0
3
2
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_PLANARITY_H |
|
20 |
#define LEMON_PLANARITY_H |
|
21 |
|
|
22 |
/// \ingroup planar |
|
23 |
/// \file |
|
24 |
/// \brief Planarity checking, embedding, drawing and coloring |
|
25 |
|
|
26 |
#include <vector> |
|
27 |
#include <list> |
|
28 |
|
|
29 |
#include <lemon/dfs.h> |
|
30 |
#include <lemon/bfs.h> |
|
31 |
#include <lemon/radix_sort.h> |
|
32 |
#include <lemon/maps.h> |
|
33 |
#include <lemon/path.h> |
|
34 |
#include <lemon/bucket_heap.h> |
|
35 |
#include <lemon/adaptors.h> |
|
36 |
#include <lemon/edge_set.h> |
|
37 |
#include <lemon/color.h> |
|
38 |
#include <lemon/dim2.h> |
|
39 |
|
|
40 |
namespace lemon { |
|
41 |
|
|
42 |
namespace _planarity_bits { |
|
43 |
|
|
44 |
template <typename Graph> |
|
45 |
struct PlanarityVisitor : DfsVisitor<Graph> { |
|
46 |
|
|
47 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
48 |
|
|
49 |
typedef typename Graph::template NodeMap<Arc> PredMap; |
|
50 |
|
|
51 |
typedef typename Graph::template EdgeMap<bool> TreeMap; |
|
52 |
|
|
53 |
typedef typename Graph::template NodeMap<int> OrderMap; |
|
54 |
typedef std::vector<Node> OrderList; |
|
55 |
|
|
56 |
typedef typename Graph::template NodeMap<int> LowMap; |
|
57 |
typedef typename Graph::template NodeMap<int> AncestorMap; |
|
58 |
|
|
59 |
PlanarityVisitor(const Graph& graph, |
|
60 |
PredMap& pred_map, TreeMap& tree_map, |
|
61 |
OrderMap& order_map, OrderList& order_list, |
|
62 |
AncestorMap& ancestor_map, LowMap& low_map) |
|
63 |
: _graph(graph), _pred_map(pred_map), _tree_map(tree_map), |
|
64 |
_order_map(order_map), _order_list(order_list), |
|
65 |
_ancestor_map(ancestor_map), _low_map(low_map) {} |
|
66 |
|
|
67 |
void reach(const Node& node) { |
|
68 |
_order_map[node] = _order_list.size(); |
|
69 |
_low_map[node] = _order_list.size(); |
|
70 |
_ancestor_map[node] = _order_list.size(); |
|
71 |
_order_list.push_back(node); |
|
72 |
} |
|
73 |
|
|
74 |
void discover(const Arc& arc) { |
|
75 |
Node source = _graph.source(arc); |
|
76 |
Node target = _graph.target(arc); |
|
77 |
|
|
78 |
_tree_map[arc] = true; |
|
79 |
_pred_map[target] = arc; |
|
80 |
} |
|
81 |
|
|
82 |
void examine(const Arc& arc) { |
|
83 |
Node source = _graph.source(arc); |
|
84 |
Node target = _graph.target(arc); |
|
85 |
|
|
86 |
if (_order_map[target] < _order_map[source] && !_tree_map[arc]) { |
|
87 |
if (_low_map[source] > _order_map[target]) { |
|
88 |
_low_map[source] = _order_map[target]; |
|
89 |
} |
|
90 |
if (_ancestor_map[source] > _order_map[target]) { |
|
91 |
_ancestor_map[source] = _order_map[target]; |
|
92 |
} |
|
93 |
} |
|
94 |
} |
|
95 |
|
|
96 |
void backtrack(const Arc& arc) { |
|
97 |
Node source = _graph.source(arc); |
|
98 |
Node target = _graph.target(arc); |
|
99 |
|
|
100 |
if (_low_map[source] > _low_map[target]) { |
|
101 |
_low_map[source] = _low_map[target]; |
|
102 |
} |
|
103 |
} |
|
104 |
|
|
105 |
const Graph& _graph; |
|
106 |
PredMap& _pred_map; |
|
107 |
TreeMap& _tree_map; |
|
108 |
OrderMap& _order_map; |
|
109 |
OrderList& _order_list; |
|
110 |
AncestorMap& _ancestor_map; |
|
111 |
LowMap& _low_map; |
|
112 |
}; |
|
113 |
|
|
114 |
template <typename Graph, bool embedding = true> |
|
115 |
struct NodeDataNode { |
|
116 |
int prev, next; |
|
117 |
int visited; |
|
118 |
typename Graph::Arc first; |
|
119 |
bool inverted; |
|
120 |
}; |
|
121 |
|
|
122 |
template <typename Graph> |
|
123 |
struct NodeDataNode<Graph, false> { |
|
124 |
int prev, next; |
|
125 |
int visited; |
|
126 |
}; |
|
127 |
|
|
128 |
template <typename Graph> |
|
129 |
struct ChildListNode { |
|
130 |
typedef typename Graph::Node Node; |
|
131 |
Node first; |
|
132 |
Node prev, next; |
|
133 |
}; |
|
134 |
|
|
135 |
template <typename Graph> |
|
136 |
struct ArcListNode { |
|
137 |
typename Graph::Arc prev, next; |
|
138 |
}; |
|
139 |
|
|
140 |
} |
|
141 |
|
|
142 |
/// \ingroup planar |
|
143 |
/// |
|
144 |
/// \brief Planarity checking of an undirected simple graph |
|
145 |
/// |
|
146 |
/// This class implements the Boyer-Myrvold algorithm for planarity |
|
147 |
/// checking of an undirected graph. This class is a simplified |
|
148 |
/// version of the PlanarEmbedding algorithm class because neither |
|
149 |
/// the embedding nor the kuratowski subdivisons are not computed. |
|
150 |
template <typename Graph> |
|
151 |
class PlanarityChecking { |
|
152 |
private: |
|
153 |
|
|
154 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
155 |
|
|
156 |
const Graph& _graph; |
|
157 |
|
|
158 |
private: |
|
159 |
|
|
160 |
typedef typename Graph::template NodeMap<Arc> PredMap; |
|
161 |
|
|
162 |
typedef typename Graph::template EdgeMap<bool> TreeMap; |
|
163 |
|
|
164 |
typedef typename Graph::template NodeMap<int> OrderMap; |
|
165 |
typedef std::vector<Node> OrderList; |
|
166 |
|
|
167 |
typedef typename Graph::template NodeMap<int> LowMap; |
|
168 |
typedef typename Graph::template NodeMap<int> AncestorMap; |
|
169 |
|
|
170 |
typedef _planarity_bits::NodeDataNode<Graph> NodeDataNode; |
|
171 |
typedef std::vector<NodeDataNode> NodeData; |
|
172 |
|
|
173 |
typedef _planarity_bits::ChildListNode<Graph> ChildListNode; |
|
174 |
typedef typename Graph::template NodeMap<ChildListNode> ChildLists; |
|
175 |
|
|
176 |
typedef typename Graph::template NodeMap<std::list<int> > MergeRoots; |
|
177 |
|
|
178 |
typedef typename Graph::template NodeMap<bool> EmbedArc; |
|
179 |
|
|
180 |
public: |
|
181 |
|
|
182 |
/// \brief Constructor |
|
183 |
/// |
|
184 |
/// \note The graph should be simple, i.e. parallel and loop arc |
|
185 |
/// free. |
|
186 |
PlanarityChecking(const Graph& graph) : _graph(graph) {} |
|
187 |
|
|
188 |
/// \brief Runs the algorithm. |
|
189 |
/// |
|
190 |
/// Runs the algorithm. |
|
191 |
/// \return %True when the graph is planar. |
|
192 |
bool run() { |
|
193 |
typedef _planarity_bits::PlanarityVisitor<Graph> Visitor; |
|
194 |
|
|
195 |
PredMap pred_map(_graph, INVALID); |
|
196 |
TreeMap tree_map(_graph, false); |
|
197 |
|
|
198 |
OrderMap order_map(_graph, -1); |
|
199 |
OrderList order_list; |
|
200 |
|
|
201 |
AncestorMap ancestor_map(_graph, -1); |
|
202 |
LowMap low_map(_graph, -1); |
|
203 |
|
|
204 |
Visitor visitor(_graph, pred_map, tree_map, |
|
205 |
order_map, order_list, ancestor_map, low_map); |
|
206 |
DfsVisit<Graph, Visitor> visit(_graph, visitor); |
|
207 |
visit.run(); |
|
208 |
|
|
209 |
ChildLists child_lists(_graph); |
|
210 |
createChildLists(tree_map, order_map, low_map, child_lists); |
|
211 |
|
|
212 |
NodeData node_data(2 * order_list.size()); |
|
213 |
|
|
214 |
EmbedArc embed_arc(_graph, false); |
|
215 |
|
|
216 |
MergeRoots merge_roots(_graph); |
|
217 |
|
|
218 |
for (int i = order_list.size() - 1; i >= 0; --i) { |
|
219 |
|
|
220 |
Node node = order_list[i]; |
|
221 |
|
|
222 |
Node source = node; |
|
223 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) { |
|
224 |
Node target = _graph.target(e); |
|
225 |
|
|
226 |
if (order_map[source] < order_map[target] && tree_map[e]) { |
|
227 |
initFace(target, node_data, order_map, order_list); |
|
228 |
} |
|
229 |
} |
|
230 |
|
|
231 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) { |
|
232 |
Node target = _graph.target(e); |
|
233 |
|
|
234 |
if (order_map[source] < order_map[target] && !tree_map[e]) { |
|
235 |
embed_arc[target] = true; |
|
236 |
walkUp(target, source, i, pred_map, low_map, |
|
237 |
order_map, order_list, node_data, merge_roots); |
|
238 |
} |
|
239 |
} |
|
240 |
|
|
241 |
for (typename MergeRoots::Value::iterator it = |
|
242 |
merge_roots[node].begin(); it != merge_roots[node].end(); ++it) { |
|
243 |
int rn = *it; |
|
244 |
walkDown(rn, i, node_data, order_list, child_lists, |
|
245 |
ancestor_map, low_map, embed_arc, merge_roots); |
|
246 |
} |
|
247 |
merge_roots[node].clear(); |
|
248 |
|
|
249 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) { |
|
250 |
Node target = _graph.target(e); |
|
251 |
|
|
252 |
if (order_map[source] < order_map[target] && !tree_map[e]) { |
|
253 |
if (embed_arc[target]) { |
|
254 |
return false; |
|
255 |
} |
|
256 |
} |
|
257 |
} |
|
258 |
} |
|
259 |
|
|
260 |
return true; |
|
261 |
} |
|
262 |
|
|
263 |
private: |
|
264 |
|
|
265 |
void createChildLists(const TreeMap& tree_map, const OrderMap& order_map, |
|
266 |
const LowMap& low_map, ChildLists& child_lists) { |
|
267 |
|
|
268 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
269 |
Node source = n; |
|
270 |
|
|
271 |
std::vector<Node> targets; |
|
272 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
|
273 |
Node target = _graph.target(e); |
|
274 |
|
|
275 |
if (order_map[source] < order_map[target] && tree_map[e]) { |
|
276 |
targets.push_back(target); |
|
277 |
} |
|
278 |
} |
|
279 |
|
|
280 |
if (targets.size() == 0) { |
|
281 |
child_lists[source].first = INVALID; |
|
282 |
} else if (targets.size() == 1) { |
|
283 |
child_lists[source].first = targets[0]; |
|
284 |
child_lists[targets[0]].prev = INVALID; |
|
285 |
child_lists[targets[0]].next = INVALID; |
|
286 |
} else { |
|
287 |
radixSort(targets.begin(), targets.end(), mapToFunctor(low_map)); |
|
288 |
for (int i = 1; i < int(targets.size()); ++i) { |
|
289 |
child_lists[targets[i]].prev = targets[i - 1]; |
|
290 |
child_lists[targets[i - 1]].next = targets[i]; |
|
291 |
} |
|
292 |
child_lists[targets.back()].next = INVALID; |
|
293 |
child_lists[targets.front()].prev = INVALID; |
|
294 |
child_lists[source].first = targets.front(); |
|
295 |
} |
|
296 |
} |
|
297 |
} |
|
298 |
|
|
299 |
void walkUp(const Node& node, Node root, int rorder, |
|
300 |
const PredMap& pred_map, const LowMap& low_map, |
|
301 |
const OrderMap& order_map, const OrderList& order_list, |
|
302 |
NodeData& node_data, MergeRoots& merge_roots) { |
|
303 |
|
|
304 |
int na, nb; |
|
305 |
bool da, db; |
|
306 |
|
|
307 |
na = nb = order_map[node]; |
|
308 |
da = true; db = false; |
|
309 |
|
|
310 |
while (true) { |
|
311 |
|
|
312 |
if (node_data[na].visited == rorder) break; |
|
313 |
if (node_data[nb].visited == rorder) break; |
|
314 |
|
|
315 |
node_data[na].visited = rorder; |
|
316 |
node_data[nb].visited = rorder; |
|
317 |
|
|
318 |
int rn = -1; |
|
319 |
|
|
320 |
if (na >= int(order_list.size())) { |
|
321 |
rn = na; |
|
322 |
} else if (nb >= int(order_list.size())) { |
|
323 |
rn = nb; |
|
324 |
} |
|
325 |
|
|
326 |
if (rn == -1) { |
|
327 |
int nn; |
|
328 |
|
|
329 |
nn = da ? node_data[na].prev : node_data[na].next; |
|
330 |
da = node_data[nn].prev != na; |
|
331 |
na = nn; |
|
332 |
|
|
333 |
nn = db ? node_data[nb].prev : node_data[nb].next; |
|
334 |
db = node_data[nn].prev != nb; |
|
335 |
nb = nn; |
|
336 |
|
|
337 |
} else { |
|
338 |
|
|
339 |
Node rep = order_list[rn - order_list.size()]; |
|
340 |
Node parent = _graph.source(pred_map[rep]); |
|
341 |
|
|
342 |
if (low_map[rep] < rorder) { |
|
343 |
merge_roots[parent].push_back(rn); |
|
344 |
} else { |
|
345 |
merge_roots[parent].push_front(rn); |
|
346 |
} |
|
347 |
|
|
348 |
if (parent != root) { |
|
349 |
na = nb = order_map[parent]; |
|
350 |
da = true; db = false; |
|
351 |
} else { |
|
352 |
break; |
|
353 |
} |
|
354 |
} |
|
355 |
} |
|
356 |
} |
|
357 |
|
|
358 |
void walkDown(int rn, int rorder, NodeData& node_data, |
|
359 |
OrderList& order_list, ChildLists& child_lists, |
|
360 |
AncestorMap& ancestor_map, LowMap& low_map, |
|
361 |
EmbedArc& embed_arc, MergeRoots& merge_roots) { |
|
362 |
|
|
363 |
std::vector<std::pair<int, bool> > merge_stack; |
|
364 |
|
|
365 |
for (int di = 0; di < 2; ++di) { |
|
366 |
bool rd = di == 0; |
|
367 |
int pn = rn; |
|
368 |
int n = rd ? node_data[rn].next : node_data[rn].prev; |
|
369 |
|
|
370 |
while (n != rn) { |
|
371 |
|
|
372 |
Node node = order_list[n]; |
|
373 |
|
|
374 |
if (embed_arc[node]) { |
|
375 |
|
|
376 |
// Merging components on the critical path |
|
377 |
while (!merge_stack.empty()) { |
|
378 |
|
|
379 |
// Component root |
|
380 |
int cn = merge_stack.back().first; |
|
381 |
bool cd = merge_stack.back().second; |
|
382 |
merge_stack.pop_back(); |
|
383 |
|
|
384 |
// Parent of component |
|
385 |
int dn = merge_stack.back().first; |
|
386 |
bool dd = merge_stack.back().second; |
|
387 |
merge_stack.pop_back(); |
|
388 |
|
|
389 |
Node parent = order_list[dn]; |
|
390 |
|
|
391 |
// Erasing from merge_roots |
|
392 |
merge_roots[parent].pop_front(); |
|
393 |
|
|
394 |
Node child = order_list[cn - order_list.size()]; |
|
395 |
|
|
396 |
// Erasing from child_lists |
|
397 |
if (child_lists[child].prev != INVALID) { |
