0
3
2
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2009 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_NETWORK_SIMPLEX_H |
|
| 20 |
#define LEMON_NETWORK_SIMPLEX_H |
|
| 21 |
|
|
| 22 |
/// \ingroup min_cost_flow |
|
| 23 |
/// |
|
| 24 |
/// \file |
|
| 25 |
/// \brief Network simplex algorithm for finding a minimum cost flow. |
|
| 26 |
|
|
| 27 |
#include <vector> |
|
| 28 |
#include <limits> |
|
| 29 |
#include <algorithm> |
|
| 30 |
|
|
| 31 |
#include <lemon/math.h> |
|
| 32 |
|
|
| 33 |
namespace lemon {
|
|
| 34 |
|
|
| 35 |
/// \addtogroup min_cost_flow |
|
| 36 |
/// @{
|
|
| 37 |
|
|
| 38 |
/// \brief Implementation of the primal network simplex algorithm |
|
| 39 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
|
| 40 |
/// |
|
| 41 |
/// \ref NetworkSimplex implements the primal network simplex algorithm |
|
| 42 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
|
| 43 |
/// |
|
| 44 |
/// \tparam Digraph The digraph type the algorithm runs on. |
|
| 45 |
/// \tparam LowerMap The type of the lower bound map. |
|
| 46 |
/// \tparam CapacityMap The type of the capacity (upper bound) map. |
|
| 47 |
/// \tparam CostMap The type of the cost (length) map. |
|
| 48 |
/// \tparam SupplyMap The type of the supply map. |
|
| 49 |
/// |
|
| 50 |
/// \warning |
|
| 51 |
/// - Arc capacities and costs should be \e non-negative \e integers. |
|
| 52 |
/// - Supply values should be \e signed \e integers. |
|
| 53 |
/// - The value types of the maps should be convertible to each other. |
|
| 54 |
/// - \c CostMap::Value must be signed type. |
|
| 55 |
/// |
|
| 56 |
/// \note \ref NetworkSimplex provides five different pivot rule |
|
| 57 |
/// implementations that significantly affect the efficiency of the |
|
| 58 |
/// algorithm. |
|
| 59 |
/// By default "Block Search" pivot rule is used, which proved to be |
|
| 60 |
/// by far the most efficient according to our benchmark tests. |
|
| 61 |
/// However another pivot rule can be selected using \ref run() |
|
| 62 |
/// function with the proper parameter. |
|
| 63 |
#ifdef DOXYGEN |
|
| 64 |
template < typename Digraph, |
|
| 65 |
typename LowerMap, |
|
| 66 |
typename CapacityMap, |
|
| 67 |
typename CostMap, |
|
| 68 |
typename SupplyMap > |
|
| 69 |
|
|
| 70 |
#else |
|
| 71 |
template < typename Digraph, |
|
| 72 |
typename LowerMap = typename Digraph::template ArcMap<int>, |
|
| 73 |
typename CapacityMap = typename Digraph::template ArcMap<int>, |
|
| 74 |
typename CostMap = typename Digraph::template ArcMap<int>, |
|
| 75 |
typename SupplyMap = typename Digraph::template NodeMap<int> > |
|
| 76 |
#endif |
|
| 77 |
class NetworkSimplex |
|
| 78 |
{
|
|
| 79 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
|
| 80 |
|
|
| 81 |
typedef typename CapacityMap::Value Capacity; |
|
| 82 |
typedef typename CostMap::Value Cost; |
|
| 83 |
typedef typename SupplyMap::Value Supply; |
|
| 84 |
|
|
| 85 |
typedef std::vector<Arc> ArcVector; |
|
| 86 |
typedef std::vector<Node> NodeVector; |
|
| 87 |
typedef std::vector<int> IntVector; |
|
| 88 |
typedef std::vector<bool> BoolVector; |
|
| 89 |
typedef std::vector<Capacity> CapacityVector; |
|
| 90 |
typedef std::vector<Cost> CostVector; |
|
| 91 |
typedef std::vector<Supply> SupplyVector; |
|
| 92 |
|
|
| 93 |
public: |
|
| 94 |
|
|
| 95 |
/// The type of the flow map |
|
| 96 |
typedef typename Digraph::template ArcMap<Capacity> FlowMap; |
|
| 97 |
/// The type of the potential map |
|
| 98 |
typedef typename Digraph::template NodeMap<Cost> PotentialMap; |
|
| 99 |
|
|
| 100 |
public: |
|
| 101 |
|
|
| 102 |
/// Enum type for selecting the pivot rule used by \ref run() |
|
| 103 |
enum PivotRuleEnum {
|
|
| 104 |
FIRST_ELIGIBLE_PIVOT, |
|
| 105 |
BEST_ELIGIBLE_PIVOT, |
|
| 106 |
BLOCK_SEARCH_PIVOT, |
|
| 107 |
CANDIDATE_LIST_PIVOT, |
|
| 108 |
ALTERING_LIST_PIVOT |
|
| 109 |
}; |
|
| 110 |
|
|
| 111 |
private: |
|
| 112 |
|
|
| 113 |
// State constants for arcs |
|
| 114 |
enum ArcStateEnum {
|
|
| 115 |
STATE_UPPER = -1, |
|
| 116 |
STATE_TREE = 0, |
|
| 117 |
STATE_LOWER = 1 |
|
| 118 |
}; |
|
| 119 |
|
|
| 120 |
private: |
|
| 121 |
|
|
| 122 |
// References for the original data |
|
| 123 |
const Digraph &_orig_graph; |
|
| 124 |
const LowerMap *_orig_lower; |
|
| 125 |
const CapacityMap &_orig_cap; |
|
| 126 |
const CostMap &_orig_cost; |
|
| 127 |
const SupplyMap *_orig_supply; |
|
| 128 |
Node _orig_source; |
|
| 129 |
Node _orig_target; |
|
| 130 |
Capacity _orig_flow_value; |
|
| 131 |
|
|
| 132 |
// Result maps |
|
| 133 |
FlowMap *_flow_result; |
|
| 134 |
PotentialMap *_potential_result; |
|
| 135 |
bool _local_flow; |
|
| 136 |
bool _local_potential; |
|
| 137 |
|
|
| 138 |
// Data structures for storing the graph |
|
| 139 |
ArcVector _arc; |
|
| 140 |
NodeVector _node; |
|
| 141 |
IntNodeMap _node_id; |
|
| 142 |
IntVector _source; |
|
| 143 |
IntVector _target; |
|
| 144 |
|
|
| 145 |
// The number of nodes and arcs in the original graph |
|
| 146 |
int _node_num; |
|
| 147 |
int _arc_num; |
|
| 148 |
|
|
| 149 |
// Node and arc maps |
|
| 150 |
CapacityVector _cap; |
|
| 151 |
CostVector _cost; |
|
| 152 |
CostVector _supply; |
|
| 153 |
CapacityVector _flow; |
|
| 154 |
CostVector _pi; |
|
| 155 |
|
|
| 156 |
// Node and arc maps for the spanning tree structure |
|
| 157 |
IntVector _depth; |
|
| 158 |
IntVector _parent; |
|
| 159 |
IntVector _pred; |
|
| 160 |
IntVector _thread; |
|
| 161 |
BoolVector _forward; |
|
| 162 |
IntVector _state; |
|
| 163 |
|
|
| 164 |
// The root node |
|
| 165 |
int _root; |
|
| 166 |
|
|
| 167 |
// The entering arc in the current pivot iteration |
|
| 168 |
int _in_arc; |
|
| 169 |
|
|
| 170 |
// Temporary data used in the current pivot iteration |
|
| 171 |
int join, u_in, v_in, u_out, v_out; |
|
| 172 |
int right, first, second, last; |
|
| 173 |
int stem, par_stem, new_stem; |
|
| 174 |
Capacity delta; |
|
| 175 |
|
|
| 176 |
private: |
|
| 177 |
|
|
| 178 |
/// \brief Implementation of the "First Eligible" pivot rule for the |
|
| 179 |
/// \ref NetworkSimplex "network simplex" algorithm. |
|
| 180 |
/// |
|
| 181 |
/// This class implements the "First Eligible" pivot rule |
|
| 182 |
/// for the \ref NetworkSimplex "network simplex" algorithm. |
|
| 183 |
/// |
|
| 184 |
/// For more information see \ref NetworkSimplex::run(). |
|
| 185 |
class FirstEligiblePivotRule |
|
| 186 |
{
|
|
| 187 |
private: |
|
| 188 |
|
|
| 189 |
// References to the NetworkSimplex class |
|
| 190 |
const ArcVector &_arc; |
|
| 191 |
const IntVector &_source; |
|
| 192 |
const IntVector &_target; |
|
| 193 |
const CostVector &_cost; |
|
| 194 |
const IntVector &_state; |
|
| 195 |
const CostVector &_pi; |
|
| 196 |
int &_in_arc; |
|
| 197 |
int _arc_num; |
|
| 198 |
|
|
| 199 |
// Pivot rule data |
|
| 200 |
int _next_arc; |
|
| 201 |
|
|
| 202 |
public: |
|
| 203 |
|
|
| 204 |
/// Constructor |
|
| 205 |
FirstEligiblePivotRule(NetworkSimplex &ns) : |
|
| 206 |
_arc(ns._arc), _source(ns._source), _target(ns._target), |
|
| 207 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
|
| 208 |
_in_arc(ns._in_arc), _arc_num(ns._arc_num), _next_arc(0) |
|
| 209 |
{}
|
|
| 210 |
|
|
| 211 |
/// Find next entering arc |
|
| 212 |
bool findEnteringArc() {
|
|
| 213 |
Cost c; |
|
| 214 |
for (int e = _next_arc; e < _arc_num; ++e) {
|
|
| 215 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
| 216 |
if (c < 0) {
|
|
| 217 |
_in_arc = e; |
|
| 218 |
_next_arc = e + 1; |
|
| 219 |
return true; |
|
| 220 |
} |
|
| 221 |
} |
|
| 222 |
for (int e = 0; e < _next_arc; ++e) {
|
|
| 223 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
| 224 |
if (c < 0) {
|
|
| 225 |
_in_arc = e; |
|
| 226 |
_next_arc = e + 1; |
|
| 227 |
return true; |
|
| 228 |
} |
|
| 229 |
} |
|
| 230 |
return false; |
|
| 231 |
} |
|
| 232 |
|
|
| 233 |
}; //class FirstEligiblePivotRule |
|
| 234 |
|
|
| 235 |
|
|
| 236 |
