758:b31e13 »
718:703ebf »
713:4ac304 »
709:0747f3 »
701:d1a922 »
696:c9b9da »
693:7bda78 »
691:9e54e3 »
686:7439dc »
718:703ebf »
713:4ac304 »
709:0747f3 »
701:d1a922 »
696:c9b9da »
693:7bda78 »
691:9e54e3 »
686:7439dc »
0
4
0
| ... | ... |
@@ -33,23 +33,23 @@ |
| 33 | 33 |
/// |
| 34 | 34 |
///\brief A Binary Heap implementation. |
| 35 | 35 |
/// |
| 36 |
///This class implements the \e binary \e heap data structure. |
|
| 37 |
/// |
|
| 36 |
///This class implements the \e binary \e heap data structure. |
|
| 37 |
/// |
|
| 38 | 38 |
///A \e heap is a data structure for storing items with specified values |
| 39 | 39 |
///called \e priorities in such a way that finding the item with minimum |
| 40 |
///priority is efficient. \c |
|
| 40 |
///priority is efficient. \c CMP specifies the ordering of the priorities. |
|
| 41 | 41 |
///In a heap one can change the priority of an item, add or erase an |
| 42 | 42 |
///item, etc. |
| 43 | 43 |
/// |
| 44 | 44 |
///\tparam PR Type of the priority of the items. |
| 45 | 45 |
///\tparam IM A read and writable item map with int values, used internally |
| 46 | 46 |
///to handle the cross references. |
| 47 |
///\tparam |
|
| 47 |
///\tparam CMP A functor class for the ordering of the priorities. |
|
| 48 | 48 |
///The default is \c std::less<PR>. |
| 49 | 49 |
/// |
| 50 | 50 |
///\sa FibHeap |
| 51 | 51 |
///\sa Dijkstra |
| 52 |
template <typename PR, typename IM, typename |
|
| 52 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
| 53 | 53 |
class BinHeap {
|
| 54 | 54 |
|
| 55 | 55 |
public: |
| ... | ... |
@@ -62,7 +62,7 @@ |
| 62 | 62 |
///\e |
| 63 | 63 |
typedef std::pair<Item,Prio> Pair; |
| 64 | 64 |
///\e |
| 65 |
typedef |
|
| 65 |
typedef CMP Compare; |
|
| 66 | 66 |
|
| 67 | 67 |
/// \brief Type to represent the items states. |
| 68 | 68 |
/// |
| ... | ... |
@@ -31,7 +31,7 @@ |
| 31 | 31 |
|
| 32 | 32 |
namespace _bucket_heap_bits {
|
| 33 | 33 |
|
| 34 |
template <bool |
|
| 34 |
template <bool MIN> |
|
| 35 | 35 |
struct DirectionTraits {
|
| 36 | 36 |
static bool less(int left, int right) {
|
| 37 | 37 |
return left < right; |
| ... | ... |
@@ -65,26 +65,27 @@ |
| 65 | 65 |
/// \f$ [0..C) \f$ range a list of items. So it should be used only when |
| 66 | 66 |
/// the priorities are small. It is not intended to use as dijkstra heap. |
| 67 | 67 |
/// |
| 68 |
/// \param |
|
| 68 |
/// \param IM A read and write Item int map, used internally |
|
| 69 | 69 |
/// to handle the cross references. |
| 70 |
/// \param minimize If the given parameter is true then the heap gives back |
|
| 71 |
/// the lowest priority. |
|
| 72 |
|
|
| 70 |
/// \param MIN If the given parameter is false then instead of the |
|
| 71 |
/// minimum value the maximum can be retrivied with the top() and |
|
| 72 |
/// prio() member functions. |
|
| 73 |
template <typename IM, bool MIN = true> |
|
| 73 | 74 |
class BucketHeap {
|
| 74 | 75 |
|
| 75 | 76 |
public: |
| 76 | 77 |
/// \e |
| 77 |
typedef typename |
|
| 78 |
typedef typename IM::Key Item; |
|
| 78 | 79 |
/// \e |
| 79 | 80 |
typedef int Prio; |
| 80 | 81 |
/// \e |
| 81 | 82 |
typedef std::pair<Item, Prio> Pair; |
| 82 | 83 |
/// \e |
| 83 |
typedef |
|
| 84 |
typedef IM ItemIntMap; |
|
| 84 | 85 |
|
| 85 | 86 |
private: |
| 86 | 87 |
|
| 87 |
typedef _bucket_heap_bits::DirectionTraits< |
|
| 88 |
typedef _bucket_heap_bits::DirectionTraits<MIN> Direction; |
|
| 88 | 89 |
|
| 89 | 90 |
public: |
| 90 | 91 |
|
| ... | ... |
@@ -94,32 +95,32 @@ |
| 94 | 95 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
| 95 | 96 |
/// heap's point of view, but may be useful to the user. |
| 96 | 97 |
/// |
| 97 |
/// The ItemIntMap \e should be initialized in such way that it maps |
|
| 98 |
/// PRE_HEAP (-1) to any element to be put in the heap... |
|
| 98 |
/// The item-int map must be initialized in such way that it assigns |
|
| 99 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
| 99 | 100 |
enum State {
|
| 100 |
IN_HEAP = 0, |
|
| 101 |
PRE_HEAP = -1, |
|
| 102 |
|
|
| 101 |
IN_HEAP = 0, ///< = 0. |
|
| 102 |
PRE_HEAP = -1, ///< = -1. |
|
| 103 |
POST_HEAP = -2 ///< = -2. |
|
| 103 | 104 |
}; |
| 104 | 105 |
|
| 105 | 106 |
public: |
| 106 | 107 |
/// \brief The constructor. |
| 107 | 108 |
/// |
| 108 | 109 |
/// The constructor. |
| 109 |
/// \param |
|
| 110 |
/// \param map should be given to the constructor, since it is used |
|
| 110 | 111 |
/// internally to handle the cross references. The value of the map |
| 111 | 112 |
/// should be PRE_HEAP (-1) for each element. |
| 112 |
explicit BucketHeap(ItemIntMap & |
|
| 113 |
explicit BucketHeap(ItemIntMap &map) : _iim(map), _minimum(0) {}
|
|
| 113 | 114 |
|
| 114 | 115 |
/// The number of items stored in the heap. |
| 115 | 116 |
/// |
| 116 | 117 |
/// \brief Returns the number of items stored in the heap. |
| 117 |
int size() const { return
|
|
| 118 |
int size() const { return _data.size(); }
|
|
| 118 | 119 |
|
| 119 | 120 |
/// \brief Checks if the heap stores no items. |
| 120 | 121 |
/// |
| 121 | 122 |
/// Returns \c true if and only if the heap stores no items. |
| 122 |
bool empty() const { return
|
|
| 123 |
bool empty() const { return _data.empty(); }
|
|
| 123 | 124 |
|
| 124 | 125 |
/// \brief Make empty this heap. |
| 125 | 126 |
/// |
| ... | ... |
@@ -128,48 +129,48 @@ |
| 128 | 129 |
/// should first clear the heap and after that you should set the |
| 129 | 130 |
/// cross reference map for each item to \c PRE_HEAP. |
| 130 | 131 |
void clear() {
|
| 131 |
|
|
| 132 |
_data.clear(); _first.clear(); _minimum = 0; |
|
| 132 | 133 |
} |
| 133 | 134 |
|
| 134 | 135 |
private: |
| 135 | 136 |
|
| 136 | 137 |
void relocate_last(int idx) {
|
| 137 |
if (idx + 1 < int(data.size())) {
|
|
| 138 |
data[idx] = data.back(); |
|
| 139 |
if (data[idx].prev != -1) {
|
|
| 140 |
data[data[idx].prev].next = idx; |
|
| 138 |