|
398 |
child_lists[child_lists[child].prev].next = |
|
399 |
child_lists[child].next; |
|
400 |
} else { |
|
401 |
child_lists[parent].first = child_lists[child].next; |
|
402 |
} |
|
403 |
|
|
404 |
if (child_lists[child].next != INVALID) { |
|
405 |
child_lists[child_lists[child].next].prev = |
|
406 |
child_lists[child].prev; |
|
407 |
} |
|
408 |
|
|
409 |
// Merging external faces |
|
410 |
{ |
|
411 |
int en = cn; |
|
412 |
cn = cd ? node_data[cn].prev : node_data[cn].next; |
|
413 |
cd = node_data[cn].next == en; |
|
414 |
|
|
415 |
} |
|
416 |
|
|
417 |
if (cd) node_data[cn].next = dn; else node_data[cn].prev = dn; |
|
418 |
if (dd) node_data[dn].prev = cn; else node_data[dn].next = cn; |
|
419 |
|
|
420 |
} |
|
421 |
|
|
422 |
bool d = pn == node_data[n].prev; |
|
423 |
|
|
424 |
if (node_data[n].prev == node_data[n].next && |
|
425 |
node_data[n].inverted) { |
|
426 |
d = !d; |
|
427 |
} |
|
428 |
|
|
429 |
// Embedding arc into external face |
|
430 |
if (rd) node_data[rn].next = n; else node_data[rn].prev = n; |
|
431 |
if (d) node_data[n].prev = rn; else node_data[n].next = rn; |
|
432 |
pn = rn; |
|
433 |
|
|
434 |
embed_arc[order_list[n]] = false; |
|
435 |
} |
|
436 |
|
|
437 |
if (!merge_roots[node].empty()) { |
|
438 |
|
|
439 |
bool d = pn == node_data[n].prev; |
|
440 |
|
|
441 |
merge_stack.push_back(std::make_pair(n, d)); |
|
442 |
|
|
443 |
int rn = merge_roots[node].front(); |
|
444 |
|
|
445 |
int xn = node_data[rn].next; |
|
446 |
Node xnode = order_list[xn]; |
|
447 |
|
|
448 |
int yn = node_data[rn].prev; |
|
449 |
Node ynode = order_list[yn]; |
|
450 |
|
|
451 |
bool rd; |
|
452 |
if (!external(xnode, rorder, child_lists, ancestor_map, low_map)) { |
|
453 |
rd = true; |
|
454 |
} else if (!external(ynode, rorder, child_lists, |
|
455 |
ancestor_map, low_map)) { |
|
456 |
rd = false; |
|
457 |
} else if (pertinent(xnode, embed_arc, merge_roots)) { |
|
458 |
rd = true; |
|
459 |
} else { |
|
460 |
rd = false; |
|
461 |
} |
|
462 |
|
|
463 |
merge_stack.push_back(std::make_pair(rn, rd)); |
|
464 |
|
|
465 |
pn = rn; |
|
466 |
n = rd ? xn : yn; |
|
467 |
|
|
468 |
} else if (!external(node, rorder, child_lists, |
|
469 |
ancestor_map, low_map)) { |
|
470 |
int nn = (node_data[n].next != pn ? |
|
471 |
node_data[n].next : node_data[n].prev); |
|
472 |
|
|
473 |
bool nd = n == node_data[nn].prev; |
|
474 |
|
|
475 |
if (nd) node_data[nn].prev = pn; |
|
476 |
else node_data[nn].next = pn; |
|
477 |
|
|
478 |
if (n == node_data[pn].prev) node_data[pn].prev = nn; |
|
479 |
else node_data[pn].next = nn; |
|
480 |
|
|
481 |
node_data[nn].inverted = |
|
482 |
(node_data[nn].prev == node_data[nn].next && nd != rd); |
|
483 |
|
|
484 |
n = nn; |
|
485 |
} |
|
486 |
else break; |
|
487 |
|
|
488 |
} |
|
489 |
|
|
490 |
if (!merge_stack.empty() || n == rn) { |
|
491 |
break; |
|
492 |
} |
|
493 |
} |
|
494 |
} |
|
495 |
|
|
496 |
void initFace(const Node& node, NodeData& node_data, |
|
497 |
const OrderMap& order_map, const OrderList& order_list) { |
|
498 |
int n = order_map[node]; |
|
499 |
int rn = n + order_list.size(); |
|
500 |
|
|
501 |
node_data[n].next = node_data[n].prev = rn; |
|
502 |
node_data[rn].next = node_data[rn].prev = n; |
|
503 |
|
|
504 |
node_data[n].visited = order_list.size(); |
|
505 |
node_data[rn].visited = order_list.size(); |
|
506 |
|
|
507 |
} |
|
508 |
|
|
509 |
bool external(const Node& node, int rorder, |
|
510 |
ChildLists& child_lists, AncestorMap& ancestor_map, |
|
511 |
LowMap& low_map) { |
|
512 |
Node child = child_lists[node].first; |
|
513 |
|
|
514 |
if (child != INVALID) { |
|
515 |
if (low_map[child] < rorder) return true; |
|
516 |
} |
|
517 |
|
|
518 |
if (ancestor_map[node] < rorder) return true; |
|
519 |
|
|
520 |
return false; |
|
521 |
} |
|
522 |
|
|
523 |
bool pertinent(const Node& node, const EmbedArc& embed_arc, |
|
524 |
const MergeRoots& merge_roots) { |
|
525 |
return !merge_roots[node].empty() || embed_arc[node]; |
|
526 |
} |
|
527 |
|
|
528 |
}; |
|
529 |
|
|
530 |
/// \ingroup planar |
|
531 |
/// |
|
532 |
/// \brief Planar embedding of an undirected simple graph |
|
533 |
/// |
|
534 |
/// This class implements the Boyer-Myrvold algorithm for planar |
|
535 |
/// embedding of an undirected graph. The planar embedding is an |
|
536 |
/// ordering of the outgoing edges of the nodes, which is a possible |
|
537 |
/// configuration to draw the graph in the plane. If there is not |
|
538 |
/// such ordering then the graph contains a \f$ K_5 \f$ (full graph |
|
539 |
/// with 5 nodes) or a \f$ K_{3,3} \f$ (complete bipartite graph on |
|
540 |
/// 3 ANode and 3 BNode) subdivision. |
|
541 |
/// |
|
542 |
/// The current implementation calculates either an embedding or a |
|
543 |
/// Kuratowski subdivision. The running time of the algorithm is |
|
544 |
/// \f$ O(n) \f$. |
|
545 |
template <typename Graph> |
|
546 |
class PlanarEmbedding { |
|
547 |
private: |
|
548 |
|
|
549 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
550 |
|
|
551 |
const Graph& _graph; |
|
552 |
typename Graph::template ArcMap<Arc> _embedding; |
|
553 |
|
|
554 |
typename Graph::template EdgeMap<bool> _kuratowski; |
|
555 |
|
|
556 |
private: |
|
557 |
|
|
558 |
typedef typename Graph::template NodeMap<Arc> PredMap; |
|
559 |
|
|
560 |
typedef typename Graph::template EdgeMap<bool> TreeMap; |
|
561 |
|
|
562 |
typedef typename Graph::template NodeMap<int> OrderMap; |
|
563 |
typedef std::vector<Node> OrderList; |
|
564 |
|
|
565 |
typedef typename Graph::template NodeMap<int> LowMap; |
|
566 |
typedef typename Graph::template NodeMap<int> AncestorMap; |
|
567 |
|
|
568 |
typedef _planarity_bits::NodeDataNode<Graph> NodeDataNode; |
|
569 |
typedef std::vector<NodeDataNode> NodeData; |
|
570 |
|
|
571 |
typedef _planarity_bits::ChildListNode<Graph> ChildListNode; |
|
572 |
typedef typename Graph::template NodeMap<ChildListNode> ChildLists; |
|
573 |
|
|
574 |
typedef typename Graph::template NodeMap<std::list<int> > MergeRoots; |
|
575 |
|
|
576 |
typedef typename Graph::template NodeMap<Arc> EmbedArc; |
|
577 |
|
|
578 |
typedef _planarity_bits::ArcListNode<Graph> ArcListNode; |
|
579 |
typedef typename Graph::template ArcMap<ArcListNode> ArcLists; |
|
580 |
|
|
581 |
typedef typename Graph::template NodeMap<bool> FlipMap; |
|
582 |
|
|
583 |
typedef typename Graph::template NodeMap<int> TypeMap; |
|
584 |
|
|
585 |
enum IsolatorNodeType { |
|
586 |
HIGHX = 6, LOWX = 7, |
|
587 |
HIGHY = 8, LOWY = 9, |
|
588 |
ROOT = 10, PERTINENT = 11, |
|
589 |
INTERNAL = 12 |
|
590 |
}; |
|
591 |
|
|
592 |
public: |
|
593 |
|
|
594 |
/// \brief The map for store of embedding |
|
595 |
typedef typename Graph::template ArcMap<Arc> EmbeddingMap; |
|
596 |
|
|
597 |
/// \brief Constructor |
|
598 |
/// |
|
599 |
/// \note The graph should be simple, i.e. parallel and loop arc |
|
600 |
/// free. |
|
601 |
PlanarEmbedding(const Graph& graph) |
|
602 |
: _graph(graph), _embedding(_graph), _kuratowski(graph, false) {} |
|
603 |
|
|
604 |
/// \brief Runs the algorithm. |
|
605 |
/// |
|
606 |
/// Runs the algorithm. |
|
607 |
/// \param kuratowski If the parameter is false, then the |
|
608 |
/// algorithm does not compute a Kuratowski subdivision. |
|
609 |
///\return %True when the graph is planar. |
|
610 |
bool run(bool kuratowski = true) { |
|
611 |
typedef _planarity_bits::PlanarityVisitor<Graph> Visitor; |
|
612 |
|
|
613 |
PredMap pred_map(_graph, INVALID); |
|
614 |
TreeMap tree_map(_graph, false); |
|
615 |
|
|
616 |
OrderMap order_map(_graph, -1); |
|
617 |
OrderList order_list; |
|
618 |
|
|
619 |
AncestorMap ancestor_map(_graph, -1); |
|
620 |
LowMap low_map(_graph, -1); |
|
621 |
|
|
622 |
Visitor visitor(_graph, pred_map, tree_map, |
|
623 |
order_map, order_list, ancestor_map, low_map); |
|
624 |
DfsVisit<Graph, Visitor> visit(_graph, visitor); |
|
625 |
visit.run(); |
|
626 |
|
|
627 |
ChildLists child_lists(_graph); |
|
628 |
createChildLists(tree_map, order_map, low_map, child_lists); |
|
629 |
|
|
630 |
NodeData node_data(2 * order_list.size()); |
|
631 |
|
|
632 |
EmbedArc embed_arc(_graph, INVALID); |
|
633 |
|
|
634 |
MergeRoots merge_roots(_graph); |
|
635 |
|
|
636 |
ArcLists arc_lists(_graph); |
|
637 |
|
|
638 |
FlipMap flip_map(_graph, false); |
|
639 |
|
|
640 |
for (int i = order_list.size() - 1; i >= 0; --i) { |
|
641 |
|
|
642 |
Node node = order_list[i]; |
|
643 |
|
|
644 |
node_data[i].first = INVALID; |
|
645 |
|
|
646 |
Node source = node; |
|
647 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) { |
|
648 |
Node target = _graph.target(e); |
|
649 |
|
|
650 |
if (order_map[source] < order_map[target] && tree_map[e]) { |
|
651 |
initFace(target, arc_lists, node_data, |
|
652 |
pred_map, order_map, order_list); |
|
653 |
} |
|
654 |
} |
|
655 |
|
|
656 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) { |
|
657 |
Node target = _graph.target(e); |
|
658 |
|
|
659 |
if (order_map[source] < order_map[target] && !tree_map[e]) { |
|
660 |
embed_arc[target] = e; |
|
661 |
walkUp(target, source, i, pred_map, low_map, |
|
662 |
order_map, order_list, node_data, merge_roots); |
|
663 |
} |
|
664 |
} |
|
665 |
|
|
666 |
for (typename MergeRoots::Value::iterator it = |
|
667 |
merge_roots[node].begin(); it != merge_roots[node].end(); ++it) { |
|
668 |
int rn = *it; |
|
669 |
walkDown(rn, i, node_data, arc_lists, flip_map, order_list, |
|
670 |
child_lists, ancestor_map, low_map, embed_arc, merge_roots); |
|
671 |
} |
|
672 |
merge_roots[node].clear(); |
|
673 |
|
|
674 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) { |
|
675 |
Node target = _graph.target(e); |
|
676 |
|
|
677 |
if (order_map[source] < order_map[target] && !tree_map[e]) { |
|
678 |
if (embed_arc[target] != INVALID) { |
|
679 |
if (kuratowski) { |
|
680 |
isolateKuratowski(e, node_data, arc_lists, flip_map, |
|
681 |
order_map, order_list, pred_map, child_lists, |
|
682 |
ancestor_map, low_map, |
|
683 |
embed_arc, merge_roots); |
|
684 |
} |
|
685 |
return false; |
|
686 |
} |
|
687 |
} |
|
688 |
} |
|
689 |
} |
|
690 |
|
|
691 |
for (int i = 0; i < int(order_list.size()); ++i) { |
|
692 |
|
|
693 |
mergeRemainingFaces(order_list[i], node_data, order_list, order_map, |
|
694 |
child_lists, arc_lists); |
|
695 |
storeEmbedding(order_list[i], node_data, order_map, pred_map, |
|
696 |
arc_lists, flip_map); |
|
697 |
} |
|
698 |
|
|
699 |
return true; |
|
700 |
} |
|
701 |
|
|
702 |
/// \brief Gives back the successor of an arc |
|
703 |
/// |
|
704 |
/// Gives back the successor of an arc. This function makes |
|
705 |
/// possible to query the cyclic order of the outgoing arcs from |
|
706 |
/// a node. |
|
707 |
Arc next(const Arc& arc) const { |
|
708 |
return _embedding[arc]; |
|
709 |
} |
|
710 |
|
|
711 |
/// \brief Gives back the calculated embedding map |
|
712 |
/// |
|
713 |
/// The returned map contains the successor of each arc in the |
|
714 |
/// graph. |
|
715 |
const EmbeddingMap& embedding() const { |
|
716 |
return _embedding; |
|
717 |
} |
|
718 |
|
|
719 |
/// \brief Gives back true if the undirected arc is in the |
|
720 |
/// kuratowski subdivision |
|
721 |
/// |
|
722 |
/// Gives back true if the undirected arc is in the kuratowski |
|
723 |
/// subdivision |
|
724 |
/// \note The \c run() had to be called with true value. |
|
725 |
bool kuratowski(const Edge& edge) { |
|
726 |
return _kuratowski[edge]; |
|
727 |
} |
|
728 |
|
|
729 |
private: |
|
730 |
|
|
731 |
void createChildLists(const TreeMap& tree_map, const OrderMap& order_map, |
|
732 |
const LowMap& low_map, ChildLists& child_lists) { |
|
733 |
|
|
734 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
735 |
Node source = n; |
|
736 |
|
|
737 |
std::vector<Node> targets; |
|
738 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
|
739 |
Node target = _graph.target(e); |
|
740 |
|
|
741 |
if (order_map[source] < order_map[target] && tree_map[e]) { |
|
742 |
targets.push_back(target); |
|
743 |
} |
|
744 |
} |
|
745 |
|
|
746 |
if (targets.size() == 0) { |
|
747 |
child_lists[source].first = INVALID; |
|
748 |
} else if (targets.size() == 1) { |
|
749 |
child_lists[source].first = targets[0]; |
|
750 |
child_lists[targets[0]].prev = INVALID; |
|
751 |
child_lists[targets[0]].next = INVALID; |
|
752 |
} else { |
|
753 |
radixSort(targets.begin(), targets.end(), mapToFunctor(low_map)); |
|
754 |
for (int i = 1; i < int(targets.size()); ++i) { |
|
755 |
child_lists[targets[i]].prev = targets[i - 1]; |
|
756 |
child_lists[targets[i - 1]].next = targets[i]; |