/// \brief Implementation of the "Best Eligible" pivot rule for the |
|
| 237 |
/// \ref NetworkSimplex "network simplex" algorithm. |
|
| 238 |
/// |
|
| 239 |
/// This class implements the "Best Eligible" pivot rule |
|
| 240 |
/// for the \ref NetworkSimplex "network simplex" algorithm. |
|
| 241 |
/// |
|
| 242 |
/// For more information see \ref NetworkSimplex::run(). |
|
| 243 |
class BestEligiblePivotRule |
|
| 244 |
{
|
|
| 245 |
private: |
|
| 246 |
|
|
| 247 |
// References to the NetworkSimplex class |
|
| 248 |
const ArcVector &_arc; |
|
| 249 |
const IntVector &_source; |
|
| 250 |
const IntVector &_target; |
|
| 251 |
const CostVector &_cost; |
|
| 252 |
const IntVector &_state; |
|
| 253 |
const CostVector &_pi; |
|
| 254 |
int &_in_arc; |
|
| 255 |
int _arc_num; |
|
| 256 |
|
|
| 257 |
public: |
|
| 258 |
|
|
| 259 |
/// Constructor |
|
| 260 |
BestEligiblePivotRule(NetworkSimplex &ns) : |
|
| 261 |
_arc(ns._arc), _source(ns._source), _target(ns._target), |
|
| 262 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
|
| 263 |
_in_arc(ns._in_arc), _arc_num(ns._arc_num) |
|
| 264 |
{}
|
|
| 265 |
|
|
| 266 |
/// Find next entering arc |
|
| 267 |
bool findEnteringArc() {
|
|
| 268 |
Cost c, min = 0; |
|
| 269 |
for (int e = 0; e < _arc_num; ++e) {
|
|
| 270 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
| 271 |
if (c < min) {
|
|
| 272 |
min = c; |
|
| 273 |
_in_arc = e; |
|
| 274 |
} |
|
| 275 |
} |
|
| 276 |
return min < 0; |
|
| 277 |
} |
|
| 278 |
|
|
| 279 |
}; //class BestEligiblePivotRule |
|
| 280 |
|
|
| 281 |
|
|
| 282 |
/// \brief Implementation of the "Block Search" pivot rule for the |
|
| 283 |
/// \ref NetworkSimplex "network simplex" algorithm. |
|
| 284 |
/// |
|
| 285 |
/// This class implements the "Block Search" pivot rule |
|
| 286 |
/// for the \ref NetworkSimplex "network simplex" algorithm. |
|
| 287 |
/// |
|
| 288 |
/// For more information see \ref NetworkSimplex::run(). |
|
| 289 |
class BlockSearchPivotRule |
|
| 290 |
{
|
|
| 291 |
private: |
|
| 292 |
|
|
| 293 |
// References to the NetworkSimplex class |
|
| 294 |
const ArcVector &_arc; |
|
| 295 |
const IntVector &_source; |
|
| 296 |
const IntVector &_target; |
|
| 297 |
const CostVector &_cost; |
|
| 298 |
const IntVector &_state; |
|
| 299 |
const CostVector &_pi; |
|
| 300 |
int &_in_arc; |
|
| 301 |
int _arc_num; |
|
| 302 |
|
|
| 303 |
// Pivot rule data |
|
| 304 |
int _block_size; |
|
| 305 |
int _next_arc; |
|
| 306 |
|
|
| 307 |
public: |
|
| 308 |
|
|
| 309 |
/// Constructor |
|
| 310 |
BlockSearchPivotRule(NetworkSimplex &ns) : |
|
| 311 |
_arc(ns._arc), _source(ns._source), _target(ns._target), |
|
| 312 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
|
| 313 |
_in_arc(ns._in_arc), _arc_num(ns._arc_num), _next_arc(0) |
|
| 314 |
{
|
|
| 315 |
// The main parameters of the pivot rule |
|
| 316 |
const double BLOCK_SIZE_FACTOR = 2.0; |
|
| 317 |
const int MIN_BLOCK_SIZE = 10; |
|
| 318 |
|
|
| 319 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_arc_num)), |
|
| 320 |
MIN_BLOCK_SIZE ); |
|
| 321 |
} |
|
| 322 |
|
|
| 323 |
/// Find next entering arc |
|
| 324 |
bool findEnteringArc() {
|
|
| 325 |
Cost c, min = 0; |
|
| 326 |
int cnt = _block_size; |
|
| 327 |
int e, min_arc = _next_arc; |
|
| 328 |
for (e = _next_arc; e < _arc_num; ++e) {
|
|
| 329 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
| 330 |
if (c < min) {
|
|
| 331 |
min = c; |
|
| 332 |
min_arc = e; |
|
| 333 |
} |
|
| 334 |
if (--cnt == 0) {
|
|
| 335 |
if (min < 0) break; |
|
| 336 |
cnt = _block_size; |
|
| 337 |
} |
|
| 338 |
} |
|
| 339 |
if (min == 0 || cnt > 0) {
|
|
| 340 |
for (e = 0; e < _next_arc; ++e) {
|
|
| 341 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
| 342 |
if (c < min) {
|
|
| 343 |
min = c; |
|
| 344 |
min_arc = e; |
|
| 345 |
} |
|
| 346 |
if (--cnt == 0) {
|
|
| 347 |
if (min < 0) break; |
|
| 348 |
cnt = _block_size; |
|
| 349 |
} |
|
| 350 |
} |
|
| 351 |
} |
|
| 352 |
if (min >= 0) return false; |
|
| 353 |
_in_arc = min_arc; |
|
| 354 |
_next_arc = e; |
|
| 355 |
return true; |
|
| 356 |
} |
|
| 357 |
|
|
| 358 |
}; //class BlockSearchPivotRule |
|
| 359 |
|
|
| 360 |
|
|
| 361 |
/// \brief Implementation of the "Candidate List" pivot rule for the |
|
| 362 |
/// \ref NetworkSimplex "network simplex" algorithm. |
|
| 363 |
/// |
|
| 364 |
/// This class implements the "Candidate List" pivot rule |
|
| 365 |
/// for the \ref NetworkSimplex "network simplex" algorithm. |
|
| 366 |
/// |
|
| 367 |
/// For more information see \ref NetworkSimplex::run(). |
|
| 368 |
class CandidateListPivotRule |
|
| 369 |
{
|
|
| 370 |
private: |
|
| 371 |
|
|
| 372 |
// References to the NetworkSimplex class |
|
| 373 |
const ArcVector &_arc; |
|
| 374 |
const IntVector &_source; |
|
| 375 |
const IntVector &_target; |
|
| 376 |
const CostVector &_cost; |
|
| 377 |
const IntVector &_state; |
|
| 378 |
const CostVector &_pi; |
|
| 379 |
int &_in_arc; |
|
| 380 |
int _arc_num; |
|
| 381 |
|
|
| 382 |
// Pivot rule data |
|
| 383 |
IntVector _candidates; |
|
| 384 |
int _list_length, _minor_limit; |
|
| 385 |
int _curr_length, _minor_count; |
|
| 386 |
int _next_arc; |
|
| 387 |
|
|
| 388 |
public: |
|
| 389 |
|
|
| 390 |
/// Constructor |
|
| 391 |
CandidateListPivotRule(NetworkSimplex &ns) : |
|
| 392 |
_arc(ns._arc), _source(ns._source), _target(ns._target), |
|
| 393 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
|
| 394 |
_in_arc(ns._in_arc), _arc_num(ns._arc_num), _next_arc(0) |
|
| 395 |
{
|
|
| 396 |
// The main parameters of the pivot rule |
|
| 397 |
const double LIST_LENGTH_FACTOR = 1.0; |
|
| 398 |
const int MIN_LIST_LENGTH = 10; |
|
| 399 |
const double MINOR_LIMIT_FACTOR = 0.1; |
|
| 400 |
const int MIN_MINOR_LIMIT = 3; |
|
| 401 |
|
|
| 402 |
_list_length = std::max( int(LIST_LENGTH_FACTOR * sqrt(_arc_num)), |
|
| 403 |
MIN_LIST_LENGTH ); |
|
| 404 |
_minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length), |
|
| 405 |
MIN_MINOR_LIMIT ); |
|
| 406 |
_curr_length = _minor_count = 0; |
|
| 407 |
_candidates.resize(_list_length); |
|
| 408 |
} |
|
| 409 |
|
|
| 410 |
/// Find next entering arc |
|
| 411 |
bool findEnteringArc() {
|
|
| 412 |
Cost min, c; |
|
| 413 |
int e, min_arc = _next_arc; |
|
| 414 |
if (_curr_length > 0 && _minor_count < _minor_limit) {
|
|
| 415 |
// Minor iteration: select the best eligible arc from the |
|
| 416 |
// current candidate list |
|
| 417 |
++_minor_count; |
|
| 418 |
min = 0; |
|
| 419 |
for (int i = 0; i < _curr_length; ++i) {
|
|
| 420 |
e = _candidates[i]; |
|
| 421 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
| 422 |
if (c < min) {
|
|
| 423 |
min = c; |
|
| 424 |
min_arc = e; |
|
| 425 |
} |
|
| 426 |
if (c >= 0) {
|
|
| 427 |
_candidates[i--] = _candidates[--_curr_length]; |
|
| 428 |
} |
|
| 429 |
} |
|
| 430 |
if (min < 0) {
|
|
| 431 |
_in_arc = min_arc; |
|
| 432 |
return true; |
|
| 433 |
} |
|
| 434 |
} |
|
| 435 |
|
|
| 436 |
// Major iteration: build a new candidate list |
|
| 437 |
min = 0; |
|
| 438 |
_curr_length = 0; |
|
| 439 |
for (e = _next_arc; e < _arc_num; ++e) {
|
|
| 440 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
| 441 |
if (c < 0) {
|
|
| 442 |
_candidates[_curr_length++] = e; |
|
| 443 |
if (c < min) {
|
|
| 444 |
min = c; |
|
| 445 |
min_arc = e; |
|
| 446 |
} |
|
| 447 |
if (_curr_length == _list_length) break; |
|
| 448 |
} |
|
| 449 |
} |
|
| 450 |
if (_curr_length < _list_length) {
|
|
| 451 |
for (e = 0; e < _next_arc; ++e) {
|
|
| 452 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
| 453 |
if (c < 0) {
|
|
| 454 |
_candidates[_curr_length++] = e; |
|
| 455 |
if (c < min) {
|
|
| 456 |
min = c; |
|
| 457 |
min_arc = e; |
|
| 458 |
} |
|
| 459 |
if (_curr_length == _list_length) break; |
|
| 460 |
} |
|
| 461 |
} |
|
| 462 |
} |
|
| 463 |
if (_curr_length == 0) return false; |
|
| 464 |
_minor_count = 1; |
|
| 465 |
