gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Improve and unify the documentation of heaps (#299) and avoid a warning in SimpleBucketHeap::operator[].
0 5 0
default
5 files changed with 563 insertions and 502 deletions:
↑ Collapse diff ↑
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BIN_HEAP_H
20 20
#define LEMON_BIN_HEAP_H
21 21

	
22 22
///\ingroup auxdat
23 23
///\file
24
///\brief Binary Heap implementation.
24
///\brief Binary heap implementation.
25 25

	
26 26
#include <vector>
27 27
#include <utility>
28 28
#include <functional>
29 29

	
30 30
namespace lemon {
31 31

	
32
  ///\ingroup auxdat
32
  /// \ingroup auxdat
33 33
  ///
34
  ///\brief A Binary Heap implementation.
34
  /// \brief Binary heap data structure.
35 35
  ///
36
  ///This class implements the \e binary \e heap data structure.
36
  /// This class implements the \e binary \e heap data structure.
37
  /// It fully conforms to the \ref concepts::Heap "heap concept".
37 38
  ///
38
  ///A \e heap is a data structure for storing items with specified values
39
  ///called \e priorities in such a way that finding the item with minimum
40
  ///priority is efficient. \c CMP specifies the ordering of the priorities.
41
  ///In a heap one can change the priority of an item, add or erase an
42
  ///item, etc.
43
  ///
44
  ///\tparam PR Type of the priority of the items.
45
  ///\tparam IM A read and writable item map with int values, used internally
46
  ///to handle the cross references.
47
  ///\tparam CMP A functor class for the ordering of the priorities.
48
  ///The default is \c std::less<PR>.
49
  ///
50
  ///\sa FibHeap
51
  ///\sa Dijkstra
39
  /// \tparam PR Type of the priorities of the items.
40
  /// \tparam IM A read-writable item map with \c int values, used
41
  /// internally to handle the cross references.
42
  /// \tparam CMP A functor class for comparing the priorities.
43
  /// The default is \c std::less<PR>.
44
#ifdef DOXYGEN
45
  template <typename PR, typename IM, typename CMP>
46
#else
52 47
  template <typename PR, typename IM, typename CMP = std::less<PR> >
48
#endif
53 49
  class BinHeap {
50
  public:
54 51

	
55
  public:
56
    ///\e
52
    /// Type of the item-int map.
57 53
    typedef IM ItemIntMap;
58
    ///\e
54
    /// Type of the priorities.
59 55
    typedef PR Prio;
60
    ///\e
56
    /// Type of the items stored in the heap.
61 57
    typedef typename ItemIntMap::Key Item;
62
    ///\e
58
    /// Type of the item-priority pairs.
63 59
    typedef std::pair<Item,Prio> Pair;
64
    ///\e
60
    /// Functor type for comparing the priorities.
65 61
    typedef CMP Compare;
66 62

	
67
    /// \brief Type to represent the items states.
63
    /// \brief Type to represent the states of the items.
68 64
    ///
69
    /// Each Item element have a state associated to it. It may be "in heap",
70
    /// "pre heap" or "post heap". The latter two are indifferent from the
65
    /// Each item has a state associated to it. It can be "in heap",
66
    /// "pre-heap" or "post-heap". The latter two are indifferent from the
71 67
    /// heap's point of view, but may be useful to the user.
72 68
    ///
73 69
    /// The item-int map must be initialized in such way that it assigns
74 70
    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
75 71
    enum State {
76 72
      IN_HEAP = 0,    ///< = 0.
77 73
      PRE_HEAP = -1,  ///< = -1.
78 74
      POST_HEAP = -2  ///< = -2.
79 75
    };
80 76

	
81 77
  private:
82 78
    std::vector<Pair> _data;
83 79
    Compare _comp;
84 80
    ItemIntMap &_iim;
85 81

	
86 82
  public:
87
    /// \brief The constructor.
83

	
84
    /// \brief Constructor.
88 85
    ///
89
    /// The constructor.
90
    /// \param map should be given to the constructor, since it is used
91
    /// internally to handle the cross references. The value of the map
92
    /// must be \c PRE_HEAP (<tt>-1</tt>) for every item.
86
    /// Constructor.
87
    /// \param map A map that assigns \c int values to the items.
88
    /// It is used internally to handle the cross references.
89
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
93 90
    explicit BinHeap(ItemIntMap &map) : _iim(map) {}
94 91

	
95
    /// \brief The constructor.
92
    /// \brief Constructor.
96 93
    ///
97
    /// The constructor.
98
    /// \param map should be given to the constructor, since it is used
99
    /// internally to handle the cross references. The value of the map
100
    /// should be PRE_HEAP (-1) for each element.
101
    ///
102
    /// \param comp The comparator function object.
94
    /// Constructor.
95
    /// \param map A map that assigns \c int values to the items.
96
    /// It is used internally to handle the cross references.
97
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
98
    /// \param comp The function object used for comparing the priorities.
103 99
    BinHeap(ItemIntMap &map, const Compare &comp)
104 100
      : _iim(map), _comp(comp) {}
105 101

	
106 102

	
107
    /// The number of items stored in the heap.
103
    /// \brief The number of items stored in the heap.
108 104
    ///
109
    /// \brief Returns the number of items stored in the heap.
105
    /// This function returns the number of items stored in the heap.
110 106
    int size() const { return _data.size(); }
111 107

	
112
    /// \brief Checks if the heap stores no items.
108
    /// \brief Check if the heap is empty.
113 109
    ///
114
    /// Returns \c true if and only if the heap stores no items.
110
    /// This function returns \c true if the heap is empty.
115 111
    bool empty() const { return _data.empty(); }
116 112

	
117
    /// \brief Make empty this heap.
113
    /// \brief Make the heap empty.
118 114
    ///
119
    /// Make empty this heap. It does not change the cross reference map.
120
    /// If you want to reuse what is not surely empty you should first clear
121
    /// the heap and after that you should set the cross reference map for
122
    /// each item to \c PRE_HEAP.
115
    /// This functon makes the heap empty.
116
    /// It does not change the cross reference map. If you want to reuse
117
    /// a heap that is not surely empty, you should first clear it and
118
    /// then you should set the cross reference map to \c PRE_HEAP
119
    /// for each item.
123 120
    void clear() {
124 121
      _data.clear();
125 122
    }
126 123

	
127 124
  private:
128 125
    static int parent(int i) { return (i-1)/2; }
129 126

	
130 127
    static int second_child(int i) { return 2*i+2; }
131 128
    bool less(const Pair &p1, const Pair &p2) const {
132 129
      return _comp(p1.second, p2.second);
133 130
    }
134 131

	
135 132
    int bubble_up(int hole, Pair p) {
136 133
      int par = parent(hole);
137 134
      while( hole>0 && less(p,_data[par]) ) {
138 135
        move(_data[par],hole);
139 136
        hole = par;
140 137
        par = parent(hole);
141 138
      }
142 139
      move(p, hole);
143 140
      return hole;
144 141
    }
145 142

	
146 143
    int bubble_down(int hole, Pair p, int length) {
147 144
      int child = second_child(hole);
148 145
      while(child < length) {
149 146
        if( less(_data[child-1], _data[child]) ) {
150 147
          --child;
151 148
        }
152 149
        if( !less(_data[child], p) )
153 150
          goto ok;
154 151
        move(_data[child], hole);
155 152
        hole = child;
156 153
        child = second_child(hole);
157 154
      }
158 155
      child--;
159 156
      if( child<length && less(_data[child], p) ) {
160 157
        move(_data[child], hole);
161 158
        hole=child;
162 159
      }
163 160
    ok:
164 161
      move(p, hole);
165 162
      return hole;
166 163
    }
167 164

	
168 165
    void move(const Pair &p, int i) {
169 166
      _data[i] = p;
170 167
      _iim.set(p.first, i);
171 168
    }
172 169

	
173 170
  public:
171

	
174 172
    /// \brief Insert a pair of item and priority into the heap.
175 173
    ///
176
    /// Adds \c p.first to the heap with priority \c p.second.
174
    /// This function inserts \c p.first to the heap with priority
175
    /// \c p.second.
177 176
    /// \param p The pair to insert.
177
    /// \pre \c p.first must not be stored in the heap.
178 178
    void push(const Pair &p) {
179 179
      int n = _data.size();
180 180
      _data.resize(n+1);
181 181
      bubble_up(n, p);
182 182
    }
183 183

	
184
    /// \brief Insert an item into the heap with the given heap.
184
    /// \brief Insert an item into the heap with the given priority.
185 185
    ///
186
    /// Adds \c i to the heap with priority \c p.
186
    /// This function inserts the given item into the heap with the
187
    /// given priority.
187 188
    /// \param i The item to insert.
188 189
    /// \param p The priority of the item.
190
    /// \pre \e i must not be stored in the heap.
189 191
    void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
190 192

	
191
    /// \brief Returns the item with minimum priority relative to \c Compare.
193
    /// \brief Return the item having minimum priority.
192 194
    ///
193
    /// This method returns the item with minimum priority relative to \c
194
    /// Compare.
195
    /// \pre The heap must be nonempty.
195
    /// This function returns the item having minimum priority.
196
    /// \pre The heap must be non-empty.
196 197
    Item top() const {
197 198
      return _data[0].first;
198 199
    }
199 200

	
200
    /// \brief Returns the minimum priority relative to \c Compare.
201
    /// \brief The minimum priority.
201 202
    ///
202
    /// It returns the minimum priority relative to \c Compare.
203
    /// \pre The heap must be nonempty.
203
    /// This function returns the minimum priority.
204
    /// \pre The heap must be non-empty.
204 205
    Prio prio() const {
205 206
      return _data[0].second;
206 207
    }
207 208

	
208
    /// \brief Deletes the item with minimum priority relative to \c Compare.
209
    /// \brief Remove the item having minimum priority.
209 210
    ///
210
    /// This method deletes the item with minimum priority relative to \c
211
    /// Compare from the heap.
211
    /// This function removes the item having minimum priority.
212 212
    /// \pre The heap must be non-empty.
213 213
    void pop() {
214 214
      int n = _data.size()-1;
215 215
      _iim.set(_data[0].first, POST_HEAP);
216 216
      if (n > 0) {
217 217
        bubble_down(0, _data[n], n);
218 218
      }
219 219
      _data.pop_back();
220 220
    }
221 221

	
222
    /// \brief Deletes \c i from the heap.
222
    /// \brief Remove the given item from the heap.
223 223
    ///
224
    /// This method deletes item \c i from the heap.
225
    /// \param i The item to erase.
226
    /// \pre The item should be in the heap.
224
    /// This function removes the given item from the heap if it is
225
    /// already stored.
226
    /// \param i The item to delete.
227
    /// \pre \e i must be in the heap.
227 228
    void erase(const Item &i) {
228 229
      int h = _iim[i];
229 230
      int n = _data.size()-1;
230 231
      _iim.set(_data[h].first, POST_HEAP);
231 232
      if( h < n ) {
232 233
        if ( bubble_up(h, _data[n]) == h) {
233 234
          bubble_down(h, _data[n], n);
234 235
        }
235 236
      }
236 237
      _data.pop_back();
237 238
    }
238 239

	
239

	
240
    /// \brief Returns the priority of \c i.
240
    /// \brief The priority of the given item.
241 241
    ///
242
    /// This function returns the priority of item \c i.
242
    /// This function returns the priority of the given item.
243 243
    /// \param i The item.
244
    /// \pre \c i must be in the heap.
244
    /// \pre \e i must be in the heap.
245 245
    Prio operator[](const Item &i) const {
246 246
      int idx = _iim[i];
247 247
      return _data[idx].second;
248 248
    }
249 249

