extend the list
int cnt = _block_size;
int last_arc = 0;
int limit = _head_length;
for (int e = _next_arc; e < _arc_num; ++e) {
_cand_cost[e] = _state[e] *
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
if (_cand_cost[e] < 0) {
_candidates[_curr_length++] = e;
last_arc = e;
}
if (--cnt == 0) {
if (_curr_length > limit) break;
limit = 0;
cnt = _block_size;
}
}
if (_curr_length <= limit) {
for (int e = 0; e < _next_arc; ++e) {
_cand_cost[e] = _state[e] *
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
if (_cand_cost[e] < 0) {
_candidates[_curr_length++] = e;
last_arc = e;
}
if (--cnt == 0) {
if (_curr_length > limit) break;
limit = 0;
cnt = _block_size;
}
}
}
if (_curr_length == 0) return false;
_next_arc = last_arc + 1;
// Make heap of the candidate list (approximating a partial sort)
make_heap( _candidates.begin(), _candidates.begin() + _curr_length,
_sort_func );
// Pop the first element of the heap
_in_arc = _candidates[0];
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length,
_sort_func );
_curr_length = std::min(_head_length, _curr_length - 1);
return true;
}
}; //class AlteringListPivotRule
public:
/// \brief General constructor (with lower bounds).
///
/// General constructor (with lower bounds).
///
/// \param graph The digraph the algorithm runs on.
/// \param lower The lower bounds of the arcs.
/// \param capacity The capacities (upper bounds) of the arcs.
/// \param cost The cost (length) values of the arcs.
/// \param supply The supply values of the nodes (signed).
NetworkSimplex( const Digraph &graph,
const LowerMap &lower,
const CapacityMap &capacity,
const CostMap &cost,
const SupplyMap &supply ) :
_graph(graph), _orig_lower(&lower), _orig_cap(capacity),
_orig_cost(cost), _orig_supply(&supply),
_flow_map(NULL), _potential_map(NULL),
_local_flow(false), _local_potential(false),
_node_id(graph)
{}
/// \brief General constructor (without lower bounds).
///
/// General constructor (without lower bounds).
///
/// \param graph The digraph the algorithm runs on.
/// \param capacity The capacities (upper bounds) of the arcs.
/// \param cost The cost (length) values of the arcs.
/// \param supply The supply values of the nodes (signed).
NetworkSimplex( const Digraph &graph,
const CapacityMap &capacity,
const CostMap &cost,
const SupplyMap &supply ) :
_graph(graph), _orig_lower(NULL), _orig_cap(capacity),
_orig_cost(cost), _orig_supply(&supply),
_flow_map(NULL), _potential_map(NULL),
_local_flow(false), _local_potential(false),
_node_id(graph)
{}
/// \brief Simple constructor (with lower bounds).
///
/// Simple constructor (with lower bounds).
///
/// \param graph The digraph the algorithm runs on.
/// \param lower The lower bounds of the arcs.
/// \param capacity The capacities (upper bounds) of the arcs.
/// \param cost The cost (length) values of the arcs.
/// \param s The source node.
/// \param t The target node.
/// \param flow_value The required amount of flow from node \c s
/// to node \c t (i.e. the supply of \c s and the demand of \c t).
NetworkSimplex( const Digraph &graph,
const LowerMap &lower,
const CapacityMap &capacity,
const CostMap &cost,
Node s, Node t,
Capacity flow_value ) :
_graph(graph), _orig_lower(&lower), _orig_cap(capacity),
_orig_cost(cost), _orig_supply(NULL),
_orig_source(s), _orig_target(t), _orig_flow_value(flow_value),
_flow_map(NULL), _potential_map(NULL),
_local_flow(false), _local_potential(false),
_node_id(graph)
{}
/// \brief Simple constructor (without lower bounds).
///
/// Simple constructor (without lower bounds).
///
/// \param graph The digraph the algorithm runs on.
/// \param capacity The capacities (upper bounds) of the arcs.
/// \param cost The cost (length) values of the arcs.
/// \param s The source node.
/// \param t The target node.
/// \param flow_value The required amount of flow from node \c s
/// to node \c t (i.e. the supply of \c s and the demand of \c t).