_in_arc = min_arc; |
|
| 466 |
_next_arc = e; |
|
| 467 |
return true; |
|
| 468 |
} |
|
| 469 |
|
|
| 470 |
}; //class CandidateListPivotRule |
|
| 471 |
|
|
| 472 |
|
|
| 473 |
/// \brief Implementation of the "Altering Candidate List" pivot rule |
|
| 474 |
/// for the \ref NetworkSimplex "network simplex" algorithm. |
|
| 475 |
/// |
|
| 476 |
/// This class implements the "Altering Candidate List" pivot rule |
|
| 477 |
/// for the \ref NetworkSimplex "network simplex" algorithm. |
|
| 478 |
/// |
|
| 479 |
/// For more information see \ref NetworkSimplex::run(). |
|
| 480 |
class AlteringListPivotRule |
|
| 481 |
{
|
|
| 482 |
private: |
|
| 483 |
|
|
| 484 |
// References to the NetworkSimplex class |
|
| 485 |
const ArcVector &_arc; |
|
| 486 |
const IntVector &_source; |
|
| 487 |
const IntVector &_target; |
|
| 488 |
const CostVector &_cost; |
|
| 489 |
const IntVector &_state; |
|
| 490 |
const CostVector &_pi; |
|
| 491 |
int &_in_arc; |
|
| 492 |
int _arc_num; |
|
| 493 |
|
|
| 494 |
// Pivot rule data |
|
| 495 |
int _block_size, _head_length, _curr_length; |
|
| 496 |
int _next_arc; |
|
| 497 |
IntVector _candidates; |
|
| 498 |
CostVector _cand_cost; |
|
| 499 |
|
|
| 500 |
// Functor class to compare arcs during sort of the candidate list |
|
| 501 |
class SortFunc |
|
| 502 |
{
|
|
| 503 |
private: |
|
| 504 |
const CostVector &_map; |
|
| 505 |
public: |
|
| 506 |
SortFunc(const CostVector &map) : _map(map) {}
|
|
| 507 |
bool operator()(int left, int right) {
|
|
| 508 |
return _map[left] > _map[right]; |
|
| 509 |
} |
|
| 510 |
}; |
|
| 511 |
|
|
| 512 |
SortFunc _sort_func; |
|
| 513 |
|
|
| 514 |
public: |
|
| 515 |
|
|
| 516 |
/// Constructor |
|
| 517 |
AlteringListPivotRule(NetworkSimplex &ns) : |
|
| 518 |
_arc(ns._arc), _source(ns._source), _target(ns._target), |
|
| 519 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
|
| 520 |
_in_arc(ns._in_arc), _arc_num(ns._arc_num), |
|
| 521 |
_next_arc(0), _cand_cost(ns._arc_num), _sort_func(_cand_cost) |
|
| 522 |
{
|
|
| 523 |
// The main parameters of the pivot rule |
|
| 524 |
const double BLOCK_SIZE_FACTOR = 1.5; |
|
| 525 |
const int MIN_BLOCK_SIZE = 10; |
|
| 526 |
const double HEAD_LENGTH_FACTOR = 0.1; |
|
| 527 |
const int MIN_HEAD_LENGTH = 3; |
|
| 528 |
|
|
| 529 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_arc_num)), |
|
| 530 |
MIN_BLOCK_SIZE ); |
|
| 531 |
_head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), |
|
| 532 |
MIN_HEAD_LENGTH ); |
|
| 533 |
_candidates.resize(_head_length + _block_size); |
|
| 534 |
_curr_length = 0; |
|
| 535 |
} |
|
| 536 |
|
|
| 537 |
/// Find next entering arc |
|
| 538 |
bool findEnteringArc() {
|
|
| 539 |
// Check the current candidate list |
|
| 540 |
int e; |
|
| 541 |
for (int i = 0; i < _curr_length; ++i) {
|
|
| 542 |
e = _candidates[i]; |
|
| 543 |
_cand_cost[e] = _state[e] * |
|
| 544 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
| 545 |
if (_cand_cost[e] >= 0) {
|
|
| 546 |
_candidates[i--] = _candidates[--_curr_length]; |
|
| 547 |
} |
|
| 548 |
} |
|
| 549 |
|
|
| 550 |
// Extend the list |
|
| 551 |
int cnt = _block_size; |
|
| 552 |
int last_edge = 0; |
|
| 553 |
int limit = _head_length; |
|
| 554 |
|
|
| 555 |
for (int e = _next_arc; e < _arc_num; ++e) {
|
|
| 556 |
_cand_cost[e] = _state[e] * |
|
| 557 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
| 558 |
if (_cand_cost[e] < 0) {
|
|
| 559 |
_candidates[_curr_length++] = e; |
|
| 560 |
last_edge = e; |
|
| 561 |
} |
|
| 562 |
if (--cnt == 0) {
|
|
| 563 |
if (_curr_length > limit) break; |
|
| 564 |
limit = 0; |
|
| 565 |
cnt = _block_size; |
|
| 566 |
} |
|
| 567 |
} |
|
| 568 |
if (_curr_length <= limit) {
|
|
| 569 |
for (int e = 0; e < _next_arc; ++e) {
|
|
| 570 |
_cand_cost[e] = _state[e] * |
|
| 571 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
| 572 |
if (_cand_cost[e] < 0) {
|
|
| 573 |
_candidates[_curr_length++] = e; |
|
| 574 |
last_edge = e; |
|
| 575 |
} |
|
| 576 |
if (--cnt == 0) {
|
|
| 577 |
if (_curr_length > limit) break; |
|
| 578 |
limit = 0; |
|
| 579 |
cnt = _block_size; |
|
| 580 |
} |
|
| 581 |
} |
|
| 582 |
} |
|
| 583 |
if (_curr_length == 0) return false; |
|
| 584 |
_next_arc = last_edge + 1; |
|
| 585 |
|
|
| 586 |
// Make heap of the candidate list (approximating a partial sort) |
|
| 587 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
|
| 588 |
_sort_func ); |
|
| 589 |
|
|
| 590 |
// Pop the first element of the heap |
|
| 591 |
_in_arc = _candidates[0]; |
|
| 592 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
|
| 593 |
_sort_func ); |
|
| 594 |
_curr_length = std::min(_head_length, _curr_length - 1); |
|
| 595 |
return true; |
|
| 596 |
} |
|
| 597 |
|
|
| 598 |
}; //class AlteringListPivotRule |
|
| 599 |
|
|
| 600 |
public: |
|
| 601 |
|
|
| 602 |
/// \brief General constructor (with lower bounds). |
|
| 603 |
/// |
|
| 604 |
/// General constructor (with lower bounds). |
|
| 605 |
/// |
|
| 606 |
/// \param digraph The digraph the algorithm runs on. |
|
| 607 |
/// \param lower The lower bounds of the arcs. |
|
| 608 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
| 609 |
/// \param cost The cost (length) values of the arcs. |
|
| 610 |
/// \param supply The supply values of the nodes (signed). |
|
| 611 |
NetworkSimplex( const Digraph &digraph, |
|
| 612 |
const LowerMap &lower, |
|
| 613 |
const CapacityMap &capacity, |
|
| 614 |
const CostMap &cost, |
|
| 615 |
const SupplyMap &supply ) : |
|
| 616 |
_orig_graph(digraph), _orig_lower(&lower), _orig_cap(capacity), |
|
| 617 |
_orig_cost(cost), _orig_supply(&supply), |
|
| 618 |
_flow_result(NULL), _potential_result(NULL), |
|
| 619 |
_local_flow(false), _local_potential(false), |
|
| 620 |
_node_id(digraph) |
|
| 621 |
{}
|
|
| 622 |
|
|
| 623 |
/// \brief General constructor (without lower bounds). |
|
| 624 |
/// |
|
| 625 |
/// General constructor (without lower bounds). |
|
| 626 |
/// |
|
| 627 |
/// \param digraph The digraph the algorithm runs on. |
|
| 628 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
| 629 |
/// \param cost The cost (length) values of the arcs. |
|
| 630 |
/// \param supply The supply values of the nodes (signed). |
|
| 631 |
NetworkSimplex( const Digraph &digraph, |
|
| 632 |
const CapacityMap &capacity, |
|
| 633 |
const CostMap &cost, |
|
| 634 |
const SupplyMap &supply ) : |
|
| 635 |
_orig_graph(digraph), _orig_lower(NULL), _orig_cap(capacity), |
|
| 636 |
_orig_cost(cost), _orig_supply(&supply), |
|
| 637 |
_flow_result(NULL), _potential_result(NULL), |
|
| 638 |
_local_flow(false), _local_potential(false), |
|
| 639 |
_node_id(digraph) |
|
| 640 |
{}
|
|
| 641 |
|
|
| 642 |
/// \brief Simple constructor (with lower bounds). |
|
| 643 |
/// |
|
| 644 |
/// Simple constructor (with lower bounds). |
|
| 645 |
/// |
|
| 646 |
/// \param digraph The digraph the algorithm runs on. |
|
| 647 |
/// \param lower The lower bounds of the arcs. |
|
| 648 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
| 649 |
/// \param cost The cost (length) values of the arcs. |
|
| 650 |
/// \param s The source node. |
|
| 651 |
/// \param t The target node. |
|
| 652 |
/// \param flow_value The required amount of flow from node \c s |
|
| 653 |
/// to node \c t (i.e. the supply of \c s and the demand of \c t). |
|
| 654 |
NetworkSimplex( const Digraph &digraph, |
|
| 655 |
const LowerMap &lower, |
|
| 656 |
const CapacityMap &capacity, |
|
| 657 |
const CostMap &cost, |
|
| 658 |
Node s, Node t, |
|
| 659 |
Capacity flow_value ) : |
|
| 660 |
_orig_graph(digraph), _orig_lower(&lower), _orig_cap(capacity), |
|
| 661 |
_orig_cost(cost), _orig_supply(NULL), |
|
| 662 |
_orig_source(s), _orig_target(t), _orig_flow_value(flow_value), |
|
| 663 |
_flow_result(NULL), _potential_result(NULL), |
|
| 664 |
_local_flow(false), _local_potential(false), |
|
| 665 |
_node_id(digraph) |
|
| 666 |
{}
|
|
