0
2
0
... | ... |
@@ -162,21 +162,23 @@ |
162 | 162 |
par = parent(hole); |
163 | 163 |
} |
164 | 164 |
move(p, hole); |
165 | 165 |
} |
166 | 166 |
|
167 | 167 |
void bubbleDown(int hole, Pair p, int length) { |
168 |
if( length>1 ) { |
|
168 | 169 |
int child = firstChild(hole); |
169 |
while( child<length |
|
170 |
while( child<length ) { |
|
170 | 171 |
child = findMin(child,length); |
171 | 172 |
if( !less(_data[child], p) ) |
172 | 173 |
goto ok; |
173 | 174 |
move(_data[child], hole); |
174 | 175 |
hole = child; |
175 | 176 |
child = firstChild(hole); |
176 | 177 |
} |
178 |
} |
|
177 | 179 |
ok: |
178 | 180 |
move(p, hole); |
179 | 181 |
} |
180 | 182 |
|
181 | 183 |
void move(const Pair &p, int i) { |
182 | 184 |
_data[i] = p; |
... | ... |
@@ -205,78 +205,72 @@ |
205 | 205 |
|
206 | 206 |
/// \brief Remove the item having minimum priority. |
207 | 207 |
/// |
208 | 208 |
/// This function removes the item having minimum priority. |
209 | 209 |
/// \pre The heap must be non-empty. |
210 | 210 |
void pop() { |
211 |
int TreeArray[_num_items]; |
|
212 |
int i=0, num_child=0, child_right = 0; |
|
211 |
std::vector<int> trees; |
|
212 |
int i=0, child_right = 0; |
|
213 | 213 |
_data[_min].in=false; |
214 | 214 |
|
215 | 215 |
if( -1!=_data[_min].child ) { |
216 | 216 |
i=_data[_min].child; |
217 |
|
|
217 |
trees.push_back(i); |
|
218 | 218 |
_data[i].parent = -1; |
219 | 219 |
_data[_min].child = -1; |
220 | 220 |
|
221 |
++num_child; |
|
222 | 221 |
int ch=-1; |
223 | 222 |
while( _data[i].child!=-1 ) { |
224 | 223 |
ch=_data[i].child; |
225 | 224 |
if( _data[ch].left_child && i==_data[ch].parent ) { |
226 |
i=ch; |
|
227 |
//break; |
|
225 |
break; |
|
228 | 226 |
} else { |
229 | 227 |
if( _data[ch].left_child ) { |
230 | 228 |
child_right=_data[ch].parent; |
231 | 229 |
_data[ch].parent = i; |
232 | 230 |
--_data[i].degree; |
233 | 231 |
} |
234 | 232 |
else { |
235 | 233 |
child_right=ch; |
236 | 234 |
_data[i].child=-1; |
237 | 235 |
_data[i].degree=0; |
238 | 236 |
} |
239 | 237 |
_data[child_right].parent = -1; |
240 |
|
|
238 |
trees.push_back(child_right); |
|
241 | 239 |
i = child_right; |
242 |
++num_child; |
|
243 | 240 |
} |
244 | 241 |
} |
245 | 242 |
|
243 |
int num_child = trees.size(); |
|
246 | 244 |
int other; |
247 | 245 |
for( i=0; i<num_child-1; i+=2 ) { |
248 |
if ( !_comp(_data[TreeArray[i]].prio, |
|
249 |
_data[TreeArray[i+1]].prio) ) { |
|
250 |
other=TreeArray[i]; |
|
251 |
TreeArray[i]=TreeArray[i+1]; |
|
252 |
|
|
246 |
if ( !_comp(_data[trees[i]].prio, _data[trees[i+1]].prio) ) { |
|
247 |
other=trees[i]; |
|
248 |
trees[i]=trees[i+1]; |
|
249 |
trees[i+1]=other; |
|
253 | 250 |
} |
254 |
fuse( |
|
251 |
fuse( trees[i], trees[i+1] ); |
|
255 | 252 |
} |
256 | 253 |
|
257 | 254 |
i = (0==(num_child % 2)) ? num_child-2 : num_child-1; |
258 | 255 |
while(i>=2) { |
259 |
if ( _comp(_data[TreeArray[i]].prio, |
|
260 |
_data[TreeArray[i-2]].prio) ) { |
|
261 |
other=TreeArray[i]; |
|
262 |
TreeArray[i]=TreeArray[i-2]; |
|
263 |
|
|
256 |
if ( _comp(_data[trees[i]].prio, _data[trees[i-2]].prio) ) { |
|
257 |
other=trees[i]; |
|
258 |
trees[i]=trees[i-2]; |
|
259 |
trees[i-2]=other; |
|
264 | 260 |
} |
265 |
fuse( |
|
261 |
fuse( trees[i-2], trees[i] ); |
|
266 | 262 |
i-=2; |
267 | 263 |
} |
268 |
_min = |
|
264 |
_min = trees[0]; |
|
269 | 265 |
} |
270 |
|
|
271 |
if ( 0==num_child ) { |
|
266 |
else { |
|
272 | 267 |
_min = _data[_min].child; |
273 | 268 |
} |
274 | 269 |
|
275 | 270 |
if (_min >= 0) _data[_min].left_child = false; |
276 |
|
|
277 | 271 |
--_num_items; |
278 | 272 |
} |
279 | 273 |
|
280 | 274 |
/// \brief Remove the given item from the heap. |
281 | 275 |
/// |
282 | 276 |
/// This function removes the given item from the heap if it is |
0 comments (0 inline)