	
250
    /// \brief \c i gets to the heap with priority \c p independently
251
    /// if \c i was already there.
250
    /// \brief Set the priority of an item or insert it, if it is
251
    /// not stored in the heap.
252 252
    ///
253
    /// This method calls \ref push(\c i, \c p) if \c i is not stored
254
    /// in the heap and sets the priority of \c i to \c p otherwise.
253
    /// This method sets the priority of the given item if it is
254
    /// already stored in the heap. Otherwise it inserts the given
255
    /// item into the heap with the given priority.
255 256
    /// \param i The item.
256 257
    /// \param p The priority.
257 258
    void set(const Item &i, const Prio &p) {
258 259
      int idx = _iim[i];
259 260
      if( idx < 0 ) {
260 261
        push(i,p);
261 262
      }
262 263
      else if( _comp(p, _data[idx].second) ) {
263 264
        bubble_up(idx, Pair(i,p));
264 265
      }
265 266
      else {
266 267
        bubble_down(idx, Pair(i,p), _data.size());
267 268
      }
268 269
    }
269 270

	
270
    /// \brief Decreases the priority of \c i to \c p.
271
    /// \brief Decrease the priority of an item to the given value.
271 272
    ///
272
    /// This method decreases the priority of item \c i to \c p.
273
    /// This function decreases the priority of an item to the given value.
273 274
    /// \param i The item.
274 275
    /// \param p The priority.
275
    /// \pre \c i must be stored in the heap with priority at least \c
276
    /// p relative to \c Compare.
276
    /// \pre \e i must be stored in the heap with priority at least \e p.
277 277
    void decrease(const Item &i, const Prio &p) {
278 278
      int idx = _iim[i];
279 279
      bubble_up(idx, Pair(i,p));
280 280
    }
281 281

	
282
    /// \brief Increases the priority of \c i to \c p.
282
    /// \brief Increase the priority of an item to the given value.
283 283
    ///
284
    /// This method sets the priority of item \c i to \c p.
284
    /// This function increases the priority of an item to the given value.
285 285
    /// \param i The item.
286 286
    /// \param p The priority.
287
    /// \pre \c i must be stored in the heap with priority at most \c
288
    /// p relative to \c Compare.
287
    /// \pre \e i must be stored in the heap with priority at most \e p.
289 288
    void increase(const Item &i, const Prio &p) {
290 289
      int idx = _iim[i];
291 290
      bubble_down(idx, Pair(i,p), _data.size());
292 291
    }
293 292

	
294
    /// \brief Returns if \c item is in, has already been in, or has
295
    /// never been in the heap.
293
    /// \brief Return the state of an item.
296 294
    ///
297
    /// This method returns PRE_HEAP if \c item has never been in the
298
    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
299
    /// otherwise. In the latter case it is possible that \c item will
300
    /// get back to the heap again.
295
    /// This method returns \c PRE_HEAP if the given item has never
296
    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
297
    /// and \c POST_HEAP otherwise.
298
    /// In the latter case it is possible that the item will get back
299
    /// to the heap again.
301 300
    /// \param i The item.
302 301
    State state(const Item &i) const {
303 302
      int s = _iim[i];
304 303
      if( s>=0 )
305 304
        s=0;
306 305
      return State(s);
307 306
    }
308 307

	
309
    /// \brief Sets the state of the \c item in the heap.
308
    /// \brief Set the state of an item in the heap.
310 309
    ///
311
    /// Sets the state of the \c item in the heap. It can be used to
312
    /// manually clear the heap when it is important to achive the
313
    /// better time complexity.
310
    /// This function sets the state of the given item in the heap.
311
    /// It can be used to manually clear the heap when it is important
312
    /// to achive better time complexity.
314 313
    /// \param i The item.
315 314
    /// \param st The state. It should not be \c IN_HEAP.
316 315
    void state(const Item& i, State st) {
317 316
      switch (st) {
318 317
      case POST_HEAP:
319 318
      case PRE_HEAP:
320 319
        if (state(i) == IN_HEAP) {
321 320
          erase(i);
322 321
        }
323 322
        _iim[i] = st;
324 323
        break;
325 324
      case IN_HEAP:
326 325
        break;
327 326
      }
328 327
    }
329 328

	
330
    /// \brief Replaces an item in the heap.
329
    /// \brief Replace an item in the heap.
331 330
    ///
332
    /// The \c i item is replaced with \c j item. The \c i item should
333
    /// be in the heap, while the \c j should be out of the heap. The
334
    /// \c i item will out of the heap and \c j will be in the heap
335
    /// with the same prioriority as prevoiusly the \c i item.
331
    /// This function replaces item \c i with item \c j.
332
    /// Item \c i must be in the heap, while \c j must be out of the heap.
333
    /// After calling this method, item \c i will be out of the
334
    /// heap and \c j will be in the heap with the same prioriority
335
    /// as item \c i had before.
336 336
    void replace(const Item& i, const Item& j) {
337 337
      int idx = _iim[i];
338 338
      _iim.set(i, _iim[j]);
339 339
      _iim.set(j, idx);
340 340
      _data[idx].first = j;
341 341
    }
342 342

	
343 343
  }; // class BinHeap
344 344

	
345 345
} // namespace lemon
346 346

	
347 347
#endif // LEMON_BIN_HEAP_H
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BUCKET_HEAP_H
20 20
#define LEMON_BUCKET_HEAP_H
21 21

	
22 22
///\ingroup auxdat
23 23
///\file
24
///\brief Bucket Heap implementation.
24
///\brief Bucket heap implementation.
25 25

	
26 26
#include <vector>
27 27
#include <utility>
28 28
#include <functional>
29 29

	
30 30
namespace lemon {
31 31

	
32 32
  namespace _bucket_heap_bits {
33 33

	
34 34
    template <bool MIN>
35 35
    struct DirectionTraits {
36 36
      static bool less(int left, int right) {
37 37
        return left < right;
38 38
      }
39 39
      static void increase(int& value) {
40 40
        ++value;
41 41
      }
42 42
    };
43 43

	
44 44
    template <>
45 45
    struct DirectionTraits<false> {
46 46
      static bool less(int left, int right) {
47 47
        return left > right;
48 48
      }
49 49
      static void increase(int& value) {
50 50
        --value;
51 51
      }
52 52
    };
53 53

	
54 54
  }
55 55

	
56 56
  /// \ingroup auxdat
57 57
  ///
58
  /// \brief A Bucket Heap implementation.
58
  /// \brief Bucket heap data structure.
59 59
  ///
60
  /// This class implements the \e bucket \e heap data structure. A \e heap
61
  /// is a data structure for storing items with specified values called \e
62
  /// priorities in such a way that finding the item with minimum priority is
63
  /// efficient. The bucket heap is very simple implementation, it can store
64
  /// only integer priorities and it stores for each priority in the
65
  /// \f$ [0..C) \f$ range a list of items. So it should be used only when
66
  /// the priorities are small. It is not intended to use as dijkstra heap.
60
  /// This class implements the \e bucket \e heap data structure.
61
  /// It practically conforms to the \ref concepts::Heap "heap concept",
62
  /// but it has some limitations.
67 63
  ///
68
  /// \param IM A read and write Item int map, used internally
69
  /// to handle the cross references.
70
  /// \param MIN If the given parameter is false then instead of the
71
  /// minimum value the maximum can be retrivied with the top() and
72
  /// prio() member functions.
64
  /// The bucket heap is a very simple structure. It can store only
65
  /// \c int priorities and it maintains a list of items for each priority
66
  /// in the range <tt>[0..C)</tt>. So it should only be used when the
67
  /// priorities are small. It is not intended to use as a Dijkstra heap.
68
  ///
69
  /// \tparam IM A read-writable item map with \c int values, used
70
  /// internally to handle the cross references.
71
  /// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap.
72
  /// The default is \e min-heap. If this parameter is set to \c false,
73
  /// then the comparison is reversed, so the top(), prio() and pop()
74
  /// functions deal with the item having maximum priority instead of the
75
  /// minimum.
76
  ///
77
  /// \sa SimpleBucketHeap
73 78
  template <typename IM, bool MIN = true>
74 79
  class BucketHeap {
75 80

	
76 81
  public:
77
    /// \e
78
    typedef typename IM::Key Item;
79
    /// \e
82

	
83
    /// Type of the item-int map.
84
    typedef IM ItemIntMap;
85
    /// Type of the priorities.
80 86
    typedef int Prio;
81
    /// \e
82
    typedef std::pair<Item, Prio> Pair;
83
    /// \e
84
    typedef IM ItemIntMap;
87
    /// Type of the items stored in the heap.
88
    typedef typename ItemIntMap::Key Item;
89
    /// Type of the item-priority pairs.
90
    typedef std::pair<Item,Prio> Pair;
85 91

	
86 92
  private:
87 93

	
88 94
    typedef _bucket_heap_bits::DirectionTraits<MIN> Direction;
89 95

	
90 96
  public:
91 97

	
92
    /// \brief Type to represent the items states.
98
    /// \brief Type to represent the states of the items.
93 99
    ///
94
    /// Each Item element have a state associated to it. It may be "in heap",
95
    /// "pre heap" or "post heap". The latter two are indifferent from the
100
    /// Each item has a state associated to it. It can be "in heap",
101
    /// "pre-heap" or "post-heap". The latter two are indifferent from the
96 102
    /// heap's point of view, but may be useful to the user.
97 103
    ///
98 104
    /// The item-int map must be initialized in such way that it assigns
99 105
    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
100 106
    enum State {
101 107
      IN_HEAP = 0,    ///< = 0.
102 108
      PRE_HEAP = -1,  ///< = -1.
103 109
      POST_HEAP = -2  ///< = -2.
104 110
    };
105 111

	
106 112
  public:
107
    /// \brief The constructor.
113

	
114
    /// \brief Constructor.
108 115
    ///
109
    /// The constructor.
110
    /// \param map should be given to the constructor, since it is used
111
    /// internally to handle the cross references. The value of the map
112
    /// should be PRE_HEAP (-1) for each element.
116
    /// Constructor.
117
    /// \param map A map that assigns \c int values to the items.
118
    /// It is used internally to handle the cross references.
119
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
113 120
    explicit BucketHeap(ItemIntMap &map) : _iim(map), _minimum(0) {}
114 121

	
115
    /// The number of items stored in the heap.
122
    /// \brief The number of items stored in the heap.
116 123
    ///
117
    /// \brief Returns the number of items stored in the heap.
124
    /// This function returns the number of items stored in the heap.
118 125
    int size() const { return _data.size(); }
119 126

	
120
    /// \brief Checks if the heap stores no items.
127
    /// \brief Check if the heap is empty.
121 128
    ///
122
    /// Returns \c true if and only if the heap stores no items.
129
    /// This function returns \c true if the heap is empty.
123 130
    bool empty() const { return _data.empty(); }
124 131

	
125
    /// \brief Make empty this heap.
132
    /// \brief Make the heap empty.
126 133
    ///
127
    /// Make empty this heap. It does not change the cross reference
128
    /// map.  If you want to reuse a heap what is not surely empty you
129
    /// should first clear the heap and after that you should set the
130
    /// cross reference map for each item to \c PRE_HEAP.
134
    /// This functon makes the heap empty.
135
    /// It does not change the cross reference map. If you want to reuse
136
    /// a heap that is not surely empty, you should first clear it and
137
    /// then you should set the cross reference map to \c PRE_HEAP
138
    /// for each item.
131 139
    void clear() {
132 140
      _data.clear(); _first.clear(); _minimum = 0;
133 141
    }
134 142

	
135 143
  private:
136 144

	
137 145
    void relocate_last(int idx) {
138 146
      if (idx + 1 < int(_data.size())) {
139 147
        _data[idx] = _data.back();
140 148
        if (_data[idx].prev != -1) {
141 149
          _data[_data[idx].prev].next = idx;
142 150
        } else {
143 151
          _first[_data[idx].value] = idx;
144 152
        }
145 153
        if (_data[idx].next != -1) {
146 154
          _data[_data[idx].next].prev = idx;
147 155
        }
148 156
        _iim[_data[idx].item] = idx;
149 157
      }
150 158
      _data.pop_back();
151 159
    }
152 160