|
757 |
} |
|
758 |
child_lists[targets.back()].next = INVALID; |
|
759 |
child_lists[targets.front()].prev = INVALID; |
|
760 |
child_lists[source].first = targets.front(); |
|
761 |
} |
|
762 |
} |
|
763 |
} |
|
764 |
|
|
765 |
void walkUp(const Node& node, Node root, int rorder, |
|
766 |
const PredMap& pred_map, const LowMap& low_map, |
|
767 |
const OrderMap& order_map, const OrderList& order_list, |
|
768 |
NodeData& node_data, MergeRoots& merge_roots) { |
|
769 |
|
|
770 |
int na, nb; |
|
771 |
bool da, db; |
|
772 |
|
|
773 |
na = nb = order_map[node]; |
|
774 |
da = true; db = false; |
|
775 |
|
|
776 |
while (true) { |
|
777 |
|
|
778 |
if (node_data[na].visited == rorder) break; |
|
779 |
if (node_data[nb].visited == rorder) break; |
|
780 |
|
|
781 |
node_data[na].visited = rorder; |
|
782 |
node_data[nb].visited = rorder; |
|
783 |
|
|
784 |
int rn = -1; |
|
785 |
|
|
786 |
if (na >= int(order_list.size())) { |
|
787 |
rn = na; |
|
788 |
} else if (nb >= int(order_list.size())) { |
|
789 |
rn = nb; |
|
790 |
} |
|
791 |
|
|
792 |
if (rn == -1) { |
|
793 |
int nn; |
|
794 |
|
|
795 |
nn = da ? node_data[na].prev : node_data[na].next; |
|
796 |
da = node_data[nn].prev != na; |
|
797 |
na = nn; |
|
798 |
|
|
799 |
nn = db ? node_data[nb].prev : node_data[nb].next; |
|
800 |
db = node_data[nn].prev != nb; |
|
801 |
nb = nn; |
|
802 |
|
|
803 |
} else { |
|
804 |
|
|
805 |
Node rep = order_list[rn - order_list.size()]; |
|
806 |
Node parent = _graph.source(pred_map[rep]); |
|
807 |
|
|
808 |
if (low_map[rep] < rorder) { |
|
809 |
merge_roots[parent].push_back(rn); |
|
810 |
} else { |
|
811 |
merge_roots[parent].push_front(rn); |
|
812 |
} |
|
813 |
|
|
814 |
if (parent != root) { |
|
815 |
na = nb = order_map[parent]; |
|
816 |
da = true; db = false; |
|
817 |
} else { |
|
818 |
break; |
|
819 |
} |
|
820 |
} |
|
821 |
} |
|
822 |
} |
|
823 |
|
|
824 |
void walkDown(int rn, int rorder, NodeData& node_data, |
|
825 |
ArcLists& arc_lists, FlipMap& flip_map, |
|
826 |
OrderList& order_list, ChildLists& child_lists, |
|
827 |
AncestorMap& ancestor_map, LowMap& low_map, |
|
828 |
EmbedArc& embed_arc, MergeRoots& merge_roots) { |
|
829 |
|
|
830 |
std::vector<std::pair<int, bool> > merge_stack; |
|
831 |
|
|
832 |
for (int di = 0; di < 2; ++di) { |
|
833 |
bool rd = di == 0; |
|
834 |
int pn = rn; |
|
835 |
int n = rd ? node_data[rn].next : node_data[rn].prev; |
|
836 |
|
|
837 |
while (n != rn) { |
|
838 |
|
|
839 |
Node node = order_list[n]; |
|
840 |
|
|
841 |
if (embed_arc[node] != INVALID) { |
|
842 |
|
|
843 |
// Merging components on the critical path |
|
844 |
while (!merge_stack.empty()) { |
|
845 |
|
|
846 |
// Component root |
|
847 |
int cn = merge_stack.back().first; |
|
848 |
bool cd = merge_stack.back().second; |
|
849 |
merge_stack.pop_back(); |
|
850 |
|
|
851 |
// Parent of component |
|
852 |
int dn = merge_stack.back().first; |
|
853 |
bool dd = merge_stack.back().second; |
|
854 |
merge_stack.pop_back(); |
|
855 |
|
|
856 |
Node parent = order_list[dn]; |
|
857 |
|
|
858 |
// Erasing from merge_roots |
|
859 |
merge_roots[parent].pop_front(); |
|
860 |
|
|
861 |
Node child = order_list[cn - order_list.size()]; |
|
862 |
|
|
863 |
// Erasing from child_lists |
|
864 |
if (child_lists[child].prev != INVALID) { |
|
865 |
child_lists[child_lists[child].prev].next = |
|
866 |
child_lists[child].next; |
|
867 |
} else { |
|
868 |
child_lists[parent].first = child_lists[child].next; |
|
869 |
} |
|
870 |
|
|
871 |
if (child_lists[child].next != INVALID) { |
|
872 |
child_lists[child_lists[child].next].prev = |
|
873 |
child_lists[child].prev; |
|
874 |
} |
|
875 |
|
|
876 |
// Merging arcs + flipping |
|
877 |
Arc de = node_data[dn].first; |
|
878 |
Arc ce = node_data[cn].first; |
|
879 |
|
|
880 |
flip_map[order_list[cn - order_list.size()]] = cd != dd; |
|
881 |
if (cd != dd) { |
|
882 |
std::swap(arc_lists[ce].prev, arc_lists[ce].next); |
|
883 |
ce = arc_lists[ce].prev; |
|
884 |
std::swap(arc_lists[ce].prev, arc_lists[ce].next); |
|
885 |
} |
|
886 |
|
|
887 |
{ |
|
888 |
Arc dne = arc_lists[de].next; |
|
889 |
Arc cne = arc_lists[ce].next; |
|
890 |
|
|
891 |
arc_lists[de].next = cne; |
|
892 |
arc_lists[ce].next = dne; |
|
893 |
|
|
894 |
arc_lists[dne].prev = ce; |
|
895 |
arc_lists[cne].prev = de; |
|
896 |
} |
|
897 |
|
|
898 |
if (dd) { |
|
899 |
node_data[dn].first = ce; |
|
900 |
} |
|
901 |
|
|
902 |
// Merging external faces |
|
903 |
{ |
|
904 |
int en = cn; |
|
905 |
cn = cd ? node_data[cn].prev : node_data[cn].next; |
|
906 |
cd = node_data[cn].next == en; |
|
907 |
|
|
908 |
if (node_data[cn].prev == node_data[cn].next && |
|
909 |
node_data[cn].inverted) { |
|
910 |
cd = !cd; |
|
911 |
} |
|
912 |
} |
|
913 |
|
|
914 |
if (cd) node_data[cn].next = dn; else node_data[cn].prev = dn; |
|
915 |
if (dd) node_data[dn].prev = cn; else node_data[dn].next = cn; |
|
916 |
|
|
917 |
} |
|
918 |
|
|
919 |
bool d = pn == node_data[n].prev; |
|
920 |
|
|
921 |
if (node_data[n].prev == node_data[n].next && |
|
922 |
node_data[n].inverted) { |
|
923 |
d = !d; |
|
924 |
} |
|
925 |
|
|
926 |
// Add new arc |
|
927 |
{ |
|
928 |
Arc arc = embed_arc[node]; |
|
929 |
Arc re = node_data[rn].first; |
|
930 |
|
|
931 |
arc_lists[arc_lists[re].next].prev = arc; |
|
932 |
arc_lists[arc].next = arc_lists[re].next; |
|
933 |
arc_lists[arc].prev = re; |
|
934 |
arc_lists[re].next = arc; |
|
935 |
|
|
936 |
if (!rd) { |
|
937 |
node_data[rn].first = arc; |
|
938 |
} |
|
939 |
|
|
940 |
Arc rev = _graph.oppositeArc(arc); |
|
941 |
Arc e = node_data[n].first; |
|
942 |
|
|
943 |
arc_lists[arc_lists[e].next].prev = rev; |
|
944 |
arc_lists[rev].next = arc_lists[e].next; |
|
945 |
arc_lists[rev].prev = e; |
|
946 |
arc_lists[e].next = rev; |
|
947 |
|
|
948 |
if (d) { |
|
949 |
node_data[n].first = rev; |
|
950 |
} |
|
951 |
|
|
952 |
} |
|
953 |
|
|
954 |
// Embedding arc into external face |
|
955 |
if (rd) node_data[rn].next = n; else node_data[rn].prev = n; |
|
956 |
if (d) node_data[n].prev = rn; else node_data[n].next = rn; |
|
957 |
pn = rn; |
|
958 |
|
|
959 |
embed_arc[order_list[n]] = INVALID; |
|
960 |
} |
|
961 |
|
|
962 |
if (!merge_roots[node].empty()) { |
|
963 |
|
|
964 |
bool d = pn == node_data[n].prev; |
|
965 |
if (node_data[n].prev == node_data[n].next && |
|
966 |
node_data[n].inverted) { |
|
967 |
d = !d; |
|
968 |
} |
|
969 |
|
|
970 |
merge_stack.push_back(std::make_pair(n, d)); |
|
971 |
|
|
972 |
int rn = merge_roots[node].front(); |
|
973 |
|
|
974 |
int xn = node_data[rn].next; |
|
975 |
Node xnode = order_list[xn]; |
|
976 |
|
|
977 |
int yn = node_data[rn].prev; |
|
978 |
Node ynode = order_list[yn]; |
|
979 |
|
|
980 |
bool rd; |
|
981 |
if (!external(xnode, rorder, child_lists, ancestor_map, low_map)) { |
|
982 |
rd = true; |
|
983 |
} else if (!external(ynode, rorder, child_lists, |
|
984 |
ancestor_map, low_map)) { |
|
985 |
rd = false; |
|
986 |
} else if (pertinent(xnode, embed_arc, merge_roots)) { |
|
987 |
rd = true; |
|
988 |
} else { |
|
989 |
rd = false; |
|
990 |
} |
|
991 |
|
|
992 |
merge_stack.push_back(std::make_pair(rn, rd)); |
|
993 |
|
|
994 |
pn = rn; |
|
995 |
n = rd ? xn : yn; |
|
996 |
|
|
997 |
} else if (!external(node, rorder, child_lists, |
|
998 |
ancestor_map, low_map)) { |
|
999 |
int nn = (node_data[n].next != pn ? |
|
1000 |
node_data[n].next : node_data[n].prev); |
|
1001 |
|
|
1002 |
bool nd = n == node_data[nn].prev; |
|
1003 |
|
|
1004 |
if (nd) node_data[nn].prev = pn; |
|
1005 |
else node_data[nn].next = pn; |
|
1006 |
|
|
1007 |
if (n == node_data[pn].prev) node_data[pn].prev = nn; |
|
1008 |
else node_data[pn].next = nn; |
|
1009 |
|
|
1010 |
node_data[nn].inverted = |
|
1011 |
(node_data[nn].prev == node_data[nn].next && nd != rd); |
|
1012 |
|
|
1013 |
n = nn; |
|
1014 |
} |
|
1015 |
else break; |
|
1016 |
|
|
1017 |
} |
|
1018 |
|
|
1019 |
if (!merge_stack.empty() || n == rn) { |
|
1020 |
break; |
|
1021 |
} |
|
1022 |
} |
|
1023 |
} |
|
1024 |
|
|
1025 |
void initFace(const Node& node, ArcLists& arc_lists, |
|
1026 |
NodeData& node_data, const PredMap& pred_map, |
|
1027 |
const OrderMap& order_map, const OrderList& order_list) { |
|
1028 |
int n = order_map[node]; |
|
1029 |
int rn = n + order_list.size(); |
|
1030 |
|
|
1031 |
node_data[n].next = node_data[n].prev = rn; |
|
1032 |
node_data[rn].next = node_data[rn].prev = n; |
|
1033 |
|
|
1034 |
node_data[n].visited = order_list.size(); |
|
1035 |
node_data[rn].visited = order_list.size(); |
|
1036 |
|
|
1037 |
node_data[n].inverted = false; |
|
1038 |
node_data[rn].inverted = false; |
|
1039 |
|
|
1040 |
Arc arc = pred_map[node]; |
|
1041 |
Arc rev = _graph.oppositeArc(arc); |
|
1042 |
|
|
1043 |
node_data[rn].first = arc; |
|
1044 |
node_data[n].first = rev; |
|
1045 |
|
|
1046 |
arc_lists[arc].prev = arc; |
|
1047 |
arc_lists[arc].next = arc; |
|
1048 |
|
|
1049 |
arc_lists[rev].prev = rev; |
|
1050 |
arc_lists[rev].next = rev; |
|
1051 |
|
|
1052 |
} |
|
1053 |
|
|
1054 |
void mergeRemainingFaces(const Node& node, NodeData& node_data, |
|
1055 |
OrderList& order_list, OrderMap& order_map, |
|
1056 |
ChildLists& child_lists, ArcLists& arc_lists) { |
|
1057 |
while (child_lists[node].first != INVALID) { |
|
1058 |
int dd = order_map[node]; |
|
1059 |
Node child = child_lists[node].first; |
|
1060 |
int cd = order_map[child] + order_list.size(); |
|
1061 |
child_lists[node].first = child_lists[child].next; |
|
1062 |
|
|
1063 |
Arc de = node_data[dd].first; |
|
1064 |
Arc ce = node_data[cd].first; |
|
1065 |
|
|
1066 |
if (de != INVALID) { |
|
1067 |
Arc dne = arc_lists[de].next; |
|
1068 |
Arc cne = arc_lists[ce].next; |
|
1069 |
|
|
1070 |
arc_lists[de].next = cne; |
|
1071 |
arc_lists[ce].next = dne; |
|
1072 |
|
|
1073 |
arc_lists[dne].prev = ce; |
|
1074 |
arc_lists[cne].prev = de; |
|
1075 |
} |
|
1076 |
|
|
1077 |
node_data[dd].first = ce; |
|
1078 |
|
|
1079 |
} |
|
1080 |
} |
|
1081 |
|
|
1082 |
void storeEmbedding(const Node& node, NodeData& node_data, |
|
1083 |
OrderMap& order_map, PredMap& pred_map, |
|
1084 |
ArcLists& arc_lists, FlipMap& flip_map) { |
|
1085 |
|
|
1086 |
if (node_data[order_map[node]].first == INVALID) return; |
|
1087 |
|
|
1088 |
if (pred_map[node] != INVALID) { |
|
1089 |
Node source = _graph.source(pred_map[node]); |
|
1090 |
flip_map[node] = flip_map[node] != flip_map[source]; |
|
1091 |
} |
|
1092 |
|
|
1093 |
Arc first = node_data[order_map[node]].first; |
|
1094 |
Arc prev = first; |
|
1095 |
|
|
1096 |
Arc arc = flip_map[node] ? |
|
1097 |
arc_lists[prev].prev : arc_lists[prev].next; |
|
1098 |
|
|
1099 |
_embedding[prev] = arc; |
|
1100 |
|
|
1101 |
while (arc != first) { |
|
1102 |
Arc next = arc_lists[arc].prev == prev ? |
|
1103 |
arc_lists[arc].next : arc_lists[arc].prev; |
|
1104 |
prev = arc; arc = next; |
|
1105 |
_embedding[prev] = arc; |
|
1106 |
} |
|
1107 |
} |
|
1108 |
|
|
1109 |
|
|
1110 |
bool external(const Node& node, int rorder, |
|
1111 |
ChildLists& child_lists, AncestorMap& ancestor_map, |
|
1112 |
LowMap& low_map) { |
|
1113 |
Node child = child_lists[node].first; |
|
1114 |
|
|
1115 |
if (child != INVALID) { |
|
1116 |
if (low_map[child] < rorder) return true; |
|
1117 |
} |
|
1118 |
|
|
1119 |
if (ancestor_map[node] < rorder) return true; |
|
1120 |
|
|
1121 |
return false; |
|
1122 |
} |
|
1123 |
|
|
1124 |
bool pertinent(const Node& node, const EmbedArc& embed_arc, |
|
1125 |
const MergeRoots& merge_roots) { |
|
1126 |
return !merge_roots[node].empty() || embed_arc[node] != INVALID; |
|
1127 |
} |
|
1128 |
|
|
1129 |
int lowPoint(const Node& node, OrderMap& order_map, ChildLists& child_lists, |
|
1130 |
AncestorMap& ancestor_map, LowMap& low_map) { |
|
1131 |
int low_point; |
|
1132 |
|
|
1133 |
Node child = child_lists[node].first; |
|
1134 |
|
|
1135 |
if (child != INVALID) { |
|
1136 |
low_point = low_map[child]; |
|
1137 |
} else { |
|
1138 |
low_point = order_map[node]; |
|
1139 |
} |
|
1140 |
|
|
1141 |
if (low_point > ancestor_map[node]) { |
|
1142 |
low_point = ancestor_map[node]; |
|
1143 |
} |
|
1144 |
|
|
1145 |
return low_point; |
|
1146 |
} |
|
1147 |
|
|
1148 |
int findComponentRoot(Node root, Node node, ChildLists& child_lists, |
|
1149 |
OrderMap& order_map, OrderList& order_list) { |
|
1150 |
|
|
1151 |
int order = order_map[root]; |
|
1152 |
int norder = order_map[node]; |
|
1153 |
|
|
1154 |
Node child = child_lists[root].first; |
|
1155 |
while (child != INVALID) { |
|
1156 |
int corder = order_map[child]; |
|
1157 |
if (corder > order && corder < norder) { |
|
1158 |
