gravatar
deba@inf.elte.hu
deba@inf.elte.hu
General improvements in weighted matching algorithms (#314) - Fix include guard - Uniform handling of MATCHED and UNMATCHED blossoms - Prefer operations which decrease the number of trees - Fix improper use of '/=' The solved problems did not cause wrong solution.
0 1 0
default
1 file changed with 231 insertions and 350 deletions:
↑ Collapse diff ↑
Ignore white space 12 line context
... ...
@@ -13,14 +13,14 @@
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19
#ifndef LEMON_MAX_MATCHING_H
20
#define LEMON_MAX_MATCHING_H
19
#ifndef LEMON_MATCHING_H
20
#define LEMON_MATCHING_H
21 21

	
22 22
#include <vector>
23 23
#include <queue>
24 24
#include <set>
25 25
#include <limits>
26 26

	
... ...
@@ -38,13 +38,13 @@
38 38
  /// \ingroup matching
39 39
  ///
40 40
  /// \brief Maximum cardinality matching in general graphs
41 41
  ///
42 42
  /// This class implements Edmonds' alternating forest matching algorithm
43 43
  /// for finding a maximum cardinality matching in a general undirected graph.
44
  /// It can be started from an arbitrary initial matching 
44
  /// It can be started from an arbitrary initial matching
45 45
  /// (the default is the empty one).
46 46
  ///
47 47
  /// The dual solution of the problem is a map of the nodes to
48 48
  /// \ref MaxMatching::Status "Status", having values \c EVEN (or \c D),
49 49
  /// \c ODD (or \c A) and \c MATCHED (or \c C) defining the Gallai-Edmonds
50 50
  /// decomposition of the graph. The nodes in \c EVEN/D induce a subgraph
... ...
@@ -66,17 +66,17 @@
66 66
    /// The type of the matching map
67 67
    typedef typename Graph::template NodeMap<typename Graph::Arc>
68 68
    MatchingMap;
69 69

	
70 70
    ///\brief Status constants for Gallai-Edmonds decomposition.
71 71
    ///
72
    ///These constants are used for indicating the Gallai-Edmonds 
72
    ///These constants are used for indicating the Gallai-Edmonds
73 73
    ///decomposition of a graph. The nodes with status \c EVEN (or \c D)
74 74
    ///induce a subgraph with factor-critical components, the nodes with
75 75
    ///status \c ODD (or \c A) form the canonical barrier, and the nodes
76
    ///with status \c MATCHED (or \c C) induce a subgraph having a 
76
    ///with status \c MATCHED (or \c C) induce a subgraph having a
77 77
    ///perfect matching.
78 78
    enum Status {
79 79
      EVEN = 1,       ///< = 1. (\c D is an alias for \c EVEN.)
80 80
      D = 1,
81 81
      MATCHED = 0,    ///< = 0. (\c C is an alias for \c MATCHED.)
82 82
      C = 0,
... ...
@@ -509,13 +509,13 @@
509 509
          (*_status)[n] = EVEN;
510 510
          processSparse(n);
511 511
        }
512 512
      }
513 513
    }
514 514

	
515
    /// \brief Start Edmonds' algorithm with a heuristic improvement 
515
    /// \brief Start Edmonds' algorithm with a heuristic improvement
516 516
    /// for dense graphs
517 517
    ///
518 518
    /// This function runs Edmonds' algorithm with a heuristic of postponing
519 519
    /// shrinks, therefore resulting in a faster algorithm for dense graphs.
520 520
    ///
521 521
    /// \pre \ref init(), \ref greedyInit() or \ref matchingInit() must be
... ...
@@ -531,14 +531,14 @@
531 531
      }
532 532
    }
533 533

	
534 534

	
535 535
    /// \brief Run Edmonds' algorithm
536 536
    ///
537
    /// This function runs Edmonds' algorithm. An additional heuristic of 
538
    /// postponing shrinks is used for relatively dense graphs 
537
    /// This function runs Edmonds' algorithm. An additional heuristic of
538
    /// postponing shrinks is used for relatively dense graphs
539 539
    /// (for which <tt>m>=2*n</tt> holds).
540 540
    void run() {
541 541
      if (countEdges(_graph) < 2 * countNodes(_graph)) {
542 542
        greedyInit();
543 543
        startSparse();
544 544
      } else {
... ...
@@ -553,13 +553,13 @@
553 553
    /// Functions to get the primal solution, i.e. the maximum matching.
554 554

	
555 555
    /// @{
556 556

	
557 557
    /// \brief Return the size (cardinality) of the matching.
558 558
    ///
559
    /// This function returns the size (cardinality) of the current matching. 
559
    /// This function returns the size (cardinality) of the current matching.
560 560
    /// After run() it returns the size of the maximum matching in the graph.
561 561
    int matchingSize() const {
562 562
      int size = 0;
563 563
      for (NodeIt n(_graph); n != INVALID; ++n) {
564 564
        if ((*_matching)[n] != INVALID) {
565 565
          ++size;
... ...
@@ -567,22 +567,22 @@
567 567
      }
568 568
      return size / 2;
569 569
    }
570 570

	
571 571
    /// \brief Return \c true if the given edge is in the matching.
572 572
    ///
573
    /// This function returns \c true if the given edge is in the current 
573
    /// This function returns \c true if the given edge is in the current
574 574
    /// matching.
575 575
    bool matching(const Edge& edge) const {
576 576
      return edge == (*_matching)[_graph.u(edge)];
577 577
    }
578 578

	
579 579
    /// \brief Return the matching arc (or edge) incident to the given node.
580 580
    ///
581 581
    /// This function returns the matching arc (or edge) incident to the
582
    /// given node in the current matching or \c INVALID if the node is 
582
    /// given node in the current matching or \c INVALID if the node is
583 583
    /// not covered by the matching.
584 584
    Arc matching(const Node& n) const {
585 585
      return (*_matching)[n];
586 586
    }
587 587

	
588 588
    /// \brief Return a const reference to the matching map.
... ...
@@ -592,23 +592,23 @@
592 592
    const MatchingMap& matchingMap() const {
593 593
      return *_matching;
594 594
    }
595 595

	
596 596
    /// \brief Return the mate of the given node.
597 597
    ///
598
    /// This function returns the mate of the given node in the current 
598
    /// This function returns the mate of the given node in the current
599 599
    /// matching or \c INVALID if the node is not covered by the matching.
600 600
    Node mate(const Node& n) const {
601 601
      return (*_matching)[n] != INVALID ?
602 602
        _graph.target((*_matching)[n]) : INVALID;
603 603
    }
604 604