	
153 161
    void unlace(int idx) {
154 162
      if (_data[idx].prev != -1) {
155 163
        _data[_data[idx].prev].next = _data[idx].next;
156 164
      } else {
157 165
        _first[_data[idx].value] = _data[idx].next;
158 166
      }
159 167
      if (_data[idx].next != -1) {
160 168
        _data[_data[idx].next].prev = _data[idx].prev;
161 169
      }
162 170
    }
163 171

	
164 172
    void lace(int idx) {
165 173
      if (int(_first.size()) <= _data[idx].value) {
166 174
        _first.resize(_data[idx].value + 1, -1);
167 175
      }
168 176
      _data[idx].next = _first[_data[idx].value];
169 177
      if (_data[idx].next != -1) {
170 178
        _data[_data[idx].next].prev = idx;
171 179
      }
172 180
      _first[_data[idx].value] = idx;
173 181
      _data[idx].prev = -1;
174 182
    }
175 183

	
176 184
  public:
185

	
177 186
    /// \brief Insert a pair of item and priority into the heap.
178 187
    ///
179
    /// Adds \c p.first to the heap with priority \c p.second.
188
    /// This function inserts \c p.first to the heap with priority
189
    /// \c p.second.
180 190
    /// \param p The pair to insert.
191
    /// \pre \c p.first must not be stored in the heap.
181 192
    void push(const Pair& p) {
182 193
      push(p.first, p.second);
183 194
    }
184 195

	
185 196
    /// \brief Insert an item into the heap with the given priority.
186 197
    ///
187
    /// Adds \c i to the heap with priority \c p.
198
    /// This function inserts the given item into the heap with the
199
    /// given priority.
188 200
    /// \param i The item to insert.
189 201
    /// \param p The priority of the item.
202
    /// \pre \e i must not be stored in the heap.
190 203
    void push(const Item &i, const Prio &p) {
191 204
      int idx = _data.size();
192 205
      _iim[i] = idx;
193 206
      _data.push_back(BucketItem(i, p));
194 207
      lace(idx);
195 208
      if (Direction::less(p, _minimum)) {
196 209
        _minimum = p;
197 210
      }
198 211
    }
199 212

	
200
    /// \brief Returns the item with minimum priority.
213
    /// \brief Return the item having minimum priority.
201 214
    ///
202
    /// This method returns the item with minimum priority.
203
    /// \pre The heap must be nonempty.
215
    /// This function returns the item having minimum priority.
216
    /// \pre The heap must be non-empty.
204 217
    Item top() const {
205 218
      while (_first[_minimum] == -1) {
206 219
        Direction::increase(_minimum);
207 220
      }
208 221
      return _data[_first[_minimum]].item;
209 222
    }
210 223

	
211
    /// \brief Returns the minimum priority.
224
    /// \brief The minimum priority.
212 225
    ///
213
    /// It returns the minimum priority.
214
    /// \pre The heap must be nonempty.
226
    /// This function returns the minimum priority.
227
    /// \pre The heap must be non-empty.
215 228
    Prio prio() const {
216 229
      while (_first[_minimum] == -1) {
217 230
        Direction::increase(_minimum);
218 231
      }
219 232
      return _minimum;
220 233
    }
221 234

	
222
    /// \brief Deletes the item with minimum priority.
235
    /// \brief Remove the item having minimum priority.
223 236
    ///
224
    /// This method deletes the item with minimum priority from the heap.
237
    /// This function removes the item having minimum priority.
225 238
    /// \pre The heap must be non-empty.
226 239
    void pop() {
227 240
      while (_first[_minimum] == -1) {
228 241
        Direction::increase(_minimum);
229 242
      }
230 243
      int idx = _first[_minimum];
231 244
      _iim[_data[idx].item] = -2;
232 245
      unlace(idx);
233 246
      relocate_last(idx);
234 247
    }
235 248

	
236
    /// \brief Deletes \c i from the heap.
249
    /// \brief Remove the given item from the heap.
237 250
    ///
238
    /// This method deletes item \c i from the heap, if \c i was
239
    /// already stored in the heap.
240
    /// \param i The item to erase.
251
    /// This function removes the given item from the heap if it is
252
    /// already stored.
253
    /// \param i The item to delete.
254
    /// \pre \e i must be in the heap.
241 255
    void erase(const Item &i) {
242 256
      int idx = _iim[i];
243 257
      _iim[_data[idx].item] = -2;
244 258
      unlace(idx);
245 259
      relocate_last(idx);
246 260
    }
247 261

	
248

	
249
    /// \brief Returns the priority of \c i.
262
    /// \brief The priority of the given item.
250 263
    ///
251
    /// This function returns the priority of item \c i.
252
    /// \pre \c i must be in the heap.
264
    /// This function returns the priority of the given item.
253 265
    /// \param i The item.
266
    /// \pre \e i must be in the heap.
254 267
    Prio operator[](const Item &i) const {
255 268
      int idx = _iim[i];
256 269
      return _data[idx].value;
257 270
    }
258 271

	
259
    /// \brief \c i gets to the heap with priority \c p independently
260
    /// if \c i was already there.
272
    /// \brief Set the priority of an item or insert it, if it is
273
    /// not stored in the heap.
261 274
    ///
262
    /// This method calls \ref push(\c i, \c p) if \c i is not stored
263
    /// in the heap and sets the priority of \c i to \c p otherwise.
275
    /// This method sets the priority of the given item if it is
276
    /// already stored in the heap. Otherwise it inserts the given
277
    /// item into the heap with the given priority.
264 278
    /// \param i The item.
265 279
    /// \param p The priority.
266 280
    void set(const Item &i, const Prio &p) {
267 281
      int idx = _iim[i];
268 282
      if (idx < 0) {
269 283
        push(i, p);
270 284
      } else if (Direction::less(p, _data[idx].value)) {
271 285
        decrease(i, p);
272 286
      } else {
273 287
        increase(i, p);
274 288
      }
275 289
    }
276 290

	
277
    /// \brief Decreases the priority of \c i to \c p.
291
    /// \brief Decrease the priority of an item to the given value.
278 292
    ///
279
    /// This method decreases the priority of item \c i to \c p.
280
    /// \pre \c i must be stored in the heap with priority at least \c
281
    /// p relative to \c Compare.
293
    /// This function decreases the priority of an item to the given value.
282 294
    /// \param i The item.
283 295
    /// \param p The priority.
296
    /// \pre \e i must be stored in the heap with priority at least \e p.
284 297
    void decrease(const Item &i, const Prio &p) {
285 298
      int idx = _iim[i];
286 299
      unlace(idx);
287 300
      _data[idx].value = p;
288 301
      if (Direction::less(p, _minimum)) {
289 302
        _minimum = p;
290 303
      }
291 304
      lace(idx);
292 305
    }
293 306

	
294
    /// \brief Increases the priority of \c i to \c p.
307
    /// \brief Increase the priority of an item to the given value.
295 308
    ///
296
    /// This method sets the priority of item \c i to \c p.
297
    /// \pre \c i must be stored in the heap with priority at most \c
298
    /// p relative to \c Compare.
309
    /// This function increases the priority of an item to the given value.
299 310
    /// \param i The item.
300 311
    /// \param p The priority.
312
    /// \pre \e i must be stored in the heap with priority at most \e p.
301 313
    void increase(const Item &i, const Prio &p) {
302 314
      int idx = _iim[i];
303 315
      unlace(idx);
304 316
      _data[idx].value = p;
305 317
      lace(idx);
306 318
    }
307 319

	
308
    /// \brief Returns if \c item is in, has already been in, or has
309
    /// never been in the heap.
320
    /// \brief Return the state of an item.
310 321
    ///
311
    /// This method returns PRE_HEAP if \c item has never been in the
312
    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
313
    /// otherwise. In the latter case it is possible that \c item will
314
    /// get back to the heap again.
322
    /// This method returns \c PRE_HEAP if the given item has never
323
    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
324
    /// and \c POST_HEAP otherwise.
325
    /// In the latter case it is possible that the item will get back
326
    /// to the heap again.
315 327
    /// \param i The item.
316 328
    State state(const Item &i) const {
317 329
      int idx = _iim[i];
318 330
      if (idx >= 0) idx = 0;
319 331
      return State(idx);
320 332
    }
321 333

	
322
    /// \brief Sets the state of the \c item in the heap.
334
    /// \brief Set the state of an item in the heap.
323 335
    ///
324
    /// Sets the state of the \c item in the heap. It can be used to
325
    /// manually clear the heap when it is important to achive the
326
    /// better time complexity.
336
    /// This function sets the state of the given item in the heap.
337
    /// It can be used to manually clear the heap when it is important
338
    /// to achive better time complexity.
327 339
    /// \param i The item.
328 340
    /// \param st The state. It should not be \c IN_HEAP.
329 341
    void state(const Item& i, State st) {
330 342
      switch (st) {
331 343
      case POST_HEAP:
332 344
      case PRE_HEAP:
333 345
        if (state(i) == IN_HEAP) {
334 346
          erase(i);
335 347
        }
336 348
        _iim[i] = st;
337 349
        break;
338 350
      case IN_HEAP:
339 351
        break;
340 352
      }
341 353
    }
342 354

	
343 355
  private:
344 356

	
345 357
    struct BucketItem {
346 358
      BucketItem(const Item& _item, int _value)
347 359
        : item(_item), value(_value) {}
348 360

	
349 361
      Item item;
350 362
      int value;
351 363

	
352 364
      int prev, next;
353 365
    };
354 366

	
355 367
    ItemIntMap& _iim;
356 368
    std::vector<int> _first;
357 369
    std::vector<BucketItem> _data;
358 370
    mutable int _minimum;
359 371

	
360 372
  }; // class BucketHeap
361 373

	
362 374
  /// \ingroup auxdat
363 375
  ///
364
  /// \brief A Simplified Bucket Heap implementation.
376
  /// \brief Simplified bucket heap data structure.
365 377
  ///
366 378
  /// This class implements a simplified \e bucket \e heap data
367
  /// structure.  It does not provide some functionality but it faster
368
  /// and simplier data structure than the BucketHeap. The main
369
  /// difference is that the BucketHeap stores for every key a double
370
  /// linked list while this class stores just simple lists. In the
371
  /// other way it does not support erasing each elements just the
372
  /// minimal and it does not supports key increasing, decreasing.
379
  /// structure. It does not provide some functionality, but it is
380
  /// faster and simpler than BucketHeap. The main difference is
381
  /// that BucketHeap stores a doubly-linked list for each key while
382
  /// this class stores only simply-linked lists. It supports erasing
383
  /// only for the item having minimum priority and it does not support
384
  /// key increasing and decreasing.
373 385
  ///
374
  /// \param IM A read and write Item int map, used internally
375
  /// to handle the cross references.
376
  /// \param MIN If the given parameter is false then instead of the
377
  /// minimum value the maximum can be retrivied with the top() and
378
  /// prio() member functions.
386
  /// Note that this implementation does not conform to the
387
  /// \ref concepts::Heap "heap concept" due to the lack of some 
388
  /// functionality.
389
  ///
390
  /// \tparam IM A read-writable item map with \c int values, used
391
  /// internally to handle the cross references.
392
  /// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap.
393
  /// The default is \e min-heap. If this parameter is set to \c false,
394
  /// then the comparison is reversed, so the top(), prio() and pop()
395
  /// functions deal with the item having maximum priority instead of the
396
  /// minimum.
379 397
  ///
380 398
  /// \sa BucketHeap
381 399
  template <typename IM, bool MIN = true >
382 400
  class SimpleBucketHeap {
383 401

	
384 402
  public:
385
    typedef typename IM::Key Item;
403

	
404
    /// Type of the item-int map.
405
    typedef IM ItemIntMap;
406
    /// Type of the priorities.
386 407
    typedef int Prio;
387
    typedef std::pair<Item, Prio> Pair;
388
    typedef IM ItemIntMap;
408
    /// Type of the items stored in the heap.
409
    typedef typename ItemIntMap::Key Item;
410
    /// Type of the item-priority pairs.
411
    typedef std::pair<Item,Prio> Pair;
389 412