order = corder; |
|
1159 |
} |
|
1160 |
child = child_lists[child].next; |
|
1161 |
} |
|
1162 |
return order + order_list.size(); |
|
1163 |
} |
|
1164 |
|
|
1165 |
Node findPertinent(Node node, OrderMap& order_map, NodeData& node_data, |
|
1166 |
EmbedArc& embed_arc, MergeRoots& merge_roots) { |
|
1167 |
Node wnode =_graph.target(node_data[order_map[node]].first); |
|
1168 |
while (!pertinent(wnode, embed_arc, merge_roots)) { |
|
1169 |
wnode = _graph.target(node_data[order_map[wnode]].first); |
|
1170 |
} |
|
1171 |
return wnode; |
|
1172 |
} |
|
1173 |
|
|
1174 |
|
|
1175 |
Node findExternal(Node node, int rorder, OrderMap& order_map, |
|
1176 |
ChildLists& child_lists, AncestorMap& ancestor_map, |
|
1177 |
LowMap& low_map, NodeData& node_data) { |
|
1178 |
Node wnode =_graph.target(node_data[order_map[node]].first); |
|
1179 |
while (!external(wnode, rorder, child_lists, ancestor_map, low_map)) { |
|
1180 |
wnode = _graph.target(node_data[order_map[wnode]].first); |
|
1181 |
} |
|
1182 |
return wnode; |
|
1183 |
} |
|
1184 |
|
|
1185 |
void markCommonPath(Node node, int rorder, Node& wnode, Node& znode, |
|
1186 |
OrderList& order_list, OrderMap& order_map, |
|
1187 |
NodeData& node_data, ArcLists& arc_lists, |
|
1188 |
EmbedArc& embed_arc, MergeRoots& merge_roots, |
|
1189 |
ChildLists& child_lists, AncestorMap& ancestor_map, |
|
1190 |
LowMap& low_map) { |
|
1191 |
|
|
1192 |
Node cnode = node; |
|
1193 |
Node pred = INVALID; |
|
1194 |
|
|
1195 |
while (true) { |
|
1196 |
|
|
1197 |
bool pert = pertinent(cnode, embed_arc, merge_roots); |
|
1198 |
bool ext = external(cnode, rorder, child_lists, ancestor_map, low_map); |
|
1199 |
|
|
1200 |
if (pert && ext) { |
|
1201 |
if (!merge_roots[cnode].empty()) { |
|
1202 |
int cn = merge_roots[cnode].back(); |
|
1203 |
|
|
1204 |
if (low_map[order_list[cn - order_list.size()]] < rorder) { |
|
1205 |
Arc arc = node_data[cn].first; |
|
1206 |
_kuratowski.set(arc, true); |
|
1207 |
|
|
1208 |
pred = cnode; |
|
1209 |
cnode = _graph.target(arc); |
|
1210 |
|
|
1211 |
continue; |
|
1212 |
} |
|
1213 |
} |
|
1214 |
wnode = znode = cnode; |
|
1215 |
return; |
|
1216 |
|
|
1217 |
} else if (pert) { |
|
1218 |
wnode = cnode; |
|
1219 |
|
|
1220 |
while (!external(cnode, rorder, child_lists, ancestor_map, low_map)) { |
|
1221 |
Arc arc = node_data[order_map[cnode]].first; |
|
1222 |
|
|
1223 |
if (_graph.target(arc) == pred) { |
|
1224 |
arc = arc_lists[arc].next; |
|
1225 |
} |
|
1226 |
_kuratowski.set(arc, true); |
|
1227 |
|
|
1228 |
Node next = _graph.target(arc); |
|
1229 |
pred = cnode; cnode = next; |
|
1230 |
} |
|
1231 |
|
|
1232 |
znode = cnode; |
|
1233 |
return; |
|
1234 |
|
|
1235 |
} else if (ext) { |
|
1236 |
znode = cnode; |
|
1237 |
|
|
1238 |
while (!pertinent(cnode, embed_arc, merge_roots)) { |
|
1239 |
Arc arc = node_data[order_map[cnode]].first; |
|
1240 |
|
|
1241 |
if (_graph.target(arc) == pred) { |
|
1242 |
arc = arc_lists[arc].next; |
|
1243 |
} |
|
1244 |
_kuratowski.set(arc, true); |
|
1245 |
|
|
1246 |
Node next = _graph.target(arc); |
|
1247 |
pred = cnode; cnode = next; |
|
1248 |
} |
|
1249 |
|
|
1250 |
wnode = cnode; |
|
1251 |
return; |
|
1252 |
|
|
1253 |
} else { |
|
1254 |
Arc arc = node_data[order_map[cnode]].first; |
|
1255 |
|
|
1256 |
if (_graph.target(arc) == pred) { |
|
1257 |
arc = arc_lists[arc].next; |
|
1258 |
} |
|
1259 |
_kuratowski.set(arc, true); |
|
1260 |
|
|
1261 |
Node next = _graph.target(arc); |
|
1262 |
pred = cnode; cnode = next; |
|
1263 |
} |
|
1264 |
|
|
1265 |
} |
|
1266 |
|
|
1267 |
} |
|
1268 |
|
|
1269 |
void orientComponent(Node root, int rn, OrderMap& order_map, |
|
1270 |
PredMap& pred_map, NodeData& node_data, |
|
1271 |
ArcLists& arc_lists, FlipMap& flip_map, |
|
1272 |
TypeMap& type_map) { |
|
1273 |
node_data[order_map[root]].first = node_data[rn].first; |
|
1274 |
type_map[root] = 1; |
|
1275 |
|
|
1276 |
std::vector<Node> st, qu; |
|
1277 |
|
|
1278 |
st.push_back(root); |
|
1279 |
while (!st.empty()) { |
|
1280 |
Node node = st.back(); |
|
1281 |
st.pop_back(); |
|
1282 |
qu.push_back(node); |
|
1283 |
|
|
1284 |
Arc arc = node_data[order_map[node]].first; |
|
1285 |
|
|
1286 |
if (type_map[_graph.target(arc)] == 0) { |
|
1287 |
st.push_back(_graph.target(arc)); |
|
1288 |
type_map[_graph.target(arc)] = 1; |
|
1289 |
} |
|
1290 |
|
|
1291 |
Arc last = arc, pred = arc; |
|
1292 |
arc = arc_lists[arc].next; |
|
1293 |
while (arc != last) { |
|
1294 |
|
|
1295 |
if (type_map[_graph.target(arc)] == 0) { |
|
1296 |
st.push_back(_graph.target(arc)); |
|
1297 |
type_map[_graph.target(arc)] = 1; |
|
1298 |
} |
|
1299 |
|
|
1300 |
Arc next = arc_lists[arc].next != pred ? |
|
1301 |
arc_lists[arc].next : arc_lists[arc].prev; |
|
1302 |
pred = arc; arc = next; |
|
1303 |
} |
|
1304 |
|
|
1305 |
} |
|
1306 |
|
|
1307 |
type_map[root] = 2; |
|
1308 |
flip_map[root] = false; |
|
1309 |
|
|
1310 |
for (int i = 1; i < int(qu.size()); ++i) { |
|
1311 |
|
|
1312 |
Node node = qu[i]; |
|
1313 |
|
|
1314 |
while (type_map[node] != 2) { |
|
1315 |
st.push_back(node); |
|
1316 |
type_map[node] = 2; |
|
1317 |
node = _graph.source(pred_map[node]); |
|
1318 |
} |
|
1319 |
|
|
1320 |
bool flip = flip_map[node]; |
|
1321 |
|
|
1322 |
while (!st.empty()) { |
|
1323 |
node = st.back(); |
|
1324 |
st.pop_back(); |
|
1325 |
|
|
1326 |
flip_map[node] = flip != flip_map[node]; |
|
1327 |
flip = flip_map[node]; |
|
1328 |
|
|
1329 |
if (flip) { |
|
1330 |
Arc arc = node_data[order_map[node]].first; |
|
1331 |
std::swap(arc_lists[arc].prev, arc_lists[arc].next); |
|
1332 |
arc = arc_lists[arc].prev; |
|
1333 |
std::swap(arc_lists[arc].prev, arc_lists[arc].next); |
|
1334 |
node_data[order_map[node]].first = arc; |
|
1335 |
} |
|
1336 |
} |
|
1337 |
} |
|
1338 |
|
|
1339 |
for (int i = 0; i < int(qu.size()); ++i) { |
|
1340 |
|
|
1341 |
Arc arc = node_data[order_map[qu[i]]].first; |
|
1342 |
Arc last = arc, pred = arc; |
|
1343 |
|
|
1344 |
arc = arc_lists[arc].next; |
|
1345 |
while (arc != last) { |
|
1346 |
|
|
1347 |
if (arc_lists[arc].next == pred) { |
|
1348 |
std::swap(arc_lists[arc].next, arc_lists[arc].prev); |
|
1349 |
} |
|
1350 |
pred = arc; arc = arc_lists[arc].next; |
|
1351 |
} |
|
1352 |
|
|
1353 |
} |
|
1354 |
} |
|
1355 |
|
|
1356 |
void setFaceFlags(Node root, Node wnode, Node ynode, Node xnode, |
|
1357 |
OrderMap& order_map, NodeData& node_data, |
|
1358 |
TypeMap& type_map) { |
|
1359 |
Node node = _graph.target(node_data[order_map[root]].first); |
|
1360 |
|
|
1361 |
while (node != ynode) { |
|
1362 |
type_map[node] = HIGHY; |
|
1363 |
node = _graph.target(node_data[order_map[node]].first); |
|
1364 |
} |
|
1365 |
|
|
1366 |
while (node != wnode) { |
|
1367 |
type_map[node] = LOWY; |
|
1368 |
node = _graph.target(node_data[order_map[node]].first); |
|
1369 |
} |
|
1370 |
|
|
1371 |
node = _graph.target(node_data[order_map[wnode]].first); |
|
1372 |
|
|
1373 |
while (node != xnode) { |
|
1374 |
type_map[node] = LOWX; |
|
1375 |
node = _graph.target(node_data[order_map[node]].first); |
|
1376 |
} |
|
1377 |
type_map[node] = LOWX; |
|
1378 |
|
|
1379 |
node = _graph.target(node_data[order_map[xnode]].first); |
|
1380 |
while (node != root) { |
|
1381 |
type_map[node] = HIGHX; |
|
1382 |
node = _graph.target(node_data[order_map[node]].first); |
|
1383 |
} |
|
1384 |
|
|
1385 |
type_map[wnode] = PERTINENT; |
|
1386 |
type_map[root] = ROOT; |
|
1387 |
} |
|
1388 |
|
|
1389 |
void findInternalPath(std::vector<Arc>& ipath, |
|
1390 |
Node wnode, Node root, TypeMap& type_map, |
|
1391 |
OrderMap& order_map, NodeData& node_data, |
|
1392 |
ArcLists& arc_lists) { |
|
1393 |
std::vector<Arc> st; |
|
1394 |
|
|
1395 |
Node node = wnode; |
|
1396 |
|
|
1397 |
while (node != root) { |
|
1398 |
Arc arc = arc_lists[node_data[order_map[node]].first].next; |
|
1399 |
st.push_back(arc); |
|
1400 |
node = _graph.target(arc); |
|
1401 |
} |
|
1402 |
|
|
1403 |
while (true) { |
|
1404 |
Arc arc = st.back(); |
|
1405 |
if (type_map[_graph.target(arc)] == LOWX || |
|
1406 |
type_map[_graph.target(arc)] == HIGHX) { |
|
1407 |
break; |
|
1408 |
} |
|
1409 |
if (type_map[_graph.target(arc)] == 2) { |
|
1410 |
type_map[_graph.target(arc)] = 3; |
|
1411 |
|
|
1412 |
arc = arc_lists[_graph.oppositeArc(arc)].next; |
|
1413 |
st.push_back(arc); |
|
1414 |
} else { |
|
1415 |
st.pop_back(); |
|
1416 |
arc = arc_lists[arc].next; |
|
1417 |
|
|
1418 |
while (_graph.oppositeArc(arc) == st.back()) { |
|
1419 |
arc = st.back(); |
|
1420 |
st.pop_back(); |
|
1421 |
arc = arc_lists[arc].next; |
|
1422 |
} |
|
1423 |
st.push_back(arc); |
|
1424 |
} |
|
1425 |
} |
|
1426 |
|
|
1427 |
for (int i = 0; i < int(st.size()); ++i) { |
|
1428 |
if (type_map[_graph.target(st[i])] != LOWY && |
|
1429 |
type_map[_graph.target(st[i])] != HIGHY) { |
|
1430 |
for (; i < int(st.size()); ++i) { |
|
1431 |
ipath.push_back(st[i]); |
|
1432 |
} |
|
1433 |
} |
|
1434 |
} |
|
1435 |
} |
|
1436 |
|
|
1437 |
void setInternalFlags(std::vector<Arc>& ipath, TypeMap& type_map) { |
|
1438 |
for (int i = 1; i < int(ipath.size()); ++i) { |
|
1439 |
type_map[_graph.source(ipath[i])] = INTERNAL; |
|
1440 |
} |
|
1441 |
} |
|
1442 |
|
|
1443 |
void findPilePath(std::vector<Arc>& ppath, |
|
1444 |
Node root, TypeMap& type_map, OrderMap& order_map, |
|
1445 |
NodeData& node_data, ArcLists& arc_lists) { |
|
1446 |
std::vector<Arc> st; |
|
1447 |
|
|
1448 |
st.push_back(_graph.oppositeArc(node_data[order_map[root]].first)); |
|
1449 |
st.push_back(node_data[order_map[root]].first); |
|
1450 |
|
|
1451 |
while (st.size() > 1) { |
|
1452 |
Arc arc = st.back(); |
|
1453 |
if (type_map[_graph.target(arc)] == INTERNAL) { |
|
1454 |
break; |
|
1455 |
} |
|
1456 |
if (type_map[_graph.target(arc)] == 3) { |
|
1457 |
type_map[_graph.target(arc)] = 4; |
|
1458 |
|
|
1459 |
arc = arc_lists[_graph.oppositeArc(arc)].next; |
|
1460 |
st.push_back(arc); |
|
1461 |
} else { |
|
1462 |
st.pop_back(); |
|
1463 |
arc = arc_lists[arc].next; |
|
1464 |
|
|
1465 |
while (!st.empty() && _graph.oppositeArc(arc) == st.back()) { |
|
1466 |
arc = st.back(); |
|
1467 |
st.pop_back(); |
|
1468 |
arc = arc_lists[arc].next; |
|
1469 |
} |
|
1470 |
st.push_back(arc); |
|
1471 |
} |
|
1472 |
} |
|
1473 |
|
|
1474 |
for (int i = 1; i < int(st.size()); ++i) { |
|
1475 |
ppath.push_back(st[i]); |
|
1476 |
} |
|
1477 |
} |
|
1478 |
|
|
1479 |
|
|
1480 |
int markExternalPath(Node node, OrderMap& order_map, |
|
1481 |
ChildLists& child_lists, PredMap& pred_map, |
|
1482 |
AncestorMap& ancestor_map, LowMap& low_map) { |
|
1483 |
int lp = lowPoint(node, order_map, child_lists, |
|
1484 |
ancestor_map, low_map); |
|
1485 |
|
|
1486 |
if (ancestor_map[node] != lp) { |
|
1487 |
node = child_lists[node].first; |
|
1488 |
_kuratowski[pred_map[node]] = true; |
|
1489 |
|
|
1490 |
while (ancestor_map[node] != lp) { |
|
1491 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) { |
|
1492 |
Node tnode = _graph.target(e); |
|
1493 |
if (order_map[tnode] > order_map[node] && low_map[tnode] == lp) { |
|
1494 |
node = tnode; |
|
1495 |
_kuratowski[e] = true; |
|
1496 |
break; |
|
1497 |
} |
|
1498 |
} |
|
1499 |
} |
|
1500 |
} |
|
1501 |
|
|
1502 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) { |
|
1503 |
if (order_map[_graph.target(e)] == lp) { |
|
1504 |
_kuratowski[e] = true; |
|
1505 |
break; |
|
1506 |
} |
|
1507 |
} |
|
1508 |
|
|
1509 |
return lp; |
|
1510 |
} |
|
1511 |
|
|
1512 |
void markPertinentPath(Node node, OrderMap& order_map, |
|
1513 |
NodeData& node_data, ArcLists& arc_lists, |
|
1514 |
EmbedArc& embed_arc, MergeRoots& merge_roots) { |
|
1515 |
while (embed_arc[node] == INVALID) { |
|
1516 |
int n = merge_roots[node].front(); |
|
1517 |
Arc arc = node_data[n].first; |
|
1518 |
|
|
1519 |
_kuratowski.set(arc, true); |
|
1520 |
|
|
1521 |
Node pred = node; |
|
1522 |
node = _graph.target(arc); |
|
1523 |
while (!pertinent(node, embed_arc, merge_roots)) { |
|
1524 |
arc = node_data[order_map[node]].first; |
|
1525 |
if (_graph.target(arc) == pred) { |
|
1526 |
arc = arc_lists[arc].next; |
|
1527 |
} |
|
1528 |
_kuratowski.set(arc, true); |
|
1529 |
pred = node; |
|
1530 |
node = _graph.target(arc); |
|
1531 |
} |
|
1532 |
} |
|
1533 |
_kuratowski.set(embed_arc[node], true); |
|
1534 |
} |
|
1535 |
|
|
1536 |
void markPredPath(Node node, Node snode, PredMap& pred_map) { |
|
1537 |
while (node != snode) { |
|
1538 |
_kuratowski.set(pred_map[node], true); |
|
1539 |
node = _graph.source(pred_map[node]); |
|
1540 |
} |
|
1541 |
} |
|
1542 |
|
|
1543 |
void markFacePath(Node ynode, Node xnode, |