if (idx + 1 < int(_data.size())) {
|
|
| 139 |
_data[idx] = _data.back(); |
|
| 140 |
if (_data[idx].prev != -1) {
|
|
| 141 |
_data[_data[idx].prev].next = idx; |
|
| 141 | 142 |
} else {
|
| 142 |
|
|
| 143 |
_first[_data[idx].value] = idx; |
|
| 143 | 144 |
} |
| 144 |
if (data[idx].next != -1) {
|
|
| 145 |
data[data[idx].next].prev = idx; |
|
| 145 |
if (_data[idx].next != -1) {
|
|
| 146 |
_data[_data[idx].next].prev = idx; |
|
| 146 | 147 |
} |
| 147 |
|
|
| 148 |
_iim[_data[idx].item] = idx; |
|
| 148 | 149 |
} |
| 149 |
|
|
| 150 |
_data.pop_back(); |
|
| 150 | 151 |
} |
| 151 | 152 |
|
| 152 | 153 |
void unlace(int idx) {
|
| 153 |
if (data[idx].prev != -1) {
|
|
| 154 |
data[data[idx].prev].next = data[idx].next; |
|
| 154 |
if (_data[idx].prev != -1) {
|
|
| 155 |
_data[_data[idx].prev].next = _data[idx].next; |
|
| 155 | 156 |
} else {
|
| 156 |
|
|
| 157 |
_first[_data[idx].value] = _data[idx].next; |
|
| 157 | 158 |
} |
| 158 |
if (data[idx].next != -1) {
|
|
| 159 |
data[data[idx].next].prev = data[idx].prev; |
|
| 159 |
if (_data[idx].next != -1) {
|
|
| 160 |
_data[_data[idx].next].prev = _data[idx].prev; |
|
| 160 | 161 |
} |
| 161 | 162 |
} |
| 162 | 163 |
|
| 163 | 164 |
void lace(int idx) {
|
| 164 |
if (int(first.size()) <= data[idx].value) {
|
|
| 165 |
first.resize(data[idx].value + 1, -1); |
|
| 165 |
if (int(_first.size()) <= _data[idx].value) {
|
|
| 166 |
_first.resize(_data[idx].value + 1, -1); |
|
| 166 | 167 |
} |
| 167 |
data[idx].next = first[data[idx].value]; |
|
| 168 |
if (data[idx].next != -1) {
|
|
| 169 |
|
|
| 168 |
_data[idx].next = _first[_data[idx].value]; |
|
| 169 |
if (_data[idx].next != -1) {
|
|
| 170 |
_data[_data[idx].next].prev = idx; |
|
| 170 | 171 |
} |
| 171 |
first[data[idx].value] = idx; |
|
| 172 |
data[idx].prev = -1; |
|
| 172 |
_first[_data[idx].value] = idx; |
|
| 173 |
_data[idx].prev = -1; |
|
| 173 | 174 |
} |
| 174 | 175 |
|
| 175 | 176 |
public: |
| ... | ... |
@@ -187,12 +188,12 @@ |
| 187 | 188 |
/// \param i The item to insert. |
| 188 | 189 |
/// \param p The priority of the item. |
| 189 | 190 |
void push(const Item &i, const Prio &p) {
|
| 190 |
int idx = data.size(); |
|
| 191 |
index[i] = idx; |
|
| 192 |
|
|
| 191 |
int idx = _data.size(); |
|
| 192 |
_iim[i] = idx; |
|
| 193 |
_data.push_back(BucketItem(i, p)); |
|
| 193 | 194 |
lace(idx); |
| 194 |
if (Direction::less(p, minimal)) {
|
|
| 195 |
minimal = p; |
|
| 195 |
if (Direction::less(p, _minimum)) {
|
|
| 196 |
_minimum = p; |
|
| 196 | 197 |
} |
| 197 | 198 |
} |
| 198 | 199 |
|
| ... | ... |
@@ -201,10 +202,10 @@ |
| 201 | 202 |
/// This method returns the item with minimum priority. |
| 202 | 203 |
/// \pre The heap must be nonempty. |
| 203 | 204 |
Item top() const {
|
| 204 |
while (first[minimal] == -1) {
|
|
| 205 |
Direction::increase(minimal); |
|
| 205 |
while (_first[_minimum] == -1) {
|
|
| 206 |
Direction::increase(_minimum); |
|
| 206 | 207 |
} |
| 207 |
return |
|
| 208 |
return _data[_first[_minimum]].item; |
|
| 208 | 209 |
} |
| 209 | 210 |
|
| 210 | 211 |
/// \brief Returns the minimum priority. |
| ... | ... |
@@ -212,10 +213,10 @@ |
| 212 | 213 |
/// It returns the minimum priority. |
| 213 | 214 |
/// \pre The heap must be nonempty. |
| 214 | 215 |
Prio prio() const {
|
| 215 |
while (first[minimal] == -1) {
|
|
| 216 |
Direction::increase(minimal); |
|
| 216 |
while (_first[_minimum] == -1) {
|
|
| 217 |
Direction::increase(_minimum); |
|
| 217 | 218 |
} |
| 218 |
return |
|
| 219 |
return _minimum; |
|
| 219 | 220 |
} |
| 220 | 221 |
|
| 221 | 222 |
/// \brief Deletes the item with minimum priority. |
| ... | ... |
@@ -223,11 +224,11 @@ |
| 223 | 224 |
/// This method deletes the item with minimum priority from the heap. |
| 224 | 225 |
/// \pre The heap must be non-empty. |
| 225 | 226 |
void pop() {
|
| 226 |
while (first[minimal] == -1) {
|
|
| 227 |
Direction::increase(minimal); |
|
| 227 |
while (_first[_minimum] == -1) {
|
|
| 228 |
Direction::increase(_minimum); |
|
| 228 | 229 |
} |
| 229 |
int idx = first[minimal]; |
|
| 230 |
index[data[idx].item] = -2; |
|
| 230 |
int idx = _first[_minimum]; |
|
| 231 |
_iim[_data[idx].item] = -2; |
|
| 231 | 232 |
unlace(idx); |
| 232 | 233 |
relocate_last(idx); |
| 233 | 234 |
} |
| ... | ... |
@@ -238,8 +239,8 @@ |
| 238 | 239 |
/// already stored in the heap. |
| 239 | 240 |
/// \param i The item to erase. |
| 240 | 241 |
void erase(const Item &i) {
|
| 241 |
int idx = index[i]; |
|
| 242 |
index[data[idx].item] = -2; |
|
| 242 |
int idx = _iim[i]; |
|
| 243 |
_iim[_data[idx].item] = -2; |
|
| 243 | 244 |
unlace(idx); |
| 244 | 245 |
relocate_last(idx); |
| 245 | 246 |
} |
| ... | ... |
@@ -251,8 +252,8 @@ |
| 251 | 252 |
/// \pre \c i must be in the heap. |
| 252 | 253 |
/// \param i The item. |
| 253 | 254 |
Prio operator[](const Item &i) const {
|
| 254 |
int idx = index[i]; |
|
| 255 |
return data[idx].value; |
|
| 255 |
int idx = _iim[i]; |
|
| 256 |
return _data[idx].value; |
|
| 256 | 257 |
} |
| 257 | 258 |
|
| 258 | 259 |
/// \brief \c i gets to the heap with priority \c p independently |
| ... | ... |
@@ -263,10 +264,10 @@ |
| 263 | 264 |
/// \param i The item. |
| 264 | 265 |
/// \param p The priority. |
| 265 | 266 |
void set(const Item &i, const Prio &p) {
|
| 266 |
int idx = |
|
| 267 |
int idx = _iim[i]; |
|
| 267 | 268 |
if (idx < 0) {
|
| 268 | 269 |
push(i, p); |
| 269 |
} else if (Direction::less(p, |
|
| 270 |
} else if (Direction::less(p, _data[idx].value)) {
|
|
| 270 | 271 |
decrease(i, p); |
| 271 | 272 |
} else {
|
| 272 | 273 |
increase(i, p); |
| ... | ... |
@@ -281,11 +282,11 @@ |
| 281 | 282 |
/// \param i The item. |
| 282 | 283 |
/// \param p The priority. |
| 283 | 284 |
void decrease(const Item &i, const Prio &p) {
|
| 284 |
int idx = |
|
| 285 |
int idx = _iim[i]; |
|
| 285 | 286 |
unlace(idx); |
| 286 |
data[idx].value = p; |
|
| 287 |