	
390 413
  private:
391 414

	
392 415
    typedef _bucket_heap_bits::DirectionTraits<MIN> Direction;
393 416

	
394 417
  public:
395 418

	
396
    /// \brief Type to represent the items states.
419
    /// \brief Type to represent the states of the items.
397 420
    ///
398
    /// Each Item element have a state associated to it. It may be "in heap",
399
    /// "pre heap" or "post heap". The latter two are indifferent from the
421
    /// Each item has a state associated to it. It can be "in heap",
422
    /// "pre-heap" or "post-heap". The latter two are indifferent from the
400 423
    /// heap's point of view, but may be useful to the user.
401 424
    ///
402 425
    /// The item-int map must be initialized in such way that it assigns
403 426
    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
404 427
    enum State {
405 428
      IN_HEAP = 0,    ///< = 0.
406 429
      PRE_HEAP = -1,  ///< = -1.
407 430
      POST_HEAP = -2  ///< = -2.
408 431
    };
409 432

	
410 433
  public:
411 434

	
412
    /// \brief The constructor.
435
    /// \brief Constructor.
413 436
    ///
414
    /// The constructor.
415
    /// \param map should be given to the constructor, since it is used
416
    /// internally to handle the cross references. The value of the map
417
    /// should be PRE_HEAP (-1) for each element.
437
    /// Constructor.
438
    /// \param map A map that assigns \c int values to the items.
439
    /// It is used internally to handle the cross references.
440
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
418 441
    explicit SimpleBucketHeap(ItemIntMap &map)
419 442
      : _iim(map), _free(-1), _num(0), _minimum(0) {}
420 443

	
421
    /// \brief Returns the number of items stored in the heap.
444
    /// \brief The number of items stored in the heap.
422 445
    ///
423
    /// The number of items stored in the heap.
446
    /// This function returns the number of items stored in the heap.
424 447
    int size() const { return _num; }
425 448

	
426
    /// \brief Checks if the heap stores no items.
449
    /// \brief Check if the heap is empty.
427 450
    ///
428
    /// Returns \c true if and only if the heap stores no items.
451
    /// This function returns \c true if the heap is empty.
429 452
    bool empty() const { return _num == 0; }
430 453

	
431
    /// \brief Make empty this heap.
454
    /// \brief Make the heap empty.
432 455
    ///
433
    /// Make empty this heap. It does not change the cross reference
434
    /// map.  If you want to reuse a heap what is not surely empty you
435
    /// should first clear the heap and after that you should set the
436
    /// cross reference map for each item to \c PRE_HEAP.
456
    /// This functon makes the heap empty.
457
    /// It does not change the cross reference map. If you want to reuse
458
    /// a heap that is not surely empty, you should first clear it and
459
    /// then you should set the cross reference map to \c PRE_HEAP
460
    /// for each item.
437 461
    void clear() {
438 462
      _data.clear(); _first.clear(); _free = -1; _num = 0; _minimum = 0;
439 463
    }
440 464

	
441 465
    /// \brief Insert a pair of item and priority into the heap.
442 466
    ///
443
    /// Adds \c p.first to the heap with priority \c p.second.
467
    /// This function inserts \c p.first to the heap with priority
468
    /// \c p.second.
444 469
    /// \param p The pair to insert.
470
    /// \pre \c p.first must not be stored in the heap.
445 471
    void push(const Pair& p) {
446 472
      push(p.first, p.second);
447 473
    }
448 474

	
449 475
    /// \brief Insert an item into the heap with the given priority.
450 476
    ///
451
    /// Adds \c i to the heap with priority \c p.
477
    /// This function inserts the given item into the heap with the
478
    /// given priority.
452 479
    /// \param i The item to insert.
453 480
    /// \param p The priority of the item.
481
    /// \pre \e i must not be stored in the heap.
454 482
    void push(const Item &i, const Prio &p) {
455 483
      int idx;
456 484
      if (_free == -1) {
457 485
        idx = _data.size();
458 486
        _data.push_back(BucketItem(i));
459 487
      } else {
460 488
        idx = _free;
461 489
        _free = _data[idx].next;
462 490
        _data[idx].item = i;
463 491
      }
464 492
      _iim[i] = idx;
465 493
      if (p >= int(_first.size())) _first.resize(p + 1, -1);
466 494
      _data[idx].next = _first[p];
467 495
      _first[p] = idx;
468 496
      if (Direction::less(p, _minimum)) {
469 497
        _minimum = p;
470 498
      }
471 499
      ++_num;
472 500
    }
473 501

	
474
    /// \brief Returns the item with minimum priority.
502
    /// \brief Return the item having minimum priority.
475 503
    ///
476
    /// This method returns the item with minimum priority.
477
    /// \pre The heap must be nonempty.
504
    /// This function returns the item having minimum priority.
505
    /// \pre The heap must be non-empty.
478 506
    Item top() const {
479 507
      while (_first[_minimum] == -1) {
480 508
        Direction::increase(_minimum);
481 509
      }
482 510
      return _data[_first[_minimum]].item;
483 511
    }
484 512

	
485
    /// \brief Returns the minimum priority.
513
    /// \brief The minimum priority.
486 514
    ///
487
    /// It returns the minimum priority.
488
    /// \pre The heap must be nonempty.
515
    /// This function returns the minimum priority.
516
    /// \pre The heap must be non-empty.
489 517
    Prio prio() const {
490 518
      while (_first[_minimum] == -1) {
491 519
        Direction::increase(_minimum);
492 520
      }
493 521
      return _minimum;
494 522
    }
495 523

	
496
    /// \brief Deletes the item with minimum priority.
524
    /// \brief Remove the item having minimum priority.
497 525
    ///
498
    /// This method deletes the item with minimum priority from the heap.
526
    /// This function removes the item having minimum priority.
499 527
    /// \pre The heap must be non-empty.
500 528
    void pop() {
501 529
      while (_first[_minimum] == -1) {
502 530
        Direction::increase(_minimum);
503 531
      }
504 532
      int idx = _first[_minimum];
505 533
      _iim[_data[idx].item] = -2;
506 534
      _first[_minimum] = _data[idx].next;
507 535
      _data[idx].next = _free;
508 536
      _free = idx;
509 537
      --_num;
510 538
    }
511 539

	
512
    /// \brief Returns the priority of \c i.
540
    /// \brief The priority of the given item.
513 541
    ///
514
    /// This function returns the priority of item \c i.
515
    /// \warning This operator is not a constant time function
516
    /// because it scans the whole data structure to find the proper
517
    /// value.
518
    /// \pre \c i must be in the heap.
542
    /// This function returns the priority of the given item.
519 543
    /// \param i The item.
544
    /// \pre \e i must be in the heap.
545
    /// \warning This operator is not a constant time function because
546
    /// it scans the whole data structure to find the proper value.
520 547
    Prio operator[](const Item &i) const {
521
      for (int k = 0; k < _first.size(); ++k) {
548
      for (int k = 0; k < int(_first.size()); ++k) {
522 549
        int idx = _first[k];
523 550
        while (idx != -1) {
524 551
          if (_data[idx].item == i) {
525 552
            return k;
526 553
          }
527 554
          idx = _data[idx].next;
528 555
        }
529 556
      }
530 557
      return -1;
531 558
    }
532 559

	
533
    /// \brief Returns if \c item is in, has already been in, or has
534
    /// never been in the heap.
560
    /// \brief Return the state of an item.
535 561
    ///
536
    /// This method returns PRE_HEAP if \c item has never been in the
537
    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
538
    /// otherwise. In the latter case it is possible that \c item will
539
    /// get back to the heap again.
562
    /// This method returns \c PRE_HEAP if the given item has never
563
    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
564
    /// and \c POST_HEAP otherwise.
565
    /// In the latter case it is possible that the item will get back
566
    /// to the heap again.
540 567
    /// \param i The item.
541 568
    State state(const Item &i) const {
542 569
      int idx = _iim[i];
543 570
      if (idx >= 0) idx = 0;
544 571
      return State(idx);
545 572
    }
546 573

	
547 574
  private:
548 575

	
549 576
    struct BucketItem {
550 577
      BucketItem(const Item& _item)
551 578
        : item(_item) {}
552 579

	
553 580
      Item item;
554 581
      int next;
555 582
    };
556 583

	
557 584
    ItemIntMap& _iim;
558 585
    std::vector<int> _first;
559 586
    std::vector<BucketItem> _data;
560 587
    int _free, _num;
561 588
    mutable int _minimum;
562 589

	
563 590
  }; // class SimpleBucketHeap
564 591

	
565 592
}
566 593

	
567 594
#endif
Ignore white space 96 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19
#ifndef LEMON_CONCEPTS_HEAP_H
20
#define LEMON_CONCEPTS_HEAP_H
21

	
19 22
///\ingroup concept
20 23
///\file
21 24
///\brief The concept of heaps.
22 25

	
23
#ifndef LEMON_CONCEPTS_HEAP_H
24
#define LEMON_CONCEPTS_HEAP_H
25

	
26 26
#include <lemon/core.h>
27 27
#include <lemon/concept_check.h>
28 28

	
29 29
namespace lemon {
30 30

	
31 31
  namespace concepts {
32 32

	
33 33
    /// \addtogroup concept
34 34
    /// @{
35 35

	
36 36
    /// \brief The heap concept.
37 37
    ///
38
    /// Concept class describing the main interface of heaps. A \e heap
39
    /// is a data structure for storing items with specified values called
40
    /// \e priorities in such a way that finding the item with minimum
41
    /// priority is efficient. In a heap one can change the priority of an
42
    /// item, add or erase an item, etc.
38
    /// This concept class describes the main interface of heaps.
39
    /// The various heap structures are efficient
40
    /// implementations of the abstract data type \e priority \e queue.
41
    /// They store items with specified values called \e priorities
42
    /// in such a way that finding and removing the item with minimum
43
    /// priority are efficient. The basic operations are adding and
44
    /// erasing items, changing the priority of an item, etc.
43 45
    ///
44
    /// \tparam PR Type of the priority of the items.
45
    /// \tparam IM A read and writable item map with int values, used
46
    /// Heaps are crucial in several algorithms, such as Dijkstra and Prim.
47
    /// Any class that conforms to this concept can be used easily in such
48
    /// algorithms.
49
    ///
50
    /// \tparam PR Type of the priorities of the items.
51
    /// \tparam IM A read-writable item map with \c int values, used
46 52
    /// internally to handle the cross references.
47
    /// \tparam Comp A functor class for the ordering of the priorities.
53
    /// \tparam CMP A functor class for comparing the priorities.
48 54
    /// The default is \c std::less<PR>.
49 55
#ifdef DOXYGEN
50
    template <typename PR, typename IM, typename Comp = std::less<PR> >
56
    template <typename PR, typename IM, typename CMP>
51 57
#else
52
    template <typename PR, typename IM>
58
    template <typename PR, typename IM, typename CMP = std::less<PR> >
53 59
#endif
54 60
    class Heap {
55 61
    public:
56 62

	
57 63
      /// Type of the item-int map.
58 64
      typedef IM ItemIntMap;
59 65
      /// Type of the priorities.
60 66
      typedef PR Prio;
61 67
      /// Type of the items stored in the heap.
62 68
      typedef typename ItemIntMap::Key Item;
63 69

	
64 70
      /// \brief Type to represent the states of the items.
65 71
      ///
66 72
      /// Each item has a state associated to it. It can be "in heap",
67
      /// "pre heap" or "post heap". The later two are indifferent
68
      /// from the point of view of the heap, but may be useful for
69
      /// the user.
73
      /// "pre-heap" or "post-heap". The latter two are indifferent from the
74
      /// heap's point of view, but may be useful to the user.
70 75
      ///
71 76
      /// The item-int map must be initialized in such way that it assigns
72 77
      /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
73 78
      enum State {
74 79
        IN_HEAP = 0,    ///< = 0. The "in heap" state constant.
75
        PRE_HEAP = -1,  ///< = -1. The "pre heap" state constant.
76
        POST_HEAP = -2  ///< = -2. The "post heap" state constant.
80
        PRE_HEAP = -1,  ///< = -1. The "pre-heap" state constant.
81
        POST_HEAP = -2  ///< = -2. The "post-heap" state constant.
77 82
      };
78 83