|
1544 |
OrderMap& order_map, NodeData& node_data) { |
|
1545 |
Arc arc = node_data[order_map[ynode]].first; |
|
1546 |
Node node = _graph.target(arc); |
|
1547 |
_kuratowski.set(arc, true); |
|
1548 |
|
|
1549 |
while (node != xnode) { |
|
1550 |
arc = node_data[order_map[node]].first; |
|
1551 |
_kuratowski.set(arc, true); |
|
1552 |
node = _graph.target(arc); |
|
1553 |
} |
|
1554 |
} |
|
1555 |
|
|
1556 |
void markInternalPath(std::vector<Arc>& path) { |
|
1557 |
for (int i = 0; i < int(path.size()); ++i) { |
|
1558 |
_kuratowski.set(path[i], true); |
|
1559 |
} |
|
1560 |
} |
|
1561 |
|
|
1562 |
void markPilePath(std::vector<Arc>& path) { |
|
1563 |
for (int i = 0; i < int(path.size()); ++i) { |
|
1564 |
_kuratowski.set(path[i], true); |
|
1565 |
} |
|
1566 |
} |
|
1567 |
|
|
1568 |
void isolateKuratowski(Arc arc, NodeData& node_data, |
|
1569 |
ArcLists& arc_lists, FlipMap& flip_map, |
|
1570 |
OrderMap& order_map, OrderList& order_list, |
|
1571 |
PredMap& pred_map, ChildLists& child_lists, |
|
1572 |
AncestorMap& ancestor_map, LowMap& low_map, |
|
1573 |
EmbedArc& embed_arc, MergeRoots& merge_roots) { |
|
1574 |
|
|
1575 |
Node root = _graph.source(arc); |
|
1576 |
Node enode = _graph.target(arc); |
|
1577 |
|
|
1578 |
int rorder = order_map[root]; |
|
1579 |
|
|
1580 |
TypeMap type_map(_graph, 0); |
|
1581 |
|
|
1582 |
int rn = findComponentRoot(root, enode, child_lists, |
|
1583 |
order_map, order_list); |
|
1584 |
|
|
1585 |
Node xnode = order_list[node_data[rn].next]; |
|
1586 |
Node ynode = order_list[node_data[rn].prev]; |
|
1587 |
|
|
1588 |
// Minor-A |
|
1589 |
{ |
|
1590 |
while (!merge_roots[xnode].empty() || !merge_roots[ynode].empty()) { |
|
1591 |
|
|
1592 |
if (!merge_roots[xnode].empty()) { |
|
1593 |
root = xnode; |
|
1594 |
rn = merge_roots[xnode].front(); |
|
1595 |
} else { |
|
1596 |
root = ynode; |
|
1597 |
rn = merge_roots[ynode].front(); |
|
1598 |
} |
|
1599 |
|
|
1600 |
xnode = order_list[node_data[rn].next]; |
|
1601 |
ynode = order_list[node_data[rn].prev]; |
|
1602 |
} |
|
1603 |
|
|
1604 |
if (root != _graph.source(arc)) { |
|
1605 |
orientComponent(root, rn, order_map, pred_map, |
|
1606 |
node_data, arc_lists, flip_map, type_map); |
|
1607 |
markFacePath(root, root, order_map, node_data); |
|
1608 |
int xlp = markExternalPath(xnode, order_map, child_lists, |
|
1609 |
pred_map, ancestor_map, low_map); |
|
1610 |
int ylp = markExternalPath(ynode, order_map, child_lists, |
|
1611 |
pred_map, ancestor_map, low_map); |
|
1612 |
markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); |
|
1613 |
Node lwnode = findPertinent(ynode, order_map, node_data, |
|
1614 |
embed_arc, merge_roots); |
|
1615 |
|
|
1616 |
markPertinentPath(lwnode, order_map, node_data, arc_lists, |
|
1617 |
embed_arc, merge_roots); |
|
1618 |
|
|
1619 |
return; |
|
1620 |
} |
|
1621 |
} |
|
1622 |
|
|
1623 |
orientComponent(root, rn, order_map, pred_map, |
|
1624 |
node_data, arc_lists, flip_map, type_map); |
|
1625 |
|
|
1626 |
Node wnode = findPertinent(ynode, order_map, node_data, |
|
1627 |
embed_arc, merge_roots); |
|
1628 |
setFaceFlags(root, wnode, ynode, xnode, order_map, node_data, type_map); |
|
1629 |
|
|
1630 |
|
|
1631 |
//Minor-B |
|
1632 |
if (!merge_roots[wnode].empty()) { |
|
1633 |
int cn = merge_roots[wnode].back(); |
|
1634 |
Node rep = order_list[cn - order_list.size()]; |
|
1635 |
if (low_map[rep] < rorder) { |
|
1636 |
markFacePath(root, root, order_map, node_data); |
|
1637 |
int xlp = markExternalPath(xnode, order_map, child_lists, |
|
1638 |
pred_map, ancestor_map, low_map); |
|
1639 |
int ylp = markExternalPath(ynode, order_map, child_lists, |
|
1640 |
pred_map, ancestor_map, low_map); |
|
1641 |
|
|
1642 |
Node lwnode, lznode; |
|
1643 |
markCommonPath(wnode, rorder, lwnode, lznode, order_list, |
|
1644 |
order_map, node_data, arc_lists, embed_arc, |
|
1645 |
merge_roots, child_lists, ancestor_map, low_map); |
|
1646 |
|
|
1647 |
markPertinentPath(lwnode, order_map, node_data, arc_lists, |
|
1648 |
embed_arc, merge_roots); |
|
1649 |
int zlp = markExternalPath(lznode, order_map, child_lists, |
|
1650 |
pred_map, ancestor_map, low_map); |
|
1651 |
|
|
1652 |
int minlp = xlp < ylp ? xlp : ylp; |
|
1653 |
if (zlp < minlp) minlp = zlp; |
|
1654 |
|
|
1655 |
int maxlp = xlp > ylp ? xlp : ylp; |
|
1656 |
if (zlp > maxlp) maxlp = zlp; |
|
1657 |
|
|
1658 |
markPredPath(order_list[maxlp], order_list[minlp], pred_map); |
|
1659 |
|
|
1660 |
return; |
|
1661 |
} |
|
1662 |
} |
|
1663 |
|
|
1664 |
Node pxnode, pynode; |
|
1665 |
std::vector<Arc> ipath; |
|
1666 |
findInternalPath(ipath, wnode, root, type_map, order_map, |
|
1667 |
node_data, arc_lists); |
|
1668 |
setInternalFlags(ipath, type_map); |
|
1669 |
pynode = _graph.source(ipath.front()); |
|
1670 |
pxnode = _graph.target(ipath.back()); |
|
1671 |
|
|
1672 |
wnode = findPertinent(pynode, order_map, node_data, |
|
1673 |
embed_arc, merge_roots); |
|
1674 |
|
|
1675 |
// Minor-C |
|
1676 |
{ |
|
1677 |
if (type_map[_graph.source(ipath.front())] == HIGHY) { |
|
1678 |
if (type_map[_graph.target(ipath.back())] == HIGHX) { |
|
1679 |
markFacePath(xnode, pxnode, order_map, node_data); |
|
1680 |
} |
|
1681 |
markFacePath(root, xnode, order_map, node_data); |
|
1682 |
markPertinentPath(wnode, order_map, node_data, arc_lists, |
|
1683 |
embed_arc, merge_roots); |
|
1684 |
markInternalPath(ipath); |
|
1685 |
int xlp = markExternalPath(xnode, order_map, child_lists, |
|
1686 |
pred_map, ancestor_map, low_map); |
|
1687 |
int ylp = markExternalPath(ynode, order_map, child_lists, |
|
1688 |
pred_map, ancestor_map, low_map); |
|
1689 |
markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); |
|
1690 |
return; |
|
1691 |
} |
|
1692 |
|
|
1693 |
if (type_map[_graph.target(ipath.back())] == HIGHX) { |
|
1694 |
markFacePath(ynode, root, order_map, node_data); |
|
1695 |
markPertinentPath(wnode, order_map, node_data, arc_lists, |
|
1696 |
embed_arc, merge_roots); |
|
1697 |
markInternalPath(ipath); |
|
1698 |
int xlp = markExternalPath(xnode, order_map, child_lists, |
|
1699 |
pred_map, ancestor_map, low_map); |
|
1700 |
int ylp = markExternalPath(ynode, order_map, child_lists, |
|
1701 |
pred_map, ancestor_map, low_map); |
|
1702 |
markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); |
|
1703 |
return; |
|
1704 |
} |
|
1705 |
} |
|
1706 |
|
|
1707 |
std::vector<Arc> ppath; |
|
1708 |
findPilePath(ppath, root, type_map, order_map, node_data, arc_lists); |
|
1709 |
|
|
1710 |
// Minor-D |
|
1711 |
if (!ppath.empty()) { |
|
1712 |
markFacePath(ynode, xnode, order_map, node_data); |
|
1713 |
markPertinentPath(wnode, order_map, node_data, arc_lists, |
|
1714 |
embed_arc, merge_roots); |
|
1715 |
markPilePath(ppath); |
|
1716 |
markInternalPath(ipath); |
|
1717 |
int xlp = markExternalPath(xnode, order_map, child_lists, |
|
1718 |
pred_map, ancestor_map, low_map); |
|
1719 |
int ylp = markExternalPath(ynode, order_map, child_lists, |
|
1720 |
pred_map, ancestor_map, low_map); |
|
1721 |
markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); |
|
1722 |
return; |
|
1723 |
} |
|
1724 |
|
|
1725 |
// Minor-E* |
|
1726 |
{ |
|
1727 |
|
|
1728 |
if (!external(wnode, rorder, child_lists, ancestor_map, low_map)) { |
|
1729 |
Node znode = findExternal(pynode, rorder, order_map, |
|
1730 |
child_lists, ancestor_map, |
|
1731 |
low_map, node_data); |
|
1732 |
|
|
1733 |
if (type_map[znode] == LOWY) { |
|
1734 |
markFacePath(root, xnode, order_map, node_data); |
|
1735 |
markPertinentPath(wnode, order_map, node_data, arc_lists, |
|
1736 |
embed_arc, merge_roots); |
|
1737 |
markInternalPath(ipath); |
|
1738 |
int xlp = markExternalPath(xnode, order_map, child_lists, |
|
1739 |
pred_map, ancestor_map, low_map); |
|
1740 |
int zlp = markExternalPath(znode, order_map, child_lists, |
|
1741 |
pred_map, ancestor_map, low_map); |
|
1742 |
markPredPath(root, order_list[xlp < zlp ? xlp : zlp], pred_map); |
|
1743 |
} else { |
|
1744 |
markFacePath(ynode, root, order_map, node_data); |
|
1745 |
markPertinentPath(wnode, order_map, node_data, arc_lists, |
|
1746 |
embed_arc, merge_roots); |
|
1747 |
markInternalPath(ipath); |
|
1748 |
int ylp = markExternalPath(ynode, order_map, child_lists, |
|
1749 |
pred_map, ancestor_map, low_map); |
|
1750 |
int zlp = markExternalPath(znode, order_map, child_lists, |
|
1751 |
pred_map, ancestor_map, low_map); |
|
1752 |
markPredPath(root, order_list[ylp < zlp ? ylp : zlp], pred_map); |
|
1753 |
} |
|
1754 |
return; |
|
1755 |
} |
|
1756 |
|
|
1757 |
int xlp = markExternalPath(xnode, order_map, child_lists, |
|
1758 |
pred_map, ancestor_map, low_map); |
|
1759 |
int ylp = markExternalPath(ynode, order_map, child_lists, |
|
1760 |
pred_map, ancestor_map, low_map); |
|
1761 |
int wlp = markExternalPath(wnode, order_map, child_lists, |
|
1762 |
pred_map, ancestor_map, low_map); |
|
1763 |
|
|
1764 |
if (wlp > xlp && wlp > ylp) { |
|
1765 |
markFacePath(root, root, order_map, node_data); |
|
1766 |
markPredPath(root, order_list[xlp < ylp ? xlp : ylp], pred_map); |
|
1767 |
return; |
|
1768 |
} |
|
1769 |
|
|
1770 |
markInternalPath(ipath); |
|
1771 |
markPertinentPath(wnode, order_map, node_data, arc_lists, |
|
1772 |
embed_arc, merge_roots); |
|
1773 |
|
|
1774 |
if (xlp > ylp && xlp > wlp) { |
|
1775 |
markFacePath(root, pynode, order_map, node_data); |
|
1776 |
markFacePath(wnode, xnode, order_map, node_data); |
|
1777 |
markPredPath(root, order_list[ylp < wlp ? ylp : wlp], pred_map); |
|
1778 |
return; |
|
1779 |
} |
|
1780 |
|
|
1781 |
if (ylp > xlp && ylp > wlp) { |
|
1782 |
markFacePath(pxnode, root, order_map, node_data); |
|
1783 |
markFacePath(ynode, wnode, order_map, node_data); |
|
1784 |
markPredPath(root, order_list[xlp < wlp ? xlp : wlp], pred_map); |
|
1785 |
return; |
|
1786 |
} |
|
1787 |
|
|
1788 |
if (pynode != ynode) { |
|
1789 |
markFacePath(pxnode, wnode, order_map, node_data); |
|
1790 |
|
|
1791 |
int minlp = xlp < ylp ? xlp : ylp; |
|
1792 |
if (wlp < minlp) minlp = wlp; |
|
1793 |
|
|
1794 |
int maxlp = xlp > ylp ? xlp : ylp; |
|
1795 |
if (wlp > maxlp) maxlp = wlp; |
|
1796 |
|
|
1797 |
markPredPath(order_list[maxlp], order_list[minlp], pred_map); |
|
1798 |
return; |
|
1799 |
} |
|
1800 |
|
|
1801 |
if (pxnode != xnode) { |
|
1802 |
markFacePath(wnode, pynode, order_map, node_data); |
|
1803 |
|
|
1804 |
int minlp = xlp < ylp ? xlp : ylp; |
|
1805 |
if (wlp < minlp) minlp = wlp; |
|
1806 |
|
|
1807 |
int maxlp = xlp > ylp ? xlp : ylp; |
|
1808 |
if (wlp > maxlp) maxlp = wlp; |
|
1809 |
|
|
1810 |
markPredPath(order_list[maxlp], order_list[minlp], pred_map); |
|
1811 |
return; |
|
1812 |
} |
|
1813 |
|
|
1814 |
markFacePath(root, root, order_map, node_data); |
|
1815 |
int minlp = xlp < ylp ? xlp : ylp; |
|
1816 |
if (wlp < minlp) minlp = wlp; |
|
1817 |
markPredPath(root, order_list[minlp], pred_map); |
|
1818 |
return; |
|
1819 |
} |
|
1820 |
|
|
1821 |
} |
|
1822 |
|
|
1823 |
}; |
|
1824 |
|
|
1825 |
namespace _planarity_bits { |
|
1826 |
|
|
1827 |
template <typename Graph, typename EmbeddingMap> |
|
1828 |
void makeConnected(Graph& graph, EmbeddingMap& embedding) { |
|
1829 |
DfsVisitor<Graph> null_visitor; |
|
1830 |
DfsVisit<Graph, DfsVisitor<Graph> > dfs(graph, null_visitor); |
|
1831 |
dfs.init(); |
|
1832 |
|
|
1833 |
typename Graph::Node u = INVALID; |
|
1834 |
for (typename Graph::NodeIt n(graph); n != INVALID; ++n) { |
|
1835 |
if (!dfs.reached(n)) { |
|
1836 |
dfs.addSource(n); |
|
1837 |
dfs.start(); |
|
1838 |
if (u == INVALID) { |
|
1839 |
u = n; |
|
1840 |
} else { |
|
1841 |
typename Graph::Node v = n; |
|
1842 |
|
|
1843 |
typename Graph::Arc ue = typename Graph::OutArcIt(graph, u); |
|
1844 |
typename Graph::Arc ve = typename Graph::OutArcIt(graph, v); |
|
1845 |
|
|
1846 |
typename Graph::Arc e = graph.direct(graph.addEdge(u, v), true); |
|
1847 |
|
|
1848 |
if (ue != INVALID) { |
|
1849 |
embedding[e] = embedding[ue]; |
|
1850 |
embedding[ue] = e; |
|
1851 |
} else { |
|
1852 |
embedding[e] = e; |
|
1853 |
} |
|
1854 |
|
|
1855 |
if (ve != INVALID) { |
|
1856 |
embedding[graph.oppositeArc(e)] = embedding[ve]; |
|
1857 |
embedding[ve] = graph.oppositeArc(e); |
|
1858 |
} else { |
|
1859 |
embedding[graph.oppositeArc(e)] = graph.oppositeArc(e); |
|
1860 |
} |
|
1861 |
} |
|
1862 |
} |
|
1863 |
} |
|
1864 |
} |
|
1865 |
|
|
1866 |
template <typename Graph, typename EmbeddingMap> |
|
1867 |
void makeBiNodeConnected(Graph& graph, EmbeddingMap& embedding) { |
|
1868 |
typename Graph::template ArcMap<bool> processed(graph); |
|
1869 |
|
|
1870 |