| 667 |
|
|
| 668 |
/// \brief Simple constructor (without lower bounds). |
|
| 669 |
/// |
|
| 670 |
/// Simple constructor (without lower bounds). |
|
| 671 |
/// |
|
| 672 |
/// \param digraph The digraph the algorithm runs on. |
|
| 673 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
| 674 |
/// \param cost The cost (length) values of the arcs. |
|
| 675 |
/// \param s The source node. |
|
| 676 |
/// \param t The target node. |
|
| 677 |
/// \param flow_value The required amount of flow from node \c s |
|
| 678 |
/// to node \c t (i.e. the supply of \c s and the demand of \c t). |
|
| 679 |
NetworkSimplex( const Digraph &digraph, |
|
| 680 |
const CapacityMap &capacity, |
|
| 681 |
const CostMap &cost, |
|
| 682 |
Node s, Node t, |
|
| 683 |
Capacity flow_value ) : |
|
| 684 |
_orig_graph(digraph), _orig_lower(NULL), _orig_cap(capacity), |
|
| 685 |
_orig_cost(cost), _orig_supply(NULL), |
|
| 686 |
_orig_source(s), _orig_target(t), _orig_flow_value(flow_value), |
|
| 687 |
_flow_result(NULL), _potential_result(NULL), |
|
| 688 |
_local_flow(false), _local_potential(false), |
|
| 689 |
_node_id(digraph) |
|
| 690 |
{}
|
|
| 691 |
|
|
| 692 |
/// Destructor. |
|
| 693 |
~NetworkSimplex() {
|
|
| 694 |
if (_local_flow) delete _flow_result; |
|
| 695 |
if (_local_potential) delete _potential_result; |
|
| 696 |
} |
|
| 697 |
|
|
| 698 |
/// \brief Set the flow map. |
|
| 699 |
/// |
|
| 700 |
/// This function sets the flow map. |
|
| 701 |
/// |
|
| 702 |
/// \return <tt>(*this)</tt> |
|
| 703 |
NetworkSimplex& flowMap(FlowMap &map) {
|
|
| 704 |
if (_local_flow) {
|
|
| 705 |
delete _flow_result; |
|
| 706 |
_local_flow = false; |
|
| 707 |
} |
|
| 708 |
_flow_result = ↦ |
|
| 709 |
return *this; |
|
| 710 |
} |
|
| 711 |
|
|
| 712 |
/// \brief Set the potential map. |
|
| 713 |
/// |
|
| 714 |
/// This function sets the potential map. |
|
| 715 |
/// |
|
| 716 |
/// \return <tt>(*this)</tt> |
|
| 717 |
NetworkSimplex& potentialMap(PotentialMap &map) {
|
|
| 718 |
if (_local_potential) {
|
|
| 719 |
delete _potential_result; |
|
| 720 |
_local_potential = false; |
|
| 721 |
} |
|
| 722 |
_potential_result = ↦ |
|
| 723 |
return *this; |
|
| 724 |
} |
|
| 725 |
|
|
| 726 |
/// \name Execution control |
|
| 727 |
/// The algorithm can be executed using the |
|
| 728 |
/// \ref lemon::NetworkSimplex::run() "run()" function. |
|
| 729 |
/// @{
|
|
| 730 |
|
|
| 731 |
/// \brief Run the algorithm. |
|
| 732 |
/// |
|
| 733 |
/// This function runs the algorithm. |
|
| 734 |
/// |
|
| 735 |
/// \param pivot_rule The pivot rule that is used during the |
|
| 736 |
/// algorithm. |
|
| 737 |
/// |
|
| 738 |
/// The available pivot rules: |
|
| 739 |
/// |
|
| 740 |
/// - FIRST_ELIGIBLE_PIVOT The next eligible arc is selected in |
|
| 741 |
/// a wraparound fashion in every iteration |
|
| 742 |
/// (\ref FirstEligiblePivotRule). |
|
| 743 |
/// |
|
| 744 |
/// - BEST_ELIGIBLE_PIVOT The best eligible arc is selected in |
|
| 745 |
/// every iteration (\ref BestEligiblePivotRule). |
|
| 746 |
/// |
|
| 747 |
/// - BLOCK_SEARCH_PIVOT A specified number of arcs are examined in |
|
| 748 |
/// every iteration in a wraparound fashion and the best eligible |
|
| 749 |
/// arc is selected from this block (\ref BlockSearchPivotRule). |
|
| 750 |
/// |
|
| 751 |
/// - CANDIDATE_LIST_PIVOT In a major iteration a candidate list is |
|
| 752 |
/// built from eligible arcs in a wraparound fashion and in the |
|
| 753 |
/// following minor iterations the best eligible arc is selected |
|
| 754 |
/// from this list (\ref CandidateListPivotRule). |
|
| 755 |
/// |
|
| 756 |
/// - ALTERING_LIST_PIVOT It is a modified version of the |
|
| 757 |
/// "Candidate List" pivot rule. It keeps only the several best |
|
| 758 |
/// eligible arcs from the former candidate list and extends this |
|
| 759 |
/// list in every iteration (\ref AlteringListPivotRule). |
|
| 760 |
/// |
|
| 761 |
/// According to our comprehensive benchmark tests the "Block Search" |
|
| 762 |
/// pivot rule proved to be the fastest and the most robust on |
|
| 763 |
/// various test inputs. Thus it is the default option. |
|
| 764 |
/// |
|
| 765 |
/// \return \c true if a feasible flow can be found. |
|
| 766 |
bool run(PivotRuleEnum pivot_rule = BLOCK_SEARCH_PIVOT) {
|
|
| 767 |
return init() && start(pivot_rule); |
|
| 768 |
} |
|
| 769 |
|
|
| 770 |
/// @} |
|
| 771 |
|
|
| 772 |
/// \name Query Functions |
|
| 773 |
/// The results of the algorithm can be obtained using these |
|
| 774 |
/// functions.\n |
|
| 775 |
/// \ref lemon::NetworkSimplex::run() "run()" must be called before |
|
| 776 |
/// using them. |
|
| 777 |
/// @{
|
|
| 778 |
|
|
| 779 |
/// \brief Return a const reference to the flow map. |
|
| 780 |
/// |
|
| 781 |
/// This function returns a const reference to an arc map storing |
|
| 782 |
/// the found flow. |
|
| 783 |
/// |
|
| 784 |
/// \pre \ref run() must be called before using this function. |
|
| 785 |
const FlowMap& flowMap() const {
|
|
| 786 |
return *_flow_result; |
|
| 787 |
} |
|
| 788 |
|
|
| 789 |
/// \brief Return a const reference to the potential map |
|
| 790 |
/// (the dual solution). |
|
| 791 |
/// |
|
| 792 |
/// This function returns a const reference to a node map storing |
|
| 793 |
/// the found potentials (the dual solution). |
|
| 794 |
/// |
|
| 795 |
/// \pre \ref run() must be called before using this function. |
|
| 796 |
const PotentialMap& potentialMap() const {
|
|
| 797 |
return *_potential_result; |
|
| 798 |
} |
|
| 799 |
|
|
| 800 |
/// \brief Return the flow on the given arc. |
|
| 801 |
/// |
|
| 802 |
/// This function returns the flow on the given arc. |
|
| 803 |
/// |
|
| 804 |
/// \pre \ref run() must be called before using this function. |
|
| 805 |
Capacity flow(const Arc& arc) const {
|
|
| 806 |
return (*_flow_result)[arc]; |
|
| 807 |
} |
|
| 808 |
|
|
| 809 |
/// \brief Return the potential of the given node. |
|
| 810 |
/// |
|
| 811 |
/// This function returns the potential of the given node. |
|
| 812 |
/// |
|
| 813 |
/// \pre \ref run() must be called before using this function. |
|
| 814 |
Cost potential(const Node& node) const {
|
|
| 815 |
return (*_potential_result)[node]; |
|
| 816 |
} |
|
| 817 |
|
|
| 818 |
/// \brief Return the total cost of the found flow. |
|
| 819 |
/// |
|
| 820 |
/// This function returns the total cost of the found flow. |
|
| 821 |
/// The complexity of the function is \f$ O(e) \f$. |
|
| 822 |
/// |
|
| 823 |
/// \pre \ref run() must be called before using this function. |
|
| 824 |
Cost totalCost() const {
|
|
| 825 |
Cost c = 0; |
|
| 826 |
for (ArcIt e(_orig_graph); e != INVALID; ++e) |
|
| 827 |
c += (*_flow_result)[e] * _orig_cost[e]; |
|
| 828 |
return c; |
|
| 829 |
} |
|
| 830 |
|
|
| 831 |
/// @} |
|
| 832 |
|
|
| 833 |
private: |
|
| 834 |
|
|
| 835 |
// Initialize internal data structures |
|
| 836 |
bool init() {
|
|
| 837 |
// Initialize result maps |
|
| 838 |
if (!_flow_result) {
|
|
| 839 |
_flow_result = new FlowMap(_orig_graph); |
|
| 840 |
_local_flow = true; |
|
| 841 |
} |
|
| 842 |
if (!_potential_result) {
|
|
| 843 |
_potential_result = new PotentialMap(_orig_graph); |
|
| 844 |
_local_potential = true; |
|
| 845 |
} |
|
| 846 |
|
|
| 847 |
// Initialize vectors |
|
| 848 |
_node_num = countNodes(_orig_graph); |
|
| 849 |
_arc_num = countArcs(_orig_graph); |
|
| 850 |
int all_node_num = _node_num + 1; |
|
| 851 |
int all_edge_num = _arc_num + _node_num; |
|
| 852 |
|
|
| 853 |
_arc.resize(_arc_num); |
|
| 854 |
_node.reserve(_node_num); |
|
| 855 |
_source.resize(all_edge_num); |
|
| 856 |
_target.resize(all_edge_num); |
|
| 857 |
|
|
| 858 |
_cap.resize(all_edge_num); |
|
| 859 |
_cost.resize(all_edge_num); |
|
| 860 |
_supply.resize(all_node_num); |
|
| 861 |
_flow.resize(all_edge_num, 0); |
|
| 862 |
_pi.resize(all_node_num, 0); |
|
| 863 |
|
|
| 864 |