	
79
      /// \brief The constructor.
84
      /// \brief Constructor.
80 85
      ///
81
      /// The constructor.
86
      /// Constructor.
82 87
      /// \param map A map that assigns \c int values to keys of type
83 88
      /// \c Item. It is used internally by the heap implementations to
84 89
      /// handle the cross references. The assigned value must be
85
      /// \c PRE_HEAP (<tt>-1</tt>) for every item.
90
      /// \c PRE_HEAP (<tt>-1</tt>) for each item.
86 91
      explicit Heap(ItemIntMap &map) {}
87 92

	
93
      /// \brief Constructor.
94
      ///
95
      /// Constructor.
96
      /// \param map A map that assigns \c int values to keys of type
97
      /// \c Item. It is used internally by the heap implementations to
98
      /// handle the cross references. The assigned value must be
99
      /// \c PRE_HEAP (<tt>-1</tt>) for each item.
100
      /// \param comp The function object used for comparing the priorities.
101
      explicit Heap(ItemIntMap &map, const CMP &comp) {}
102

	
88 103
      /// \brief The number of items stored in the heap.
89 104
      ///
90
      /// Returns the number of items stored in the heap.
105
      /// This function returns the number of items stored in the heap.
91 106
      int size() const { return 0; }
92 107

	
93
      /// \brief Checks if the heap is empty.
108
      /// \brief Check if the heap is empty.
94 109
      ///
95
      /// Returns \c true if the heap is empty.
110
      /// This function returns \c true if the heap is empty.
96 111
      bool empty() const { return false; }
97 112

	
98
      /// \brief Makes the heap empty.
113
      /// \brief Make the heap empty.
99 114
      ///
100
      /// Makes the heap empty.
101
      void clear();
115
      /// This functon makes the heap empty.
116
      /// It does not change the cross reference map. If you want to reuse
117
      /// a heap that is not surely empty, you should first clear it and
118
      /// then you should set the cross reference map to \c PRE_HEAP
119
      /// for each item.
120
      void clear() {}
102 121

	
103
      /// \brief Inserts an item into the heap with the given priority.
122
      /// \brief Insert an item into the heap with the given priority.
104 123
      ///
105
      /// Inserts the given item into the heap with the given priority.
124
      /// This function inserts the given item into the heap with the
125
      /// given priority.
106 126
      /// \param i The item to insert.
107 127
      /// \param p The priority of the item.
128
      /// \pre \e i must not be stored in the heap.
108 129
      void push(const Item &i, const Prio &p) {}
109 130

	
110
      /// \brief Returns the item having minimum priority.
131
      /// \brief Return the item having minimum priority.
111 132
      ///
112
      /// Returns the item having minimum priority.
133
      /// This function returns the item having minimum priority.
113 134
      /// \pre The heap must be non-empty.
114 135
      Item top() const {}
115 136

	
116 137
      /// \brief The minimum priority.
117 138
      ///
118
      /// Returns the minimum priority.
139
      /// This function returns the minimum priority.
119 140
      /// \pre The heap must be non-empty.
120 141
      Prio prio() const {}
121 142

	
122
      /// \brief Removes the item having minimum priority.
143
      /// \brief Remove the item having minimum priority.
123 144
      ///
124
      /// Removes the item having minimum priority.
145
      /// This function removes the item having minimum priority.
125 146
      /// \pre The heap must be non-empty.
126 147
      void pop() {}
127 148

	
128
      /// \brief Removes an item from the heap.
149
      /// \brief Remove the given item from the heap.
129 150
      ///
130
      /// Removes the given item from the heap if it is already stored.
151
      /// This function removes the given item from the heap if it is
152
      /// already stored.
131 153
      /// \param i The item to delete.
154
      /// \pre \e i must be in the heap.
132 155
      void erase(const Item &i) {}
133 156

	
134
      /// \brief The priority of an item.
157
      /// \brief The priority of the given item.
135 158
      ///
136
      /// Returns the priority of the given item.
159
      /// This function returns the priority of the given item.
137 160
      /// \param i The item.
138
      /// \pre \c i must be in the heap.
161
      /// \pre \e i must be in the heap.
139 162
      Prio operator[](const Item &i) const {}
140 163

	
141
      /// \brief Sets the priority of an item or inserts it, if it is
164
      /// \brief Set the priority of an item or insert it, if it is
142 165
      /// not stored in the heap.
143 166
      ///
144 167
      /// This method sets the priority of the given item if it is
145
      /// already stored in the heap.
146
      /// Otherwise it inserts the given item with the given priority.
168
      /// already stored in the heap. Otherwise it inserts the given
169
      /// item into the heap with the given priority.
147 170
      ///
148 171
      /// \param i The item.
149 172
      /// \param p The priority.
150 173
      void set(const Item &i, const Prio &p) {}
151 174

	
152
      /// \brief Decreases the priority of an item to the given value.
175
      /// \brief Decrease the priority of an item to the given value.
153 176
      ///
154
      /// Decreases the priority of an item to the given value.
177
      /// This function decreases the priority of an item to the given value.
155 178
      /// \param i The item.
156 179
      /// \param p The priority.
157
      /// \pre \c i must be stored in the heap with priority at least \c p.
180
      /// \pre \e i must be stored in the heap with priority at least \e p.
158 181
      void decrease(const Item &i, const Prio &p) {}
159 182

	
160
      /// \brief Increases the priority of an item to the given value.
183
      /// \brief Increase the priority of an item to the given value.
161 184
      ///
162
      /// Increases the priority of an item to the given value.
185
      /// This function increases the priority of an item to the given value.
163 186
      /// \param i The item.
164 187
      /// \param p The priority.
165
      /// \pre \c i must be stored in the heap with priority at most \c p.
188
      /// \pre \e i must be stored in the heap with priority at most \e p.
166 189
      void increase(const Item &i, const Prio &p) {}
167 190

	
168
      /// \brief Returns if an item is in, has already been in, or has
169
      /// never been in the heap.
191
      /// \brief Return the state of an item.
170 192
      ///
171 193
      /// This method returns \c PRE_HEAP if the given item has never
172 194
      /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
173 195
      /// and \c POST_HEAP otherwise.
174 196
      /// In the latter case it is possible that the item will get back
175 197
      /// to the heap again.
176 198
      /// \param i The item.
177 199
      State state(const Item &i) const {}
178 200

	
179
      /// \brief Sets the state of an item in the heap.
201
      /// \brief Set the state of an item in the heap.
180 202
      ///
181
      /// Sets the state of the given item in the heap. It can be used
182
      /// to manually clear the heap when it is important to achive the
183
      /// better time complexity.
203
      /// This function sets the state of the given item in the heap.
204
      /// It can be used to manually clear the heap when it is important
205
      /// to achive better time complexity.
184 206
      /// \param i The item.
185 207
      /// \param st The state. It should not be \c IN_HEAP.
186 208
      void state(const Item& i, State st) {}
187 209

	
188 210

	
189 211
      template <typename _Heap>
190 212
      struct Constraints {
191 213
      public:
192 214
        void constraints() {
193 215
          typedef typename _Heap::Item OwnItem;
194 216
          typedef typename _Heap::Prio OwnPrio;
195 217
          typedef typename _Heap::State OwnState;
196 218

	
197 219
          Item item;
198 220
          Prio prio;
199 221
          item=Item();
200 222
          prio=Prio();
201 223
          ignore_unused_variable_warning(item);
202 224
          ignore_unused_variable_warning(prio);
203 225

	
204 226
          OwnItem own_item;
205 227
          OwnPrio own_prio;
206 228
          OwnState own_state;
207 229
          own_item=Item();
208 230
          own_prio=Prio();
209 231
          ignore_unused_variable_warning(own_item);
210 232
          ignore_unused_variable_warning(own_prio);
211 233
          ignore_unused_variable_warning(own_state);
212 234

	
213 235
          _Heap heap1(map);
214 236
          _Heap heap2 = heap1;
215 237
          ignore_unused_variable_warning(heap1);
216 238
          ignore_unused_variable_warning(heap2);
217 239

	
218 240
          int s = heap.size();
219 241
          ignore_unused_variable_warning(s);
220 242
          bool e = heap.empty();
221 243
          ignore_unused_variable_warning(e);
222 244

	
223 245
          prio = heap.prio();
224 246
          item = heap.top();
225 247
          prio = heap[item];
226 248
          own_prio = heap.prio();
227 249
          own_item = heap.top();
228 250
          own_prio = heap[own_item];
229 251

	
230 252
          heap.push(item, prio);
231 253
          heap.push(own_item, own_prio);
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_FIB_HEAP_H
20 20
#define LEMON_FIB_HEAP_H
21 21

	
22 22
///\file
23 23
///\ingroup auxdat
24
///\brief Fibonacci Heap implementation.
24
///\brief Fibonacci heap implementation.
25 25

	
26 26
#include <vector>
27
#include <utility>
27 28
#include <functional>
28 29
#include <lemon/math.h>
29 30

	
30 31
namespace lemon {
31 32

	
32 33
  /// \ingroup auxdat
33 34
  ///
34
  ///\brief Fibonacci Heap.
35
  /// \brief Fibonacci heap data structure.
35 36
  ///
36
  ///This class implements the \e Fibonacci \e heap data structure. A \e heap
37
  ///is a data structure for storing items with specified values called \e
38
  ///priorities in such a way that finding the item with minimum priority is
39
  ///efficient. \c CMP specifies the ordering of the priorities. In a heap
40
  ///one can change the priority of an item, add or erase an item, etc.
37
  /// This class implements the \e Fibonacci \e heap data structure.
38
  /// It fully conforms to the \ref concepts::Heap "heap concept".
41 39
  ///
42
  ///The methods \ref increase and \ref erase are not efficient in a Fibonacci
43
  ///heap. In case of many calls to these operations, it is better to use a
44
  ///\ref BinHeap "binary heap".
40
  /// The methods \ref increase() and \ref erase() are not efficient in a
41
  /// Fibonacci heap. In case of many calls of these operations, it is
42
  /// better to use other heap structure, e.g. \ref BinHeap "binary heap".
45 43
  ///
46
  ///\param PRIO Type of the priority of the items.
47
  ///\param IM A read and writable Item int map, used internally
48
  ///to handle the cross references.
49
  ///\param CMP A class for the ordering of the priorities. The
50
  ///default is \c std::less<PRIO>.
51
  ///
52
  ///\sa BinHeap
53
  ///\sa Dijkstra
44
  /// \tparam PR Type of the priorities of the items.
45
  /// \tparam IM A read-writable item map with \c int values, used
46
  /// internally to handle the cross references.
47
  /// \tparam CMP A functor class for comparing the priorities.
48
  /// The default is \c std::less<PR>.
54 49
#ifdef DOXYGEN
55
  template <typename PRIO, typename IM, typename CMP>
50
  template <typename PR, typename IM, typename CMP>
56 51
#else
57
  template <typename PRIO, typename IM, typename CMP = std::less<PRIO> >
52
  template <typename PR, typename IM, typename CMP = std::less<PR> >
58 53
#endif
59 54
  class FibHeap {
60 55
  public:
61
    ///\e
56

	
57
    /// Type of the item-int map.
62 58
    typedef IM ItemIntMap;
63
    ///\e
64
    typedef PRIO Prio;
65
    ///\e
59
    /// Type of the priorities.
60
    typedef PR Prio;
61
    /// Type of the items stored in the heap.
66 62
    typedef typename ItemIntMap::Key Item;
67
    ///\e
63
    /// Type of the item-priority pairs.
68 64
    typedef std::pair<Item,Prio> Pair;
69
    ///\e
65
    /// Functor type for comparing the priorities.
70 66
    typedef CMP Compare;
71 67