std::vector<typename Graph::Arc> arcs; |
|
1871 |
for (typename Graph::ArcIt e(graph); e != INVALID; ++e) { |
|
1872 |
arcs.push_back(e); |
|
1873 |
} |
|
1874 |
|
|
1875 |
IterableBoolMap<Graph, typename Graph::Node> visited(graph, false); |
|
1876 |
|
|
1877 |
for (int i = 0; i < int(arcs.size()); ++i) { |
|
1878 |
typename Graph::Arc pp = arcs[i]; |
|
1879 |
if (processed[pp]) continue; |
|
1880 |
|
|
1881 |
typename Graph::Arc e = embedding[graph.oppositeArc(pp)]; |
|
1882 |
processed[e] = true; |
|
1883 |
visited.set(graph.source(e), true); |
|
1884 |
|
|
1885 |
typename Graph::Arc p = e, l = e; |
|
1886 |
e = embedding[graph.oppositeArc(e)]; |
|
1887 |
|
|
1888 |
while (e != l) { |
|
1889 |
processed[e] = true; |
|
1890 |
|
|
1891 |
if (visited[graph.source(e)]) { |
|
1892 |
|
|
1893 |
typename Graph::Arc n = |
|
1894 |
graph.direct(graph.addEdge(graph.source(p), |
|
1895 |
graph.target(e)), true); |
|
1896 |
embedding[n] = p; |
|
1897 |
embedding[graph.oppositeArc(pp)] = n; |
|
1898 |
|
|
1899 |
embedding[graph.oppositeArc(n)] = |
|
1900 |
embedding[graph.oppositeArc(e)]; |
|
1901 |
embedding[graph.oppositeArc(e)] = |
|
1902 |
graph.oppositeArc(n); |
|
1903 |
|
|
1904 |
p = n; |
|
1905 |
e = embedding[graph.oppositeArc(n)]; |
|
1906 |
} else { |
|
1907 |
visited.set(graph.source(e), true); |
|
1908 |
pp = p; |
|
1909 |
p = e; |
|
1910 |
e = embedding[graph.oppositeArc(e)]; |
|
1911 |
} |
|
1912 |
} |
|
1913 |
visited.setAll(false); |
|
1914 |
} |
|
1915 |
} |
|
1916 |
|
|
1917 |
|
|
1918 |
template <typename Graph, typename EmbeddingMap> |
|
1919 |
void makeMaxPlanar(Graph& graph, EmbeddingMap& embedding) { |
|
1920 |
|
|
1921 |
typename Graph::template NodeMap<int> degree(graph); |
|
1922 |
|
|
1923 |
for (typename Graph::NodeIt n(graph); n != INVALID; ++n) { |
|
1924 |
degree[n] = countIncEdges(graph, n); |
|
1925 |
} |
|
1926 |
|
|
1927 |
typename Graph::template ArcMap<bool> processed(graph); |
|
1928 |
IterableBoolMap<Graph, typename Graph::Node> visited(graph, false); |
|
1929 |
|
|
1930 |
std::vector<typename Graph::Arc> arcs; |
|
1931 |
for (typename Graph::ArcIt e(graph); e != INVALID; ++e) { |
|
1932 |
arcs.push_back(e); |
|
1933 |
} |
|
1934 |
|
|
1935 |
for (int i = 0; i < int(arcs.size()); ++i) { |
|
1936 |
typename Graph::Arc e = arcs[i]; |
|
1937 |
|
|
1938 |
if (processed[e]) continue; |
|
1939 |
processed[e] = true; |
|
1940 |
|
|
1941 |
typename Graph::Arc mine = e; |
|
1942 |
int mind = degree[graph.source(e)]; |
|
1943 |
|
|
1944 |
int face_size = 1; |
|
1945 |
|
|
1946 |
typename Graph::Arc l = e; |
|
1947 |
e = embedding[graph.oppositeArc(e)]; |
|
1948 |
while (l != e) { |
|
1949 |
processed[e] = true; |
|
1950 |
|
|
1951 |
++face_size; |
|
1952 |
|
|
1953 |
if (degree[graph.source(e)] < mind) { |
|
1954 |
mine = e; |
|
1955 |
mind = degree[graph.source(e)]; |
|
1956 |
} |
|
1957 |
|
|
1958 |
e = embedding[graph.oppositeArc(e)]; |
|
1959 |
} |
|
1960 |
|
|
1961 |
if (face_size < 4) { |
|
1962 |
continue; |
|
1963 |
} |
|
1964 |
|
|
1965 |
typename Graph::Node s = graph.source(mine); |
|
1966 |
for (typename Graph::OutArcIt e(graph, s); e != INVALID; ++e) { |
|
1967 |
visited.set(graph.target(e), true); |
|
1968 |
} |
|
1969 |
|
|
1970 |
typename Graph::Arc oppe = INVALID; |
|
1971 |
|
|
1972 |
e = embedding[graph.oppositeArc(mine)]; |
|
1973 |
e = embedding[graph.oppositeArc(e)]; |
|
1974 |
while (graph.target(e) != s) { |
|
1975 |
if (visited[graph.source(e)]) { |
|
1976 |
oppe = e; |
|
1977 |
break; |
|
1978 |
} |
|
1979 |
e = embedding[graph.oppositeArc(e)]; |
|
1980 |
} |
|
1981 |
visited.setAll(false); |
|
1982 |
|
|
1983 |
if (oppe == INVALID) { |
|
1984 |
|
|
1985 |
e = embedding[graph.oppositeArc(mine)]; |
|
1986 |
typename Graph::Arc pn = mine, p = e; |
|
1987 |
|
|
1988 |
e = embedding[graph.oppositeArc(e)]; |
|
1989 |
while (graph.target(e) != s) { |
|
1990 |
typename Graph::Arc n = |
|
1991 |
graph.direct(graph.addEdge(s, graph.source(e)), true); |
|
1992 |
|
|
1993 |
embedding[n] = pn; |
|
1994 |
embedding[graph.oppositeArc(n)] = e; |
|
1995 |
embedding[graph.oppositeArc(p)] = graph.oppositeArc(n); |
|
1996 |
|
|
1997 |
pn = n; |
|
1998 |
|
|
1999 |
p = e; |
|
2000 |
e = embedding[graph.oppositeArc(e)]; |
|
2001 |
} |
|
2002 |
|
|
2003 |
embedding[graph.oppositeArc(e)] = pn; |
|
2004 |
|
|
2005 |
} else { |
|
2006 |
|
|
2007 |
mine = embedding[graph.oppositeArc(mine)]; |
|
2008 |
s = graph.source(mine); |
|
2009 |
oppe = embedding[graph.oppositeArc(oppe)]; |
|
2010 |
typename Graph::Node t = graph.source(oppe); |
|
2011 |
|
|
2012 |
typename Graph::Arc ce = graph.direct(graph.addEdge(s, t), true); |
|
2013 |
embedding[ce] = mine; |
|
2014 |
embedding[graph.oppositeArc(ce)] = oppe; |
|
2015 |
|
|
2016 |
typename Graph::Arc pn = ce, p = oppe; |
|
2017 |
e = embedding[graph.oppositeArc(oppe)]; |
|
2018 |
while (graph.target(e) != s) { |
|
2019 |
typename Graph::Arc n = |
|
2020 |
graph.direct(graph.addEdge(s, graph.source(e)), true); |
|
2021 |
|
|
2022 |
embedding[n] = pn; |
|
2023 |
embedding[graph.oppositeArc(n)] = e; |
|
2024 |
embedding[graph.oppositeArc(p)] = graph.oppositeArc(n); |
|
2025 |
|
|
2026 |
pn = n; |
|
2027 |
|
|
2028 |
p = e; |
|
2029 |
e = embedding[graph.oppositeArc(e)]; |
|
2030 |
|
|
2031 |
} |
|
2032 |
embedding[graph.oppositeArc(e)] = pn; |
|
2033 |
|
|
2034 |
pn = graph.oppositeArc(ce), p = mine; |
|
2035 |
e = embedding[graph.oppositeArc(mine)]; |
|
2036 |
while (graph.target(e) != t) { |
|
2037 |
typename Graph::Arc n = |
|
2038 |
graph.direct(graph.addEdge(t, graph.source(e)), true); |
|
2039 |
|
|
2040 |
embedding[n] = pn; |
|
2041 |
embedding[graph.oppositeArc(n)] = e; |
|
2042 |
embedding[graph.oppositeArc(p)] = graph.oppositeArc(n); |
|
2043 |
|
|
2044 |
pn = n; |
|
2045 |
|
|
2046 |
p = e; |
|
2047 |
e = embedding[graph.oppositeArc(e)]; |
|
2048 |
|
|
2049 |
} |
|
2050 |
embedding[graph.oppositeArc(e)] = pn; |
|
2051 |
} |
|
2052 |
} |
|
2053 |
} |
|
2054 |
|
|
2055 |
} |
|
2056 |
|
|
2057 |
/// \ingroup planar |
|
2058 |
/// |
|
2059 |
/// \brief Schnyder's planar drawing algorithm |
|
2060 |
/// |
|
2061 |
/// The planar drawing algorithm calculates positions for the nodes |
|
2062 |
/// in the plane which coordinates satisfy that if the arcs are |
|
2063 |
/// represented with straight lines then they will not intersect |
|
2064 |
/// each other. |
|
2065 |
/// |
|
2066 |
/// Scnyder's algorithm embeds the graph on \c (n-2,n-2) size grid, |
|
2067 |
/// i.e. each node will be located in the \c [0,n-2]x[0,n-2] square. |
|
2068 |
/// The time complexity of the algorithm is O(n). |
|
2069 |
template <typename Graph> |
|
2070 |
class PlanarDrawing { |
|
2071 |
public: |
|
2072 |
|
|
2073 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
2074 |
|
|
2075 |
/// \brief The point type for store coordinates |
|
2076 |
typedef dim2::Point<int> Point; |
|
2077 |
/// \brief The map type for store coordinates |
|
2078 |
typedef typename Graph::template NodeMap<Point> PointMap; |
|
2079 |
|
|
2080 |
|
|
2081 |
/// \brief Constructor |
|
2082 |
/// |
|
2083 |
/// Constructor |
|
2084 |
/// \pre The graph should be simple, i.e. loop and parallel arc free. |
|
2085 |
PlanarDrawing(const Graph& graph) |
|
2086 |
: _graph(graph), _point_map(graph) {} |
|
2087 |
|
|
2088 |
private: |
|
2089 |
|
|
2090 |
template <typename AuxGraph, typename AuxEmbeddingMap> |
|
2091 |
void drawing(const AuxGraph& graph, |
|
2092 |
const AuxEmbeddingMap& next, |
|
2093 |
PointMap& point_map) { |
|
2094 |
TEMPLATE_GRAPH_TYPEDEFS(AuxGraph); |
|
2095 |
|
|
2096 |
typename AuxGraph::template ArcMap<Arc> prev(graph); |
|
2097 |
|
|
2098 |
for (NodeIt n(graph); n != INVALID; ++n) { |
|
2099 |
Arc e = OutArcIt(graph, n); |
|
2100 |
|
|
2101 |
Arc p = e, l = e; |
|
2102 |
|
|
2103 |
e = next[e]; |
|
2104 |
while (e != l) { |
|
2105 |
prev[e] = p; |
|
2106 |
p = e; |
|
2107 |
e = next[e]; |
|
2108 |
} |
|
2109 |
prev[e] = p; |
|
2110 |
} |
|
2111 |
|
|
2112 |
Node anode, bnode, cnode; |
|
2113 |
|
|
2114 |
{ |
|
2115 |
Arc e = ArcIt(graph); |
|
2116 |
anode = graph.source(e); |
|
2117 |
bnode = graph.target(e); |
|
2118 |
cnode = graph.target(next[graph.oppositeArc(e)]); |
|
2119 |
} |
|
2120 |
|
|
2121 |
IterableBoolMap<AuxGraph, Node> proper(graph, false); |
|
2122 |
typename AuxGraph::template NodeMap<int> conn(graph, -1); |
|
2123 |
|
|
2124 |
conn[anode] = conn[bnode] = -2; |
|
2125 |
{ |
|
2126 |
for (OutArcIt e(graph, anode); e != INVALID; ++e) { |
|
2127 |
Node m = graph.target(e); |
|
2128 |
if (conn[m] == -1) { |
|
2129 |
conn[m] = 1; |
|
2130 |
} |
|
2131 |
} |
|
2132 |
conn[cnode] = 2; |
|
2133 |
|
|
2134 |
for (OutArcIt e(graph, bnode); e != INVALID; ++e) { |
|
2135 |
Node m = graph.target(e); |
|
2136 |
if (conn[m] == -1) { |
|
2137 |
conn[m] = 1; |
|
2138 |
} else if (conn[m] != -2) { |
|
2139 |
conn[m] += 1; |
|
2140 |
Arc pe = graph.oppositeArc(e); |
|
2141 |
if (conn[graph.target(next[pe])] == -2) { |
|
2142 |
conn[m] -= 1; |
|
2143 |
} |
|
2144 |
if (conn[graph.target(prev[pe])] == -2) { |
|
2145 |
conn[m] -= 1; |
|
2146 |
} |
|
2147 |
|
|
2148 |
proper.set(m, conn[m] == 1); |
|
2149 |
} |
|
2150 |
} |
|
2151 |
} |
|
2152 |
|
|
2153 |
|
|
2154 |
typename AuxGraph::template ArcMap<int> angle(graph, -1); |
|
2155 |
|
|
2156 |
while (proper.trueNum() != 0) { |
|
2157 |
Node n = typename IterableBoolMap<AuxGraph, Node>::TrueIt(proper); |
|
2158 |
proper.set(n, false); |
|
2159 |
conn[n] = -2; |
|
2160 |
|
|
2161 |
for (OutArcIt e(graph, n); e != INVALID; ++e) { |
|
2162 |
Node m = graph.target(e); |
|
2163 |
if (conn[m] == -1) { |
|
2164 |
conn[m] = 1; |
|
2165 |
} else if (conn[m] != -2) { |
|
2166 |
conn[m] += 1; |
|
2167 |
Arc pe = graph.oppositeArc(e); |
|
2168 |
if (conn[graph.target(next[pe])] == -2) { |
|
2169 |
conn[m] -= 1; |
|
2170 |
} |
|
2171 |
if (conn[graph.target(prev[pe])] == -2) { |
|
2172 |
conn[m] -= 1; |
|
2173 |
} |
|
2174 |
|
|
2175 |
proper.set(m, conn[m] == 1); |
|
2176 |
} |
|
2177 |
} |
|
2178 |
|
|
2179 |
{ |
|
2180 |
Arc e = OutArcIt(graph, n); |
|
2181 |
Arc p = e, l = e; |
|
2182 |
|
|
2183 |
e = next[e]; |
|
2184 |
while (e != l) { |
|
2185 |
|
|
2186 |
if (conn[graph.target(e)] == -2 && conn[graph.target(p)] == -2) { |
|
2187 |
Arc f = e; |
|
2188 |
angle[f] = 0; |
|
2189 |
f = next[graph.oppositeArc(f)]; |
|
2190 |
angle[f] = 1; |
|
2191 |
f = next[graph.oppositeArc(f)]; |
|
2192 |
angle[f] = 2; |
|
2193 |
} |
|
2194 |
|
|
2195 |
p = e; |
|
2196 |
e = next[e]; |
|
2197 |
} |
|
2198 |
|
|
2199 |
if (conn[graph.target(e)] == -2 && conn[graph.target(p)] == -2) { |
|
2200 |
Arc f = e; |
|
2201 |
angle[f] = 0; |
|
2202 |
f = next[graph.oppositeArc(f)]; |
|
2203 |
angle[f] = 1; |
|
2204 |
f = next[graph.oppositeArc(f)]; |
|
2205 |
angle[f] = 2; |
|
2206 |
} |
|
2207 |
} |
|
2208 |
} |
|
2209 |
|
|
2210 |
typename AuxGraph::template NodeMap<Node> apred(graph, INVALID); |
|
2211 |
typename AuxGraph::template NodeMap<Node> bpred(graph, INVALID); |
|
2212 |
typename AuxGraph::template NodeMap<Node> cpred(graph, INVALID); |
|
2213 |
|
|
2214 |
typename AuxGraph::template NodeMap<int> apredid(graph, -1); |
|
2215 |
typename AuxGraph::template NodeMap<int> bpredid(graph, -1); |
|
2216 |
typename AuxGraph::template NodeMap<int> cpredid(graph, -1); |
|
2217 |
|
|
2218 |
for (ArcIt e(graph); e != INVALID; ++e) { |
|
2219 |
if (angle[e] == angle[next[e]]) { |
|
2220 |
switch (angle[e]) { |
|
2221 |
case 2: |
|
2222 |
apred[graph.target(e)] = graph.source(e); |
|
2223 |
apredid[graph.target(e)] = graph.id(graph.source(e)); |
|
2224 |
break; |
|
2225 |
case 1: |
|
2226 |
bpred[graph.target(e)] = graph.source(e); |
|
2227 |
bpredid[graph.target(e)] = graph.id(graph.source(e)); |
|
2228 |
break; |
|
2229 |
case 0: |
|
2230 |
cpred[graph.target(e)] = graph.source(e); |
|
2231 |
cpredid[graph.target(e)] = graph.id(graph.source(e)); |
|
2232 |
break; |
|
2233 |
} |
|
2234 |
} |
|
2235 |
} |
|
2236 |
|
|
2237 |
cpred[anode] = INVALID; |
|
2238 |
cpred[bnode] = INVALID; |
|
2239 |
|
|
2240 |
std::vector<Node> aorder, border, corder; |
|
2241 |
|
|
2242 |
{ |
|
2243 |
typename AuxGraph::template NodeMap<bool> processed(graph, false); |
|
2244 |
std::vector<Node> st; |
|
2245 |
for (NodeIt n(graph); n != INVALID; ++n) { |
|
2246 |
if (!processed[n] && n != bnode && n != cnode) { |
|
2247 |
st.push_back(n); |
|
2248 |
processed[n] = true; |
|
2249 |
Node m = apred[n]; |
|
2250 |
while (m != INVALID && !processed[m]) { |
|
2251 |
st.push_back(m); |
|
2252 |
processed[m] = true; |
|
2253 |
m = apred[m]; |
|
2254 |
} |
|
2255 |
while (!st.empty()) { |