NetworkSimplex( const Digraph &graph,
const CapacityMap &capacity,
const CostMap &cost,
Node s, Node t,
Capacity flow_value ) :
_graph(graph), _orig_lower(NULL), _orig_cap(capacity),
_orig_cost(cost), _orig_supply(NULL),
_orig_source(s), _orig_target(t), _orig_flow_value(flow_value),
_flow_map(NULL), _potential_map(NULL),
_local_flow(false), _local_potential(false),
_node_id(graph)
{}
/// Destructor.
~NetworkSimplex() {
if (_local_flow) delete _flow_map;
if (_local_potential) delete _potential_map;
}
/// \brief Set the flow map.
///
/// This function sets the flow map.
///
/// \return <tt>(*this)</tt>
NetworkSimplex& flowMap(FlowMap &map) {
if (_local_flow) {
delete _flow_map;
_local_flow = false;
}
_flow_map = ↦
return *this;
}
/// \brief Set the potential map.
///
/// This function sets the potential map.
///
/// \return <tt>(*this)</tt>
NetworkSimplex& potentialMap(PotentialMap &map) {
if (_local_potential) {
delete _potential_map;
_local_potential = false;
}
_potential_map = ↦
return *this;
}
/// \name Execution control
/// The algorithm can be executed using the
/// \ref lemon::NetworkSimplex::run() "run()" function.
/// @{
/// \brief Run the algorithm.
///
/// This function runs the algorithm.
///
/// \param pivot_rule The pivot rule that is used during the
/// algorithm.
///
/// The available pivot rules:
///
/// - FIRST_ELIGIBLE_PIVOT The next eligible arc is selected in
/// a wraparound fashion in every iteration
/// (\ref FirstEligiblePivotRule).
///
/// - BEST_ELIGIBLE_PIVOT The best eligible arc is selected in
/// every iteration (\ref BestEligiblePivotRule).
///
/// - BLOCK_SEARCH_PIVOT A specified number of arcs are examined in
/// every iteration in a wraparound fashion and the best eligible
/// arc is selected from this block (\ref BlockSearchPivotRule).
///
/// - CANDIDATE_LIST_PIVOT In a major iteration a candidate list is
/// built from eligible arcs in a wraparound fashion and in the
/// following minor iterations the best eligible arc is selected
/// from this list (\ref CandidateListPivotRule).
///
/// - ALTERING_LIST_PIVOT It is a modified version of the
/// "Candidate List" pivot rule. It keeps only the several best
/// eligible arcs from the former candidate list and extends this
/// list in every iteration (\ref AlteringListPivotRule).
///
/// According to our comprehensive benchmark tests the "Block Search"
/// pivot rule proved to be the fastest and the most robust on
/// various test inputs. Thus it is the default option.
///
/// \return \c true if a feasible flow can be found.
bool run(PivotRuleEnum pivot_rule = BLOCK_SEARCH_PIVOT) {
return init() && start(pivot_rule);
}
/// @}
/// \name Query Functions
/// The results of the algorithm can be obtained using these
/// functions.\n
/// \ref lemon::NetworkSimplex::run() "run()" must be called before
/// using them.
/// @{
/// \brief Return a const reference to the flow map.
///
/// This function returns a const reference to an arc map storing
/// the found flow.
///
/// \pre \ref run() must be called before using this function.
const FlowMap& flowMap() const {
return *_flow_map;
}
/// \brief Return a const reference to the potential map
/// (the dual solution).
///
/// This function returns a const reference to a node map storing
/// the found potentials (the dual solution).
///
/// \pre \ref run() must be called before using this function.
const PotentialMap& potentialMap() const {
return *_potential_map;
}
/// \brief Return the flow on the given arc.
///
/// This function returns the flow on the given arc.
///
/// \pre \ref run() must be called before using this function.
Capacity flow(const Arc& arc) const {
return (*_flow_map)[arc];
}
/// \brief Return the potential of the given node.
///
/// This function returns the potential of the given node.
///
/// \pre \ref run() must be called before using this function.
Cost potential(const Node& node) const {
return (*_potential_map)[node];
}
/// \brief Return the total cost of the found flow.