if (Direction::less(p, minimal)) {
|
|
| 288 |
|
|
| 287 |
_data[idx].value = p; |
|
| 288 |
if (Direction::less(p, _minimum)) {
|
|
| 289 |
_minimum = p; |
|
| 289 | 290 |
} |
| 290 | 291 |
lace(idx); |
| 291 | 292 |
} |
| ... | ... |
@@ -298,9 +299,9 @@ |
| 298 | 299 |
/// \param i The item. |
| 299 | 300 |
/// \param p The priority. |
| 300 | 301 |
void increase(const Item &i, const Prio &p) {
|
| 301 |
int idx = |
|
| 302 |
int idx = _iim[i]; |
|
| 302 | 303 |
unlace(idx); |
| 303 |
|
|
| 304 |
_data[idx].value = p; |
|
| 304 | 305 |
lace(idx); |
| 305 | 306 |
} |
| 306 | 307 |
|
| ... | ... |
@@ -313,7 +314,7 @@ |
| 313 | 314 |
/// get back to the heap again. |
| 314 | 315 |
/// \param i The item. |
| 315 | 316 |
State state(const Item &i) const {
|
| 316 |
int idx = |
|
| 317 |
int idx = _iim[i]; |
|
| 317 | 318 |
if (idx >= 0) idx = 0; |
| 318 | 319 |
return State(idx); |
| 319 | 320 |
} |
| ... | ... |
@@ -332,7 +333,7 @@ |
| 332 | 333 |
if (state(i) == IN_HEAP) {
|
| 333 | 334 |
erase(i); |
| 334 | 335 |
} |
| 335 |
|
|
| 336 |
_iim[i] = st; |
|
| 336 | 337 |
break; |
| 337 | 338 |
case IN_HEAP: |
| 338 | 339 |
break; |
| ... | ... |
@@ -351,10 +352,10 @@ |
| 351 | 352 |
int prev, next; |
| 352 | 353 |
}; |
| 353 | 354 |
|
| 354 |
ItemIntMap& index; |
|
| 355 |
std::vector<int> first; |
|
| 356 |
std::vector<BucketItem> data; |
|
| 357 |
mutable int minimal; |
|
| 355 |
ItemIntMap& _iim; |
|
| 356 |
std::vector<int> _first; |
|
| 357 |
std::vector<BucketItem> _data; |
|
| 358 |
mutable int _minimum; |
|
| 358 | 359 |
|
| 359 | 360 |
}; // class BucketHeap |
| 360 | 361 |
|
| ... | ... |
@@ -370,24 +371,25 @@ |
| 370 | 371 |
/// other way it does not support erasing each elements just the |
| 371 | 372 |
/// minimal and it does not supports key increasing, decreasing. |
| 372 | 373 |
/// |
| 373 |
/// \param |
|
| 374 |
/// \param IM A read and write Item int map, used internally |
|
| 374 | 375 |
/// to handle the cross references. |
| 375 |
/// \param minimize If the given parameter is true then the heap gives back |
|
| 376 |
/// the lowest priority. |
|
| 376 |
/// \param MIN If the given parameter is false then instead of the |
|
| 377 |
/// minimum value the maximum can be retrivied with the top() and |
|
| 378 |
/// prio() member functions. |
|
| 377 | 379 |
/// |
| 378 | 380 |
/// \sa BucketHeap |
| 379 |
template <typename |
|
| 381 |
template <typename IM, bool MIN = true > |
|
| 380 | 382 |
class SimpleBucketHeap {
|
| 381 | 383 |
|
| 382 | 384 |
public: |
| 383 |
typedef typename |
|
| 385 |
typedef typename IM::Key Item; |
|
| 384 | 386 |
typedef int Prio; |
| 385 | 387 |
typedef std::pair<Item, Prio> Pair; |
| 386 |
typedef |
|
| 388 |
typedef IM ItemIntMap; |
|
| 387 | 389 |
|
| 388 | 390 |
private: |
| 389 | 391 |
|
| 390 |
typedef _bucket_heap_bits::DirectionTraits< |
|
| 392 |
typedef _bucket_heap_bits::DirectionTraits<MIN> Direction; |
|
| 391 | 393 |
|
| 392 | 394 |
public: |
| 393 | 395 |
|
| ... | ... |
@@ -397,12 +399,12 @@ |
| 397 | 399 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
| 398 | 400 |
/// heap's point of view, but may be useful to the user. |
| 399 | 401 |
/// |
| 400 |
/// The ItemIntMap \e should be initialized in such way that it maps |
|
| 401 |
/// PRE_HEAP (-1) to any element to be put in the heap... |
|
| 402 |
/// The item-int map must be initialized in such way that it assigns |
|
| 403 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
| 402 | 404 |
enum State {
|
| 403 |
IN_HEAP = 0, |
|
| 404 |
PRE_HEAP = -1, |
|
| 405 |
|
|
| 405 |
IN_HEAP = 0, ///< = 0. |
|
| 406 |
PRE_HEAP = -1, ///< = -1. |
|
| 407 |
POST_HEAP = -2 ///< = -2. |
|
| 406 | 408 |
}; |
| 407 | 409 |
|
| 408 | 410 |
public: |
| ... | ... |
@@ -410,21 +412,21 @@ |
| 410 | 412 |
/// \brief The constructor. |
| 411 | 413 |
/// |
| 412 | 414 |
/// The constructor. |
| 413 |
/// \param |
|
| 415 |
/// \param map should be given to the constructor, since it is used |
|
| 414 | 416 |
/// internally to handle the cross references. The value of the map |
| 415 | 417 |
/// should be PRE_HEAP (-1) for each element. |
| 416 |
explicit SimpleBucketHeap(ItemIntMap &_index) |
|
| 417 |
: index(_index), free(-1), num(0), minimal(0) {}
|
|
| 418 |
explicit SimpleBucketHeap(ItemIntMap &map) |
|
| 419 |
: _iim(map), _free(-1), _num(0), _minimum(0) {}
|
|
| 418 | 420 |
|
| 419 | 421 |
/// \brief Returns the number of items stored in the heap. |
| 420 | 422 |
/// |
| 421 | 423 |
/// The number of items stored in the heap. |
| 422 |
int size() const { return
|
|
| 424 |
int size() const { return _num; }
|
|
| 423 | 425 |
|
| 424 | 426 |
/// \brief Checks if the heap stores no items. |
| 425 | 427 |
/// |
| 426 | 428 |
/// Returns \c true if and only if the heap stores no items. |
| 427 |
bool empty() const { return
|
|
| 429 |
bool empty() const { return _num == 0; }
|
|
| 428 | 430 |
|
| 429 | 431 |
/// \brief Make empty this heap. |
| 430 | 432 |
/// |
| ... | ... |
@@ -433,7 +435,7 @@ |
| 433 | 435 |
/// should first clear the heap and after that you should set the |
| 434 | 436 |
/// cross reference map for each item to \c PRE_HEAP. |
| 435 | 437 |
void clear() {
|
| 436 |
|
|
| 438 |
_data.clear(); _first.clear(); _free = -1; _num = 0; _minimum = 0; |
|
| 437 | 439 |
} |
| 438 | 440 |
|
| 439 | 441 |
/// \brief Insert a pair of item and priority into the heap. |
| ... | ... |
@@ -451,22 +453,22 @@ |
| 451 | 453 |
/// \param p The priority of the item. |
| 452 | 454 |
void push(const Item &i, const Prio &p) {
|
| 453 | 455 |
int idx; |
| 454 |
if (free == -1) {
|
|
| 455 |
idx = data.size(); |
|
| 456 |
|
|
| 456 |
if (_free == -1) {
|
|
| 457 |
idx = _data.size(); |
|
| 458 |
_data.push_back(BucketItem(i)); |
|
| 457 | 459 |
} else {
|
| 458 |
idx = free; |
|
| 459 |
free = data[idx].next; |
|
| 460 |
|
|
| 460 |
idx = _free; |
|
| 461 |
_free = _data[idx].next; |
