gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Support infinite bounds in Circulation + fixes (#270, #266) - Support infinite capacities. - Bug fix in upperMap(). - Fixes and improvements in the documentation.
0 1 0
default
1 file changed with 32 insertions and 8 deletions:
↑ Collapse diff ↑
Ignore white space 6 line context
... ...
@@ -21,6 +21,7 @@
21 21

	
22 22
#include <lemon/tolerance.h>
23 23
#include <lemon/elevator.h>
24
#include <limits>
24 25

	
25 26
///\ingroup max_flow
26 27
///\file
... ...
@@ -119,15 +120,15 @@
119 120
     at the nodes.
120 121

	
121 122
     The exact formulation of this problem is the following.
122
     Let \f$G=(V,A)\f$ be a digraph,
123
     \f$lower, upper: A\rightarrow\mathbf{R}^+_0\f$ denote the lower and
124
     upper bounds on the arcs, for which \f$0 \leq lower(uv) \leq upper(uv)\f$
123
     Let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$
124
     \f$upper: A\rightarrow\mathbf{R}\cup\{\infty\}\f$ denote the lower and
125
     upper bounds on the arcs, for which \f$lower(uv) \leq upper(uv)\f$
125 126
     holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$
126 127
     denotes the signed supply values of the nodes.
127 128
     If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$
128 129
     supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with
129 130
     \f$-sup(u)\f$ demand.
130
     A feasible circulation is an \f$f: A\rightarrow\mathbf{R}^+_0\f$
131
     A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$
131 132
     solution of the following problem.
132 133

	
133 134
     \f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu)
... ...
@@ -151,6 +152,10 @@
151 152
     the direction of the arcs and taking the negative of the supply values
152 153
     (e.g. using \ref ReverseDigraph and \ref NegMap adaptors).
153 154

	
155
     This algorithm either calculates a feasible circulation, or provides
156
     a \ref barrier() "barrier", which prooves that a feasible soultion
157
     cannot exist.
158

	
154 159
     Note that this algorithm also provides a feasible solution for the
155 160
     \ref min_cost_flow "minimum cost flow problem".
156 161

	
... ...
@@ -337,6 +342,13 @@
337 342

	
338 343
  private:
339 344

	
345
    bool checkBoundMaps() {
346
      for (ArcIt e(_g);e!=INVALID;++e) {
347
        if (_tol.less((*_up)[e], (*_lo)[e])) return false;
348
      }
349
      return true;
350
    }
351

	
340 352
    void createStructures() {
341 353
      _node_num = _el = countNodes(_g);
342 354

	
... ...
@@ -380,7 +392,7 @@
380 392

	
381 393
    /// Sets the upper bound (capacity) map.
382 394
    /// \return <tt>(*this)</tt>
383
    Circulation& upperMap(const LowerMap& map) {
395
    Circulation& upperMap(const UpperMap& map) {
384 396
      _up = &map;
385 397
      return *this;
386 398
    }
... ...
@@ -467,6 +479,9 @@
467 479
    /// to the lower bound.
468 480
    void init()
469 481
    {
482
      LEMON_DEBUG(checkBoundMaps(),
483
        "Upper bounds must be greater or equal to the lower bounds");
484

	
470 485
      createStructures();
471 486

	
472 487
      for(NodeIt n(_g);n!=INVALID;++n) {
... ...
@@ -496,6 +511,9 @@
496 511
    /// to construct the initial solution.
497 512
    void greedyInit()
498 513
    {
514
      LEMON_DEBUG(checkBoundMaps(),
515
        "Upper bounds must be greater or equal to the lower bounds");
516

	
499 517
      createStructures();
500 518

	
501 519
      for(NodeIt n(_g);n!=INVALID;++n) {
... ...
@@ -503,11 +521,11 @@
503 521
      }
504 522

	
505 523
      for (ArcIt e(_g);e!=INVALID;++e) {
506
        if (!_tol.positive((*_excess)[_g.target(e)] + (*_up)[e])) {
524
        if (!_tol.less(-(*_excess)[_g.target(e)], (*_up)[e])) {
507 525
          _flow->set(e, (*_up)[e]);
508 526
          (*_excess)[_g.target(e)] += (*_up)[e];
509 527
          (*_excess)[_g.source(e)] -= (*_up)[e];
510
        } else if (_tol.positive((*_excess)[_g.target(e)] + (*_lo)[e])) {
528
        } else if (_tol.less(-(*_excess)[_g.target(e)], (*_lo)[e])) {
511 529
          _flow->set(e, (*_lo)[e]);
512 530
          (*_excess)[_g.target(e)] += (*_lo)[e];
513 531
          (*_excess)[_g.source(e)] -= (*_lo)[e];
... ...
@@ -748,6 +766,9 @@
748 766
    bool checkBarrier() const
749 767
    {
750 768
      Flow delta=0;
769
      Flow inf_cap = std::numeric_limits<Flow>::has_infinity ?
770
        std::numeric_limits<Flow>::infinity() :
771
        std::numeric_limits<Flow>::max();
751 772
      for(NodeIt n(_g);n!=INVALID;++n)
752 773
        if(barrier(n))
753 774
          delta-=(*_supply)[n];
... ...
@@ -755,7 +776,10 @@
755 776
        {
756 777
          Node s=_g.source(e);
757 778
          Node t=_g.target(e);
758
          if(barrier(s)&&!barrier(t)) delta+=(*_up)[e];
779
          if(barrier(s)&&!barrier(t)) {
780
            if (_tol.less(inf_cap - (*_up)[e], delta)) return false;
781
            delta+=(*_up)[e];
782
          }
759 783
          else if(barrier(t)&&!barrier(s)) delta-=(*_lo)[e];
760 784
        }
761 785
      return _tol.negative(delta);
0 comments (0 inline)