_depth.resize(all_node_num); |
|
| 865 |
_parent.resize(all_node_num); |
|
| 866 |
_pred.resize(all_node_num); |
|
| 867 |
_thread.resize(all_node_num); |
|
| 868 |
_forward.resize(all_node_num); |
|
| 869 |
_state.resize(all_edge_num, STATE_LOWER); |
|
| 870 |
|
|
| 871 |
// Initialize node related data |
|
| 872 |
bool valid_supply = true; |
|
| 873 |
if (_orig_supply) {
|
|
| 874 |
Supply sum = 0; |
|
| 875 |
int i = 0; |
|
| 876 |
for (NodeIt n(_orig_graph); n != INVALID; ++n, ++i) {
|
|
| 877 |
_node.push_back(n); |
|
| 878 |
_node_id[n] = i; |
|
| 879 |
_supply[i] = (*_orig_supply)[n]; |
|
| 880 |
sum += _supply[i]; |
|
| 881 |
} |
|
| 882 |
valid_supply = (sum == 0); |
|
| 883 |
} else {
|
|
| 884 |
int i = 0; |
|
| 885 |
for (NodeIt n(_orig_graph); n != INVALID; ++n, ++i) {
|
|
| 886 |
_node.push_back(n); |
|
| 887 |
_node_id[n] = i; |
|
| 888 |
_supply[i] = 0; |
|
| 889 |
} |
|
| 890 |
_supply[_node_id[_orig_source]] = _orig_flow_value; |
|
| 891 |
_supply[_node_id[_orig_target]] = -_orig_flow_value; |
|
| 892 |
} |
|
| 893 |
if (!valid_supply) return false; |
|
| 894 |
|
|
| 895 |
// Set data for the artificial root node |
|
| 896 |
_root = _node_num; |
|
| 897 |
_depth[_root] = 0; |
|
| 898 |
_parent[_root] = -1; |
|
| 899 |
_pred[_root] = -1; |
|
| 900 |
_thread[_root] = 0; |
|
| 901 |
_supply[_root] = 0; |
|
| 902 |
_pi[_root] = 0; |
|
| 903 |
|
|
| 904 |
// Store the arcs in a mixed order |
|
| 905 |
int k = std::max(int(sqrt(_arc_num)), 10); |
|
| 906 |
int i = 0; |
|
| 907 |
for (ArcIt e(_orig_graph); e != INVALID; ++e) {
|
|
| 908 |
_arc[i] = e; |
|
| 909 |
if ((i += k) >= _arc_num) i = (i % k) + 1; |
|
| 910 |
} |
|
| 911 |
|
|
| 912 |
// Initialize arc maps |
|
| 913 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 914 |
Arc e = _arc[i]; |
|
| 915 |
_source[i] = _node_id[_orig_graph.source(e)]; |
|
| 916 |
_target[i] = _node_id[_orig_graph.target(e)]; |
|
| 917 |
_cost[i] = _orig_cost[e]; |
|
| 918 |
_cap[i] = _orig_cap[e]; |
|
| 919 |
} |
|
| 920 |
|
|
| 921 |
// Remove non-zero lower bounds |
|
| 922 |
if (_orig_lower) {
|
|
| 923 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 924 |
Capacity c = (*_orig_lower)[_arc[i]]; |
|
| 925 |
if (c != 0) {
|
|
| 926 |
_cap[i] -= c; |
|
| 927 |
_supply[_source[i]] -= c; |
|
| 928 |
_supply[_target[i]] += c; |
|
| 929 |
} |
|
| 930 |
} |
|
| 931 |
} |
|
| 932 |
|
|
| 933 |
// Add artificial arcs and initialize the spanning tree data structure |
|
| 934 |
Cost max_cost = std::numeric_limits<Cost>::max() / 4; |
|
| 935 |
Capacity max_cap = std::numeric_limits<Capacity>::max(); |
|
| 936 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
|
| 937 |
_thread[u] = u + 1; |
|
| 938 |
_depth[u] = 1; |
|
| 939 |
_parent[u] = _root; |
|
| 940 |
_pred[u] = e; |
|
| 941 |
if (_supply[u] >= 0) {
|
|
| 942 |
_flow[e] = _supply[u]; |
|
| 943 |
_forward[u] = true; |
|
| 944 |
_pi[u] = -max_cost; |
|
| 945 |
} else {
|
|
| 946 |
_flow[e] = -_supply[u]; |
|
| 947 |
_forward[u] = false; |
|
| 948 |
_pi[u] = max_cost; |
|
| 949 |
} |
|
| 950 |
_cost[e] = max_cost; |
|
| 951 |
_cap[e] = max_cap; |
|
| 952 |
_state[e] = STATE_TREE; |
|
| 953 |
} |
|
| 954 |
|
|
| 955 |
return true; |
|
| 956 |
} |
|
| 957 |
|
|
| 958 |
// Find the join node |
|
| 959 |
void findJoinNode() {
|
|
| 960 |
int u = _source[_in_arc]; |
|
| 961 |
int v = _target[_in_arc]; |
|
| 962 |
while (_depth[u] > _depth[v]) u = _parent[u]; |
|
| 963 |
while (_depth[v] > _depth[u]) v = _parent[v]; |
|
| 964 |
while (u != v) {
|
|
| 965 |
u = _parent[u]; |
|
| 966 |
v = _parent[v]; |
|
| 967 |
} |
|
| 968 |
join = u; |
|
| 969 |
} |
|
| 970 |
|
|
| 971 |
// Find the leaving arc of the cycle and returns true if the |
|
| 972 |
// leaving arc is not the same as the entering arc |
|
| 973 |
bool findLeavingArc() {
|
|
| 974 |
// Initialize first and second nodes according to the direction |
|
| 975 |
// of the cycle |
|
| 976 |
if (_state[_in_arc] == STATE_LOWER) {
|
|
| 977 |
first = _source[_in_arc]; |
|
| 978 |
second = _target[_in_arc]; |
|
| 979 |
} else {
|
|
| 980 |
first = _target[_in_arc]; |
|
| 981 |
second = _source[_in_arc]; |
|
| 982 |
} |
|
| 983 |
delta = _cap[_in_arc]; |
|
| 984 |
int result = 0; |
|
| 985 |
Capacity d; |
|
| 986 |
int e; |
|
| 987 |
|
|
| 988 |
// Search the cycle along the path form the first node to the root |
|
| 989 |
for (int u = first; u != join; u = _parent[u]) {
|
|
| 990 |
e = _pred[u]; |
|
| 991 |
d = _forward[u] ? _flow[e] : _cap[e] - _flow[e]; |
|
| 992 |
if (d < delta) {
|
|
| 993 |
delta = d; |
|
| 994 |
u_out = u; |
|
| 995 |
result = 1; |
|
| 996 |
} |
|
| 997 |
} |
|
| 998 |
// Search the cycle along the path form the second node to the root |
|
| 999 |
for (int u = second; u != join; u = _parent[u]) {
|
|
| 1000 |
e = _pred[u]; |
|
| 1001 |
d = _forward[u] ? _cap[e] - _flow[e] : _flow[e]; |
|
| 1002 |
if (d <= delta) {
|
|
| 1003 |
delta = d; |
|
| 1004 |
u_out = u; |
|
| 1005 |
result = 2; |
|
| 1006 |
} |
|
| 1007 |
} |
|
| 1008 |
|
|
| 1009 |
if (result == 1) {
|
|
| 1010 |
u_in = first; |
|
| 1011 |
v_in = second; |
|
| 1012 |
} else {
|
|
| 1013 |
u_in = second; |
|
| 1014 |
v_in = first; |
|
| 1015 |
} |
|
| 1016 |
return result != 0; |
|
| 1017 |
} |
|
| 1018 |
|
|
| 1019 |
// Change _flow and _state vectors |
|
| 1020 |
void changeFlow(bool change) {
|
|
| 1021 |
// Augment along the cycle |
|
| 1022 |
if (delta > 0) {
|
|
| 1023 |
Capacity val = _state[_in_arc] * delta; |
|
| 1024 |
_flow[_in_arc] += val; |
|
| 1025 |
for (int u = _source[_in_arc]; u != join; u = _parent[u]) {
|
|
| 1026 |
_flow[_pred[u]] += _forward[u] ? -val : val; |
|
| 1027 |
} |
|
| 1028 |
for (int u = _target[_in_arc]; u != join; u = _parent[u]) {
|
|
| 1029 |
_flow[_pred[u]] += _forward[u] ? val : -val; |
|
| 1030 |
} |
|
| 1031 |
} |
|
| 1032 |
// Update the state of the entering and leaving arcs |
|
| 1033 |
if (change) {
|
|
| 1034 |
_state[_in_arc] = STATE_TREE; |
|
| 1035 |
_state[_pred[u_out]] = |
|
| 1036 |
(_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; |
|
| 1037 |
} else {
|
|
| 1038 |
_state[_in_arc] = -_state[_in_arc]; |
|
| 1039 |
} |
|
| 1040 |
} |
|
| 1041 |
|
|
| 1042 |
// Update _thread and _parent vectors |
|
| 1043 |
void updateThreadParent() {
|
|
| 1044 |
int u; |
|
| 1045 |
v_out = _parent[u_out]; |
|
| 1046 |
|
|
| 1047 |
// Handle the case when join and v_out coincide |
|
| 1048 |
bool par_first = false; |
|
| 1049 |
if (join == v_out) {
|
|
| 1050 |
for (u = join; u != u_in && u != v_in; u = _thread[u]) ; |
|
| 1051 |
if (u == v_in) {
|
|
| 1052 |
par_first = true; |
|
| 1053 |
while (_thread[u] != u_out) u = _thread[u]; |
|
| 1054 |
first = u; |
|
| 1055 |
} |
|
| 1056 |
} |
|
| 1057 |
|
|
| 1058 |
// Find the last successor of u_in (u) and the node after it (right) |
|
| 1059 |
// according to the thread index |
|
| 1060 |
for (u = u_in; _depth[_thread[u]] > _depth[u_in]; u = _thread[u]) ; |
|
| 1061 |
right = _thread[u]; |
|
| 1062 |
if (_thread[v_in] == u_out) {
|
|
| 1063 |
for (last = u; _depth[last] > _depth[u_out]; last = _thread[last]) ; |
|
| 1064 |
if (last == u_out) last = _thread[last]; |
|
| 1065 |
} |
|
| 1066 |
else last = _thread[v_in]; |
|
| 1067 |
|
|
| 1068 |
// Update stem nodes |
|
| 1069 |
_thread[v_in] = stem = u_in; |
|
| 1070 |
par_stem = v_in; |
|
| 1071 |
while (stem != u_out) {
|
|
| 1072 |
_thread[u] = new_stem = _parent[stem]; |
|
| 1073 |
|
|
| 1074 |
// Find the node just before the stem node (u) according to |
|
| 1075 |
// the original thread index |
|
| 1076 |
for (u = new_stem; _thread[u] != stem; u = _thread[u]) ; |
|
| 1077 |
_thread[u] = right; |
|
| 1078 |
|
|
| 1079 |
// Change the parent node of stem and shift stem and par_stem nodes |
|
| 1080 |
_parent[stem] = par_stem; |
|
| 1081 |
par_stem = stem; |
|
| 1082 |
stem = new_stem; |
|
| 1083 |
|
|
| 1084 |
// Find the last successor of stem (u) and the node after it (right) |
|