|
| 462 |
_data[idx].item = i; |
|
| 461 | 463 |
} |
| 462 |
index[i] = idx; |
|
| 463 |
if (p >= int(first.size())) first.resize(p + 1, -1); |
|
| 464 |
data[idx].next = first[p]; |
|
| 465 |
first[p] = idx; |
|
| 466 |
if (Direction::less(p, minimal)) {
|
|
| 467 |
minimal = p; |
|
| 464 |
_iim[i] = idx; |
|
| 465 |
if (p >= int(_first.size())) _first.resize(p + 1, -1); |
|
| 466 |
_data[idx].next = _first[p]; |
|
| 467 |
_first[p] = idx; |
|
| 468 |
if (Direction::less(p, _minimum)) {
|
|
| 469 |
_minimum = p; |
|
| 468 | 470 |
} |
| 469 |
++ |
|
| 471 |
++_num; |
|
| 470 | 472 |
} |
| 471 | 473 |
|
| 472 | 474 |
/// \brief Returns the item with minimum priority. |
| ... | ... |
@@ -474,10 +476,10 @@ |
| 474 | 476 |
/// This method returns the item with minimum priority. |
| 475 | 477 |
/// \pre The heap must be nonempty. |
| 476 | 478 |
Item top() const {
|
| 477 |
while (first[minimal] == -1) {
|
|
| 478 |
Direction::increase(minimal); |
|
| 479 |
while (_first[_minimum] == -1) {
|
|
| 480 |
Direction::increase(_minimum); |
|
| 479 | 481 |
} |
| 480 |
return |
|
| 482 |
return _data[_first[_minimum]].item; |
|
| 481 | 483 |
} |
| 482 | 484 |
|
| 483 | 485 |
/// \brief Returns the minimum priority. |
| ... | ... |
@@ -485,10 +487,10 @@ |
| 485 | 487 |
/// It returns the minimum priority. |
| 486 | 488 |
/// \pre The heap must be nonempty. |
| 487 | 489 |
Prio prio() const {
|
| 488 |
while (first[minimal] == -1) {
|
|
| 489 |
Direction::increase(minimal); |
|
| 490 |
while (_first[_minimum] == -1) {
|
|
| 491 |
Direction::increase(_minimum); |
|
| 490 | 492 |
} |
| 491 |
return |
|
| 493 |
return _minimum; |
|
| 492 | 494 |
} |
| 493 | 495 |
|
| 494 | 496 |
/// \brief Deletes the item with minimum priority. |
| ... | ... |
@@ -496,15 +498,15 @@ |
| 496 | 498 |
/// This method deletes the item with minimum priority from the heap. |
| 497 | 499 |
/// \pre The heap must be non-empty. |
| 498 | 500 |
void pop() {
|
| 499 |
while (first[minimal] == -1) {
|
|
| 500 |
Direction::increase(minimal); |
|
| 501 |
while (_first[_minimum] == -1) {
|
|
| 502 |
Direction::increase(_minimum); |
|
| 501 | 503 |
} |
| 502 |
int idx = first[minimal]; |
|
| 503 |
index[data[idx].item] = -2; |
|
| 504 |
first[minimal] = data[idx].next; |
|
| 505 |
data[idx].next = free; |
|
| 506 |
free = idx; |
|
| 507 |
--num; |
|
| 504 |
int idx = _first[_minimum]; |
|
| 505 |
_iim[_data[idx].item] = -2; |
|
| 506 |
_first[_minimum] = _data[idx].next; |
|
| 507 |
_data[idx].next = _free; |
|
| 508 |
_free = idx; |
|
| 509 |
--_num; |
|
| 508 | 510 |
} |
| 509 | 511 |
|
| 510 | 512 |
/// \brief Returns the priority of \c i. |
| ... | ... |
@@ -516,13 +518,13 @@ |
| 516 | 518 |
/// \pre \c i must be in the heap. |
| 517 | 519 |
/// \param i The item. |
| 518 | 520 |
Prio operator[](const Item &i) const {
|
| 519 |
for (int k = 0; k < first.size(); ++k) {
|
|
| 520 |
int idx = first[k]; |
|
| 521 |
for (int k = 0; k < _first.size(); ++k) {
|
|
| 522 |
int idx = _first[k]; |
|
| 521 | 523 |
while (idx != -1) {
|
| 522 |
if ( |
|
| 524 |
if (_data[idx].item == i) {
|
|
| 523 | 525 |
return k; |
| 524 | 526 |
} |
| 525 |
idx = |
|
| 527 |
idx = _data[idx].next; |
|
| 526 | 528 |
} |
| 527 | 529 |
} |
| 528 | 530 |
return -1; |
| ... | ... |
@@ -537,7 +539,7 @@ |
| 537 | 539 |
/// get back to the heap again. |
| 538 | 540 |
/// \param i The item. |
| 539 | 541 |
State state(const Item &i) const {
|
| 540 |
int idx = |
|
| 542 |
int idx = _iim[i]; |
|
| 541 | 543 |
if (idx >= 0) idx = 0; |
| 542 | 544 |
return State(idx); |
| 543 | 545 |
} |
| ... | ... |
@@ -552,11 +554,11 @@ |
| 552 | 554 |
int next; |
| 553 | 555 |
}; |
| 554 | 556 |
|
| 555 |
ItemIntMap& index; |
|
| 556 |
std::vector<int> first; |
|
| 557 |
std::vector<BucketItem> data; |
|
| 558 |
int free, num; |
|
| 559 |
|
|
| 557 |
ItemIntMap& _iim; |
|
| 558 |
std::vector<int> _first; |
|
| 559 |
std::vector<BucketItem> _data; |
|
| 560 |
int _free, _num; |
|
| 561 |
mutable int _minimum; |
|
| 560 | 562 |
|
| 561 | 563 |
}; // class SimpleBucketHeap |
| 562 | 564 |
| ... | ... |
@@ -36,87 +36,88 @@ |
| 36 | 36 |
///This class implements the \e Fibonacci \e heap data structure. A \e heap |
| 37 | 37 |
///is a data structure for storing items with specified values called \e |
| 38 | 38 |
///priorities in such a way that finding the item with minimum priority is |
| 39 |
///efficient. \c |
|
| 39 |
///efficient. \c CMP specifies the ordering of the priorities. In a heap |
|
| 40 | 40 |
///one can change the priority of an item, add or erase an item, etc. |
| 41 | 41 |
/// |
| 42 | 42 |
///The methods \ref increase and \ref erase are not efficient in a Fibonacci |
| 43 | 43 |
///heap. In case of many calls to these operations, it is better to use a |
| 44 | 44 |
///\ref BinHeap "binary heap". |
| 45 | 45 |
/// |
| 46 |
///\param _Prio Type of the priority of the items. |
|
| 47 |
///\param _ItemIntMap A read and writable Item int map, used internally |
|
| 46 |
///\param PRIO Type of the priority of the items. |
|
| 47 |
///\param IM A read and writable Item int map, used internally |
|
| 48 | 48 |
///to handle the cross references. |
| 49 |
///\param _Compare A class for the ordering of the priorities. The |
|
| 50 |
///default is \c std::less<_Prio>. |
|
| 49 |
///\param CMP A class for the ordering of the priorities. The |
|
| 50 |
///default is \c std::less<PRIO>. |
|
| 51 | 51 |
/// |
| 52 | 52 |
///\sa BinHeap |
| 53 | 53 |
///\sa Dijkstra |
| 54 | 54 |
#ifdef DOXYGEN |
| 55 |
template <typename _Prio, |
|
| 56 |
typename _ItemIntMap, |
|
| 57 |
|
|
| 55 |
template <typename PRIO, typename IM, typename CMP> |
|
| 58 | 56 |
#else |
| 59 |
template <typename _Prio, |
|
| 60 |
typename _ItemIntMap, |
|
| 61 |
|
|
| 57 |
template <typename PRIO, typename IM, typename CMP = std::less<PRIO> > |
|
| 62 | 58 |
#endif |
| 63 | 59 |
class FibHeap {
|