///
/// This function returns the total cost of the found flow.
/// The complexity of the function is \f$ O(e) \f$.
///
/// \pre \ref run() must be called before using this function.
Cost totalCost() const {
Cost c = 0;
for (ArcIt e(_graph); e != INVALID; ++e)
c += (*_flow_map)[e] * _orig_cost[e];
return c;
}
/// @}
private:
// Initialize internal data structures
bool init() {
// Initialize result maps
if (!_flow_map) {
_flow_map = new FlowMap(_graph);
_local_flow = true;
}
if (!_potential_map) {
_potential_map = new PotentialMap(_graph);
_local_potential = true;
}
// Initialize vectors
_node_num = countNodes(_graph);
_arc_num = countArcs(_graph);
int all_node_num = _node_num + 1;
int all_arc_num = _arc_num + _node_num;
_arc_ref.resize(_arc_num);
_source.resize(all_arc_num);
_target.resize(all_arc_num);
_cap.resize(all_arc_num);
_cost.resize(all_arc_num);
_supply.resize(all_node_num);
_flow.resize(all_arc_num, 0);
_pi.resize(all_node_num, 0);
_parent.resize(all_node_num);
_pred.resize(all_node_num);
_forward.resize(all_node_num);
_thread.resize(all_node_num);
_rev_thread.resize(all_node_num);
_succ_num.resize(all_node_num);
_last_succ.resize(all_node_num);
_state.resize(all_arc_num, STATE_LOWER);
// Initialize node related data
bool valid_supply = true;
if (_orig_supply) {
Supply sum = 0;
int i = 0;
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
_node_id[n] = i;
_supply[i] = (*_orig_supply)[n];
sum += _supply[i];
}
valid_supply = (sum == 0);
} else {
int i = 0;
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
_node_id[n] = i;
_supply[i] = 0;
}
_supply[_node_id[_orig_source]] = _orig_flow_value;
_supply[_node_id[_orig_target]] = -_orig_flow_value;
}
if (!valid_supply) return false;
// Set data for the artificial root node
_root = _node_num;
_parent[_root] = -1;
_pred[_root] = -1;
_thread[_root] = 0;
_rev_thread[0] = _root;
_succ_num[_root] = all_node_num;
_last_succ[_root] = _root - 1;
_supply[_root] = 0;
_pi[_root] = 0;
// Store the arcs in a mixed order
int k = std::max(int(sqrt(_arc_num)), 10);
int i = 0;
for (ArcIt e(_graph); e != INVALID; ++e) {
_arc_ref[i] = e;
if ((i += k) >= _arc_num) i = (i % k) + 1;
}
// Initialize arc maps
for (int i = 0; i != _arc_num; ++i) {
Arc e = _arc_ref[i];
_source[i] = _node_id[_graph.source(e)];
_target[i] = _node_id[_graph.target(e)];
_cost[i] = _orig_cost[e];
_cap[i] = _orig_cap[e];
}
// Remove non-zero lower bounds
if (_orig_lower) {
for (int i = 0; i != _arc_num; ++i) {
Capacity c = (*_orig_lower)[_arc_ref[i]];
if (c != 0) {
_cap[i] -= c;
_supply[_source[i]] -= c;
_supply[_target[i]] += c;
}
}
}
// Add artificial arcs and initialize the spanning tree data structure
Cost max_cost = std::numeric_limits<Cost>::max() / 4;
Capacity max_cap = std::numeric_limits<Capacity>::max();
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
_thread[u] = u + 1;
_rev_thread[u + 1] = u;
_succ_num[u] = 1;
_last_succ[u] = u;
_parent[u] = _root;
_pred[u] = e;
if (_supply[u] >= 0) {
_flow[e] = _supply[u];
_forward[u] = true;
_pi[u] = -max_cost;
} else {
_flow[e] = -_supply[u];
_forward[u] = false;