	
72 68
  private:
73 69
    class Store;
74 70

	
75 71
    std::vector<Store> _data;
76 72
    int _minimum;
77 73
    ItemIntMap &_iim;
78 74
    Compare _comp;
79 75
    int _num;
80 76

	
81 77
  public:
82 78

	
83
    /// \brief Type to represent the items states.
79
    /// \brief Type to represent the states of the items.
84 80
    ///
85
    /// Each Item element have a state associated to it. It may be "in heap",
86
    /// "pre heap" or "post heap". The latter two are indifferent from the
81
    /// Each item has a state associated to it. It can be "in heap",
82
    /// "pre-heap" or "post-heap". The latter two are indifferent from the
87 83
    /// heap's point of view, but may be useful to the user.
88 84
    ///
89 85
    /// The item-int map must be initialized in such way that it assigns
90 86
    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
91 87
    enum State {
92 88
      IN_HEAP = 0,    ///< = 0.
93 89
      PRE_HEAP = -1,  ///< = -1.
94 90
      POST_HEAP = -2  ///< = -2.
95 91
    };
96 92

	
97
    /// \brief The constructor
93
    /// \brief Constructor.
98 94
    ///
99
    /// \c map should be given to the constructor, since it is
100
    ///   used internally to handle the cross references.
95
    /// Constructor.
96
    /// \param map A map that assigns \c int values to the items.
97
    /// It is used internally to handle the cross references.
98
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
101 99
    explicit FibHeap(ItemIntMap &map)
102 100
      : _minimum(0), _iim(map), _num() {}
103 101

	
104
    /// \brief The constructor
102
    /// \brief Constructor.
105 103
    ///
106
    /// \c map should be given to the constructor, since it is used
107
    /// internally to handle the cross references. \c comp is an
108
    /// object for ordering of the priorities.
104
    /// Constructor.
105
    /// \param map A map that assigns \c int values to the items.
106
    /// It is used internally to handle the cross references.
107
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
108
    /// \param comp The function object used for comparing the priorities.
109 109
    FibHeap(ItemIntMap &map, const Compare &comp)
110 110
      : _minimum(0), _iim(map), _comp(comp), _num() {}
111 111

	
112 112
    /// \brief The number of items stored in the heap.
113 113
    ///
114
    /// Returns the number of items stored in the heap.
114
    /// This function returns the number of items stored in the heap.
115 115
    int size() const { return _num; }
116 116

	
117
    /// \brief Checks if the heap stores no items.
117
    /// \brief Check if the heap is empty.
118 118
    ///
119
    ///   Returns \c true if and only if the heap stores no items.
119
    /// This function returns \c true if the heap is empty.
120 120
    bool empty() const { return _num==0; }
121 121

	
122
    /// \brief Make empty this heap.
122
    /// \brief Make the heap empty.
123 123
    ///
124
    /// Make empty this heap. It does not change the cross reference
125
    /// map.  If you want to reuse a heap what is not surely empty you
126
    /// should first clear the heap and after that you should set the
127
    /// cross reference map for each item to \c PRE_HEAP.
124
    /// This functon makes the heap empty.
125
    /// It does not change the cross reference map. If you want to reuse
126
    /// a heap that is not surely empty, you should first clear it and
127
    /// then you should set the cross reference map to \c PRE_HEAP
128
    /// for each item.
128 129
    void clear() {
129 130
      _data.clear(); _minimum = 0; _num = 0;
130 131
    }
131 132

	
132
    /// \brief \c item gets to the heap with priority \c value independently
133
    /// if \c item was already there.
133
    /// \brief Insert an item into the heap with the given priority.
134 134
    ///
135
    /// This method calls \ref push(\c item, \c value) if \c item is not
136
    /// stored in the heap and it calls \ref decrease(\c item, \c value) or
137
    /// \ref increase(\c item, \c value) otherwise.
138
    void set (const Item& item, const Prio& value) {
139
      int i=_iim[item];
140
      if ( i >= 0 && _data[i].in ) {
141
        if ( _comp(value, _data[i].prio) ) decrease(item, value);
142
        if ( _comp(_data[i].prio, value) ) increase(item, value);
143
      } else push(item, value);
144
    }
145

	
146
    /// \brief Adds \c item to the heap with priority \c value.
147
    ///
148
    /// Adds \c item to the heap with priority \c value.
149
    /// \pre \c item must not be stored in the heap.
150
    void push (const Item& item, const Prio& value) {
135
    /// This function inserts the given item into the heap with the
136
    /// given priority.
137
    /// \param item The item to insert.
138
    /// \param prio The priority of the item.
139
    /// \pre \e item must not be stored in the heap.
140
    void push (const Item& item, const Prio& prio) {
151 141
      int i=_iim[item];
152 142
      if ( i < 0 ) {
153 143
        int s=_data.size();
154 144
        _iim.set( item, s );
155 145
        Store st;
156 146
        st.name=item;
157 147
        _data.push_back(st);
158 148
        i=s;
159 149
      } else {
160 150
        _data[i].parent=_data[i].child=-1;
161 151
        _data[i].degree=0;
162 152
        _data[i].in=true;
163 153
        _data[i].marked=false;
164 154
      }
165 155

	
166 156
      if ( _num ) {
167 157
        _data[_data[_minimum].right_neighbor].left_neighbor=i;
168 158
        _data[i].right_neighbor=_data[_minimum].right_neighbor;
169 159
        _data[_minimum].right_neighbor=i;
170 160
        _data[i].left_neighbor=_minimum;
171
        if ( _comp( value, _data[_minimum].prio) ) _minimum=i;
161
        if ( _comp( prio, _data[_minimum].prio) ) _minimum=i;
172 162
      } else {
173 163
        _data[i].right_neighbor=_data[i].left_neighbor=i;
174 164
        _minimum=i;
175 165
      }
176
      _data[i].prio=value;
166
      _data[i].prio=prio;
177 167
      ++_num;
178 168
    }
179 169

	
180
    /// \brief Returns the item with minimum priority relative to \c Compare.
170
    /// \brief Return the item having minimum priority.
181 171
    ///
182
    /// This method returns the item with minimum priority relative to \c
183
    /// Compare.
184
    /// \pre The heap must be nonempty.
172
    /// This function returns the item having minimum priority.
173
    /// \pre The heap must be non-empty.
185 174
    Item top() const { return _data[_minimum].name; }
186 175

	
187
    /// \brief Returns the minimum priority relative to \c Compare.
176
    /// \brief The minimum priority.
188 177
    ///
189
    /// It returns the minimum priority relative to \c Compare.
190
    /// \pre The heap must be nonempty.
191
    const Prio& prio() const { return _data[_minimum].prio; }
178
    /// This function returns the minimum priority.
179
    /// \pre The heap must be non-empty.
180
    Prio prio() const { return _data[_minimum].prio; }
192 181

	
193
    /// \brief Returns the priority of \c item.
182
    /// \brief Remove the item having minimum priority.
194 183
    ///
195
    /// It returns the priority of \c item.
196
    /// \pre \c item must be in the heap.
197
    const Prio& operator[](const Item& item) const {
198
      return _data[_iim[item]].prio;
199
    }
200

	
201
    /// \brief Deletes the item with minimum priority relative to \c Compare.
202
    ///
203
    /// This method deletes the item with minimum priority relative to \c
204
    /// Compare from the heap.
184
    /// This function removes the item having minimum priority.
205 185
    /// \pre The heap must be non-empty.
206 186
    void pop() {
207 187
      /*The first case is that there are only one root.*/
208 188
      if ( _data[_minimum].left_neighbor==_minimum ) {
209 189
        _data[_minimum].in=false;
210 190
        if ( _data[_minimum].degree!=0 ) {
211 191
          makeroot(_data[_minimum].child);
212 192
          _minimum=_data[_minimum].child;
213 193
          balance();
214 194
        }
215 195
      } else {
216 196
        int right=_data[_minimum].right_neighbor;
217 197
        unlace(_minimum);
218 198
        _data[_minimum].in=false;
219 199
        if ( _data[_minimum].degree > 0 ) {
220 200
          int left=_data[_minimum].left_neighbor;
221 201
          int child=_data[_minimum].child;
222 202
          int last_child=_data[child].left_neighbor;
223 203

	
224 204
          makeroot(child);
225 205

	
226 206
          _data[left].right_neighbor=child;
227 207
          _data[child].left_neighbor=left;
228 208
          _data[right].left_neighbor=last_child;
229 209
          _data[last_child].right_neighbor=right;
230 210
        }
231 211
        _minimum=right;
232 212
        balance();
233 213
      } // the case where there are more roots
234 214
      --_num;
235 215
    }
236 216

	
237
    /// \brief Deletes \c item from the heap.
217
    /// \brief Remove the given item from the heap.
238 218
    ///
239
    /// This method deletes \c item from the heap, if \c item was already
240
    /// stored in the heap. It is quite inefficient in Fibonacci heaps.
219
    /// This function removes the given item from the heap if it is
220
    /// already stored.
221
    /// \param item The item to delete.
222
    /// \pre \e item must be in the heap.
241 223
    void erase (const Item& item) {
242 224
      int i=_iim[item];
243 225

	
244 226
      if ( i >= 0 && _data[i].in ) {
245 227
        if ( _data[i].parent!=-1 ) {
246 228
          int p=_data[i].parent;
247 229
          cut(i,p);
248 230
          cascade(p);
249 231
        }
250 232
        _minimum=i;     //As if its prio would be -infinity
251 233
        pop();
252 234
      }
253 235
    }
254 236

	
255
    /// \brief Decreases the priority of \c item to \c value.
237
    /// \brief The priority of the given item.
256 238
    ///
257
    /// This method decreases the priority of \c item to \c value.
258
    /// \pre \c item must be stored in the heap with priority at least \c
259
    ///   value relative to \c Compare.
260
    void decrease (Item item, const Prio& value) {
239
    /// This function returns the priority of the given item.
240
    /// \param item The item.
241
    /// \pre \e item must be in the heap.
242
    Prio operator[](const Item& item) const {
243
      return _data[_iim[item]].prio;
244
    }
245

	
246
    /// \brief Set the priority of an item or insert it, if it is
247
    /// not stored in the heap.
248
    ///
249
    /// This method sets the priority of the given item if it is
250
    /// already stored in the heap. Otherwise it inserts the given
251
    /// item into the heap with the given priority.
252
    /// \param item The item.
253
    /// \param prio The priority.
254
    void set (const Item& item, const Prio& prio) {
261 255
      int i=_iim[item];
262
      _data[i].prio=value;
256
      if ( i >= 0 && _data[i].in ) {
257
        if ( _comp(prio, _data[i].prio) ) decrease(item, prio);
258
        if ( _comp(_data[i].prio, prio) ) increase(item, prio);
259
      } else push(item, prio);
260
    }
261

	
262
    /// \brief Decrease the priority of an item to the given value.
263
    ///
264
    /// This function decreases the priority of an item to the given value.
265
    /// \param item The item.
266
    /// \param prio The priority.
267
    /// \pre \e item must be stored in the heap with priority at least \e prio.
268
    void decrease (const Item& item, const Prio& prio) {
269
      int i=_iim[item];
270
      _data[i].prio=prio;
263 271
      int p=_data[i].parent;
264 272

	
265
      if ( p!=-1 && _comp(value, _data[p].prio) ) {
273
      if ( p!=-1 && _comp(prio, _data[p].prio) ) {
266 274
        cut(i,p);
267 275
        cascade(p);
268 276
      }
269
      if ( _comp(value, _data[_minimum].prio) ) _minimum=i;
277
      if ( _comp(prio, _data[_minimum].prio) ) _minimum=i;
270 278
    }
271 279