| 64 | 60 |
public: |
| 65 | 61 |
///\e |
| 66 |
typedef |
|
| 62 |
typedef IM ItemIntMap; |
|
| 67 | 63 |
///\e |
| 68 |
typedef |
|
| 64 |
typedef PRIO Prio; |
|
| 69 | 65 |
///\e |
| 70 | 66 |
typedef typename ItemIntMap::Key Item; |
| 71 | 67 |
///\e |
| 72 | 68 |
typedef std::pair<Item,Prio> Pair; |
| 73 | 69 |
///\e |
| 74 |
typedef |
|
| 70 |
typedef CMP Compare; |
|
| 75 | 71 |
|
| 76 | 72 |
private: |
| 77 |
class |
|
| 73 |
class Store; |
|
| 78 | 74 |
|
| 79 |
std::vector<store> container; |
|
| 80 |
int minimum; |
|
| 81 |
ItemIntMap &iimap; |
|
| 82 |
Compare comp; |
|
| 83 |
|
|
| 75 |
std::vector<Store> _data; |
|
| 76 |
int _minimum; |
|
| 77 |
ItemIntMap &_iim; |
|
| 78 |
Compare _comp; |
|
| 79 |
int _num; |
|
| 84 | 80 |
|
| 85 | 81 |
public: |
| 86 |
|
|
| 82 |
|
|
| 83 |
/// \brief Type to represent the items states. |
|
| 84 |
/// |
|
| 85 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
| 86 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
| 87 |
/// heap's point of view, but may be useful to the user. |
|
| 88 |
/// |
|
| 89 |
/// The item-int map must be initialized in such way that it assigns |
|
| 90 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
| 87 | 91 |
enum State {
|
| 88 |
///The node is in the heap |
|
| 89 |
IN_HEAP = 0, |
|
| 90 |
///The node has never been in the heap |
|
| 91 |
PRE_HEAP = -1, |
|
| 92 |
///The node was in the heap but it got out of it |
|
| 93 |
POST_HEAP = -2 |
|
| 92 |
IN_HEAP = 0, ///< = 0. |
|
| 93 |
PRE_HEAP = -1, ///< = -1. |
|
| 94 |
POST_HEAP = -2 ///< = -2. |
|
| 94 | 95 |
}; |
| 95 | 96 |
|
| 96 | 97 |
/// \brief The constructor |
| 97 | 98 |
/// |
| 98 |
/// \c |
|
| 99 |
/// \c map should be given to the constructor, since it is |
|
| 99 | 100 |
/// used internally to handle the cross references. |
| 100 |
explicit FibHeap(ItemIntMap &_iimap) |
|
| 101 |
: minimum(0), iimap(_iimap), num_items() {}
|
|
| 101 |
explicit FibHeap(ItemIntMap &map) |
|
| 102 |
: _minimum(0), _iim(map), _num() {}
|
|
| 102 | 103 |
|
| 103 | 104 |
/// \brief The constructor |
| 104 | 105 |
/// |
| 105 |
/// \c _iimap should be given to the constructor, since it is used |
|
| 106 |
/// internally to handle the cross references. \c _comp is an |
|
| 106 |
/// \c map should be given to the constructor, since it is used |
|
| 107 |
/// internally to handle the cross references. \c comp is an |
|
| 107 | 108 |
/// object for ordering of the priorities. |
| 108 |
FibHeap(ItemIntMap &_iimap, const Compare &_comp) |
|
| 109 |
: minimum(0), iimap(_iimap), comp(_comp), num_items() {}
|
|
| 109 |
FibHeap(ItemIntMap &map, const Compare &comp) |
|
| 110 |
: _minimum(0), _iim(map), _comp(comp), _num() {}
|
|
| 110 | 111 |
|
| 111 | 112 |
/// \brief The number of items stored in the heap. |
| 112 | 113 |
/// |
| 113 | 114 |
/// Returns the number of items stored in the heap. |
| 114 |
int size() const { return
|
|
| 115 |
int size() const { return _num; }
|
|
| 115 | 116 |
|
| 116 | 117 |
/// \brief Checks if the heap stores no items. |
| 117 | 118 |
/// |
| 118 | 119 |
/// Returns \c true if and only if the heap stores no items. |
| 119 |
bool empty() const { return
|
|
| 120 |
bool empty() const { return _num==0; }
|
|
| 120 | 121 |
|
| 121 | 122 |
/// \brief Make empty this heap. |
| 122 | 123 |
/// |
| ... | ... |
@@ -125,7 +126,7 @@ |
| 125 | 126 |
/// should first clear the heap and after that you should set the |
| 126 | 127 |
/// cross reference map for each item to \c PRE_HEAP. |
| 127 | 128 |
void clear() {
|
| 128 |
|
|
| 129 |
_data.clear(); _minimum = 0; _num = 0; |
|
| 129 | 130 |
} |
| 130 | 131 |
|
| 131 | 132 |
/// \brief \c item gets to the heap with priority \c value independently |
| ... | ... |
@@ -135,10 +136,10 @@ |
| 135 | 136 |
/// stored in the heap and it calls \ref decrease(\c item, \c value) or |
| 136 | 137 |
/// \ref increase(\c item, \c value) otherwise. |
| 137 | 138 |
void set (const Item& item, const Prio& value) {
|
| 138 |
int i=iimap[item]; |
|
| 139 |
if ( i >= 0 && container[i].in ) {
|
|
| 140 |
if ( comp(value, container[i].prio) ) decrease(item, value); |
|
| 141 |
if ( comp(container[i].prio, value) ) increase(item, value); |
|
| 139 |
int i=_iim[item]; |
|
| 140 |
if ( i >= 0 && _data[i].in ) {
|
|
| 141 |
if ( _comp(value, _data[i].prio) ) decrease(item, value); |
|
| 142 |
if ( _comp(_data[i].prio, value) ) increase(item, value); |
|
| 142 | 143 |
} else push(item, value); |
| 143 | 144 |
} |
| 144 | 145 |
|
| ... | ... |
@@ -147,33 +148,33 @@ |
| 147 | 148 |
/// Adds \c item to the heap with priority \c value. |
| 148 | 149 |
/// \pre \c item must not be stored in the heap. |
| 149 | 150 |
void push (const Item& item, const Prio& value) {
|
| 150 |
int i= |
|
| 151 |
int i=_iim[item]; |
|
| 151 | 152 |
if ( i < 0 ) {
|
| 152 |
int s=container.size(); |
|
| 153 |
iimap.set( item, s ); |
|
| 154 |
|
|
| 153 |
int s=_data.size(); |
|
| 154 |
_iim.set( item, s ); |
|
| 155 |
Store st; |
|
| 155 | 156 |
st.name=item; |
| 156 |
|
|
| 157 |
_data.push_back(st); |
|
| 157 | 158 |
i=s; |
| 158 | 159 |
} else {
|
| 159 |
container[i].parent=container[i].child=-1; |
|
| 160 |
container[i].degree=0; |
|
| 161 |
container[i].in=true; |
|
| 162 |
container[i].marked=false; |
|
| 160 |
_data[i].parent=_data[i].child=-1; |
|
| 161 |
_data[i].degree=0; |
|
| 162 |
_data[i].in=true; |
|
| 163 |
_data[i].marked=false; |
|
| 163 | 164 |
} |
| 164 | 165 |
|
| 165 |
if ( num_items ) {
|
|
| 166 |
container[container[minimum].right_neighbor].left_neighbor=i; |
|
| 167 |
container[i].right_neighbor=container[minimum].right_neighbor; |
|
| 168 |
container[minimum].right_neighbor=i; |
|
| 169 |
container[i].left_neighbor=minimum; |
|
| 170 |
if ( comp( value, container[minimum].prio) ) minimum=i; |
|
| 166 |
if ( _num ) {
|
|
| 167 |
_data[_data[_minimum].right_neighbor].left_neighbor=i; |
|
| 168 |