| 1085 |
// according to the thread index |
|
| 1086 |
for (u = stem; _depth[_thread[u]] > _depth[stem]; u = _thread[u]) ; |
|
| 1087 |
right = _thread[u]; |
|
| 1088 |
} |
|
| 1089 |
_parent[u_out] = par_stem; |
|
| 1090 |
_thread[u] = last; |
|
| 1091 |
|
|
| 1092 |
if (join == v_out && par_first) {
|
|
| 1093 |
if (first != v_in) _thread[first] = right; |
|
| 1094 |
} else {
|
|
| 1095 |
for (u = v_out; _thread[u] != u_out; u = _thread[u]) ; |
|
| 1096 |
_thread[u] = right; |
|
| 1097 |
} |
|
| 1098 |
} |
|
| 1099 |
|
|
| 1100 |
// Update _pred and _forward vectors |
|
| 1101 |
void updatePredArc() {
|
|
| 1102 |
int u = u_out, v; |
|
| 1103 |
while (u != u_in) {
|
|
| 1104 |
v = _parent[u]; |
|
| 1105 |
_pred[u] = _pred[v]; |
|
| 1106 |
_forward[u] = !_forward[v]; |
|
| 1107 |
u = v; |
|
| 1108 |
} |
|
| 1109 |
_pred[u_in] = _in_arc; |
|
| 1110 |
_forward[u_in] = (u_in == _source[_in_arc]); |
|
| 1111 |
} |
|
| 1112 |
|
|
| 1113 |
// Update _depth and _potential vectors |
|
| 1114 |
void updateDepthPotential() {
|
|
| 1115 |
_depth[u_in] = _depth[v_in] + 1; |
|
| 1116 |
Cost sigma = _forward[u_in] ? |
|
| 1117 |
_pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : |
|
| 1118 |
_pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; |
|
| 1119 |
_pi[u_in] += sigma; |
|
| 1120 |
for(int u = _thread[u_in]; _parent[u] != -1; u = _thread[u]) {
|
|
| 1121 |
_depth[u] = _depth[_parent[u]] + 1; |
|
| 1122 |
if (_depth[u] <= _depth[u_in]) break; |
|
| 1123 |
_pi[u] += sigma; |
|
| 1124 |
} |
|
| 1125 |
} |
|
| 1126 |
|
|
| 1127 |
// Execute the algorithm |
|
| 1128 |
bool start(PivotRuleEnum pivot_rule) {
|
|
| 1129 |
// Select the pivot rule implementation |
|
| 1130 |
switch (pivot_rule) {
|
|
| 1131 |
case FIRST_ELIGIBLE_PIVOT: |
|
| 1132 |
return start<FirstEligiblePivotRule>(); |
|
| 1133 |
case BEST_ELIGIBLE_PIVOT: |
|
| 1134 |
return start<BestEligiblePivotRule>(); |
|
| 1135 |
case BLOCK_SEARCH_PIVOT: |
|
| 1136 |
return start<BlockSearchPivotRule>(); |
|
| 1137 |
case CANDIDATE_LIST_PIVOT: |
|
| 1138 |
return start<CandidateListPivotRule>(); |
|
| 1139 |
case ALTERING_LIST_PIVOT: |
|
| 1140 |
return start<AlteringListPivotRule>(); |
|
| 1141 |
} |
|
| 1142 |
return false; |
|
| 1143 |
} |
|
| 1144 |
|
|
| 1145 |
template<class PivotRuleImplementation> |
|
| 1146 |
bool start() {
|
|
| 1147 |
PivotRuleImplementation pivot(*this); |
|
| 1148 |
|
|
| 1149 |
// Execute the network simplex algorithm |
|
| 1150 |
while (pivot.findEnteringArc()) {
|
|
| 1151 |
findJoinNode(); |
|
| 1152 |
bool change = findLeavingArc(); |
|
| 1153 |
changeFlow(change); |
|
| 1154 |
if (change) {
|
|
| 1155 |
updateThreadParent(); |
|
| 1156 |
updatePredArc(); |
|
| 1157 |
updateDepthPotential(); |
|
| 1158 |
} |
|
| 1159 |
} |
|
| 1160 |
|
|
| 1161 |
// Check if the flow amount equals zero on all the artificial arcs |
|
| 1162 |
for (int e = _arc_num; e != _arc_num + _node_num; ++e) {
|
|
| 1163 |
if (_flow[e] > 0) return false; |
|
| 1164 |
} |
|
| 1165 |
|
|
| 1166 |
// Copy flow values to _flow_result |
|
| 1167 |
if (_orig_lower) {
|
|
| 1168 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1169 |
Arc e = _arc[i]; |
|
| 1170 |
(*_flow_result)[e] = (*_orig_lower)[e] + _flow[i]; |
|
| 1171 |
} |
|
| 1172 |
} else {
|
|
| 1173 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1174 |
(*_flow_result)[_arc[i]] = _flow[i]; |
|
| 1175 |
} |
|
| 1176 |
} |
|
| 1177 |
// Copy potential values to _potential_result |
|
| 1178 |
for (int i = 0; i != _node_num; ++i) {
|
|
| 1179 |
(*_potential_result)[_node[i]] = _pi[i]; |
|
| 1180 |
} |
|
| 1181 |
|
|
| 1182 |
return true; |
|
| 1183 |
} |
|
| 1184 |
|
|
| 1185 |
}; //class NetworkSimplex |
|
| 1186 |
|
|
| 1187 |
///@} |
|
| 1188 |
|
|
| 1189 |
} //namespace lemon |
|
| 1190 |
|
|
| 1191 |
#endif //LEMON_NETWORK_SIMPLEX_H |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2009 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#include <iostream> |
|
| 20 |
#include <fstream> |
|
| 21 |
|
|
| 22 |
#include <lemon/list_graph.h> |
|
| 23 |
#include <lemon/smart_graph.h> |
|
| 24 |
#include <lemon/lgf_reader.h> |
|
| 25 |
|
|
| 26 |
//#include <lemon/cycle_canceling.h> |
|
| 27 |
//#include <lemon/capacity_scaling.h> |
|
| 28 |
//#include <lemon/cost_scaling.h> |
|
| 29 |
#include <lemon/network_simplex.h> |
|
| 30 |
//#include <lemon/min_cost_flow.h> |
|
| 31 |
//#include <lemon/min_cost_max_flow.h> |
|
| 32 |
|
|
| 33 |
#include <lemon/concepts/digraph.h> |
|
| 34 |
#include <lemon/concept_check.h> |
|
| 35 |
|
|
| 36 |
#include "test_tools.h" |
|
| 37 |
|
|
| 38 |
using namespace lemon; |
|
| 39 |
|
|
| 40 |
char test_lgf[] = |
|
| 41 |
"@nodes\n" |
|
| 42 |
"label sup1 sup2 sup3\n" |
|
| 43 |
" 1 20 27 0\n" |
|
| 44 |
" 2 -4 0 0\n" |
|
| 45 |
" 3 0 0 0\n" |
|
| 46 |
" 4 0 0 0\n" |
|
| 47 |
" 5 9 0 0\n" |
|
| 48 |
" 6 -6 0 0\n" |
|
| 49 |
" 7 0 0 0\n" |
|
| 50 |
" 8 0 0 0\n" |
|
| 51 |
" 9 3 0 0\n" |
|
| 52 |
" 10 -2 0 0\n" |
|
| 53 |
" 11 0 0 0\n" |
|
| 54 |
" 12 -20 -27 0\n" |
|
| 55 |
"\n" |
|
| 56 |
"@arcs\n" |
|
| 57 |
" cost cap low1 low2\n" |
|
| 58 |
" 1 2 70 11 0 8\n" |
|
| 59 |
" 1 3 150 3 0 1\n" |
|
| 60 |
" 1 4 80 15 0 2\n" |
|
| 61 |
" 2 8 80 12 0 0\n" |
|
| 62 |
" 3 5 140 5 0 3\n" |
|
| 63 |
" 4 6 60 10 0 1\n" |
|
| 64 |
" 4 7 80 2 0 0\n" |
|
| 65 |
" 4 8 110 3 0 0\n" |
|
| 66 |
" 5 7 60 14 0 0\n" |
|
| 67 |
" 5 11 120 12 0 0\n" |
|
| 68 |
" 6 3 0 3 0 0\n" |
|
| 69 |
" 6 9 140 4 0 0\n" |
|
| 70 |
" 6 10 90 8 0 0\n" |
|
| 71 |
" 7 1 30 5 0 0\n" |
|
| 72 |
" 8 12 60 16 0 4\n" |
|
| 73 |
" 9 12 50 6 0 0\n" |
|
| 74 |
"10 12 70 13 0 5\n" |
|
| 75 |
"10 2 100 7 0 0\n" |
|
| 76 |
"10 7 60 10 0 0\n" |
|
| 77 |
"11 10 20 14 0 6\n" |
|
| 78 |
"12 11 30 10 0 0\n" |
|
| 79 |
"\n" |
|
| 80 |
"@attributes\n" |
|
| 81 |
"source 1\n" |
|
| 82 |
"target 12\n"; |
|
| 83 |
|
|
| 84 |
|
|
| 85 |
// Check the interface of an MCF algorithm |
|
| 86 |
template <typename GR, typename Value> |
|
| 87 |
class McfClassConcept |
|
| 88 |
{
|
|
| 89 |
public: |
|
| 90 |
|
|
| 91 |
template <typename MCF> |
|
| 92 |
struct Constraints {
|
|
| 93 |
void constraints() {
|
|
| 94 |
checkConcept<concepts::Digraph, GR>(); |
|
| 95 |
|
|
| 96 |
MCF mcf_test1(g, lower, upper, cost, sup); |
|
| 97 |
MCF mcf_test2(g, upper, cost, sup); |
|
| 98 |
MCF mcf_test3(g, lower, upper, cost, n, n, k); |
|
| 99 |
MCF mcf_test4(g, upper, cost, n, n, k); |
|
| 100 |
|
|
| 101 |
// TODO: This part should be enabled and the next part |
|
| 102 |
// should be removed if map copying is supported |
|
| 103 |
/* |
|
| 104 |
flow = mcf_test1.flowMap(); |
|
| 105 |
mcf_test1.flowMap(flow); |
|
| 106 |
|
|
| 107 |
pot = mcf_test1.potentialMap(); |
|
| 108 |
mcf_test1.potentialMap(pot); |
|
| 109 |
*/ |
|
| 110 |
/**/ |
|
| 111 |
const typename MCF::FlowMap &fm = |
|
| 112 |
mcf_test1.flowMap(); |
|
| 113 |
mcf_test1.flowMap(flow); |
|
| 114 |
const typename MCF::PotentialMap &pm = |
|
| 115 |
mcf_test1.potentialMap(); |
|
| 116 |
mcf_test1.potentialMap(pot); |
|
| 117 |
ignore_unused_variable_warning(fm); |
|
| 118 |
ignore_unused_variable_warning(pm); |
|
| 119 |
/**/ |
|
| 120 |
|
|
| 121 |
mcf_test1.run(); |
|
| 122 |
|
|
| 123 |
v = mcf_test1.totalCost(); |
|
| 124 |
v = mcf_test1.flow(a); |
|
| 125 |
v = mcf_test1.potential(n); |
|
| 126 |
} |
|
| 127 |
|
|
| 128 |
typedef typename GR::Node Node; |
|
| 129 |
typedef typename GR::Arc Arc; |
|
| 130 |
typedef concepts::ReadMap<Node, Value> NM; |
|
| 131 |
typedef concepts::ReadMap<Arc, Value> AM; |
|
| 132 |
|
|
| 133 |
const GR &g; |
|
| 134 |
const AM &lower; |
|
| 135 |
const AM &upper; |
|
| 136 |
const AM &cost; |
|
| 137 |
const NM ⊃ |
|
| 138 |
const Node &n; |
|
| 139 |
const Arc &a; |
|
| 140 |
const Value &k; |
|
| 141 |
Value v; |
|
| 142 |
|
|
| 143 |
typename MCF::FlowMap &flow; |
|
| 144 |
typename MCF::PotentialMap &pot; |
|
| 145 |
}; |
|
| 146 |
|
|
| 147 |
}; |
|
| 148 |
|
|
| 149 |