_pi[u] = max_cost;
}
_cost[e] = max_cost;
_cap[e] = max_cap;
_state[e] = STATE_TREE;
}
return true;
}
// Find the join node
void findJoinNode() {
int u = _source[in_arc];
int v = _target[in_arc];
while (u != v) {
if (_succ_num[u] < _succ_num[v]) {
u = _parent[u];
} else {
v = _parent[v];
}
}
join = u;
}
// Find the leaving arc of the cycle and returns true if the
// leaving arc is not the same as the entering arc
bool findLeavingArc() {
// Initialize first and second nodes according to the direction
// of the cycle
if (_state[in_arc] == STATE_LOWER) {
first = _source[in_arc];
second = _target[in_arc];
} else {
first = _target[in_arc];
second = _source[in_arc];
}
delta = _cap[in_arc];
int result = 0;
Capacity d;
int e;
// Search the cycle along the path form the first node to the root
for (int u = first; u != join; u = _parent[u]) {
e = _pred[u];
d = _forward[u] ? _flow[e] : _cap[e] - _flow[e];
if (d < delta) {
delta = d;
u_out = u;
result = 1;
}
}
// Search the cycle along the path form the second node to the root
for (int u = second; u != join; u = _parent[u]) {
e = _pred[u];
d = _forward[u] ? _cap[e] - _flow[e] : _flow[e];
if (d <= delta) {
delta = d;
u_out = u;
result = 2;
}
}
if (result == 1) {
u_in = first;
v_in = second;
} else {
u_in = second;
v_in = first;
}
return result != 0;
}
// Change _flow and _state vectors
void changeFlow(bool change) {
// Augment along the cycle
if (delta > 0) {
Capacity val = _state[in_arc] * delta;
_flow[in_arc] += val;
for (int u = _source[in_arc]; u != join; u = _parent[u]) {
_flow[_pred[u]] += _forward[u] ? -val : val;
}
for (int u = _target[in_arc]; u != join; u = _parent[u]) {
_flow[_pred[u]] += _forward[u] ? val : -val;
}
}
// Update the state of the entering and leaving arcs
if (change) {
_state[in_arc] = STATE_TREE;
_state[_pred[u_out]] =
(_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER;
} else {
_state[in_arc] = -_state[in_arc];
}
}
// Update the tree structure
void updateTreeStructure() {
int u, w;
int old_rev_thread = _rev_thread[u_out];
int old_succ_num = _succ_num[u_out];
int old_last_succ = _last_succ[u_out];
v_out = _parent[u_out];
u = _last_succ[u_in]; // the last successor of u_in
right = _thread[u]; // the node after it
// Handle the case when old_rev_thread equals to v_in
// (it also means that join and v_out coincide)
if (old_rev_thread == v_in) {
last = _thread[_last_succ[u_out]];
} else {
last = _thread[v_in];
}
// Update _thread and _parent along the stem nodes (i.e. the nodes
// between u_in and u_out, whose parent have to be changed)
_thread[v_in] = stem = u_in;
_dirty_revs.clear();
_dirty_revs.push_back(v_in);
par_stem = v_in;
while (stem != u_out) {
// Insert the next stem node into the thread list
new_stem = _parent[stem];
_thread[u] = new_stem;
_dirty_revs.push_back(u);
// Remove the subtree of stem from the thread list
w = _rev_thread[stem];
_thread[w] = right;
_rev_thread[right] = w;
// Change the parent node and shift stem nodes
_parent[stem] = par_stem;
par_stem = stem;
stem = new_stem;
// Update u and right
u = _last_succ[stem] == _last_succ[par_stem] ?