_data[i].right_neighbor=_data[_minimum].right_neighbor; |
|
| 169 |
_data[_minimum].right_neighbor=i; |
|
| 170 |
_data[i].left_neighbor=_minimum; |
|
| 171 |
if ( _comp( value, _data[_minimum].prio) ) _minimum=i; |
|
| 171 | 172 |
} else {
|
| 172 |
container[i].right_neighbor=container[i].left_neighbor=i; |
|
| 173 |
minimum=i; |
|
| 173 |
_data[i].right_neighbor=_data[i].left_neighbor=i; |
|
| 174 |
_minimum=i; |
|
| 174 | 175 |
} |
| 175 |
container[i].prio=value; |
|
| 176 |
++num_items; |
|
| 176 |
_data[i].prio=value; |
|
| 177 |
++_num; |
|
| 177 | 178 |
} |
| 178 | 179 |
|
| 179 | 180 |
/// \brief Returns the item with minimum priority relative to \c Compare. |
| ... | ... |
@@ -181,20 +182,20 @@ |
| 181 | 182 |
/// This method returns the item with minimum priority relative to \c |
| 182 | 183 |
/// Compare. |
| 183 | 184 |
/// \pre The heap must be nonempty. |
| 184 |
Item top() const { return
|
|
| 185 |
Item top() const { return _data[_minimum].name; }
|
|
| 185 | 186 |
|
| 186 | 187 |
/// \brief Returns the minimum priority relative to \c Compare. |
| 187 | 188 |
/// |
| 188 | 189 |
/// It returns the minimum priority relative to \c Compare. |
| 189 | 190 |
/// \pre The heap must be nonempty. |
| 190 |
const Prio& prio() const { return
|
|
| 191 |
const Prio& prio() const { return _data[_minimum].prio; }
|
|
| 191 | 192 |
|
| 192 | 193 |
/// \brief Returns the priority of \c item. |
| 193 | 194 |
/// |
| 194 | 195 |
/// It returns the priority of \c item. |
| 195 | 196 |
/// \pre \c item must be in the heap. |
| 196 | 197 |
const Prio& operator[](const Item& item) const {
|
| 197 |
return |
|
| 198 |
return _data[_iim[item]].prio; |
|
| 198 | 199 |
} |
| 199 | 200 |
|
| 200 | 201 |
/// \brief Deletes the item with minimum priority relative to \c Compare. |
| ... | ... |
@@ -204,33 +205,33 @@ |
| 204 | 205 |
/// \pre The heap must be non-empty. |
| 205 | 206 |
void pop() {
|
| 206 | 207 |
/*The first case is that there are only one root.*/ |
| 207 |
if ( container[minimum].left_neighbor==minimum ) {
|
|
| 208 |
container[minimum].in=false; |
|
| 209 |
if ( container[minimum].degree!=0 ) {
|
|
| 210 |
makeroot(container[minimum].child); |
|
| 211 |
|
|
| 208 |
if ( _data[_minimum].left_neighbor==_minimum ) {
|
|
| 209 |
_data[_minimum].in=false; |
|
| 210 |
if ( _data[_minimum].degree!=0 ) {
|
|
| 211 |
makeroot(_data[_minimum].child); |
|
| 212 |
_minimum=_data[_minimum].child; |
|
| 212 | 213 |
balance(); |
| 213 | 214 |
} |
| 214 | 215 |
} else {
|
| 215 |
int right=container[minimum].right_neighbor; |
|
| 216 |
unlace(minimum); |
|
| 217 |
container[minimum].in=false; |
|
| 218 |
if ( container[minimum].degree > 0 ) {
|
|
| 219 |
int left=container[minimum].left_neighbor; |
|
| 220 |
int child=container[minimum].child; |
|
| 221 |
|
|
| 216 |
int right=_data[_minimum].right_neighbor; |
|
| 217 |
unlace(_minimum); |
|
| 218 |
_data[_minimum].in=false; |
|
| 219 |
if ( _data[_minimum].degree > 0 ) {
|
|
| 220 |
int left=_data[_minimum].left_neighbor; |
|
| 221 |
int child=_data[_minimum].child; |
|
| 222 |
int last_child=_data[child].left_neighbor; |
|
| 222 | 223 |
|
| 223 | 224 |
makeroot(child); |
| 224 | 225 |
|
| 225 |
container[left].right_neighbor=child; |
|
| 226 |
container[child].left_neighbor=left; |
|
| 227 |
container[right].left_neighbor=last_child; |
|
| 228 |
container[last_child].right_neighbor=right; |
|
| 226 |
_data[left].right_neighbor=child; |
|
| 227 |
_data[child].left_neighbor=left; |
|
| 228 |
_data[right].left_neighbor=last_child; |
|
| 229 |
_data[last_child].right_neighbor=right; |
|
| 229 | 230 |
} |
| 230 |
|
|
| 231 |
_minimum=right; |
|
| 231 | 232 |
balance(); |
| 232 | 233 |
} // the case where there are more roots |
| 233 |
-- |
|
| 234 |
--_num; |
|
| 234 | 235 |
} |
| 235 | 236 |
|
| 236 | 237 |
/// \brief Deletes \c item from the heap. |
| ... | ... |
@@ -238,15 +239,15 @@ |
| 238 | 239 |
/// This method deletes \c item from the heap, if \c item was already |
| 239 | 240 |
/// stored in the heap. It is quite inefficient in Fibonacci heaps. |
| 240 | 241 |
void erase (const Item& item) {
|
| 241 |
int i= |
|
| 242 |
int i=_iim[item]; |
|
| 242 | 243 |
|
| 243 |
if ( i >= 0 && container[i].in ) {
|
|
| 244 |
if ( container[i].parent!=-1 ) {
|
|
| 245 |
|
|
| 244 |
if ( i >= 0 && _data[i].in ) {
|
|
| 245 |
if ( _data[i].parent!=-1 ) {
|
|
| 246 |
int p=_data[i].parent; |
|
| 246 | 247 |
cut(i,p); |
| 247 | 248 |
cascade(p); |
| 248 | 249 |
} |
| 249 |
|
|
| 250 |
_minimum=i; //As if its prio would be -infinity |
|
| 250 | 251 |
pop(); |
| 251 | 252 |
} |
| 252 | 253 |
} |
| ... | ... |
@@ -257,15 +258,15 @@ |
| 257 | 258 |
/// \pre \c item must be stored in the heap with priority at least \c |
| 258 | 259 |
/// value relative to \c Compare. |
| 259 | 260 |
void decrease (Item item, const Prio& value) {
|
| 260 |
int i=iimap[item]; |
|
| 261 |
container[i].prio=value; |
|
| 262 |
int |
|
| 261 |
int i=_iim[item]; |
|
| 262 |
_data[i].prio=value; |
|
| 263 |
int p=_data[i].parent; |
|
| 263 | 264 |
|
| 264 |
if ( p!=-1 && |
|
| 265 |
if ( p!=-1 && _comp(value, _data[p].prio) ) {
|
|
| 265 | 266 |
cut(i,p); |
| 266 | 267 |
cascade(p); |
| 267 | 268 |
} |
| 268 |
if ( |
|
| 269 |
if ( _comp(value, _data[_minimum].prio) ) _minimum=i; |
|
| 269 | 270 |
} |
| 270 | 271 |
|
| 271 | 272 |
/// \brief Increases the priority of \c item to \c value. |
| ... | ... |
@@ -289,9 +290,9 @@ |
| 289 | 290 |
/// otherwise. In the latter case it is possible that \c item will |
| 290 | 291 |
/// get back to the heap again. |
| 291 | 292 |
State state(const Item &item) const {
|
| 292 |
int i= |
|
| 293 |
int i=_iim[item]; |
|
| 293 | 294 |
if( i>=0 ) {
|
| 294 |
if ( |
|
| 295 |
if ( _data[i].in ) i=0; |
|
| 295 | 296 |
else i=-2; |
| 296 | 297 |
} |
| 297 | 298 |
return State(i); |
| ... | ... |
@@ -301,7 +302,7 @@ |
| 301 | 302 |
/// |
| 302 | 303 |