|
|
| 150 |
// Check the feasibility of the given flow (primal soluiton) |
|
| 151 |
template < typename GR, typename LM, typename UM, |
|
| 152 |
typename SM, typename FM > |
|
| 153 |
bool checkFlow( const GR& gr, const LM& lower, const UM& upper, |
|
| 154 |
const SM& supply, const FM& flow ) |
|
| 155 |
{
|
|
| 156 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
|
| 157 |
|
|
| 158 |
for (ArcIt e(gr); e != INVALID; ++e) {
|
|
| 159 |
if (flow[e] < lower[e] || flow[e] > upper[e]) return false; |
|
| 160 |
} |
|
| 161 |
|
|
| 162 |
for (NodeIt n(gr); n != INVALID; ++n) {
|
|
| 163 |
typename SM::Value sum = 0; |
|
| 164 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
|
| 165 |
sum += flow[e]; |
|
| 166 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
|
| 167 |
sum -= flow[e]; |
|
| 168 |
if (sum != supply[n]) return false; |
|
| 169 |
} |
|
| 170 |
|
|
| 171 |
return true; |
|
| 172 |
} |
|
| 173 |
|
|
| 174 |
// Check the feasibility of the given potentials (dual soluiton) |
|
| 175 |
// using the Complementary Slackness optimality condition |
|
| 176 |
template < typename GR, typename LM, typename UM, |
|
| 177 |
typename CM, typename FM, typename PM > |
|
| 178 |
bool checkPotential( const GR& gr, const LM& lower, const UM& upper, |
|
| 179 |
const CM& cost, const FM& flow, const PM& pi ) |
|
| 180 |
{
|
|
| 181 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
|
| 182 |
|
|
| 183 |
bool opt = true; |
|
| 184 |
for (ArcIt e(gr); opt && e != INVALID; ++e) {
|
|
| 185 |
typename CM::Value red_cost = |
|
| 186 |
cost[e] + pi[gr.source(e)] - pi[gr.target(e)]; |
|
| 187 |
opt = red_cost == 0 || |
|
| 188 |
(red_cost > 0 && flow[e] == lower[e]) || |
|
| 189 |
(red_cost < 0 && flow[e] == upper[e]); |
|
| 190 |
} |
|
| 191 |
return opt; |
|
| 192 |
} |
|
| 193 |
|
|
| 194 |
// Run a minimum cost flow algorithm and check the results |
|
| 195 |
template < typename MCF, typename GR, |
|
| 196 |
typename LM, typename UM, |
|
| 197 |
typename CM, typename SM > |
|
| 198 |
void checkMcf( const MCF& mcf, bool mcf_result, |
|
| 199 |
const GR& gr, const LM& lower, const UM& upper, |
|
| 200 |
const CM& cost, const SM& supply, |
|
| 201 |
bool result, typename CM::Value total, |
|
| 202 |
const std::string &test_id = "" ) |
|
| 203 |
{
|
|
| 204 |
check(mcf_result == result, "Wrong result " + test_id); |
|
| 205 |
if (result) {
|
|
| 206 |
check(checkFlow(gr, lower, upper, supply, mcf.flowMap()), |
|
| 207 |
"The flow is not feasible " + test_id); |
|
| 208 |
check(mcf.totalCost() == total, "The flow is not optimal " + test_id); |
|
| 209 |
check(checkPotential(gr, lower, upper, cost, mcf.flowMap(), |
|
| 210 |
mcf.potentialMap()), |
|
| 211 |
"Wrong potentials " + test_id); |
|
| 212 |
} |
|
| 213 |
} |
|
| 214 |
|
|
| 215 |
int main() |
|
| 216 |
{
|
|
| 217 |
// Check the interfaces |
|
| 218 |
{
|
|
| 219 |
typedef int Value; |
|
| 220 |
// This typedef should be enabled if the standard maps are |
|
| 221 |
// reference maps in the graph concepts |
|
| 222 |
//typedef concepts::Digraph GR; |
|
| 223 |
typedef ListDigraph GR; |
|
| 224 |
typedef concepts::ReadMap<GR::Node, Value> NM; |
|
| 225 |
typedef concepts::ReadMap<GR::Arc, Value> AM; |
|
| 226 |
|
|
| 227 |
//checkConcept< McfClassConcept<GR, Value>, |
|
| 228 |
// CycleCanceling<GR, AM, AM, AM, NM> >(); |
|
| 229 |
//checkConcept< McfClassConcept<GR, Value>, |
|
| 230 |
// CapacityScaling<GR, AM, AM, AM, NM> >(); |
|
| 231 |
//checkConcept< McfClassConcept<GR, Value>, |
|
| 232 |
// CostScaling<GR, AM, AM, AM, NM> >(); |
|
| 233 |
checkConcept< McfClassConcept<GR, Value>, |
|
| 234 |
NetworkSimplex<GR, AM, AM, AM, NM> >(); |
|
| 235 |
//checkConcept< MinCostFlow<GR, Value>, |
|
| 236 |
// NetworkSimplex<GR, AM, AM, AM, NM> >(); |
|
| 237 |
} |
|
| 238 |
|
|
| 239 |
// Run various MCF tests |
|
| 240 |
typedef ListDigraph Digraph; |
|
| 241 |
DIGRAPH_TYPEDEFS(ListDigraph); |
|
| 242 |
|
|
| 243 |
// Read the test digraph |
|
| 244 |
Digraph gr; |
|
| 245 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), u(gr); |
|
| 246 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr); |
|
| 247 |
Node v, w; |
|
| 248 |
|
|
| 249 |
std::istringstream input(test_lgf); |
|
| 250 |
DigraphReader<Digraph>(gr, input) |
|
| 251 |
.arcMap("cost", c)
|
|
| 252 |
.arcMap("cap", u)
|
|
| 253 |
.arcMap("low1", l1)
|
|
| 254 |
.arcMap("low2", l2)
|
|
| 255 |
.nodeMap("sup1", s1)
|
|
| 256 |
.nodeMap("sup2", s2)
|
|
| 257 |
.nodeMap("sup3", s3)
|
|
| 258 |
.node("source", v)
|
|
| 259 |
.node("target", w)
|
|
| 260 |
.run(); |
|
| 261 |
|
|
| 262 |
/* |
|
| 263 |
// A. Test CapacityScaling with scaling |
|
| 264 |
{
|
|
| 265 |
CapacityScaling<Digraph> mcf1(gr, u, c, s1); |
|
| 266 |
CapacityScaling<Digraph> mcf2(gr, u, c, v, w, 27); |
|
| 267 |
CapacityScaling<Digraph> mcf3(gr, u, c, s3); |
|
| 268 |
CapacityScaling<Digraph> mcf4(gr, l2, u, c, s1); |
|
| 269 |
CapacityScaling<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
| 270 |
CapacityScaling<Digraph> mcf6(gr, l2, u, c, s3); |
|
| 271 |
|
|
| 272 |
checkMcf(mcf1, mcf1.run(), gr, l1, u, c, s1, true, 5240, "#A1"); |
|
| 273 |
checkMcf(mcf2, mcf2.run(), gr, l1, u, c, s2, true, 7620, "#A2"); |
|
| 274 |
checkMcf(mcf3, mcf3.run(), gr, l1, u, c, s3, true, 0, "#A3"); |
|
| 275 |
checkMcf(mcf4, mcf4.run(), gr, l2, u, c, s1, true, 5970, "#A4"); |
|
| 276 |
checkMcf(mcf5, mcf5.run(), gr, l2, u, c, s2, true, 8010, "#A5"); |
|
| 277 |
checkMcf(mcf6, mcf6.run(), gr, l2, u, c, s3, false, 0, "#A6"); |
|
| 278 |
} |
|
| 279 |
|
|
| 280 |
// B. Test CapacityScaling without scaling |
|
| 281 |
{
|
|
| 282 |
CapacityScaling<Digraph> mcf1(gr, u, c, s1); |
|
| 283 |
CapacityScaling<Digraph> mcf2(gr, u, c, v, w, 27); |
|
| 284 |
CapacityScaling<Digraph> mcf3(gr, u, c, s3); |
|
| 285 |
CapacityScaling<Digraph> mcf4(gr, l2, u, c, s1); |
|
| 286 |
CapacityScaling<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
| 287 |
CapacityScaling<Digraph> mcf6(gr, l2, u, c, s3); |
|
| 288 |
|
|
| 289 |
checkMcf(mcf1, mcf1.run(false), gr, l1, u, c, s1, true, 5240, "#B1"); |
|
| 290 |
checkMcf(mcf2, mcf2.run(false), gr, l1, u, c, s2, true, 7620, "#B2"); |
|
| 291 |
checkMcf(mcf3, mcf3.run(false), gr, l1, u, c, s3, true, 0, "#B3"); |
|
| 292 |
checkMcf(mcf4, mcf4.run(false), gr, l2, u, c, s1, true, 5970, "#B4"); |
|
| 293 |
checkMcf(mcf5, mcf5.run(false), gr, l2, u, c, s2, true, 8010, "#B5"); |
|
| 294 |
checkMcf(mcf6, mcf6.run(false), gr, l2, u, c, s3, false, 0, "#B6"); |
|
| 295 |
} |
|
| 296 |
|
|
| 297 |
// C. Test CostScaling using partial augment-relabel method |
|
| 298 |
{
|
|
| 299 |
CostScaling<Digraph> mcf1(gr, u, c, s1); |
|
| 300 |
CostScaling<Digraph> mcf2(gr, u, c, v, w, 27); |
|
| 301 |
CostScaling<Digraph> mcf3(gr, u, c, s3); |
|
| 302 |
CostScaling<Digraph> mcf4(gr, l2, u, c, s1); |
|
| 303 |
CostScaling<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
| 304 |
CostScaling<Digraph> mcf6(gr, l2, u, c, s3); |
|
| 305 |
|
|
| 306 |
checkMcf(mcf1, mcf1.run(), gr, l1, u, c, s1, true, 5240, "#C1"); |
|
| 307 |
checkMcf(mcf2, mcf2.run(), gr, l1, u, c, s2, true, 7620, "#C2"); |
|
| 308 |
checkMcf(mcf3, mcf3.run(), gr, l1, u, c, s3, true, 0, "#C3"); |
|
| 309 |
checkMcf(mcf4, mcf4.run(), gr, l2, u, c, s1, true, 5970, "#C4"); |
|
| 310 |
checkMcf(mcf5, mcf5.run(), gr, l2, u, c, s2, true, 8010, "#C5"); |
|
| 311 |
checkMcf(mcf6, mcf6.run(), gr, l2, u, c, s3, false, 0, "#C6"); |
|
| 312 |
} |
|
| 313 |
|
|
| 314 |
// D. Test CostScaling using push-relabel method |
|
| 315 |
{
|
|
| 316 |
CostScaling<Digraph> mcf1(gr, u, c, s1); |
|
| 317 |
CostScaling<Digraph> mcf2(gr, u, c, v, w, 27); |
|
| 318 |
CostScaling<Digraph> mcf3(gr, u, c, s3); |
|
| 319 |
CostScaling<Digraph> mcf4(gr, l2, u, c, s1); |
|
| 320 |
CostScaling<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
| 321 |
CostScaling<Digraph> mcf6(gr, l2, u, c, s3); |
|
| 322 |
|
|
| 323 |