	
605 605
    /// @}
606 606

	
607 607
    /// \name Dual Solution
608
    /// Functions to get the dual solution, i.e. the Gallai-Edmonds 
608
    /// Functions to get the dual solution, i.e. the Gallai-Edmonds
609 609
    /// decomposition.
610 610

	
611 611
    /// @{
612 612

	
613 613
    /// \brief Return the status of the given node in the Edmonds-Gallai
614 614
    /// decomposition.
... ...
@@ -645,14 +645,14 @@
645 645
  ///
646 646
  /// This class provides an efficient implementation of Edmond's
647 647
  /// maximum weighted matching algorithm. The implementation is based
648 648
  /// on extensive use of priority queues and provides
649 649
  /// \f$O(nm\log n)\f$ time complexity.
650 650
  ///
651
  /// The maximum weighted matching problem is to find a subset of the 
652
  /// edges in an undirected graph with maximum overall weight for which 
651
  /// The maximum weighted matching problem is to find a subset of the
652
  /// edges in an undirected graph with maximum overall weight for which
653 653
  /// each node has at most one incident edge.
654 654
  /// It can be formulated with the following linear program.
655 655
  /// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f]
656 656
  /** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
657 657
      \quad \forall B\in\mathcal{O}\f] */
658 658
  /// \f[x_e \ge 0\quad \forall e\in E\f]
... ...
@@ -670,22 +670,22 @@
670 670
      z_B \ge w_{uv} \quad \forall uv\in E\f] */
671 671
  /// \f[y_u \ge 0 \quad \forall u \in V\f]
672 672
  /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
673 673
  /** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
674 674
      \frac{\vert B \vert - 1}{2}z_B\f] */
675 675
  ///
676
  /// The algorithm can be executed with the run() function. 
676
  /// The algorithm can be executed with the run() function.
677 677
  /// After it the matching (the primal solution) and the dual solution
678
  /// can be obtained using the query functions and the 
679
  /// \ref MaxWeightedMatching::BlossomIt "BlossomIt" nested class, 
680
  /// which is able to iterate on the nodes of a blossom. 
678
  /// can be obtained using the query functions and the
679
  /// \ref MaxWeightedMatching::BlossomIt "BlossomIt" nested class,
680
  /// which is able to iterate on the nodes of a blossom.
681 681
  /// If the value type is integer, then the dual solution is multiplied
682 682
  /// by \ref MaxWeightedMatching::dualScale "4".
683 683
  ///
684 684
  /// \tparam GR The undirected graph type the algorithm runs on.
685
  /// \tparam WM The type edge weight map. The default type is 
685
  /// \tparam WM The type edge weight map. The default type is
686 686
  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>".
687 687
#ifdef DOXYGEN
688 688
  template <typename GR, typename WM>
689 689
#else
690 690
  template <typename GR,
691 691
            typename WM = typename GR::template EdgeMap<int> >
... ...
@@ -742,13 +742,13 @@
742 742
    int _node_num;
743 743
    int _blossom_num;
744 744

	
745 745
    typedef RangeMap<int> IntIntMap;
746 746

	
747 747
    enum Status {
748
      EVEN = -1, MATCHED = 0, ODD = 1, UNMATCHED = -2
748
      EVEN = -1, MATCHED = 0, ODD = 1
749 749
    };
750 750

	
751 751
    typedef HeapUnionFind<Value, IntNodeMap> BlossomSet;
752 752
    struct BlossomData {
753 753
      int tree;
754 754
      Status status;
... ...
@@ -841,15 +841,12 @@
841 841
        _delta4_index = new IntIntMap(_blossom_num);
842 842
        _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
843 843
      }
844 844
    }
845 845

	
846 846
    void destroyStructures() {
847
      _node_num = countNodes(_graph);
848
      _blossom_num = _node_num * 3 / 2;
849

	
850 847
      if (_matching) {
851 848
        delete _matching;
852 849
      }
853 850
      if (_node_potential) {
854 851
        delete _node_potential;
855 852
      }
... ...
@@ -919,16 +916,12 @@
919 916
            dualScale * _weight[e];
920 917

	
921 918
          if ((*_blossom_data)[vb].status == EVEN) {
922 919
            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
923 920
              _delta3->push(e, rw / 2);
924 921
            }
925
          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
926
            if (_delta3->state(e) != _delta3->IN_HEAP) {
927
              _delta3->push(e, rw);
928
            }
929 922
          } else {
930 923
            typename std::map<int, Arc>::iterator it =
931 924
              (*_node_data)[vi].heap_index.find(tree);
932 925

	
933 926
            if (it != (*_node_data)[vi].heap_index.end()) {
934 927
              if ((*_node_data)[vi].heap[it->second] > rw) {
... ...
@@ -946,313 +939,209 @@
946 939

	
947 940
              if ((*_blossom_data)[vb].status == MATCHED) {
948 941
                if (_delta2->state(vb) != _delta2->IN_HEAP) {
949 942
                  _delta2->push(vb, _blossom_set->classPrio(vb) -
950 943
                               (*_blossom_data)[vb].offset);
951 944
                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
952
                           (*_blossom_data)[vb].offset){
953
                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
954
                                   (*_blossom_data)[vb].offset);
955
                }
956
              }
957
            }
958
          }
959
        }
960
      }
961
      (*_blossom_data)[blossom].offset = 0;
962
    }
963

	
964
    void matchedToOdd(int blossom) {
965
      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
966
        _delta2->erase(blossom);
967
      }
968
      (*_blossom_data)[blossom].offset += _delta_sum;
969
      if (!_blossom_set->trivial(blossom)) {
970
        _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 +
971
                     (*_blossom_data)[blossom].offset);
972
      }
973
    }
974

	
975
    void evenToMatched(int blossom, int tree) {
976
      if (!_blossom_set->trivial(blossom)) {
977
        (*_blossom_data)[blossom].pot += 2 * _delta_sum;
978
      }
979

	
980
      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
981
           n != INVALID; ++n) {
982
        int ni = (*_node_index)[n];
983
        (*_node_data)[ni].pot -= _delta_sum;
984

	
985
        _delta1->erase(n);
986

	
987
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
988
          Node v = _graph.source(e);
989
          int vb = _blossom_set->find(v);
990
          int vi = (*_node_index)[v];
991

	
992
          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
993
            dualScale * _weight[e];
994