/// Sets the state of the \c item in the heap. It can be used to |
| 303 | 304 |
/// manually clear the heap when it is important to achive the |
| 304 |
/// better time |
|
| 305 |
/// better time _complexity. |
|
| 305 | 306 |
/// \param i The item. |
| 306 | 307 |
/// \param st The state. It should not be \c IN_HEAP. |
| 307 | 308 |
void state(const Item& i, State st) {
|
| ... | ... |
@@ -311,7 +312,7 @@ |
| 311 | 312 |
if (state(i) == IN_HEAP) {
|
| 312 | 313 |
erase(i); |
| 313 | 314 |
} |
| 314 |
|
|
| 315 |
_iim[i] = st; |
|
| 315 | 316 |
break; |
| 316 | 317 |
case IN_HEAP: |
| 317 | 318 |
break; |
| ... | ... |
@@ -322,7 +323,7 @@ |
| 322 | 323 |
|
| 323 | 324 |
void balance() {
|
| 324 | 325 |
|
| 325 |
int maxdeg=int( std::floor( 2.08*log(double( |
|
| 326 |
int maxdeg=int( std::floor( 2.08*log(double(_data.size()))))+1; |
|
| 326 | 327 |
|
| 327 | 328 |
std::vector<int> A(maxdeg,-1); |
| 328 | 329 |
|
| ... | ... |
@@ -330,18 +331,18 @@ |
| 330 | 331 |
*Recall that now minimum does not point to the minimum prio element. |
| 331 | 332 |
*We set minimum to this during balance(). |
| 332 | 333 |
*/ |
| 333 |
int anchor=container[minimum].left_neighbor; |
|
| 334 |
int next=minimum; |
|
| 334 |
int anchor=_data[_minimum].left_neighbor; |
|
| 335 |
int next=_minimum; |
|
| 335 | 336 |
bool end=false; |
| 336 | 337 |
|
| 337 | 338 |
do {
|
| 338 | 339 |
int active=next; |
| 339 | 340 |
if ( anchor==active ) end=true; |
| 340 |
int d=container[active].degree; |
|
| 341 |
next=container[active].right_neighbor; |
|
| 341 |
int d=_data[active].degree; |
|
| 342 |
next=_data[active].right_neighbor; |
|
| 342 | 343 |
|
| 343 | 344 |
while (A[d]!=-1) {
|
| 344 |
if( |
|
| 345 |
if( _comp(_data[active].prio, _data[A[d]].prio) ) {
|
|
| 345 | 346 |
fuse(active,A[d]); |
| 346 | 347 |
} else {
|
| 347 | 348 |
fuse(A[d],active); |
| ... | ... |
@@ -354,21 +355,21 @@ |
| 354 | 355 |
} while ( !end ); |
| 355 | 356 |
|
| 356 | 357 |
|
| 357 |
while ( container[minimum].parent >=0 ) |
|
| 358 |
minimum=container[minimum].parent; |
|
| 359 |
int s=minimum; |
|
| 360 |
int m=minimum; |
|
| 358 |
while ( _data[_minimum].parent >=0 ) |
|
| 359 |
_minimum=_data[_minimum].parent; |
|
| 360 |
int s=_minimum; |
|
| 361 |
int m=_minimum; |
|
| 361 | 362 |
do {
|
| 362 |
if ( comp(container[s].prio, container[minimum].prio) ) minimum=s; |
|
| 363 |
s=container[s].right_neighbor; |
|
| 363 |
if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s; |
|
| 364 |
s=_data[s].right_neighbor; |
|
| 364 | 365 |
} while ( s != m ); |
| 365 | 366 |
} |
| 366 | 367 |
|
| 367 | 368 |
void makeroot(int c) {
|
| 368 | 369 |
int s=c; |
| 369 | 370 |
do {
|
| 370 |
container[s].parent=-1; |
|
| 371 |
s=container[s].right_neighbor; |
|
| 371 |
_data[s].parent=-1; |
|
| 372 |
s=_data[s].right_neighbor; |
|
| 372 | 373 |
} while ( s != c ); |
| 373 | 374 |
} |
| 374 | 375 |
|
| ... | ... |
@@ -376,32 +377,32 @@ |
| 376 | 377 |
/* |
| 377 | 378 |
*Replacing a from the children of b. |
| 378 | 379 |
*/ |
| 379 |
-- |
|
| 380 |
--_data[b].degree; |
|
| 380 | 381 |
|
| 381 |
if ( container[b].degree !=0 ) {
|
|
| 382 |
int child=container[b].child; |
|
| 382 |
if ( _data[b].degree !=0 ) {
|
|
| 383 |
int child=_data[b].child; |
|
| 383 | 384 |
if ( child==a ) |
| 384 |
|
|
| 385 |
_data[b].child=_data[child].right_neighbor; |
|
| 385 | 386 |
unlace(a); |
| 386 | 387 |
} |
| 387 | 388 |
|
| 388 | 389 |
|
| 389 | 390 |
/*Lacing a to the roots.*/ |
| 390 |
int right=container[minimum].right_neighbor; |
|
| 391 |
container[minimum].right_neighbor=a; |
|
| 392 |
container[a].left_neighbor=minimum; |
|
| 393 |
container[a].right_neighbor=right; |
|
| 394 |
|
|
| 391 |
int right=_data[_minimum].right_neighbor; |
|
| 392 |
_data[_minimum].right_neighbor=a; |
|
| 393 |
_data[a].left_neighbor=_minimum; |
|
| 394 |
_data[a].right_neighbor=right; |
|
| 395 |
_data[right].left_neighbor=a; |
|
| 395 | 396 |
|
| 396 |
container[a].parent=-1; |
|
| 397 |
container[a].marked=false; |
|
| 397 |
_data[a].parent=-1; |
|
| 398 |
_data[a].marked=false; |
|
| 398 | 399 |
} |
| 399 | 400 |
|
| 400 | 401 |
void cascade(int a) {
|
| 401 |
if ( container[a].parent!=-1 ) {
|
|
| 402 |
int p=container[a].parent; |
|
| 402 |
if ( _data[a].parent!=-1 ) {
|
|
| 403 |
int p=_data[a].parent; |
|
| 403 | 404 |
|
| 404 |
if ( |
|
| 405 |
if ( _data[a].marked==false ) _data[a].marked=true; |
|
| 405 | 406 |
else {
|
| 406 | 407 |
cut(a,p); |
| 407 | 408 |
cascade(p); |
| ... | ... |
@@ -413,38 +414,38 @@ |
| 413 | 414 |
unlace(b); |
| 414 | 415 |
|
| 415 | 416 |
/*Lacing b under a.*/ |
| 416 |
|
|
| 417 |
_data[b].parent=a; |
|
| 417 | 418 |
|
| 418 |
if (container[a].degree==0) {
|
|
| 419 |
container[b].left_neighbor=b; |
|
| 420 |
container[b].right_neighbor=b; |
|
| 421 |
container[a].child=b; |
|
| 419 |
if (_data[a].degree==0) {
|
|
| 420 |
_data[b].left_neighbor=b; |
|
| 421 |
_data[b].right_neighbor=b; |
|
| 422 |
_data[a].child=b; |
|
| 422 | 423 |
} else {
|
| 423 |
int child=container[a].child; |
|
| 424 |
int last_child=container[child].left_neighbor; |
|
| 425 |
container[child].left_neighbor=b; |
|
| 426 |
container[b].right_neighbor=child; |
|
| 427 |
container[last_child].right_neighbor=b; |
|
| 428 |
container[b].left_neighbor=last_child; |
|
| 424 |
int child=_data[a].child; |
|
| 425 |
int last_child=_data[child].left_neighbor; |
|
| 426 |
_data[child].left_neighbor=b; |
|
| 427 |
_data[b].right_neighbor=child; |
|
| 428 |
_data[last_child].right_neighbor=b; |
|
| 429 |
_data[b].left_neighbor=last_child; |
|
| 429 | 430 |
} |
| 430 | 431 |
|
| 431 |
++ |
|
| 432 |
++_data[a].degree; |
|
| 432 | 433 |
|
| 433 |
|
|
| 434 |
_data[b].marked=false; |
|
| 434 | 435 |
} |
| 435 | 436 |
|
| 436 | 437 |
/* |
| 437 | 438 |
*It is invoked only if a has siblings. |
| 438 | 439 |
*/ |
| 439 | 440 |
void unlace(int a) {
|
| 440 |