checkMcf(mcf1, mcf1.run(false), gr, l1, u, c, s1, true, 5240, "#D1"); |
|
| 324 |
checkMcf(mcf2, mcf2.run(false), gr, l1, u, c, s2, true, 7620, "#D2"); |
|
| 325 |
checkMcf(mcf3, mcf3.run(false), gr, l1, u, c, s3, true, 0, "#D3"); |
|
| 326 |
checkMcf(mcf4, mcf4.run(false), gr, l2, u, c, s1, true, 5970, "#D4"); |
|
| 327 |
checkMcf(mcf5, mcf5.run(false), gr, l2, u, c, s2, true, 8010, "#D5"); |
|
| 328 |
checkMcf(mcf6, mcf6.run(false), gr, l2, u, c, s3, false, 0, "#D6"); |
|
| 329 |
} |
|
| 330 |
*/ |
|
| 331 |
|
|
| 332 |
// E. Test NetworkSimplex with FIRST_ELIGIBLE_PIVOT |
|
| 333 |
{
|
|
| 334 |
NetworkSimplex<Digraph>::PivotRuleEnum pr = |
|
| 335 |
NetworkSimplex<Digraph>::FIRST_ELIGIBLE_PIVOT; |
|
| 336 |
NetworkSimplex<Digraph> mcf1(gr, u, c, s1); |
|
| 337 |
NetworkSimplex<Digraph> mcf2(gr, u, c, v, w, 27); |
|
| 338 |
NetworkSimplex<Digraph> mcf3(gr, u, c, s3); |
|
| 339 |
NetworkSimplex<Digraph> mcf4(gr, l2, u, c, s1); |
|
| 340 |
NetworkSimplex<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
| 341 |
NetworkSimplex<Digraph> mcf6(gr, l2, u, c, s3); |
|
| 342 |
|
|
| 343 |
checkMcf(mcf1, mcf1.run(pr), gr, l1, u, c, s1, true, 5240, "#E1"); |
|
| 344 |
checkMcf(mcf2, mcf2.run(pr), gr, l1, u, c, s2, true, 7620, "#E2"); |
|
| 345 |
checkMcf(mcf3, mcf3.run(pr), gr, l1, u, c, s3, true, 0, "#E3"); |
|
| 346 |
checkMcf(mcf4, mcf4.run(pr), gr, l2, u, c, s1, true, 5970, "#E4"); |
|
| 347 |
checkMcf(mcf5, mcf5.run(pr), gr, l2, u, c, s2, true, 8010, "#E5"); |
|
| 348 |
checkMcf(mcf6, mcf6.run(pr), gr, l2, u, c, s3, false, 0, "#E6"); |
|
| 349 |
} |
|
| 350 |
|
|
| 351 |
// F. Test NetworkSimplex with BEST_ELIGIBLE_PIVOT |
|
| 352 |
{
|
|
| 353 |
NetworkSimplex<Digraph>::PivotRuleEnum pr = |
|
| 354 |
NetworkSimplex<Digraph>::BEST_ELIGIBLE_PIVOT; |
|
| 355 |
NetworkSimplex<Digraph> mcf1(gr, u, c, s1); |
|
| 356 |
NetworkSimplex<Digraph> mcf2(gr, u, c, v, w, 27); |
|
| 357 |
NetworkSimplex<Digraph> mcf3(gr, u, c, s3); |
|
| 358 |
NetworkSimplex<Digraph> mcf4(gr, l2, u, c, s1); |
|
| 359 |
NetworkSimplex<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
| 360 |
NetworkSimplex<Digraph> mcf6(gr, l2, u, c, s3); |
|
| 361 |
|
|
| 362 |
checkMcf(mcf1, mcf1.run(pr), gr, l1, u, c, s1, true, 5240, "#F1"); |
|
| 363 |
checkMcf(mcf2, mcf2.run(pr), gr, l1, u, c, s2, true, 7620, "#F2"); |
|
| 364 |
checkMcf(mcf3, mcf3.run(pr), gr, l1, u, c, s3, true, 0, "#F3"); |
|
| 365 |
checkMcf(mcf4, mcf4.run(pr), gr, l2, u, c, s1, true, 5970, "#F4"); |
|
| 366 |
checkMcf(mcf5, mcf5.run(pr), gr, l2, u, c, s2, true, 8010, "#F5"); |
|
| 367 |
checkMcf(mcf6, mcf6.run(pr), gr, l2, u, c, s3, false, 0, "#F6"); |
|
| 368 |
} |
|
| 369 |
|
|
| 370 |
// G. Test NetworkSimplex with BLOCK_SEARCH_PIVOT |
|
| 371 |
{
|
|
| 372 |
NetworkSimplex<Digraph>::PivotRuleEnum pr = |
|
| 373 |
NetworkSimplex<Digraph>::BLOCK_SEARCH_PIVOT; |
|
| 374 |
NetworkSimplex<Digraph> mcf1(gr, u, c, s1); |
|
| 375 |
NetworkSimplex<Digraph> mcf2(gr, u, c, v, w, 27); |
|
| 376 |
NetworkSimplex<Digraph> mcf3(gr, u, c, s3); |
|
| 377 |
NetworkSimplex<Digraph> mcf4(gr, l2, u, c, s1); |
|
| 378 |
NetworkSimplex<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
| 379 |
NetworkSimplex<Digraph> mcf6(gr, l2, u, c, s3); |
|
| 380 |
|
|
| 381 |
checkMcf(mcf1, mcf1.run(pr), gr, l1, u, c, s1, true, 5240, "#G1"); |
|
| 382 |
checkMcf(mcf2, mcf2.run(pr), gr, l1, u, c, s2, true, 7620, "#G2"); |
|
| 383 |
checkMcf(mcf3, mcf3.run(pr), gr, l1, u, c, s3, true, 0, "#G3"); |
|
| 384 |
checkMcf(mcf4, mcf4.run(pr), gr, l2, u, c, s1, true, 5970, "#G4"); |
|
| 385 |
checkMcf(mcf5, mcf5.run(pr), gr, l2, u, c, s2, true, 8010, "#G5"); |
|
| 386 |
checkMcf(mcf6, mcf6.run(pr), gr, l2, u, c, s3, false, 0, "#G6"); |
|
| 387 |
} |
|
| 388 |
|
|
| 389 |
// H. Test NetworkSimplex with CANDIDATE_LIST_PIVOT |
|
| 390 |
{
|
|
| 391 |
NetworkSimplex<Digraph>::PivotRuleEnum pr = |
|
| 392 |
NetworkSimplex<Digraph>::CANDIDATE_LIST_PIVOT; |
|
| 393 |
NetworkSimplex<Digraph> mcf1(gr, u, c, s1); |
|
| 394 |
NetworkSimplex<Digraph> mcf2(gr, u, c, v, w, 27); |
|
| 395 |
NetworkSimplex<Digraph> mcf3(gr, u, c, s3); |
|
| 396 |
NetworkSimplex<Digraph> mcf4(gr, l2, u, c, s1); |
|
| 397 |
NetworkSimplex<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
| 398 |
NetworkSimplex<Digraph> mcf6(gr, l2, u, c, s3); |
|
| 399 |
|
|
| 400 |
checkMcf(mcf1, mcf1.run(pr), gr, l1, u, c, s1, true, 5240, "#H1"); |
|
| 401 |
checkMcf(mcf2, mcf2.run(pr), gr, l1, u, c, s2, true, 7620, "#H2"); |
|
| 402 |
checkMcf(mcf3, mcf3.run(pr), gr, l1, u, c, s3, true, 0, "#H3"); |
|
| 403 |
checkMcf(mcf4, mcf4.run(pr), gr, l2, u, c, s1, true, 5970, "#H4"); |
|
| 404 |
checkMcf(mcf5, mcf5.run(pr), gr, l2, u, c, s2, true, 8010, "#H5"); |
|
| 405 |
checkMcf(mcf6, mcf6.run(pr), gr, l2, u, c, s3, false, 0, "#H6"); |
|
| 406 |
} |
|
| 407 |
|
|
| 408 |
// I. Test NetworkSimplex with ALTERING_LIST_PIVOT |
|
| 409 |
{
|
|
| 410 |
NetworkSimplex<Digraph>::PivotRuleEnum pr = |
|
| 411 |
NetworkSimplex<Digraph>::ALTERING_LIST_PIVOT; |
|
| 412 |
NetworkSimplex<Digraph> mcf1(gr, u, c, s1); |
|
| 413 |
NetworkSimplex<Digraph> mcf2(gr, u, c, v, w, 27); |
|
| 414 |
NetworkSimplex<Digraph> mcf3(gr, u, c, s3); |
|
| 415 |
NetworkSimplex<Digraph> mcf4(gr, l2, u, c, s1); |
|
| 416 |
NetworkSimplex<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
| 417 |
NetworkSimplex<Digraph> mcf6(gr, l2, u, c, s3); |
|
| 418 |
|
|
| 419 |
checkMcf(mcf1, mcf1.run(pr), gr, l1, u, c, s1, true, 5240, "#I1"); |
|
| 420 |
checkMcf(mcf2, mcf2.run(pr), gr, l1, u, c, s2, true, 7620, "#I2"); |
|
| 421 |
checkMcf(mcf3, mcf3.run(pr), gr, l1, u, c, s3, true, 0, "#I3"); |
|
| 422 |
checkMcf(mcf4, mcf4.run(pr), gr, l2, u, c, s1, true, 5970, "#I4"); |
|
| 423 |
checkMcf(mcf5, mcf5.run(pr), gr, l2, u, c, s2, true, 8010, "#I5"); |
|
| 424 |
checkMcf(mcf6, mcf6.run(pr), gr, l2, u, c, s3, false, 0, "#I6"); |
|
| 425 |
} |
|
| 426 |
|
|
| 427 |
/* |
|
| 428 |
// J. Test MinCostFlow |
|
| 429 |
{
|
|
| 430 |
MinCostFlow<Digraph> mcf1(gr, u, c, s1); |
|
| 431 |
MinCostFlow<Digraph> mcf2(gr, u, c, v, w, 27); |
|
| 432 |
MinCostFlow<Digraph> mcf3(gr, u, c, s3); |
|
| 433 |
MinCostFlow<Digraph> mcf4(gr, l2, u, c, s1); |
|
| 434 |
MinCostFlow<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
| 435 |
MinCostFlow<Digraph> mcf6(gr, l2, u, c, s3); |
|
| 436 |
|
|
| 437 |
checkMcf(mcf1, mcf1.run(), gr, l1, u, c, s1, true, 5240, "#J1"); |
|
| 438 |
checkMcf(mcf2, mcf2.run(), gr, l1, u, c, s2, true, 7620, "#J2"); |
|
| 439 |
checkMcf(mcf3, mcf3.run(), gr, l1, u, c, s3, true, 0, "#J3"); |
|
| 440 |
checkMcf(mcf4, mcf4.run(), gr, l2, u, c, s1, true, 5970, "#J4"); |
|
| 441 |
checkMcf(mcf5, mcf5.run(), gr, l2, u, c, s2, true, 8010, "#J5"); |
|
| 442 |
checkMcf(mcf6, mcf6.run(), gr, l2, u, c, s3, false, 0, "#J6"); |
|
| 443 |
} |
|
| 444 |
*/ |
|
| 445 |
/* |
|
| 446 |
// K. Test MinCostMaxFlow |
|
| 447 |
{
|
|
| 448 |
MinCostMaxFlow<Digraph> mcmf(gr, u, c, v, w); |
|
| 449 |
mcmf.run(); |
|
| 450 |
checkMcf(mcmf, true, gr, l1, u, c, s3, true, 7620, "#K1"); |
|
| 451 |
} |
|
| 452 |
*/ |
|
| 453 |
|
|
| 454 |
return 0; |
|
| 455 |
} |
| ... | ... |
@@ -26,6 +26,7 @@ |
| 26 | 26 |
test/maps_test \ |
| 27 | 27 |
test/max_matching_test \ |
| 28 | 28 |
test/min_cost_arborescence_test \ |
| 29 |
test/min_cost_flow_test \ |
|
| 29 | 30 |
test/path_test \ |
| 30 | 31 |
test/preflow_test \ |
| 31 | 32 |
test/radix_sort_test \ |
| ... | ... |
@@ -68,6 +69,7 @@ |
| 68 | 69 |
test_mip_test_SOURCES = test/mip_test.cc |
| 69 | 70 |
test_max_matching_test_SOURCES = test/max_matching_test.cc |
| 70 | 71 |
test_min_cost_arborescence_test_SOURCES = test/min_cost_arborescence_test.cc |
| 72 |
test_min_cost_flow_test_SOURCES = test/min_cost_flow_test.cc |
|
| 71 | 73 |
test_path_test_SOURCES = test/path_test.cc |
| 72 | 74 |
test_preflow_test_SOURCES = test/preflow_test.cc |
| 73 | 75 |
test_radix_sort_test_SOURCES = test/radix_sort_test.cc |
0 comments (0 inline)