	
995
          if (vb == blossom) {
996
            if (_delta3->state(e) == _delta3->IN_HEAP) {
997
              _delta3->erase(e);
998
            }
999
          } else if ((*_blossom_data)[vb].status == EVEN) {
1000

	
1001
            if (_delta3->state(e) == _delta3->IN_HEAP) {
1002
              _delta3->erase(e);
1003
            }
1004

	
1005
            int vt = _tree_set->find(vb);
1006

	
1007
            if (vt != tree) {
1008

	
1009
              Arc r = _graph.oppositeArc(e);
1010

	
1011
              typename std::map<int, Arc>::iterator it =
1012
                (*_node_data)[ni].heap_index.find(vt);
1013

	
1014
              if (it != (*_node_data)[ni].heap_index.end()) {
1015
                if ((*_node_data)[ni].heap[it->second] > rw) {
1016
                  (*_node_data)[ni].heap.replace(it->second, r);
1017
                  (*_node_data)[ni].heap.decrease(r, rw);
1018
                  it->second = r;
1019
                }
1020
              } else {
1021
                (*_node_data)[ni].heap.push(r, rw);
1022
                (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
1023
              }
1024

	
1025
              if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
1026
                _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
1027

	
1028
                if (_delta2->state(blossom) != _delta2->IN_HEAP) {
1029
                  _delta2->push(blossom, _blossom_set->classPrio(blossom) -
1030
                               (*_blossom_data)[blossom].offset);
1031
                } else if ((*_delta2)[blossom] >
1032
                           _blossom_set->classPrio(blossom) -
1033
                           (*_blossom_data)[blossom].offset){
1034
                  _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
1035
                                   (*_blossom_data)[blossom].offset);
1036
                }
1037
              }
1038
            }
1039

	
1040
          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
1041
            if (_delta3->state(e) == _delta3->IN_HEAP) {
1042
              _delta3->erase(e);
1043
            }
1044
          } else {
1045

	
1046
            typename std::map<int, Arc>::iterator it =
1047
              (*_node_data)[vi].heap_index.find(tree);
1048

	
1049
            if (it != (*_node_data)[vi].heap_index.end()) {
1050
              (*_node_data)[vi].heap.erase(it->second);
1051
              (*_node_data)[vi].heap_index.erase(it);
1052
              if ((*_node_data)[vi].heap.empty()) {
1053
                _blossom_set->increase(v, std::numeric_limits<Value>::max());
1054
              } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
1055
                _blossom_set->increase(v, (*_node_data)[vi].heap.prio());
1056
              }
1057

	
1058
              if ((*_blossom_data)[vb].status == MATCHED) {
1059
                if (_blossom_set->classPrio(vb) ==
1060
                    std::numeric_limits<Value>::max()) {
1061
                  _delta2->erase(vb);
1062
                } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
1063
                           (*_blossom_data)[vb].offset) {
1064
                  _delta2->increase(vb, _blossom_set->classPrio(vb) -
1065
                                   (*_blossom_data)[vb].offset);
1066
                }
1067
              }
1068
            }
1069
          }
1070
        }
1071
      }
1072
    }
1073

	
1074
    void oddToMatched(int blossom) {
1075
      (*_blossom_data)[blossom].offset -= _delta_sum;
1076

	
1077
      if (_blossom_set->classPrio(blossom) !=
1078
          std::numeric_limits<Value>::max()) {
1079
        _delta2->push(blossom, _blossom_set->classPrio(blossom) -
1080
                       (*_blossom_data)[blossom].offset);
1081
      }
1082

	
1083
      if (!_blossom_set->trivial(blossom)) {
1084
        _delta4->erase(blossom);
1085
      }
1086
    }
1087

	
1088
    void oddToEven(int blossom, int tree) {
1089
      if (!_blossom_set->trivial(blossom)) {
1090
        _delta4->erase(blossom);
1091
        (*_blossom_data)[blossom].pot -=
1092
          2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
1093
      }
1094

	
1095
      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
1096
           n != INVALID; ++n) {
1097
        int ni = (*_node_index)[n];
1098

	
1099
        _blossom_set->increase(n, std::numeric_limits<Value>::max());
1100

	
1101
        (*_node_data)[ni].heap.clear();
1102
        (*_node_data)[ni].heap_index.clear();
1103
        (*_node_data)[ni].pot +=
1104
          2 * _delta_sum - (*_blossom_data)[blossom].offset;
1105

	
1106
        _delta1->push(n, (*_node_data)[ni].pot);
1107

	
1108
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
1109
          Node v = _graph.source(e);
1110
          int vb = _blossom_set->find(v);
1111
          int vi = (*_node_index)[v];
1112

	
1113
          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
1114
            dualScale * _weight[e];
1115

	
1116
          if ((*_blossom_data)[vb].status == EVEN) {
1117
            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
1118
              _delta3->push(e, rw / 2);
1119
            }
1120
          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
1121
            if (_delta3->state(e) != _delta3->IN_HEAP) {
1122
              _delta3->push(e, rw);
1123
            }
1124
          } else {
1125

	
1126
            typename std::map<int, Arc>::iterator it =
1127
              (*_node_data)[vi].heap_index.find(tree);
1128

	
1129
            if (it != (*_node_data)[vi].heap_index.end()) {
1130
              if ((*_node_data)[vi].heap[it->second] > rw) {
1131
                (*_node_data)[vi].heap.replace(it->second, e);
1132
                (*_node_data)[vi].heap.decrease(e, rw);
1133
                it->second = e;
1134
              }
1135
            } else {
1136
              (*_node_data)[vi].heap.push(e, rw);
1137
              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
1138
            }
1139

	
1140
            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
1141
              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
1142

	
1143
              if ((*_blossom_data)[vb].status == MATCHED) {
1144
                if (_delta2->state(vb) != _delta2->IN_HEAP) {
1145
                  _delta2->push(vb, _blossom_set->classPrio(vb) -
1146
                               (*_blossom_data)[vb].offset);
1147
                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
1148 945
                           (*_blossom_data)[vb].offset) {
1149 946
                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
1150 947
                                   (*_blossom_data)[vb].offset);
1151 948
                }
1152 949
              }
1153 950
            }
1154 951
          }
1155 952
        }
1156 953
      }
1157 954
      (*_blossom_data)[blossom].offset = 0;
1158 955
    }
1159 956