|
2256 |
aorder.push_back(st.back()); |
|
2257 |
st.pop_back(); |
|
2258 |
} |
|
2259 |
} |
|
2260 |
} |
|
2261 |
} |
|
2262 |
|
|
2263 |
{ |
|
2264 |
typename AuxGraph::template NodeMap<bool> processed(graph, false); |
|
2265 |
std::vector<Node> st; |
|
2266 |
for (NodeIt n(graph); n != INVALID; ++n) { |
|
2267 |
if (!processed[n] && n != cnode && n != anode) { |
|
2268 |
st.push_back(n); |
|
2269 |
processed[n] = true; |
|
2270 |
Node m = bpred[n]; |
|
2271 |
while (m != INVALID && !processed[m]) { |
|
2272 |
st.push_back(m); |
|
2273 |
processed[m] = true; |
|
2274 |
m = bpred[m]; |
|
2275 |
} |
|
2276 |
while (!st.empty()) { |
|
2277 |
border.push_back(st.back()); |
|
2278 |
st.pop_back(); |
|
2279 |
} |
|
2280 |
} |
|
2281 |
} |
|
2282 |
} |
|
2283 |
|
|
2284 |
{ |
|
2285 |
typename AuxGraph::template NodeMap<bool> processed(graph, false); |
|
2286 |
std::vector<Node> st; |
|
2287 |
for (NodeIt n(graph); n != INVALID; ++n) { |
|
2288 |
if (!processed[n] && n != anode && n != bnode) { |
|
2289 |
st.push_back(n); |
|
2290 |
processed[n] = true; |
|
2291 |
Node m = cpred[n]; |
|
2292 |
while (m != INVALID && !processed[m]) { |
|
2293 |
st.push_back(m); |
|
2294 |
processed[m] = true; |
|
2295 |
m = cpred[m]; |
|
2296 |
} |
|
2297 |
while (!st.empty()) { |
|
2298 |
corder.push_back(st.back()); |
|
2299 |
st.pop_back(); |
|
2300 |
} |
|
2301 |
} |
|
2302 |
} |
|
2303 |
} |
|
2304 |
|
|
2305 |
typename AuxGraph::template NodeMap<int> atree(graph, 0); |
|
2306 |
for (int i = aorder.size() - 1; i >= 0; --i) { |
|
2307 |
Node n = aorder[i]; |
|
2308 |
atree[n] = 1; |
|
2309 |
for (OutArcIt e(graph, n); e != INVALID; ++e) { |
|
2310 |
if (apred[graph.target(e)] == n) { |
|
2311 |
atree[n] += atree[graph.target(e)]; |
|
2312 |
} |
|
2313 |
} |
|
2314 |
} |
|
2315 |
|
|
2316 |
typename AuxGraph::template NodeMap<int> btree(graph, 0); |
|
2317 |
for (int i = border.size() - 1; i >= 0; --i) { |
|
2318 |
Node n = border[i]; |
|
2319 |
btree[n] = 1; |
|
2320 |
for (OutArcIt e(graph, n); e != INVALID; ++e) { |
|
2321 |
if (bpred[graph.target(e)] == n) { |
|
2322 |
btree[n] += btree[graph.target(e)]; |
|
2323 |
} |
|
2324 |
} |
|
2325 |
} |
|
2326 |
|
|
2327 |
typename AuxGraph::template NodeMap<int> apath(graph, 0); |
|
2328 |
apath[bnode] = apath[cnode] = 1; |
|
2329 |
typename AuxGraph::template NodeMap<int> apath_btree(graph, 0); |
|
2330 |
apath_btree[bnode] = btree[bnode]; |
|
2331 |
for (int i = 1; i < int(aorder.size()); ++i) { |
|
2332 |
Node n = aorder[i]; |
|
2333 |
apath[n] = apath[apred[n]] + 1; |
|
2334 |
apath_btree[n] = btree[n] + apath_btree[apred[n]]; |
|
2335 |
} |
|
2336 |
|
|
2337 |
typename AuxGraph::template NodeMap<int> bpath_atree(graph, 0); |
|
2338 |
bpath_atree[anode] = atree[anode]; |
|
2339 |
for (int i = 1; i < int(border.size()); ++i) { |
|
2340 |
Node n = border[i]; |
|
2341 |
bpath_atree[n] = atree[n] + bpath_atree[bpred[n]]; |
|
2342 |
} |
|
2343 |
|
|
2344 |
typename AuxGraph::template NodeMap<int> cpath(graph, 0); |
|
2345 |
cpath[anode] = cpath[bnode] = 1; |
|
2346 |
typename AuxGraph::template NodeMap<int> cpath_atree(graph, 0); |
|
2347 |
cpath_atree[anode] = atree[anode]; |
|
2348 |
typename AuxGraph::template NodeMap<int> cpath_btree(graph, 0); |
|
2349 |
cpath_btree[bnode] = btree[bnode]; |
|
2350 |
for (int i = 1; i < int(corder.size()); ++i) { |
|
2351 |
Node n = corder[i]; |
|
2352 |
cpath[n] = cpath[cpred[n]] + 1; |
|
2353 |
cpath_atree[n] = atree[n] + cpath_atree[cpred[n]]; |
|
2354 |
cpath_btree[n] = btree[n] + cpath_btree[cpred[n]]; |
|
2355 |
} |
|
2356 |
|
|
2357 |
typename AuxGraph::template NodeMap<int> third(graph); |
|
2358 |
for (NodeIt n(graph); n != INVALID; ++n) { |
|
2359 |
point_map[n].x = |
|
2360 |
bpath_atree[n] + cpath_atree[n] - atree[n] - cpath[n] + 1; |
|
2361 |
point_map[n].y = |
|
2362 |
cpath_btree[n] + apath_btree[n] - btree[n] - apath[n] + 1; |
|
2363 |
} |
|
2364 |
|
|
2365 |
} |
|
2366 |
|
|
2367 |
public: |
|
2368 |
|
|
2369 |
/// \brief Calculates the node positions |
|
2370 |
/// |
|
2371 |
/// This function calculates the node positions. |
|
2372 |
/// \return %True if the graph is planar. |
|
2373 |
bool run() { |
|
2374 |
PlanarEmbedding<Graph> pe(_graph); |
|
2375 |
if (!pe.run()) return false; |
|
2376 |
|
|
2377 |
run(pe); |
|
2378 |
return true; |
|
2379 |
} |
|
2380 |
|
|
2381 |
/// \brief Calculates the node positions according to a |
|
2382 |
/// combinatorical embedding |
|
2383 |
/// |
|
2384 |
/// This function calculates the node locations. The \c embedding |
|
2385 |
/// parameter should contain a valid combinatorical embedding, i.e. |
|
2386 |
/// a valid cyclic order of the arcs. |
|
2387 |
template <typename EmbeddingMap> |
|
2388 |
void run(const EmbeddingMap& embedding) { |
|
2389 |
typedef SmartEdgeSet<Graph> AuxGraph; |
|
2390 |
|
|
2391 |
if (3 * countNodes(_graph) - 6 == countEdges(_graph)) { |
|
2392 |
drawing(_graph, embedding, _point_map); |
|
2393 |
return; |
|
2394 |
} |
|
2395 |
|
|
2396 |
AuxGraph aux_graph(_graph); |
|
2397 |
typename AuxGraph::template ArcMap<typename AuxGraph::Arc> |
|
2398 |
aux_embedding(aux_graph); |
|
2399 |
|
|
2400 |
{ |
|
2401 |
|
|
2402 |
typename Graph::template EdgeMap<typename AuxGraph::Edge> |
|
2403 |
ref(_graph); |
|
2404 |
|
|
2405 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
2406 |
ref[e] = aux_graph.addEdge(_graph.u(e), _graph.v(e)); |
|
2407 |
} |
|
2408 |
|
|
2409 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
2410 |
Arc ee = embedding[_graph.direct(e, true)]; |
|
2411 |
aux_embedding[aux_graph.direct(ref[e], true)] = |
|
2412 |
aux_graph.direct(ref[ee], _graph.direction(ee)); |
|
2413 |
ee = embedding[_graph.direct(e, false)]; |
|
2414 |
aux_embedding[aux_graph.direct(ref[e], false)] = |
|
2415 |
aux_graph.direct(ref[ee], _graph.direction(ee)); |
|
2416 |
} |
|
2417 |
} |
|
2418 |
_planarity_bits::makeConnected(aux_graph, aux_embedding); |
|
2419 |
_planarity_bits::makeBiNodeConnected(aux_graph, aux_embedding); |
|
2420 |
_planarity_bits::makeMaxPlanar(aux_graph, aux_embedding); |
|
2421 |
drawing(aux_graph, aux_embedding, _point_map); |
|
2422 |
} |
|
2423 |
|
|
2424 |
/// \brief The coordinate of the given node |
|
2425 |
/// |
|
2426 |
/// The coordinate of the given node. |
|
2427 |
Point operator[](const Node& node) const { |
|
2428 |
return _point_map[node]; |
|
2429 |
} |
|
2430 |
|
|
2431 |
/// \brief Returns the grid embedding in a \e NodeMap. |
|
2432 |
/// |
|
2433 |
/// Returns the grid embedding in a \e NodeMap of \c dim2::Point<int> . |
|
2434 |
const PointMap& coords() const { |
|
2435 |
return _point_map; |
|
2436 |
} |
|
2437 |
|
|
2438 |
private: |
|
2439 |
|
|
2440 |
const Graph& _graph; |
|
2441 |
PointMap _point_map; |
|
2442 |
|
|
2443 |
}; |
|
2444 |
|
|
2445 |
namespace _planarity_bits { |
|
2446 |
|
|
2447 |
template <typename ColorMap> |
|
2448 |
class KempeFilter { |
|
2449 |
public: |
|
2450 |
typedef typename ColorMap::Key Key; |
|
2451 |
typedef bool Value; |
|
2452 |
|
|
2453 |
KempeFilter(const ColorMap& color_map, |
|
2454 |
const typename ColorMap::Value& first, |
|
2455 |
const typename ColorMap::Value& second) |
|
2456 |
: _color_map(color_map), _first(first), _second(second) {} |
|
2457 |
|
|
2458 |
Value operator[](const Key& key) const { |
|
2459 |
return _color_map[key] == _first || _color_map[key] == _second; |
|
2460 |
} |
|
2461 |
|
|
2462 |
private: |
|
2463 |
const ColorMap& _color_map; |
|
2464 |
typename ColorMap::Value _first, _second; |
|
2465 |
}; |
|
2466 |
} |
|
2467 |
|
|
2468 |
/// \ingroup planar |
|
2469 |
/// |
|
2470 |
/// \brief Coloring planar graphs |
|
2471 |
/// |
|
2472 |
/// The graph coloring problem is the coloring of the graph nodes |
|
2473 |
/// that there are not adjacent nodes with the same color. The |
|
2474 |
/// planar graphs can be always colored with four colors, it is |
|
2475 |
/// proved by Appel and Haken and their proofs provide a quadratic |
|
2476 |
/// time algorithm for four coloring, but it could not be used to |
|
2477 |
/// implement efficient algorithm. The five and six coloring can be |
|
2478 |
/// made in linear time, but in this class the five coloring has |
|
2479 |
/// quadratic worst case time complexity. The two coloring (if |
|
2480 |
/// possible) is solvable with a graph search algorithm and it is |
|
2481 |
/// implemented in \ref bipartitePartitions() function in LEMON. To |
|
2482 |
/// decide whether the planar graph is three colorable is |
|
2483 |
/// NP-complete. |
|
2484 |
/// |
|
2485 |
/// This class contains member functions for calculate colorings |
|
2486 |
/// with five and six colors. The six coloring algorithm is a simple |
|
2487 |
/// greedy coloring on the backward minimum outgoing order of nodes. |
|
2488 |
/// This order can be computed as in each phase the node with least |
|
2489 |
/// outgoing arcs to unprocessed nodes is chosen. This order |
|
2490 |
/// guarantees that when a node is chosen for coloring it has at |
|
2491 |
/// most five already colored adjacents. The five coloring algorithm |
|
2492 |
/// use the same method, but if the greedy approach fails to color |
|
2493 |
/// with five colors, i.e. the node has five already different |
|
2494 |
/// colored neighbours, it swaps the colors in one of the connected |
|
2495 |
/// two colored sets with the Kempe recoloring method. |
|
2496 |
template <typename Graph> |
|
2497 |
class PlanarColoring { |
|
2498 |
public: |
|
2499 |
|
|
2500 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
2501 |
|
|
2502 |
/// \brief The map type for store color indexes |
|
2503 |
typedef typename Graph::template NodeMap<int> IndexMap; |
|
2504 |
/// \brief The map type for store colors |
|
2505 |
typedef ComposeMap<Palette, IndexMap> ColorMap; |
|
2506 |
|
|
2507 |
/// \brief Constructor |
|
2508 |
/// |
|
2509 |
/// Constructor |
|
2510 |
/// \pre The graph should be simple, i.e. loop and parallel arc free. |
|
2511 |
PlanarColoring(const Graph& graph) |
|
2512 |
: _graph(graph), _color_map(graph), _palette(0) { |
|
2513 |
_palette.add(Color(1,0,0)); |
|
2514 |
_palette.add(Color(0,1,0)); |
|
2515 |
_palette.add(Color(0,0,1)); |
|
2516 |
_palette.add(Color(1,1,0)); |
|
2517 |
_palette.add(Color(1,0,1)); |
|
2518 |
_palette.add(Color(0,1,1)); |
|
2519 |
} |
|
2520 |
|
|
2521 |
/// \brief Returns the \e NodeMap of color indexes |
|
2522 |
/// |
|
2523 |
/// Returns the \e NodeMap of color indexes. The values are in the |
|
2524 |
/// range \c [0..4] or \c [0..5] according to the coloring method. |
|
2525 |
IndexMap colorIndexMap() const { |
|
2526 |
return _color_map; |
|
2527 |
} |
|
2528 |
|
|
2529 |
/// \brief Returns the \e NodeMap of colors |
|
2530 |
/// |
|
2531 |
/// Returns the \e NodeMap of colors. The values are five or six |
|
2532 |
/// distinct \ref lemon::Color "colors". |
|
2533 |
ColorMap colorMap() const { |
|
2534 |
return composeMap(_palette, _color_map); |
|
2535 |
} |
|
2536 |
|
|
2537 |
/// \brief Returns the color index of the node |
|
2538 |
/// |
|
2539 |
/// Returns the color index of the node. The values are in the |
|
2540 |
/// range \c [0..4] or \c [0..5] according to the coloring method. |
|
2541 |
int colorIndex(const Node& node) const { |
|
2542 |
return _color_map[node]; |
|
2543 |
} |
|
2544 |
|
|
2545 |
/// \brief Returns the color of the node |
|
2546 |
/// |
|
2547 |
/// Returns the color of the node. The values are five or six |
|
2548 |
/// distinct \ref lemon::Color "colors". |
|
2549 |
Color color(const Node& node) const { |
|
2550 |
return _palette[_color_map[node]]; |
|
2551 |
} |
|
2552 |
|
|
2553 |
|
|
2554 |
/// \brief Calculates a coloring with at most six colors |
|
2555 |
/// |
|
2556 |
/// This function calculates a coloring with at most six colors. The time |
|
2557 |
/// complexity of this variant is linear in the size of the graph. |
|
2558 |
/// \return %True when the algorithm could color the graph with six color. |
|
2559 |
/// If the algorithm fails, then the graph could not be planar. |
|
2560 |
/// \note This function can return true if the graph is not |
|
2561 |
/// planar but it can be colored with 6 colors. |
|
2562 |
bool runSixColoring() { |
|
2563 |
|
|
2564 |
typename Graph::template NodeMap<int> heap_index(_graph, -1); |
|
2565 |
BucketHeap<typename Graph::template NodeMap<int> > heap(heap_index); |
|
2566 |
|
|
2567 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
2568 |
_color_map[n] = -2; |
|
2569 |
heap.push(n, countOutArcs(_graph, n)); |
|
2570 |
} |
|
2571 |
|
|
2572 |
std::vector<Node> order; |