	
272
    /// \brief Increases the priority of \c item to \c value.
280
    /// \brief Increase the priority of an item to the given value.
273 281
    ///
274
    /// This method sets the priority of \c item to \c value. Though
275
    /// there is no precondition on the priority of \c item, this
276
    /// method should be used only if it is indeed necessary to increase
277
    /// (relative to \c Compare) the priority of \c item, because this
278
    /// method is inefficient.
279
    void increase (Item item, const Prio& value) {
282
    /// This function increases the priority of an item to the given value.
283
    /// \param item The item.
284
    /// \param prio The priority.
285
    /// \pre \e item must be stored in the heap with priority at most \e prio.
286
    void increase (const Item& item, const Prio& prio) {
280 287
      erase(item);
281
      push(item, value);
288
      push(item, prio);
282 289
    }
283 290

	
284

	
285
    /// \brief Returns if \c item is in, has already been in, or has never
286
    /// been in the heap.
291
    /// \brief Return the state of an item.
287 292
    ///
288
    /// This method returns PRE_HEAP if \c item has never been in the
289
    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
290
    /// otherwise. In the latter case it is possible that \c item will
291
    /// get back to the heap again.
293
    /// This method returns \c PRE_HEAP if the given item has never
294
    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
295
    /// and \c POST_HEAP otherwise.
296
    /// In the latter case it is possible that the item will get back
297
    /// to the heap again.
298
    /// \param item The item.
292 299
    State state(const Item &item) const {
293 300
      int i=_iim[item];
294 301
      if( i>=0 ) {
295 302
        if ( _data[i].in ) i=0;
296 303
        else i=-2;
297 304
      }
298 305
      return State(i);
299 306
    }
300 307

	
301
    /// \brief Sets the state of the \c item in the heap.
308
    /// \brief Set the state of an item in the heap.
302 309
    ///
303
    /// Sets the state of the \c item in the heap. It can be used to
304
    /// manually clear the heap when it is important to achive the
305
    /// better time _complexity.
310
    /// This function sets the state of the given item in the heap.
311
    /// It can be used to manually clear the heap when it is important
312
    /// to achive better time complexity.
306 313
    /// \param i The item.
307 314
    /// \param st The state. It should not be \c IN_HEAP.
308 315
    void state(const Item& i, State st) {
309 316
      switch (st) {
310 317
      case POST_HEAP:
311 318
      case PRE_HEAP:
312 319
        if (state(i) == IN_HEAP) {
313 320
          erase(i);
314 321
        }
315 322
        _iim[i] = st;
316 323
        break;
317 324
      case IN_HEAP:
318 325
        break;
319 326
      }
320 327
    }
321 328

	
322 329
  private:
323 330

	
324 331
    void balance() {
325 332

	
326 333
      int maxdeg=int( std::floor( 2.08*log(double(_data.size()))))+1;
327 334

	
328 335
      std::vector<int> A(maxdeg,-1);
329 336

	
330 337
      /*
331 338
       *Recall that now minimum does not point to the minimum prio element.
332 339
       *We set minimum to this during balance().
333 340
       */
334 341
      int anchor=_data[_minimum].left_neighbor;
335 342
      int next=_minimum;
336 343
      bool end=false;
337 344

	
338 345
      do {
339 346
        int active=next;
340 347
        if ( anchor==active ) end=true;
341 348
        int d=_data[active].degree;
342 349
        next=_data[active].right_neighbor;
343 350

	
344 351
        while (A[d]!=-1) {
345 352
          if( _comp(_data[active].prio, _data[A[d]].prio) ) {
346 353
            fuse(active,A[d]);
347 354
          } else {
348 355
            fuse(A[d],active);
349 356
            active=A[d];
350 357
          }
351 358
          A[d]=-1;
352 359
          ++d;
353 360
        }
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_RADIX_HEAP_H
20 20
#define LEMON_RADIX_HEAP_H
21 21

	
22 22
///\ingroup auxdat
23 23
///\file
24
///\brief Radix Heap implementation.
24
///\brief Radix heap implementation.
25 25

	
26 26
#include <vector>
27 27
#include <lemon/error.h>
28 28

	
29 29
namespace lemon {
30 30

	
31 31

	
32
  /// \ingroup auxdata
32
  /// \ingroup auxdat
33 33
  ///
34
  /// \brief A Radix Heap implementation.
34
  /// \brief Radix heap data structure.
35 35
  ///
36
  /// This class implements the \e radix \e heap data structure. A \e heap
37
  /// is a data structure for storing items with specified values called \e
38
  /// priorities in such a way that finding the item with minimum priority is
39
  /// efficient. This heap type can store only items with \e int priority.
40
  /// In a heap one can change the priority of an item, add or erase an
41
  /// item, but the priority cannot be decreased under the last removed
42
  /// item's priority.
36
  /// This class implements the \e radix \e heap data structure.
37
  /// It practically conforms to the \ref concepts::Heap "heap concept",
38
  /// but it has some limitations due its special implementation.
39
  /// The type of the priorities must be \c int and the priority of an
40
  /// item cannot be decreased under the priority of the last removed item.
43 41
  ///
44
  /// \param IM A read and writable Item int map, used internally
45
  /// to handle the cross references.
46
  ///
47
  /// \see BinHeap
48
  /// \see Dijkstra
42
  /// \tparam IM A read-writable item map with \c int values, used
43
  /// internally to handle the cross references.
49 44
  template <typename IM>
50 45
  class RadixHeap {
51 46

	
52 47
  public:
53
    typedef typename IM::Key Item;
48

	
49
    /// Type of the item-int map.
50
    typedef IM ItemIntMap;
51
    /// Type of the priorities.
54 52
    typedef int Prio;
55
    typedef IM ItemIntMap;
53
    /// Type of the items stored in the heap.
54
    typedef typename ItemIntMap::Key Item;
56 55

	
57 56
    /// \brief Exception thrown by RadixHeap.
58 57
    ///
59
    /// This Exception is thrown when a smaller priority
60
    /// is inserted into the \e RadixHeap then the last time erased.
58
    /// This exception is thrown when an item is inserted into a
59
    /// RadixHeap with a priority smaller than the last erased one.
61 60
    /// \see RadixHeap
62

	
63 61
    class UnderFlowPriorityError : public Exception {
64 62
    public:
65 63
      virtual const char* what() const throw() {
66 64
        return "lemon::RadixHeap::UnderFlowPriorityError";
67 65
      }
68 66
    };
69 67

	
70
    /// \brief Type to represent the items states.
68
    /// \brief Type to represent the states of the items.
71 69
    ///
72
    /// Each Item element have a state associated to it. It may be "in heap",
73
    /// "pre heap" or "post heap". The latter two are indifferent from the
70
    /// Each item has a state associated to it. It can be "in heap",
71
    /// "pre-heap" or "post-heap". The latter two are indifferent from the
74 72
    /// heap's point of view, but may be useful to the user.
75 73
    ///
76
    /// The ItemIntMap \e should be initialized in such way that it maps
77
    /// PRE_HEAP (-1) to any element to be put in the heap...
74
    /// The item-int map must be initialized in such way that it assigns
75
    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
78 76
    enum State {
79
      IN_HEAP = 0,
80
      PRE_HEAP = -1,
81
      POST_HEAP = -2
77
      IN_HEAP = 0,    ///< = 0.
78
      PRE_HEAP = -1,  ///< = -1.
79
      POST_HEAP = -2  ///< = -2.
82 80
    };
83 81

	
84 82
  private:
85 83

	
86 84
    struct RadixItem {
87 85
      int prev, next, box;
88 86
      Item item;
89 87
      int prio;
90 88
      RadixItem(Item _item, int _prio) : item(_item), prio(_prio) {}
91 89
    };
92 90

	
93 91
    struct RadixBox {
94 92
      int first;
95 93
      int min, size;
96 94
      RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {}
97 95
    };
98 96

	
99 97
    std::vector<RadixItem> data;
100 98
    std::vector<RadixBox> boxes;
101 99

	
102 100
    ItemIntMap &_iim;
103 101

	
102
  public:
104 103

	
105
  public:
106
    /// \brief The constructor.
104
    /// \brief Constructor.
107 105
    ///
108
    /// The constructor.
109
    ///
110
    /// \param map It should be given to the constructor, since it is used
111
    /// internally to handle the cross references. The value of the map
112
    /// should be PRE_HEAP (-1) for each element.
113
    ///
114
    /// \param minimal The initial minimal value of the heap.
115
    /// \param capacity It determines the initial capacity of the heap.
116
    RadixHeap(ItemIntMap &map, int minimal = 0, int capacity = 0)
117
      : _iim(map) {
118
      boxes.push_back(RadixBox(minimal, 1));
119
      boxes.push_back(RadixBox(minimal + 1, 1));
120
      while (lower(boxes.size() - 1, capacity + minimal - 1)) {
106
    /// Constructor.
107
    /// \param map A map that assigns \c int values to the items.
108
    /// It is used internally to handle the cross references.
109
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
110
    /// \param minimum The initial minimum value of the heap.
111
    /// \param capacity The initial capacity of the heap.
112
    RadixHeap(ItemIntMap &map, int minimum = 0, int capacity = 0)
113
      : _iim(map)
114
    {
115
      boxes.push_back(RadixBox(minimum, 1));
116
      boxes.push_back(RadixBox(minimum + 1, 1));
117
      while (lower(boxes.size() - 1, capacity + minimum - 1)) {
121 118
        extend();
122 119
      }
123 120
    }
124 121

	
125
    /// The number of items stored in the heap.
122
    /// \brief The number of items stored in the heap.
126 123
    ///
127
    /// \brief Returns the number of items stored in the heap.
124
    /// This function returns the number of items stored in the heap.
128 125
    int size() const { return data.size(); }
129
    /// \brief Checks if the heap stores no items.
126

	
127
    /// \brief Check if the heap is empty.
130 128
    ///
131
    /// Returns \c true if and only if the heap stores no items.
129
    /// This function returns \c true if the heap is empty.
132 130
    bool empty() const { return data.empty(); }
133 131

	
134
    /// \brief Make empty this heap.
132
    /// \brief Make the heap empty.
135 133
    ///
136
    /// Make empty this heap. It does not change the cross reference
137
    /// map.  If you want to reuse a heap what is not surely empty you
138
    /// should first clear the heap and after that you should set the
139
    /// cross reference map for each item to \c PRE_HEAP.
140
    void clear(int minimal = 0, int capacity = 0) {
134
    /// This functon makes the heap empty.
135
    /// It does not change the cross reference map. If you want to reuse
136
    /// a heap that is not surely empty, you should first clear it and
137
    /// then you should set the cross reference map to \c PRE_HEAP
138
    /// for each item.
139
    /// \param minimum The minimum value of the heap.
140
    /// \param capacity The capacity of the heap.
141
    void clear(int minimum = 0, int capacity = 0) {
141 142
      data.clear(); boxes.clear();
142
      boxes.push_back(RadixBox(minimal, 1));
143
      boxes.push_back(RadixBox(minimal + 1, 1));
144
      while (lower(boxes.size() - 1, capacity + minimal - 1)) {
143
      boxes.push_back(RadixBox(minimum, 1));
144
      boxes.push_back(RadixBox(minimum + 1, 1));
145
      while (lower(boxes.size() - 1, capacity + minimum - 1)) {
145 146
        extend();
146 147
      }
147 148
    }
148 149

	
149 150
  private:
150 151

	
151 152
    bool upper(int box, Prio pr) {
152 153
      return pr < boxes[box].min;
153 154
    }
154 155

	
155 156
    bool lower(int box, Prio pr) {
156 157
      return pr >= boxes[box].min + boxes[box].size;
157 158
    }
158 159

	
159
    /// \brief Remove item from the box list.
160
    // Remove item from the box list
160 161
    void remove(int index) {
161 162
      if (data[index].prev >= 0) {
162 163
        data[data[index].prev].next = data[index].next;
163 164
      } else {
164 165
        boxes[data[index].box].first = data[index].next;
165 166
      }
166 167
      if (data[index].next >= 0) {
167 168
        data[data[index].next].prev = data[index].prev;
168 169
      }
169 170
    }
170 171