	
1160

	
1161
    void matchedToUnmatched(int blossom) {
957
    void matchedToOdd(int blossom) {
1162 958
      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
1163 959
        _delta2->erase(blossom);
1164 960
      }
961
      (*_blossom_data)[blossom].offset += _delta_sum;
962
      if (!_blossom_set->trivial(blossom)) {
963
        _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 +
964
                      (*_blossom_data)[blossom].offset);
965
      }
966
    }
967

	
968
    void evenToMatched(int blossom, int tree) {
969
      if (!_blossom_set->trivial(blossom)) {
970
        (*_blossom_data)[blossom].pot += 2 * _delta_sum;
971
      }
1165 972

	
1166 973
      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
1167 974
           n != INVALID; ++n) {
1168 975
        int ni = (*_node_index)[n];
1169

	
1170
        _blossom_set->increase(n, std::numeric_limits<Value>::max());
1171

	
1172
        (*_node_data)[ni].heap.clear();
1173
        (*_node_data)[ni].heap_index.clear();
1174

	
1175
        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
1176
          Node v = _graph.target(e);
976
        (*_node_data)[ni].pot -= _delta_sum;
977

	
978
        _delta1->erase(n);
979

	
980
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
981
          Node v = _graph.source(e);
1177 982
          int vb = _blossom_set->find(v);
1178 983
          int vi = (*_node_index)[v];
1179 984

	
1180 985
          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
1181 986
            dualScale * _weight[e];
1182 987

	
1183
          if ((*_blossom_data)[vb].status == EVEN) {
1184
            if (_delta3->state(e) != _delta3->IN_HEAP) {
1185
              _delta3->push(e, rw);
988
          if (vb == blossom) {
989
            if (_delta3->state(e) == _delta3->IN_HEAP) {
990
              _delta3->erase(e);
991
            }
992
          } else if ((*_blossom_data)[vb].status == EVEN) {
993

	
994
            if (_delta3->state(e) == _delta3->IN_HEAP) {
995
              _delta3->erase(e);
996
            }
997

	
998
            int vt = _tree_set->find(vb);
999

	
1000
            if (vt != tree) {
1001

	
1002
              Arc r = _graph.oppositeArc(e);
1003

	
1004
              typename std::map<int, Arc>::iterator it =
1005
                (*_node_data)[ni].heap_index.find(vt);
1006

	
1007
              if (it != (*_node_data)[ni].heap_index.end()) {
1008
                if ((*_node_data)[ni].heap[it->second] > rw) {
1009
                  (*_node_data)[ni].heap.replace(it->second, r);
1010
                  (*_node_data)[ni].heap.decrease(r, rw);
1011
                  it->second = r;
1012
                }
1013
              } else {
1014
                (*_node_data)[ni].heap.push(r, rw);
1015
                (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
1016
              }
1017

	
1018
              if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
1019
                _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
1020

	
1021
                if (_delta2->state(blossom) != _delta2->IN_HEAP) {
1022
                  _delta2->push(blossom, _blossom_set->classPrio(blossom) -
1023
                               (*_blossom_data)[blossom].offset);
1024
                } else if ((*_delta2)[blossom] >
1025
                           _blossom_set->classPrio(blossom) -
1026
                           (*_blossom_data)[blossom].offset){
1027
                  _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
1028
                                   (*_blossom_data)[blossom].offset);
1029
                }
1030
              }
1031
            }
1032
          } else {
1033

	
1034
            typename std::map<int, Arc>::iterator it =
1035
              (*_node_data)[vi].heap_index.find(tree);
1036

	
1037
            if (it != (*_node_data)[vi].heap_index.end()) {
1038
              (*_node_data)[vi].heap.erase(it->second);
1039
              (*_node_data)[vi].heap_index.erase(it);
1040
              if ((*_node_data)[vi].heap.empty()) {
1041
                _blossom_set->increase(v, std::numeric_limits<Value>::max());
1042
              } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
1043
                _blossom_set->increase(v, (*_node_data)[vi].heap.prio());
1044
              }
1045

	
1046
              if ((*_blossom_data)[vb].status == MATCHED) {
1047
                if (_blossom_set->classPrio(vb) ==
1048
                    std::numeric_limits<Value>::max()) {
1049
                  _delta2->erase(vb);
1050
                } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
1051
                           (*_blossom_data)[vb].offset) {
1052
                  _delta2->increase(vb, _blossom_set->classPrio(vb) -
1053
                                   (*_blossom_data)[vb].offset);
1054
                }
1055
              }
1186 1056
            }
1187 1057
          }
1188 1058
        }
1189 1059
      }
1190 1060
    }
1191 1061

	
1192
    void unmatchedToMatched(int blossom) {
1062
    void oddToMatched(int blossom) {
1063
      (*_blossom_data)[blossom].offset -= _delta_sum;
1064

	
1065
      if (_blossom_set->classPrio(blossom) !=
1066
          std::numeric_limits<Value>::max()) {
1067
        _delta2->push(blossom, _blossom_set->classPrio(blossom) -
1068
                      (*_blossom_data)[blossom].offset);
1069
      }
1070

	
1071
      if (!_blossom_set->trivial(blossom)) {
1072
        _delta4->erase(blossom);
1073
      }
1074
    }
1075

	
1076
    void oddToEven(int blossom, int tree) {
1077
      if (!_blossom_set->trivial(blossom)) {
1078
        _delta4->erase(blossom);
1079
        (*_blossom_data)[blossom].pot -=
1080
          2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
1081
      }
1082

	
1193 1083
      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
1194 1084
           n != INVALID; ++n) {
1195 1085
        int ni = (*_node_index)[n];
1196 1086

	
1087
        _blossom_set->increase(n, std::numeric_limits<Value>::max());
1088

	
1089
        (*_node_data)[ni].heap.clear();
1090
        (*_node_data)[ni].heap_index.clear();
1091
        (*_node_data)[ni].pot +=
1092
          2 * _delta_sum - (*_blossom_data)[blossom].offset;
1093

	
1094
        _delta1->push(n, (*_node_data)[ni].pot);
1095

	
1197 1096
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
1198 1097
          Node v = _graph.source(e);
1199 1098
          int vb = _blossom_set->find(v);
1200 1099
          int vi = (*_node_index)[v];
1201 1100

	
1202 1101
          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
1203 1102
            dualScale * _weight[e];
1204 1103

	
1205
          if (vb == blossom) {
1206
            if (_delta3->state(e) == _delta3->IN_HEAP) {
1207
              _delta3->erase(e);
1104
          if ((*_blossom_data)[vb].status == EVEN) {
1105
            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
1106
              _delta3->push(e, rw / 2);
1208 1107
            }
1209
          } else if ((*_blossom_data)[vb].status == EVEN) {
1210