|
2573 |
|
|
2574 |
while (!heap.empty()) { |
|
2575 |
Node n = heap.top(); |
|
2576 |
heap.pop(); |
|
2577 |
_color_map[n] = -1; |
|
2578 |
order.push_back(n); |
|
2579 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
|
2580 |
Node t = _graph.runningNode(e); |
|
2581 |
if (_color_map[t] == -2) { |
|
2582 |
heap.decrease(t, heap[t] - 1); |
|
2583 |
} |
|
2584 |
} |
|
2585 |
} |
|
2586 |
|
|
2587 |
for (int i = order.size() - 1; i >= 0; --i) { |
|
2588 |
std::vector<bool> forbidden(6, false); |
|
2589 |
for (OutArcIt e(_graph, order[i]); e != INVALID; ++e) { |
|
2590 |
Node t = _graph.runningNode(e); |
|
2591 |
if (_color_map[t] != -1) { |
|
2592 |
forbidden[_color_map[t]] = true; |
|
2593 |
} |
|
2594 |
} |
|
2595 |
for (int k = 0; k < 6; ++k) { |
|
2596 |
if (!forbidden[k]) { |
|
2597 |
_color_map[order[i]] = k; |
|
2598 |
break; |
|
2599 |
} |
|
2600 |
} |
|
2601 |
if (_color_map[order[i]] == -1) { |
|
2602 |
return false; |
|
2603 |
} |
|
2604 |
} |
|
2605 |
return true; |
|
2606 |
} |
|
2607 |
|
|
2608 |
private: |
|
2609 |
|
|
2610 |
bool recolor(const Node& u, const Node& v) { |
|
2611 |
int ucolor = _color_map[u]; |
|
2612 |
int vcolor = _color_map[v]; |
|
2613 |
typedef _planarity_bits::KempeFilter<IndexMap> KempeFilter; |
|
2614 |
KempeFilter filter(_color_map, ucolor, vcolor); |
|
2615 |
|
|
2616 |
typedef FilterNodes<const Graph, const KempeFilter> KempeGraph; |
|
2617 |
KempeGraph kempe_graph(_graph, filter); |
|
2618 |
|
|
2619 |
std::vector<Node> comp; |
|
2620 |
Bfs<KempeGraph> bfs(kempe_graph); |
|
2621 |
bfs.init(); |
|
2622 |
bfs.addSource(u); |
|
2623 |
while (!bfs.emptyQueue()) { |
|
2624 |
Node n = bfs.nextNode(); |
|
2625 |
if (n == v) return false; |
|
2626 |
comp.push_back(n); |
|
2627 |
bfs.processNextNode(); |
|
2628 |
} |
|
2629 |
|
|
2630 |
int scolor = ucolor + vcolor; |
|
2631 |
for (int i = 0; i < static_cast<int>(comp.size()); ++i) { |
|
2632 |
_color_map[comp[i]] = scolor - _color_map[comp[i]]; |
|
2633 |
} |
|
2634 |
|
|
2635 |
return true; |
|
2636 |
} |
|
2637 |
|
|
2638 |
template <typename EmbeddingMap> |
|
2639 |
void kempeRecoloring(const Node& node, const EmbeddingMap& embedding) { |
|
2640 |
std::vector<Node> nodes; |
|
2641 |
nodes.reserve(4); |
|
2642 |
|
|
2643 |
for (Arc e = OutArcIt(_graph, node); e != INVALID; e = embedding[e]) { |
|
2644 |
Node t = _graph.target(e); |
|
2645 |
if (_color_map[t] != -1) { |
|
2646 |
nodes.push_back(t); |
|
2647 |
if (nodes.size() == 4) break; |
|
2648 |
} |
|
2649 |
} |
|
2650 |
|
|
2651 |
int color = _color_map[nodes[0]]; |
|
2652 |
if (recolor(nodes[0], nodes[2])) { |
|
2653 |
_color_map[node] = color; |
|
2654 |
} else { |
|
2655 |
color = _color_map[nodes[1]]; |
|
2656 |
recolor(nodes[1], nodes[3]); |
|
2657 |
_color_map[node] = color; |
|
2658 |
} |
|
2659 |
} |
|
2660 |
|
|
2661 |
public: |
|
2662 |
|
|
2663 |
/// \brief Calculates a coloring with at most five colors |
|
2664 |
/// |
|
2665 |
/// This function calculates a coloring with at most five |
|
2666 |
/// colors. The worst case time complexity of this variant is |
|
2667 |
/// quadratic in the size of the graph. |
|
2668 |
template <typename EmbeddingMap> |
|
2669 |
void runFiveColoring(const EmbeddingMap& embedding) { |
|
2670 |
|
|
2671 |
typename Graph::template NodeMap<int> heap_index(_graph, -1); |
|
2672 |
BucketHeap<typename Graph::template NodeMap<int> > heap(heap_index); |
|
2673 |
|
|
2674 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
2675 |
_color_map[n] = -2; |
|
2676 |
heap.push(n, countOutArcs(_graph, n)); |
|
2677 |
} |
|
2678 |
|
|
2679 |
std::vector<Node> order; |
|
2680 |
|
|
2681 |
while (!heap.empty()) { |
|
2682 |
Node n = heap.top(); |
|
2683 |
heap.pop(); |
|
2684 |
_color_map[n] = -1; |
|
2685 |
order.push_back(n); |
|
2686 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
|
2687 |
Node t = _graph.runningNode(e); |
|
2688 |
if (_color_map[t] == -2) { |
|
2689 |
heap.decrease(t, heap[t] - 1); |
|
2690 |
} |
|
2691 |
} |
|
2692 |
} |
|
2693 |
|
|
2694 |
for (int i = order.size() - 1; i >= 0; --i) { |
|
2695 |
std::vector<bool> forbidden(5, false); |
|
2696 |
for (OutArcIt e(_graph, order[i]); e != INVALID; ++e) { |
|
2697 |
Node t = _graph.runningNode(e); |
|
2698 |
if (_color_map[t] != -1) { |
|
2699 |
forbidden[_color_map[t]] = true; |
|
2700 |
} |
|
2701 |
} |
|
2702 |
for (int k = 0; k < 5; ++k) { |
|
2703 |
if (!forbidden[k]) { |
|
2704 |
_color_map[order[i]] = k; |
|
2705 |
break; |
|
2706 |
} |
|
2707 |
} |
|
2708 |
if (_color_map[order[i]] == -1) { |
|
2709 |
kempeRecoloring(order[i], embedding); |
|
2710 |
} |
|
2711 |
} |
|
2712 |
} |
|
2713 |
|
|
2714 |
/// \brief Calculates a coloring with at most five colors |
|
2715 |
/// |
|
2716 |
/// This function calculates a coloring with at most five |
|
2717 |
/// colors. The worst case time complexity of this variant is |
|
2718 |
/// quadratic in the size of the graph. |
|
2719 |
/// \return %True when the graph is planar. |
|
2720 |
bool runFiveColoring() { |
|
2721 |
PlanarEmbedding<Graph> pe(_graph); |
|
2722 |
if (!pe.run()) return false; |
|
2723 |
|
|
2724 |
runFiveColoring(pe.embeddingMap()); |
|
2725 |
return true; |
|
2726 |
} |
|
2727 |
|
|
2728 |
private: |
|
2729 |
|
|
2730 |
const Graph& _graph; |
|
2731 |
IndexMap _color_map; |
|
2732 |
Palette _palette; |
|
2733 |
}; |
|
2734 |
|
|
2735 |
} |
|
2736 |
|
|
2737 |
#endif |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#include <iostream> |
|
20 |
|
|
21 |
#include <lemon/planarity.h> |
|
22 |
|
|
23 |
#include <lemon/smart_graph.h> |
|
24 |
#include <lemon/lgf_reader.h> |
|
25 |
#include <lemon/connectivity.h> |
|
26 |
#include <lemon/dim2.h> |
|
27 |
|
|
28 |
#include "test_tools.h" |
|
29 |
|
|
30 |
using namespace lemon; |
|
31 |
using namespace lemon::dim2; |
|
32 |
|
|
33 |
const int lgfn = 4; |
|
34 |
const std::string lgf[lgfn] = { |
|
35 |
"@nodes\n" |
|
36 |
"label\n" |
|
37 |
"0\n" |
|
38 |
"1\n" |
|
39 |
"2\n" |
|
40 |
"3\n" |
|
41 |
"4\n" |
|
42 |
"@edges\n" |
|
43 |
" label\n" |
|
44 |
"0 1 0\n" |
|
45 |
"0 2 0\n" |
|
46 |
"0 3 0\n" |
|
47 |
"0 4 0\n" |
|
48 |
"1 2 0\n" |
|
49 |
"1 3 0\n" |
|
50 |
"1 4 0\n" |
|
51 |
"2 3 0\n" |
|
52 |
"2 4 0\n" |
|
53 |
"3 4 0\n", |
|
54 |
|
|
55 |
"@nodes\n" |
|
56 |
"label\n" |
|
57 |
"0\n" |
|
58 |
"1\n" |
|
59 |
"2\n" |
|
60 |
"3\n" |
|
61 |
"4\n" |
|
62 |
"@edges\n" |
|
63 |
" label\n" |
|
64 |
"0 1 0\n" |
|
65 |
"0 2 0\n" |
|
66 |
"0 3 0\n" |
|
67 |
"0 4 0\n" |
|
68 |
"1 2 0\n" |
|
69 |
"1 3 0\n" |
|
70 |
"2 3 0\n" |
|
71 |
"2 4 0\n" |
|
72 |
"3 4 0\n", |
|
73 |
|
|
74 |
"@nodes\n" |
|
75 |
"label\n" |
|
76 |
"0\n" |
|
77 |
"1\n" |
|
78 |
"2\n" |
|
79 |
"3\n" |
|
80 |
"4\n" |
|
81 |
"5\n" |
|
82 |
"@edges\n" |
|
83 |
" label\n" |
|
84 |
"0 3 0\n" |
|
85 |
"0 4 0\n" |
|
86 |
"0 5 0\n" |
|
87 |
"1 3 0\n" |
|
88 |
"1 4 0\n" |
|
89 |
"1 5 0\n" |
|
90 |
"2 3 0\n" |
|
91 |
"2 4 0\n" |
|
92 |
"2 5 0\n", |
|
93 |
|
|
94 |
"@nodes\n" |
|
95 |
"label\n" |
|
96 |
"0\n" |
|
97 |
"1\n" |
|
98 |
"2\n" |
|
99 |
"3\n" |
|
100 |
"4\n" |
|
101 |
"5\n" |
|
102 |
"@edges\n" |
|
103 |
" label\n" |
|
104 |
"0 3 0\n" |
|
105 |
"0 4 0\n" |
|
106 |
"0 5 0\n" |
|
107 |
"1 3 0\n" |
|
108 |
"1 4 0\n" |
|
109 |
"1 5 0\n" |
|
110 |
"2 3 0\n" |
|
111 |
"2 5 0\n" |
|
112 |
}; |
|
113 |
|
|
114 |
|
|
115 |
|
|
116 |
typedef SmartGraph Graph; |
|
117 |
GRAPH_TYPEDEFS(Graph); |
|
118 |
|
|
119 |
typedef PlanarEmbedding<SmartGraph> PE; |
|
120 |
typedef PlanarDrawing<SmartGraph> PD; |
|
121 |
typedef PlanarColoring<SmartGraph> PC; |
|
122 |
|
|
123 |
void checkEmbedding(const Graph& graph, PE& pe) { |
|
124 |
int face_num = 0; |
|
125 |
|
|
126 |
Graph::ArcMap<int> face(graph, -1); |
|
127 |
|
|
128 |
for (ArcIt a(graph); a != INVALID; ++a) { |
|
129 |
if (face[a] == -1) { |
|
130 |
Arc b = a; |
|
131 |
while (face[b] == -1) { |
|
132 |
face[b] = face_num; |
|
133 |
b = pe.next(graph.oppositeArc(b)); |
|
134 |
} |
|
135 |
check(face[b] == face_num, "Wrong face"); |
|
136 |
++face_num; |
|
137 |
} |
|
138 |
} |
|
139 |
check(face_num + countNodes(graph) - countConnectedComponents(graph) == |
|
140 |
countEdges(graph) + 1, "Euler test does not passed"); |
|
141 |
} |
|
142 |
|
|
143 |
void checkKuratowski(const Graph& graph, PE& pe) { |
|
144 |
std::map<int, int> degs; |
|
145 |
for (NodeIt n(graph); n != INVALID; ++n) { |
|
146 |
int deg = 0; |
|
147 |
for (IncEdgeIt e(graph, n); e != INVALID; ++e) { |
|
148 |
if (pe.kuratowski(e)) { |
|
149 |
++deg; |
|
150 |
} |
|
151 |
} |
|
152 |
++degs[deg]; |
|
153 |
} |
|
154 |
for (std::map<int, int>::iterator it = degs.begin(); it != degs.end(); ++it) { |
|
155 |
check(it->first == 0 || it->first == 2 || |
|
156 |
(it->first == 3 && it->second == 6) || |
|
157 |
(it->first == 4 && it->second == 5), |
|
158 |
"Wrong degree in Kuratowski graph"); |
|
159 |
} |
|
160 |
|
|
161 |
// Not full test |
|
162 |
check((degs[3] == 0) != (degs[4] == 0), "Wrong Kuratowski graph"); |
|
163 |
} |
|
164 |
|
|
165 |
bool intersect(Point<int> e1, Point<int> e2, Point<int> f1, Point<int> f2) { |
|
166 |
int l, r; |
|
167 |
if (std::min(e1.x, e2.x) > std::max(f1.x, f2.x)) return false; |
|
168 |
if (std::max(e1.x, e2.x) < std::min(f1.x, f2.x)) return false; |
|
169 |
if (std::min(e1.y, e2.y) > std::max(f1.y, f2.y)) return false; |
|
170 |
if (std::max(e1.y, e2.y) < std::min(f1.y, f2.y)) return false; |
|
171 |
|
|
172 |
l = (e2.x - e1.x) * (f1.y - e1.y) - (e2.y - e1.y) * (f1.x - e1.x); |
|
173 |
r = (e2.x - e1.x) * (f2.y - e1.y) - (e2.y - e1.y) * (f2.x - e1.x); |
|
174 |
if (!((l >= 0 && r <= 0) || (l <= 0 && r >= 0))) return false; |
|
175 |
l = (f2.x - f1.x) * (e1.y - f1.y) - (f2.y - f1.y) * (e1.x - f1.x); |
|
176 |
r = (f2.x - f1.x) * (e2.y - f1.y) - (f2.y - f1.y) * (e2.x - f1.x); |
|
177 |
if (!((l >= 0 && r <= 0) || (l <= 0 && r >= 0))) return false; |
|
178 |
return true; |
|
179 |
} |
|
180 |
|
|
181 |
bool collinear(Point<int> p, Point<int> q, Point<int> r) { |
|
182 |
int v; |
|
183 |
v = (q.x - p.x) * (r.y - p.y) - (q.y - p.y) * (r.x - p.x); |
|
184 |
if (v != 0) return false; |
|
185 |
v = (q.x - p.x) * (r.x - p.x) + (q.y - p.y) * (r.y - p.y); |
|
186 |
if (v < 0) return false; |
|
187 |
return true; |
|
188 |
} |
|
189 |
|
|
190 |
void checkDrawing(const Graph& graph, PD& pd) { |
|
191 |
for (Graph::NodeIt n(graph); n != INVALID; ++n) { |
|
192 |
Graph::NodeIt m(n); |
|
193 |
for (++m; m != INVALID; ++m) { |
|
194 |
check(pd[m] != pd[n], "Two nodes with identical coordinates"); |
|
195 |
} |
|
196 |
} |
|
197 |
|
|
198 |
for (Graph::EdgeIt e(graph); e != INVALID; ++e) { |
|
199 |
for (Graph::EdgeIt f(e); f != e; ++f) { |
|
200 |
Point<int> e1 = pd[graph.u(e)]; |
|
201 |
Point<int> e2 = pd[graph.v(e)]; |
|
202 |
Point<int> f1 = pd[graph.u(f)]; |
|
203 |
Point<int> f2 = pd[graph.v(f)]; |
|
204 |
|
|
205 |
if (graph.u(e) == graph.u(f)) { |
|
206 |
check(!collinear(e1, e2, f2), "Wrong drawing"); |
|
207 |
} else if (graph.u(e) == graph.v(f)) { |
|
208 |
check(!collinear(e1, e2, f1), "Wrong drawing"); |
|
209 |
} else if (graph.v(e) == graph.u(f)) { |
|
210 |
check(!collinear(e2, e1, f2), "Wrong drawing"); |
|
211 |
} else if (graph.v(e) == graph.v(f)) { |
|
212 |
check(!collinear(e2, e1, f1), "Wrong drawing"); |
|
213 |
} else { |
|
214 |
check(!intersect(e1, e2, f1, f2), "Wrong drawing"); |
|
215 |
} |
|
216 |
} |
|
217 |
} |
|
218 |
} |
|
219 |
|
|
220 |
void checkColoring(const Graph& graph, PC& pc, int num) { |
|
221 |
for (NodeIt n(graph); n != INVALID; ++n) { |
|
222 |
check(pc.colorIndex(n) >= 0 && pc.colorIndex(n) < num, |
|
223 |
"Wrong coloring"); |
|
224 |
} |
|
225 |
for (EdgeIt e(graph); e != INVALID; ++e) { |
|
226 |
check(pc.colorIndex(graph.u(e)) != pc.colorIndex(graph.v(e)), |
|
227 |
"Wrong coloring"); |
|
228 |
} |
|
229 |
} |
|
230 |
|
|
231 |
int main() { |
|
232 |
|
|
233 |
for (int i = 0; i < lgfn; ++i) { |
|
234 |
std::istringstream lgfs(lgf[i]); |
|
235 |
|
|
236 |
SmartGraph graph; |
|
237 |
graphReader(graph, lgfs).run(); |
|
238 |
|
|
239 |
check(simpleGraph(graph), "Test graphs must be simple"); |
|
240 |
|
|
241 |
PE pe(graph); |
|
242 |
if (pe.run()) { |
|
243 |
checkEmbedding(graph, pe); |
|
244 |
|
|
245 |
PlanarDrawing<Graph> pd(graph); |
|
246 |
pd.run(pe.embedding()); |
|
247 |
checkDrawing(graph, pd); |
|
248 |
|
|
249 |
PlanarColoring<Graph> pc(graph); |
|
250 |
pc.runFiveColoring(pe.embedding()); |
|
251 |
checkColoring(graph, pc, 5); |
|
252 |
|
|
253 |
} else { |
|
254 |
checkKuratowski(graph, pe); |
|
255 |
} |
|
256 |
} |
|
257 |
|
|
258 |
return 0; |
|
259 |
} |
0 comments (0 inline)