int leftn=container[a].left_neighbor; |
|
| 441 |
int rightn=container[a].right_neighbor; |
|
| 442 |
container[leftn].right_neighbor=rightn; |
|
| 443 |
container[rightn].left_neighbor=leftn; |
|
| 441 |
int leftn=_data[a].left_neighbor; |
|
| 442 |
int rightn=_data[a].right_neighbor; |
|
| 443 |
_data[leftn].right_neighbor=rightn; |
|
| 444 |
_data[rightn].left_neighbor=leftn; |
|
| 444 | 445 |
} |
| 445 | 446 |
|
| 446 | 447 |
|
| 447 |
class |
|
| 448 |
class Store {
|
|
| 448 | 449 |
friend class FibHeap; |
| 449 | 450 |
|
| 450 | 451 |
Item name; |
| ... | ... |
@@ -457,7 +458,7 @@ |
| 457 | 458 |
bool in; |
| 458 | 459 |
Prio prio; |
| 459 | 460 |
|
| 460 |
|
|
| 461 |
Store() : parent(-1), child(-1), degree(), marked(false), in(true) {}
|
|
| 461 | 462 |
}; |
| 462 | 463 |
}; |
| 463 | 464 |
| ... | ... |
@@ -41,18 +41,18 @@ |
| 41 | 41 |
/// item, but the priority cannot be decreased under the last removed |
| 42 | 42 |
/// item's priority. |
| 43 | 43 |
/// |
| 44 |
/// \param |
|
| 44 |
/// \param IM A read and writable Item int map, used internally |
|
| 45 | 45 |
/// to handle the cross references. |
| 46 | 46 |
/// |
| 47 | 47 |
/// \see BinHeap |
| 48 | 48 |
/// \see Dijkstra |
| 49 |
template <typename |
|
| 49 |
template <typename IM> |
|
| 50 | 50 |
class RadixHeap {
|
| 51 | 51 |
|
| 52 | 52 |
public: |
| 53 |
typedef typename |
|
| 53 |
typedef typename IM::Key Item; |
|
| 54 | 54 |
typedef int Prio; |
| 55 |
typedef |
|
| 55 |
typedef IM ItemIntMap; |
|
| 56 | 56 |
|
| 57 | 57 |
/// \brief Exception thrown by RadixHeap. |
| 58 | 58 |
/// |
| ... | ... |
@@ -99,7 +99,7 @@ |
| 99 | 99 |
std::vector<RadixItem> data; |
| 100 | 100 |
std::vector<RadixBox> boxes; |
| 101 | 101 |
|
| 102 |
ItemIntMap & |
|
| 102 |
ItemIntMap &_iim; |
|
| 103 | 103 |
|
| 104 | 104 |
|
| 105 | 105 |
public: |
| ... | ... |
@@ -107,14 +107,14 @@ |
| 107 | 107 |
/// |
| 108 | 108 |
/// The constructor. |
| 109 | 109 |
/// |
| 110 |
/// \param |
|
| 110 |
/// \param map It should be given to the constructor, since it is used |
|
| 111 | 111 |
/// internally to handle the cross references. The value of the map |
| 112 | 112 |
/// should be PRE_HEAP (-1) for each element. |
| 113 | 113 |
/// |
| 114 | 114 |
/// \param minimal The initial minimal value of the heap. |
| 115 | 115 |
/// \param capacity It determines the initial capacity of the heap. |
| 116 |
RadixHeap(ItemIntMap &_iim, int minimal = 0, int capacity = 0) |
|
| 117 |
: iim(_iim) {
|
|
| 116 |
RadixHeap(ItemIntMap &map, int minimal = 0, int capacity = 0) |
|
| 117 |
: _iim(map) {
|
|
| 118 | 118 |
boxes.push_back(RadixBox(minimal, 1)); |
| 119 | 119 |
boxes.push_back(RadixBox(minimal + 1, 1)); |
| 120 | 120 |
while (lower(boxes.size() - 1, capacity + minimal - 1)) {
|
| ... | ... |
@@ -268,7 +268,7 @@ |
| 268 | 268 |
if (data[index].next != -1) {
|
| 269 | 269 |
data[data[index].next].prev = index; |
| 270 | 270 |
} |
| 271 |
|
|
| 271 |
_iim[data[index].item] = index; |
|
| 272 | 272 |
} |
| 273 | 273 |
data.pop_back(); |
| 274 | 274 |
} |
| ... | ... |
@@ -282,7 +282,7 @@ |
| 282 | 282 |
/// \param p The priority of the item. |
| 283 | 283 |
void push(const Item &i, const Prio &p) {
|
| 284 | 284 |
int n = data.size(); |
| 285 |
|
|
| 285 |
_iim.set(i, n); |
|
| 286 | 286 |
data.push_back(RadixItem(i, p)); |
| 287 | 287 |
while (lower(boxes.size() - 1, p)) {
|
| 288 | 288 |
extend(); |
| ... | ... |
@@ -316,7 +316,7 @@ |
| 316 | 316 |
void pop() {
|
| 317 | 317 |
moveDown(); |
| 318 | 318 |
int index = boxes[0].first; |
| 319 |
|
|
| 319 |
_iim[data[index].item] = POST_HEAP; |
|
| 320 | 320 |
remove(index); |
| 321 | 321 |
relocate_last(index); |
| 322 | 322 |
} |
| ... | ... |
@@ -327,8 +327,8 @@ |
| 327 | 327 |
/// already stored in the heap. |
| 328 | 328 |
/// \param i The item to erase. |
| 329 | 329 |
void erase(const Item &i) {
|
| 330 |
int index = iim[i]; |
|
| 331 |
iim[i] = POST_HEAP; |
|
| 330 |
int index = _iim[i]; |
|
| 331 |
_iim[i] = POST_HEAP; |
|
| 332 | 332 |
remove(index); |
| 333 | 333 |
relocate_last(index); |
| 334 | 334 |
} |
| ... | ... |
@@ -339,7 +339,7 @@ |
| 339 | 339 |
/// \pre \c i must be in the heap. |
| 340 | 340 |
/// \param i The item. |
| 341 | 341 |
Prio operator[](const Item &i) const {
|
| 342 |
int idx = |
|
| 342 |
int idx = _iim[i]; |
|
| 343 | 343 |
return data[idx].prio; |
| 344 | 344 |
} |
| 345 | 345 |
|
| ... | ... |
@@ -352,7 +352,7 @@ |
| 352 | 352 |
/// \param i The item. |
| 353 | 353 |
/// \param p The priority. |
| 354 | 354 |
void set(const Item &i, const Prio &p) {
|
| 355 |
int idx = |
|
| 355 |
int idx = _iim[i]; |
|
| 356 | 356 |
if( idx < 0 ) {
|
| 357 | 357 |
push(i, p); |
| 358 | 358 |
} |
| ... | ... |
@@ -374,7 +374,7 @@ |
| 374 | 374 |
/// \param i The item. |
| 375 | 375 |
/// \param p The priority. |
| 376 | 376 |
void decrease(const Item &i, const Prio &p) {
|
| 377 |
int idx = |
|
| 377 |
int idx = _iim[i]; |
|
| 378 | 378 |
data[idx].prio = p; |
| 379 | 379 |
bubble_down(idx); |
| 380 | 380 |
} |
| ... | ... |
@@ -386,7 +386,7 @@ |
| 386 | 386 |
/// \param i The item. |
| 387 | 387 |
/// \param p The priority. |
| 388 | 388 |
void increase(const Item &i, const Prio &p) {
|
| 389 |
int idx = |
|
| 389 |
int idx = _iim[i]; |
|
| 390 | 390 |
data[idx].prio = p; |
| 391 | 391 |
bubble_up(idx); |
| 392 | 392 |
} |
| ... | ... |
@@ -400,7 +400,7 @@ |
| 400 | 400 |
/// get back to the heap again. |
| 401 | 401 |
/// \param i The item. |
| 402 | 402 |
State state(const Item &i) const {
|
| 403 |
int s = |
|
| 403 |
int s = _iim[i]; |
|
| 404 | 404 |
if( s >= 0 ) s = 0; |
| 405 | 405 |
return State(s); |
| 406 | 406 |
} |
| ... | ... |
@@ -419,7 +419,7 @@ |
| 419 | 419 |
if (state(i) == IN_HEAP) {
|
| 420 | 420 |
erase(i); |
| 421 | 421 |
} |
| 422 |
|
|
| 422 |
_iim[i] = st; |
|
| 423 | 423 |
break; |
| 424 | 424 |
case IN_HEAP: |
| 425 | 425 |
break; |
0 comments (0 inline)