_rev_thread[par_stem] : _last_succ[stem];
right = _thread[u];
}
_parent[u_out] = par_stem;
_thread[u] = last;
_rev_thread[last] = u;
_last_succ[u_out] = u;
// Remove the subtree of u_out from the thread list except for
// the case when old_rev_thread equals to v_in
// (it also means that join and v_out coincide)
if (old_rev_thread != v_in) {
_thread[old_rev_thread] = right;
_rev_thread[right] = old_rev_thread;
}
// Update _rev_thread using the new _thread values
for (int i = 0; i < int(_dirty_revs.size()); ++i) {
u = _dirty_revs[i];
_rev_thread[_thread[u]] = u;
}
// Update _pred, _forward, _last_succ and _succ_num for the
// stem nodes from u_out to u_in
int tmp_sc = 0, tmp_ls = _last_succ[u_out];
u = u_out;
while (u != u_in) {
w = _parent[u];
_pred[u] = _pred[w];
_forward[u] = !_forward[w];
tmp_sc += _succ_num[u] - _succ_num[w];
_succ_num[u] = tmp_sc;
_last_succ[w] = tmp_ls;
u = w;
}
_pred[u_in] = in_arc;
_forward[u_in] = (u_in == _source[in_arc]);
_succ_num[u_in] = old_succ_num;
// Set limits for updating _last_succ form v_in and v_out
// towards the root
int up_limit_in = -1;
int up_limit_out = -1;
if (_last_succ[join] == v_in) {
up_limit_out = join;
} else {
up_limit_in = join;
}
// Update _last_succ from v_in towards the root
for (u = v_in; u != up_limit_in && _last_succ[u] == v_in;
u = _parent[u]) {
_last_succ[u] = _last_succ[u_out];
}
// Update _last_succ from v_out towards the root
if (join != old_rev_thread && v_in != old_rev_thread) {
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
u = _parent[u]) {
_last_succ[u] = old_rev_thread;
}
} else {
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
u = _parent[u]) {
_last_succ[u] = _last_succ[u_out];
}
}
// Update _succ_num from v_in to join
for (u = v_in; u != join; u = _parent[u]) {
_succ_num[u] += old_succ_num;
}
// Update _succ_num from v_out to join
for (u = v_out; u != join; u = _parent[u]) {
_succ_num[u] -= old_succ_num;
}
}
// Update potentials
void updatePotential() {
Cost sigma = _forward[u_in] ?
_pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] :
_pi[v_in] - _pi[u_in] + _cost[_pred[u_in]];
if (_succ_num[u_in] > _node_num / 2) {
// Update in the upper subtree (which contains the root)
int before = _rev_thread[u_in];
int after = _thread[_last_succ[u_in]];
_thread[before] = after;
_pi[_root] -= sigma;
for (int u = _thread[_root]; u != _root; u = _thread[u]) {
_pi[u] -= sigma;
}
_thread[before] = u_in;
} else {
// Update in the lower subtree (which has been moved)
int end = _thread[_last_succ[u_in]];
for (int u = u_in; u != end; u = _thread[u]) {
_pi[u] += sigma;
}
}
}
// Execute the algorithm
bool start(PivotRuleEnum pivot_rule) {
// Select the pivot rule implementation
switch (pivot_rule) {
case FIRST_ELIGIBLE_PIVOT:
return start<FirstEligiblePivotRule>();
case BEST_ELIGIBLE_PIVOT:
return start<BestEligiblePivotRule>();
case BLOCK_SEARCH_PIVOT:
return start<BlockSearchPivotRule>();
case CANDIDATE_LIST_PIVOT:
return start<CandidateListPivotRule>();
case ALTERING_LIST_PIVOT:
return start<AlteringListPivotRule>();
}
return false;
}
template<class PivotRuleImplementation>
bool start() {
PivotRuleImplementation pivot(*this);
// Execute the network simplex algorithm
while (pivot.findEnteringArc()) {
findJoinNode();
bool change = findLeavingArc();
changeFlow(change);
if (change) {
updateTreeStructure();
updatePotential();
}
}
// Check if the flow amount equals zero on all the artificial arcs
for (int e = _arc_num; e != _arc_num + _node_num; ++e) {
if (_flow[e] > 0) return false;
}
// Copy flow values to _flow_map
if (_orig_lower) {
for (int i = 0; i != _arc_num; ++i) {
Arc e = _arc_ref[i];
_flow_map->set(e, (*_orig_lower)[e] + _flow[i]);
}
} else {
for (int i = 0; i != _arc_num; ++i) {
_flow_map->set(_arc_ref[i], _flow[i]);
}
}
// Copy potential values to _potential_map
for (NodeIt n(_graph); n != INVALID; ++n) {
_potential_map->set(n, _pi[_node_id[n]]);
}
return true;
}
}; //class NetworkSimplex
///@}
} //namespace lemon
#endif //LEMON_NETWORK_SIMPLEX_H
|