	
171
    /// \brief Insert item into the box list.
172
    // Insert item into the box list
172 173
    void insert(int box, int index) {
173 174
      if (boxes[box].first == -1) {
174 175
        boxes[box].first = index;
175 176
        data[index].next = data[index].prev = -1;
176 177
      } else {
177 178
        data[index].next = boxes[box].first;
178 179
        data[boxes[box].first].prev = index;
179 180
        data[index].prev = -1;
180 181
        boxes[box].first = index;
181 182
      }
182 183
      data[index].box = box;
183 184
    }
184 185

	
185
    /// \brief Add a new box to the box list.
186
    // Add a new box to the box list
186 187
    void extend() {
187 188
      int min = boxes.back().min + boxes.back().size;
188 189
      int bs = 2 * boxes.back().size;
189 190
      boxes.push_back(RadixBox(min, bs));
190 191
    }
191 192

	
192
    /// \brief Move an item up into the proper box.
193
    // Move an item up into the proper box.
193 194
    void bubble_up(int index) {
194 195
      if (!lower(data[index].box, data[index].prio)) return;
195 196
      remove(index);
196 197
      int box = findUp(data[index].box, data[index].prio);
197 198
      insert(box, index);
198 199
    }
199 200

	
200
    /// \brief Find up the proper box for the item with the given prio.
201
    // Find up the proper box for the item with the given priority
201 202
    int findUp(int start, int pr) {
202 203
      while (lower(start, pr)) {
203 204
        if (++start == int(boxes.size())) {
204 205
          extend();
205 206
        }
206 207
      }
207 208
      return start;
208 209
    }
209 210

	
210
    /// \brief Move an item down into the proper box.
211
    // Move an item down into the proper box
211 212
    void bubble_down(int index) {
212 213
      if (!upper(data[index].box, data[index].prio)) return;
213 214
      remove(index);
214 215
      int box = findDown(data[index].box, data[index].prio);
215 216
      insert(box, index);
216 217
    }
217 218

	
218
    /// \brief Find up the proper box for the item with the given prio.
219
    // Find down the proper box for the item with the given priority
219 220
    int findDown(int start, int pr) {
220 221
      while (upper(start, pr)) {
221 222
        if (--start < 0) throw UnderFlowPriorityError();
222 223
      }
223 224
      return start;
224 225
    }
225 226

	
226
    /// \brief Find the first not empty box.
227
    // Find the first non-empty box
227 228
    int findFirst() {
228 229
      int first = 0;
229 230
      while (boxes[first].first == -1) ++first;
230 231
      return first;
231 232
    }
232 233

	
233
    /// \brief Gives back the minimal prio of the box.
234
    // Gives back the minimum priority of the given box
234 235
    int minValue(int box) {
235 236
      int min = data[boxes[box].first].prio;
236 237
      for (int k = boxes[box].first; k != -1; k = data[k].next) {
237 238
        if (data[k].prio < min) min = data[k].prio;
238 239
      }
239 240
      return min;
240 241
    }
241 242

	
242
    /// \brief Rearrange the items of the heap and makes the
243
    /// first box not empty.
243
    // Rearrange the items of the heap and make the first box non-empty
244 244
    void moveDown() {
245 245
      int box = findFirst();
246 246
      if (box == 0) return;
247 247
      int min = minValue(box);
248 248
      for (int i = 0; i <= box; ++i) {
249 249
        boxes[i].min = min;
250 250
        min += boxes[i].size;
251 251
      }
252 252
      int curr = boxes[box].first, next;
253 253
      while (curr != -1) {
254 254
        next = data[curr].next;
255 255
        bubble_down(curr);
256 256
        curr = next;
257 257
      }
258 258
    }
259 259

	
260 260
    void relocate_last(int index) {
261 261
      if (index != int(data.size()) - 1) {
262 262
        data[index] = data.back();
263 263
        if (data[index].prev != -1) {
264 264
          data[data[index].prev].next = index;
265 265
        } else {
266 266
          boxes[data[index].box].first = index;
267 267
        }
268 268
        if (data[index].next != -1) {
269 269
          data[data[index].next].prev = index;
270 270
        }
271 271
        _iim[data[index].item] = index;
272 272
      }
273 273
      data.pop_back();
274 274
    }
275 275

	
276 276
  public:
277 277

	
278 278
    /// \brief Insert an item into the heap with the given priority.
279 279
    ///
280
    /// Adds \c i to the heap with priority \c p.
280
    /// This function inserts the given item into the heap with the
281
    /// given priority.
281 282
    /// \param i The item to insert.
282 283
    /// \param p The priority of the item.
284
    /// \pre \e i must not be stored in the heap.
285
    /// \warning This method may throw an \c UnderFlowPriorityException.
283 286
    void push(const Item &i, const Prio &p) {
284 287
      int n = data.size();
285 288
      _iim.set(i, n);
286 289
      data.push_back(RadixItem(i, p));
287 290
      while (lower(boxes.size() - 1, p)) {
288 291
        extend();
289 292
      }
290 293
      int box = findDown(boxes.size() - 1, p);
291 294
      insert(box, n);
292 295
    }
293 296

	
294
    /// \brief Returns the item with minimum priority.
297
    /// \brief Return the item having minimum priority.
295 298
    ///
296
    /// This method returns the item with minimum priority.
297
    /// \pre The heap must be nonempty.
299
    /// This function returns the item having minimum priority.
300
    /// \pre The heap must be non-empty.
298 301
    Item top() const {
299 302
      const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown();
300 303
      return data[boxes[0].first].item;
301 304
    }
302 305

	
303
    /// \brief Returns the minimum priority.
306
    /// \brief The minimum priority.
304 307
    ///
305
    /// It returns the minimum priority.
306
    /// \pre The heap must be nonempty.
308
    /// This function returns the minimum priority.
309
    /// \pre The heap must be non-empty.
307 310
    Prio prio() const {
308 311
      const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown();
309 312
      return data[boxes[0].first].prio;
310 313
     }
311 314

	
312
    /// \brief Deletes the item with minimum priority.
315
    /// \brief Remove the item having minimum priority.
313 316
    ///
314
    /// This method deletes the item with minimum priority.
317
    /// This function removes the item having minimum priority.
315 318
    /// \pre The heap must be non-empty.
316 319
    void pop() {
317 320
      moveDown();
318 321
      int index = boxes[0].first;
319 322
      _iim[data[index].item] = POST_HEAP;
320 323
      remove(index);
321 324
      relocate_last(index);
322 325
    }
323 326

	
324
    /// \brief Deletes \c i from the heap.
327
    /// \brief Remove the given item from the heap.
325 328
    ///
326
    /// This method deletes item \c i from the heap, if \c i was
327
    /// already stored in the heap.
328
    /// \param i The item to erase.
329
    /// This function removes the given item from the heap if it is
330
    /// already stored.
331
    /// \param i The item to delete.
332
    /// \pre \e i must be in the heap.
329 333
    void erase(const Item &i) {
330 334
      int index = _iim[i];
331 335
      _iim[i] = POST_HEAP;
332 336
      remove(index);
333 337
      relocate_last(index);
334 338
   }
335 339

	
336
    /// \brief Returns the priority of \c i.
340
    /// \brief The priority of the given item.
337 341
    ///
338
    /// This function returns the priority of item \c i.
339
    /// \pre \c i must be in the heap.
342
    /// This function returns the priority of the given item.
340 343
    /// \param i The item.
344
    /// \pre \e i must be in the heap.
341 345
    Prio operator[](const Item &i) const {
342 346
      int idx = _iim[i];
343 347
      return data[idx].prio;
344 348
    }
345 349

	
346
    /// \brief \c i gets to the heap with priority \c p independently
347
    /// if \c i was already there.
350
    /// \brief Set the priority of an item or insert it, if it is
351
    /// not stored in the heap.
348 352
    ///
349
    /// This method calls \ref push(\c i, \c p) if \c i is not stored
350
    /// in the heap and sets the priority of \c i to \c p otherwise.
351
    /// It may throw an \e UnderFlowPriorityException.
353
    /// This method sets the priority of the given item if it is
354
    /// already stored in the heap. Otherwise it inserts the given
355
    /// item into the heap with the given priority.
352 356
    /// \param i The item.
353 357
    /// \param p The priority.
358
    /// \pre \e i must be in the heap.
359
    /// \warning This method may throw an \c UnderFlowPriorityException.
354 360
    void set(const Item &i, const Prio &p) {
355 361
      int idx = _iim[i];
356 362
      if( idx < 0 ) {
357 363
        push(i, p);
358 364
      }
359 365
      else if( p >= data[idx].prio ) {
360 366
        data[idx].prio = p;
361 367
        bubble_up(idx);
362 368
      } else {
363 369
        data[idx].prio = p;
364 370
        bubble_down(idx);
365 371
      }
366 372
    }
367 373

	
368

	
369
    /// \brief Decreases the priority of \c i to \c p.
374
    /// \brief Decrease the priority of an item to the given value.
370 375
    ///
371
    /// This method decreases the priority of item \c i to \c p.
372
    /// \pre \c i must be stored in the heap with priority at least \c p, and
373
    /// \c should be greater or equal to the last removed item's priority.
376
    /// This function decreases the priority of an item to the given value.
374 377
    /// \param i The item.
375 378
    /// \param p The priority.
379
    /// \pre \e i must be stored in the heap with priority at least \e p.
380
    /// \warning This method may throw an \c UnderFlowPriorityException.
376 381
    void decrease(const Item &i, const Prio &p) {
377 382
      int idx = _iim[i];
378 383
      data[idx].prio = p;
379 384
      bubble_down(idx);
380 385
    }
381 386

	
382
    /// \brief Increases the priority of \c i to \c p.
387
    /// \brief Increase the priority of an item to the given value.
383 388
    ///
384
    /// This method sets the priority of item \c i to \c p.
385
    /// \pre \c i must be stored in the heap with priority at most \c p
389
    /// This function increases the priority of an item to the given value.
386 390
    /// \param i The item.
387 391
    /// \param p The priority.
392
    /// \pre \e i must be stored in the heap with priority at most \e p.
388 393
    void increase(const Item &i, const Prio &p) {
389 394
      int idx = _iim[i];
390 395
      data[idx].prio = p;
391 396
      bubble_up(idx);
392 397
    }
393 398

	
394
    /// \brief Returns if \c item is in, has already been in, or has
395
    /// never been in the heap.
399
    /// \brief Return the state of an item.
396 400
    ///
397
    /// This method returns PRE_HEAP if \c item has never been in the
398
    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
399
    /// otherwise. In the latter case it is possible that \c item will
400
    /// get back to the heap again.
401
    /// This method returns \c PRE_HEAP if the given item has never
402
    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
403
    /// and \c POST_HEAP otherwise.
404
    /// In the latter case it is possible that the item will get back
405
    /// to the heap again.
401 406
    /// \param i The item.
402 407
    State state(const Item &i) const {
403 408
      int s = _iim[i];
404 409
      if( s >= 0 ) s = 0;
405 410
      return State(s);
406 411
    }
407 412

	
408
    /// \brief Sets the state of the \c item in the heap.
413
    /// \brief Set the state of an item in the heap.
409 414
    ///
410
    /// Sets the state of the \c item in the heap. It can be used to
411
    /// manually clear the heap when it is important to achive the
412
    /// better time complexity.
415
    /// This function sets the state of the given item in the heap.
416
    /// It can be used to manually clear the heap when it is important
417
    /// to achive better time complexity.
413 418
    /// \param i The item.
414 419
    /// \param st The state. It should not be \c IN_HEAP.
415 420
    void state(const Item& i, State st) {
416 421
      switch (st) {
417 422
      case POST_HEAP:
418 423
      case PRE_HEAP:
419 424
        if (state(i) == IN_HEAP) {
420 425
          erase(i);
421 426
        }
422 427
        _iim[i] = st;
423 428
        break;
424 429
      case IN_HEAP:
425 430
        break;
426 431
      }
427 432
    }
428 433

	
429 434
  }; // class RadixHeap
430 435

	
431 436
} // namespace lemon
432 437

	
433 438
#endif // LEMON_RADIX_HEAP_H
0 comments (0 inline)