	
1211
            if (_delta3->state(e) == _delta3->IN_HEAP) {
1212
              _delta3->erase(e);
1213
            }
1214

	
1215
            int vt = _tree_set->find(vb);
1216

	
1217
            Arc r = _graph.oppositeArc(e);
1108
          } else {
1218 1109

	
1219 1110
            typename std::map<int, Arc>::iterator it =
1220
              (*_node_data)[ni].heap_index.find(vt);
1221

	
1222
            if (it != (*_node_data)[ni].heap_index.end()) {
1223
              if ((*_node_data)[ni].heap[it->second] > rw) {
1224
                (*_node_data)[ni].heap.replace(it->second, r);
1225
                (*_node_data)[ni].heap.decrease(r, rw);
1226
                it->second = r;
1111
              (*_node_data)[vi].heap_index.find(tree);
1112

	
1113
            if (it != (*_node_data)[vi].heap_index.end()) {
1114
              if ((*_node_data)[vi].heap[it->second] > rw) {
1115
                (*_node_data)[vi].heap.replace(it->second, e);
1116
                (*_node_data)[vi].heap.decrease(e, rw);
1117
                it->second = e;
1227 1118
              }
1228 1119
            } else {
1229
              (*_node_data)[ni].heap.push(r, rw);
1230
              (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
1120
              (*_node_data)[vi].heap.push(e, rw);
1121
              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
1231 1122
            }
1232 1123

	
1233
            if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
1234
              _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
1235

	
1236
              if (_delta2->state(blossom) != _delta2->IN_HEAP) {
1237
                _delta2->push(blossom, _blossom_set->classPrio(blossom) -
1238
                             (*_blossom_data)[blossom].offset);
1239
              } else if ((*_delta2)[blossom] > _blossom_set->classPrio(blossom)-
1240
                         (*_blossom_data)[blossom].offset){
1241
                _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
1242
                                 (*_blossom_data)[blossom].offset);
1124
            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
1125
              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
1126

	
1127
              if ((*_blossom_data)[vb].status == MATCHED) {
1128
                if (_delta2->state(vb) != _delta2->IN_HEAP) {
1129
                  _delta2->push(vb, _blossom_set->classPrio(vb) -
1130
                               (*_blossom_data)[vb].offset);
1131
                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
1132
                           (*_blossom_data)[vb].offset) {
1133
                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
1134
                                   (*_blossom_data)[vb].offset);
1135
                }
1243 1136
              }
1244 1137
            }
1245

	
1246
          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
1247
            if (_delta3->state(e) == _delta3->IN_HEAP) {
1248
              _delta3->erase(e);
1249
            }
1250 1138
          }
1251 1139
        }
1252 1140
      }
1141
      (*_blossom_data)[blossom].offset = 0;
1253 1142
    }
1254 1143

	
1255 1144
    void alternatePath(int even, int tree) {
1256 1145
      int odd;
1257 1146

	
1258 1147
      evenToMatched(even, tree);
... ...
@@ -1291,45 +1180,48 @@
1291 1180
      int blossom = _blossom_set->find(node);
1292 1181
      int tree = _tree_set->find(blossom);
1293 1182

	
1294 1183
      alternatePath(blossom, tree);
1295 1184
      destroyTree(tree);
1296 1185

	
1297
      (*_blossom_data)[blossom].status = UNMATCHED;
1298 1186
      (*_blossom_data)[blossom].base = node;
1299
      matchedToUnmatched(blossom);
1187
      (*_blossom_data)[blossom].next = INVALID;
1300 1188
    }
1301 1189

	
1302

	
1303 1190
    void augmentOnEdge(const Edge& edge) {
1304 1191

	
1305 1192
      int left = _blossom_set->find(_graph.u(edge));
1306 1193
      int right = _blossom_set->find(_graph.v(edge));
1307 1194

	
1308
      if ((*_blossom_data)[left].status == EVEN) {
1309
        int left_tree = _tree_set->find(left);
1310
        alternatePath(left, left_tree);
1311
        destroyTree(left_tree);
1312
      } else {
1313
        (*_blossom_data)[left].status = MATCHED;
1314
        unmatchedToMatched(left);
1315
      }
1316

	
1317
      if ((*_blossom_data)[right].status == EVEN) {
1318
        int right_tree = _tree_set->find(right);
1319
        alternatePath(right, right_tree);
1320
        destroyTree(right_tree);
1321
      } else {
1322
        (*_blossom_data)[right].status = MATCHED;
1323
        unmatchedToMatched(right);
1324
      }
1195
      int left_tree = _tree_set->find(left);
1196
      alternatePath(left, left_tree);
1197
      destroyTree(left_tree);
1198

	
1199
      int right_tree = _tree_set->find(right);
1200
      alternatePath(right, right_tree);
1201
      destroyTree(right_tree);
1325 1202

	
1326 1203
      (*_blossom_data)[left].next = _graph.direct(edge, true);
1327 1204
      (*_blossom_data)[right].next = _graph.direct(edge, false);
1328 1205
    }
1329 1206

	
1207
    void augmentOnArc(const Arc& arc) {
1208

	
1209
      int left = _blossom_set->find(_graph.source(arc));
1210
      int right = _blossom_set->find(_graph.target(arc));
1211

	
1212
      (*_blossom_data)[left].status = MATCHED;
1213

	
1214
      int right_tree = _tree_set->find(right);
1215
      alternatePath(right, right_tree);
1216
      destroyTree(right_tree);
1217

	
1218
      (*_blossom_data)[left].next = arc;
1219
      (*_blossom_data)[right].next = _graph.oppositeArc(arc);
1220
    }
1221

	
1330 1222
    void extendOnArc(const Arc& arc) {
1331 1223
      int base = _blossom_set->find(_graph.target(arc));
1332 1224
      int tree = _tree_set->find(base);
1333 1225

	
1334 1226
      int odd = _blossom_set->find(_graph.source(arc));
1335 1227
      _tree_set->insert(odd, tree);
... ...
@@ -1526,13 +1418,13 @@
1526 1418

	
1527 1419
          (*_blossom_data)[sb].status = ODD;
1528 1420
          matchedToOdd(sb);
1529 1421
          _tree_set->insert(sb, tree);
1530 1422
          (*_blossom_data)[sb].pred = pred;
1531 1423
          (*_blossom_data)[sb].next =
1532
                           _graph.oppositeArc((*_blossom_data)[tb].next);
1424
            _graph.oppositeArc((*_blossom_data)[tb].next);
1533 1425

	
1534 1426
          pred = (*_blossom_data)[ub].next;
1535 1427

	
1536 1428
          (*_blossom_data)[tb].status = EVEN;
1537 1429
          matchedToEven(tb, tree);
1538 1430
          _tree_set->insert(tb, tree);
... ...
@@ -1626,13 +1518,13 @@
1626 1518
      std::vector<int> blossoms;
1627 1519
      for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
1628 1520
        blossoms.push_back(c);
1629 1521
      }
1630 1522

	
1631 1523
      for (int i = 0; i < int(blossoms.size()); ++i) {
1632
        if ((*_blossom_data)[blossoms[i]].status == MATCHED) {
1524
        if ((*_blossom_data)[blossoms[i]].next != INVALID) {
1633 1525

	
1634 1526
          Value offset = (*_blossom_data)[blossoms[i]].offset;
1635 1527
          (*_blossom_data)[blossoms[i]].pot += 2 * offset;
1636 1528
          for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]);
1637 1529
               n != INVALID; ++n) {
1638 1530
            (*_node_data)[(*_node_index)[n]].pot -= offset;
... ...
@@ -1754,58 +1646,50 @@
1754 1646
        Value d3 = !_delta3->empty() ?
1755 1647
          _delta3->prio() : std::numeric_limits<Value>::max();
1756 1648

	
1757 1649
        Value d4 = !_delta4->empty() ?
1758 1650
          _delta4->prio() : std::numeric_limits<Value>::max();
1759 1651

	
1760
        _delta_sum = d1; OpType ot = D1;
1652
        _delta_sum = d3; OpType ot = D3;
1653
        if (d1 < _delta_sum) { _delta_sum = d1; ot = D1; }
1761 1654
        if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
1762
        if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
1763 1655
        if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
1764 1656

	
1765

	
1766 1657
        switch (ot) {
1767 1658
        case D1:
1768 1659
          {
1769 1660
            Node n = _delta1->top();
1770 1661
            unmatchNode(n);
1771 1662
            --unmatched;
1772 1663
          }
1773 1664
          break;
1774 1665
        case D2:
1775 1666
          {
1776 1667
            int blossom = _delta2->top();
1777 1668
            Node n = _blossom_set->classTop(blossom);
1778
            Arc e = (*_node_data)[(*_node_index)[n]].heap.top();
1779
            extendOnArc(e);
1669
            Arc a = (*_node_data)[(*_node_index)[n]].heap.top();
1670
            if ((*_blossom_data)[blossom].next == INVALID) {
1671
              augmentOnArc(a);
1672
              --unmatched;
1673
            } else {
1674
              extendOnArc(a);
1675
            }
1780 1676
          }
1781 1677
          break;
1782 1678
        case D3:
1783 1679
          {
1784 1680
            Edge e = _delta3->top();
1785 1681

	
1786 1682
            int left_blossom = _blossom_set->find(_graph.u(e));
1787 1683
            int right_blossom = _blossom_set->find(_graph.v(e));
1788 1684

	
1789 1685
            if (left_blossom == right_blossom) {
1790 1686
              _delta3->pop();
1791 1687
            } else {
1792
              int left_tree;
1793
              if ((*_blossom_data)[left_blossom].status == EVEN) {
1794
                left_tree = _tree_set->find(left_blossom);
1795
              } else {
1796
                left_tree = -1;
1797
                ++unmatched;
1798
              }
1799
              int right_tree;
1800
              if ((*_blossom_data)[right_blossom].status == EVEN) {
1801
                right_tree = _tree_set->find(right_blossom);
1802
              } else {
1803
                right_tree = -1;
1804
                ++unmatched;
1805
              }
1688
              int left_tree = _tree_set->find(left_blossom);
1689
              int right_tree = _tree_set->find(right_blossom);
1806 1690

	
1807 1691
              if (left_tree == right_tree) {
1808 1692
                shrinkOnEdge(e, left_tree);
1809 1693
              } else {
1810 1694
                augmentOnEdge(e);
1811 1695
                unmatched -= 2;
... ...
@@ -1834,13 +1718,13 @@
1834 1718
      start();
1835 1719
    }
1836 1720

	
1837 1721
    /// @}
1838 1722

	
1839 1723
    /// \name Primal Solution
1840
    /// Functions to get the primal solution, i.e. the maximum weighted 
1724
    /// Functions to get the primal solution, i.e. the maximum weighted
1841 1725
    /// matching.\n
1842 1726
    /// Either \ref run() or \ref start() function should be called before
1843 1727
    /// using them.
1844 1728

	
1845 1729
    /// @{
1846 1730

	
... ...
@@ -1853,13 +1737,13 @@
1853 1737
      Value sum = 0;
1854 1738
      for (NodeIt n(_graph); n != INVALID; ++n) {
1855 1739
        if ((*_matching)[n] != INVALID) {
1856 1740
          sum += _weight[(*_matching)[n]];
1857 1741
        }
1858 1742
      }
1859
      return sum /= 2;
1743
      return sum / 2;
1860 1744
    }
1861 1745

	
1862 1746
    /// \brief Return the size (cardinality) of the matching.
1863 1747
    ///
1864 1748
    /// This function returns the size (cardinality) of the found matching.
1865 1749
    ///
... ...
@@ -1873,24 +1757,24 @@
1873 1757
      }
1874 1758
      return num /= 2;
1875 1759
    }
1876 1760

	
1877 1761
    /// \brief Return \c true if the given edge is in the matching.
1878 1762
    ///
1879
    /// This function returns \c true if the given edge is in the found 
1763
    /// This function returns \c true if the given edge is in the found
1880 1764
    /// matching.
1881 1765
    ///
1882 1766
    /// \pre Either run() or start() must be called before using this function.
1883 1767
    bool matching(const Edge& edge) const {
1884 1768
      return edge == (*_matching)[_graph.u(edge)];
1885 1769
    }
1886 1770

	
1887 1771
    /// \brief Return the matching arc (or edge) incident to the given node.
1888 1772
    ///
1889 1773
    /// This function returns the matching arc (or edge) incident to the
1890
    /// given node in the found matching or \c INVALID if the node is 
1774
    /// given node in the found matching or \c INVALID if the node is
1891 1775
    /// not covered by the matching.
1892 1776
    ///
1893 1777
    /// \pre Either run() or start() must be called before using this function.
1894 1778
    Arc matching(const Node& node) const {
1895 1779
      return (*_matching)[node];
1896 1780
    }
... ...
@@ -1902,13 +1786,13 @@
1902 1786
    const MatchingMap& matchingMap() const {
1903 1787
      return *_matching;
1904 1788
    }
1905 1789

	
1906 1790
    /// \brief Return the mate of the given node.
1907 1791
    ///
1908
    /// This function returns the mate of the given node in the found 
1792
    /// This function returns the mate of the given node in the found
1909 1793
    /// matching or \c INVALID if the node is not covered by the matching.
1910 1794
    ///
1911 1795
    /// \pre Either run() or start() must be called before using this function.
1912 1796
    Node mate(const Node& node) const {
1913 1797
      return (*_matching)[node] != INVALID ?
1914 1798
        _graph.target((*_matching)[node]) : INVALID;
... ...
@@ -1922,14 +1806,14 @@
1922 1806
    /// using them.
1923 1807

	
1924 1808
    /// @{
1925 1809

	
1926 1810
    /// \brief Return the value of the dual solution.
1927 1811
    ///
1928
    /// This function returns the value of the dual solution. 
1929
    /// It should be equal to the primal value scaled by \ref dualScale 
1812
    /// This function returns the value of the dual solution.
1813
    /// It should be equal to the primal value scaled by \ref dualScale
1930 1814
    /// "dual scale".
1931 1815
    ///
1932 1816
    /// \pre Either run() or start() must be called before using this function.
1933 1817
    Value dualValue() const {
1934 1818
      Value sum = 0;
1935 1819
      for (NodeIt n(_graph); n != INVALID; ++n) {
... ...
@@ -1978,25 +1862,25 @@
1978 1862
    Value blossomValue(int k) const {
1979 1863
      return _blossom_potential[k].value;
1980 1864
    }
1981 1865

	
1982 1866
    /// \brief Iterator for obtaining the nodes of a blossom.
1983 1867
    ///
1984
    /// This class provides an iterator for obtaining the nodes of the 
1868
    /// This class provides an iterator for obtaining the nodes of the
1985 1869
    /// given blossom. It lists a subset of the nodes.
1986
    /// Before using this iterator, you must allocate a 
1870
    /// Before using this iterator, you must allocate a
1987 1871
    /// MaxWeightedMatching class and execute it.
1988 1872
    class BlossomIt {
1989 1873
    public:
1990 1874

	
1991 1875
      /// \brief Constructor.
1992 1876
      ///
1993 1877
      /// Constructor to get the nodes of the given variable.
1994 1878
      ///
1995
      /// \pre Either \ref MaxWeightedMatching::run() "algorithm.run()" or 
1996
      /// \ref MaxWeightedMatching::start() "algorithm.start()" must be 
1879
      /// \pre Either \ref MaxWeightedMatching::run() "algorithm.run()" or
1880
      /// \ref MaxWeightedMatching::start() "algorithm.start()" must be
1997 1881
      /// called before initializing this iterator.
1998 1882
      BlossomIt(const MaxWeightedMatching& algorithm, int variable)
1999 1883
        : _algorithm(&algorithm)
2000 1884
      {
2001 1885
        _index = _algorithm->_blossom_potential[variable].begin;
2002 1886
        _last = _algorithm->_blossom_potential[variable].end;
... ...
@@ -2043,14 +1927,14 @@
2043 1927
  ///
2044 1928
  /// This class provides an efficient implementation of Edmond's
2045 1929
  /// maximum weighted perfect matching algorithm. The implementation
2046 1930
  /// is based on extensive use of priority queues and provides
2047 1931
  /// \f$O(nm\log n)\f$ time complexity.
2048 1932
  ///
2049
  /// The maximum weighted perfect matching problem is to find a subset of 
2050
  /// the edges in an undirected graph with maximum overall weight for which 
1933
  /// The maximum weighted perfect matching problem is to find a subset of
1934
  /// the edges in an undirected graph with maximum overall weight for which
2051 1935
  /// each node has exactly one incident edge.
2052 1936
  /// It can be formulated with the following linear program.
2053 1937
  /// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f]
2054 1938
  /** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
2055 1939
      \quad \forall B\in\mathcal{O}\f] */
2056 1940
  /// \f[x_e \ge 0\quad \forall e\in E\f]
... ...
@@ -2067,22 +1951,22 @@
2067 1951
  /** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge
2068 1952
      w_{uv} \quad \forall uv\in E\f] */
2069 1953
  /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
2070 1954
  /** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
2071 1955
      \frac{\vert B \vert - 1}{2}z_B\f] */
2072 1956
  ///
2073
  /// The algorithm can be executed with the run() function. 
1957
  /// The algorithm can be executed with the run() function.
2074 1958
  /// After it the matching (the primal solution) and the dual solution
2075
  /// can be obtained using the query functions and the 
2076
  /// \ref MaxWeightedPerfectMatching::BlossomIt "BlossomIt" nested class, 
2077
  /// which is able to iterate on the nodes of a blossom. 
1959
  /// can be obtained using the query functions and the
1960
  /// \ref MaxWeightedPerfectMatching::BlossomIt "BlossomIt" nested class,
1961
  /// which is able to iterate on the nodes of a blossom.
2078 1962
  /// If the value type is integer, then the dual solution is multiplied
2079 1963
  /// by \ref MaxWeightedMatching::dualScale "4".
2080 1964
  ///
2081 1965
  /// \tparam GR The undirected graph type the algorithm runs on.
2082
  /// \tparam WM The type edge weight map. The default type is 
1966
  /// \tparam WM The type edge weight map. The default type is
2083 1967
  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>".
2084 1968
#ifdef DOXYGEN
2085 1969
  template <typename GR, typename WM>
2086 1970
#else
2087 1971
  template <typename GR,
2088 1972
            typename WM = typename GR::template EdgeMap<int> >
... ...
@@ -2230,15 +2114,12 @@
2230 2114
        _delta4_index = new IntIntMap(_blossom_num);
2231 2115
        _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
2232 2116
      }
2233 2117
    }
2234 2118

	
2235 2119
    void destroyStructures() {
2236
      _node_num = countNodes(_graph);
2237
      _blossom_num = _node_num * 3 / 2;
2238

	
2239 2120
      if (_matching) {
2240 2121
        delete _matching;
2241 2122
      }
2242 2123
      if (_node_potential) {
2243 2124
        delete _node_potential;
2244 2125
      }
... ...
@@ -2988,14 +2869,14 @@
2988 2869
        Value d3 = !_delta3->empty() ?
2989 2870
          _delta3->prio() : std::numeric_limits<Value>::max();
2990 2871

	
2991 2872
        Value d4 = !_delta4->empty() ?
2992 2873
          _delta4->prio() : std::numeric_limits<Value>::max();
2993 2874

	
2994
        _delta_sum = d2; OpType ot = D2;
2995
        if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
2875
        _delta_sum = d3; OpType ot = D3;
2876
        if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
2996 2877
        if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
2997 2878

	
2998 2879
        if (_delta_sum == std::numeric_limits<Value>::max()) {
2999 2880
          return false;
3000 2881
        }
3001 2882

	
... ...
@@ -3052,13 +2933,13 @@
3052 2933
      return start();
3053 2934
    }
3054 2935

	
3055 2936
    /// @}
3056 2937

	
3057 2938
    /// \name Primal Solution
3058
    /// Functions to get the primal solution, i.e. the maximum weighted 
2939
    /// Functions to get the primal solution, i.e. the maximum weighted
3059 2940
    /// perfect matching.\n
3060 2941
    /// Either \ref run() or \ref start() function should be called before
3061 2942
    /// using them.
3062 2943

	
3063 2944
    /// @{
3064 2945

	
... ...
@@ -3071,29 +2952,29 @@
3071 2952
      Value sum = 0;
3072 2953
      for (NodeIt n(_graph); n != INVALID; ++n) {
3073 2954
        if ((*_matching)[n] != INVALID) {
3074 2955
          sum += _weight[(*_matching)[n]];
3075 2956
        }
3076 2957
      }
3077
      return sum /= 2;
2958
      return sum / 2;
3078 2959
    }
3079 2960

	
3080 2961
    /// \brief Return \c true if the given edge is in the matching.
3081 2962
    ///
3082
    /// This function returns \c true if the given edge is in the found 
2963
    /// This function returns \c true if the given edge is in the found
3083 2964
    /// matching.
3084 2965
    ///
3085 2966
    /// \pre Either run() or start() must be called before using this function.
3086 2967
    bool matching(const Edge& edge) const {
3087 2968
      return static_cast<const Edge&>((*_matching)[_graph.u(edge)]) == edge;
3088 2969
    }
3089 2970

	
3090 2971
    /// \brief Return the matching arc (or edge) incident to the given node.
3091 2972
    ///
3092 2973
    /// This function returns the matching arc (or edge) incident to the
3093
    /// given node in the found matching or \c INVALID if the node is 
2974
    /// given node in the found matching or \c INVALID if the node is
3094 2975
    /// not covered by the matching.
3095 2976
    ///
3096 2977
    /// \pre Either run() or start() must be called before using this function.
3097 2978
    Arc matching(const Node& node) const {
3098 2979
      return (*_matching)[node];
3099 2980
    }
... ...
@@ -3105,13 +2986,13 @@
3105 2986
    const MatchingMap& matchingMap() const {
3106 2987
      return *_matching;
3107 2988
    }
3108 2989

	
3109 2990
    /// \brief Return the mate of the given node.
3110 2991
    ///
3111
    /// This function returns the mate of the given node in the found 
2992
    /// This function returns the mate of the given node in the found
3112 2993
    /// matching or \c INVALID if the node is not covered by the matching.
3113 2994
    ///
3114 2995
    /// \pre Either run() or start() must be called before using this function.
3115 2996
    Node mate(const Node& node) const {
3116 2997
      return _graph.target((*_matching)[node]);
3117 2998
    }
... ...
@@ -3124,14 +3005,14 @@
3124 3005
    /// using them.
3125 3006

	
3126 3007
    /// @{
3127 3008

	
3128 3009
    /// \brief Return the value of the dual solution.
3129 3010
    ///
3130
    /// This function returns the value of the dual solution. 
3131
    /// It should be equal to the primal value scaled by \ref dualScale 
3011
    /// This function returns the value of the dual solution.
3012
    /// It should be equal to the primal value scaled by \ref dualScale
3132 3013
    /// "dual scale".
3133 3014
    ///
3134 3015
    /// \pre Either run() or start() must be called before using this function.
3135 3016
    Value dualValue() const {
3136 3017
      Value sum = 0;
3137 3018
      for (NodeIt n(_graph); n != INVALID; ++n) {
... ...
@@ -3180,25 +3061,25 @@
3180 3061
    Value blossomValue(int k) const {
3181 3062
      return _blossom_potential[k].value;
3182 3063
    }
3183 3064

	
3184 3065
    /// \brief Iterator for obtaining the nodes of a blossom.
3185 3066
    ///
3186
    /// This class provides an iterator for obtaining the nodes of the 
3067
    /// This class provides an iterator for obtaining the nodes of the
3187 3068
    /// given blossom. It lists a subset of the nodes.
3188
    /// Before using this iterator, you must allocate a 
3069
    /// Before using this iterator, you must allocate a
3189 3070
    /// MaxWeightedPerfectMatching class and execute it.
3190 3071
    class BlossomIt {
3191 3072
    public:
3192 3073

	
3193 3074
      /// \brief Constructor.
3194 3075
      ///
3195 3076
      /// Constructor to get the nodes of the given variable.
3196 3077
      ///
3197
      /// \pre Either \ref MaxWeightedPerfectMatching::run() "algorithm.run()" 
3198
      /// or \ref MaxWeightedPerfectMatching::start() "algorithm.start()" 
3078
      /// \pre Either \ref MaxWeightedPerfectMatching::run() "algorithm.run()"
3079
      /// or \ref MaxWeightedPerfectMatching::start() "algorithm.start()"
3199 3080
      /// must be called before initializing this iterator.
3200 3081
      BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable)
3201 3082
        : _algorithm(&algorithm)
3202 3083
      {
3203 3084
        _index = _algorithm->_blossom_potential[variable].begin;
3204 3085
        _last = _algorithm->_blossom_potential[variable].end;
... ...
@@ -3238,7 +3119,7 @@
3238 3119
    /// @}
3239 3120

	
3240 3121
  };
3241 3122

	
3242 3123
} //END OF NAMESPACE LEMON
3243 3124

	
3244
#endif //LEMON_MAX_MATCHING_H
3125
#endif //LEMON_MATCHING_H
0 comments (0 inline)