| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_PREFLOW_H |
| 20 | 20 |
#define LEMON_PREFLOW_H |
| 21 | 21 |
|
| 22 |
#include <lemon/error.h> |
|
| 23 | 22 |
#include <lemon/tolerance.h> |
| 24 | 23 |
#include <lemon/elevator.h> |
| 25 | 24 |
|
| 26 | 25 |
/// \file |
| 27 | 26 |
/// \ingroup max_flow |
| 28 | 27 |
/// \brief Implementation of the preflow algorithm. |
| 29 | 28 |
|
| 30 | 29 |
namespace lemon {
|
| 31 | 30 |
|
| 32 | 31 |
/// \brief Default traits class of Preflow class. |
| 33 | 32 |
/// |
| 34 | 33 |
/// Default traits class of Preflow class. |
| 35 | 34 |
/// \param _Graph Digraph type. |
| 36 | 35 |
/// \param _CapacityMap Type of capacity map. |
| 37 | 36 |
template <typename _Graph, typename _CapacityMap> |
| 38 | 37 |
struct PreflowDefaultTraits {
|
| 39 | 38 |
|
| 40 | 39 |
/// \brief The digraph type the algorithm runs on. |
| 41 | 40 |
typedef _Graph Digraph; |
| 42 | 41 |
|
| 43 | 42 |
/// \brief The type of the map that stores the arc capacities. |
| 44 | 43 |
/// |
| 45 | 44 |
/// The type of the map that stores the arc capacities. |
| 46 | 45 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
| 47 | 46 |
typedef _CapacityMap CapacityMap; |
| 48 | 47 |
|
| 49 | 48 |
/// \brief The type of the length of the arcs. |
| 50 | 49 |
typedef typename CapacityMap::Value Value; |
| 51 | 50 |
|
| 52 | 51 |
/// \brief The map type that stores the flow values. |
| 53 | 52 |
/// |
| 54 | 53 |
/// The map type that stores the flow values. |
| 55 | 54 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 56 | 55 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
| 57 | 56 |
|
| 58 | 57 |
/// \brief Instantiates a FlowMap. |
| 59 | 58 |
/// |
| 60 | 59 |
/// This function instantiates a \ref FlowMap. |
| 61 | 60 |
/// \param digraph The digraph, to which we would like to define |
| 62 | 61 |
/// the flow map. |
| 63 | 62 |
static FlowMap* createFlowMap(const Digraph& digraph) {
|
| 64 | 63 |
return new FlowMap(digraph); |
| 65 | 64 |
} |
| 66 | 65 |
|
| 67 | 66 |
/// \brief The eleavator type used by Preflow algorithm. |
| 68 | 67 |
/// |
| 69 | 68 |
/// The elevator type used by Preflow algorithm. |
| 70 | 69 |
/// |
| 71 | 70 |
/// \sa Elevator |
| 72 | 71 |
/// \sa LinkedElevator |
| 73 | 72 |
typedef LinkedElevator<Digraph, typename Digraph::Node> Elevator; |
| 74 | 73 |
|
| 75 | 74 |
/// \brief Instantiates an Elevator. |
| 76 | 75 |
/// |
| 77 | 76 |
/// This function instantiates a \ref Elevator. |
| 78 | 77 |
/// \param digraph The digraph, to which we would like to define |
| 79 | 78 |
/// the elevator. |
| 80 | 79 |
/// \param max_level The maximum level of the elevator. |
| 81 | 80 |
static Elevator* createElevator(const Digraph& digraph, int max_level) {
|
| 82 | 81 |
return new Elevator(digraph, max_level); |
| 83 | 82 |
} |
| 84 | 83 |
|
| 85 | 84 |
/// \brief The tolerance used by the algorithm |
| 86 | 85 |
/// |
| 87 | 86 |
/// The tolerance used by the algorithm to handle inexact computation. |
| 88 | 87 |
typedef lemon::Tolerance<Value> Tolerance; |
| 89 | 88 |
|
| 90 | 89 |
}; |
| 91 | 90 |
|
| 92 | 91 |
|
| 93 | 92 |
/// \ingroup max_flow |
| 94 | 93 |
/// |
| 95 | 94 |
/// \brief %Preflow algorithms class. |
| 96 | 95 |
/// |
| 97 | 96 |
/// This class provides an implementation of the Goldberg's \e |
| 98 | 97 |
/// preflow \e algorithm producing a flow of maximum value in a |
| 99 | 98 |
/// digraph. The preflow algorithms are the fastest known max |
| 100 | 99 |
/// flow algorithms. The current implementation use a mixture of the |
| 101 | 100 |
/// \e "highest label" and the \e "bound decrease" heuristics. |
| 102 | 101 |
/// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{e})\f$.
|
| 103 | 102 |
/// |
| 104 | 103 |
/// The algorithm consists from two phases. After the first phase |
| 105 | 104 |
/// the maximal flow value and the minimum cut can be obtained. The |
| 106 | 105 |
/// second phase constructs the feasible maximum flow on each arc. |
| 107 | 106 |
/// |
| 108 | 107 |
/// \param _Graph The digraph type the algorithm runs on. |
| 109 | 108 |
/// \param _CapacityMap The flow map type. |
| 110 | 109 |
/// \param _Traits Traits class to set various data types used by |
| 111 | 110 |
/// the algorithm. The default traits class is \ref |
| 112 | 111 |
/// PreflowDefaultTraits. See \ref PreflowDefaultTraits for the |
| 113 | 112 |
/// documentation of a %Preflow traits class. |
| 114 | 113 |
/// |
| 115 | 114 |
///\author Jacint Szabo and Balazs Dezso |
| 116 | 115 |
#ifdef DOXYGEN |
| 117 | 116 |
template <typename _Graph, typename _CapacityMap, typename _Traits> |
| 118 | 117 |
#else |
| 119 | 118 |
template <typename _Graph, |
| 120 | 119 |
typename _CapacityMap = typename _Graph::template ArcMap<int>, |
| 121 | 120 |
typename _Traits = PreflowDefaultTraits<_Graph, _CapacityMap> > |
| 122 | 121 |
#endif |
| 123 | 122 |
class Preflow {
|
| 124 | 123 |
public: |
| 125 | 124 |
|
| 126 | 125 |
typedef _Traits Traits; |
| 127 | 126 |
typedef typename Traits::Digraph Digraph; |
| 128 | 127 |
typedef typename Traits::CapacityMap CapacityMap; |
| 129 | 128 |
typedef typename Traits::Value Value; |
| 130 | 129 |
|
| 131 | 130 |
typedef typename Traits::FlowMap FlowMap; |
| 132 | 131 |
typedef typename Traits::Elevator Elevator; |
| 133 | 132 |
typedef typename Traits::Tolerance Tolerance; |
| 134 | 133 |
|
| 135 |
/// \brief \ref Exception for uninitialized parameters. |
|
| 136 |
/// |
|
| 137 |
/// This error represents problems in the initialization |
|
| 138 |
/// of the parameters of the algorithms. |
|
| 139 |
class UninitializedParameter : public lemon::Exception {
|
|
| 140 |
public: |
|
| 141 |
virtual const char* what() const throw() {
|
|
| 142 |
return "lemon::Preflow::UninitializedParameter"; |
|
| 143 |
} |
|
| 144 |
}; |
|
| 145 |
|
|
| 146 | 134 |
private: |
| 147 | 135 |
|
| 148 | 136 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 149 | 137 |
|
| 150 | 138 |
const Digraph& _graph; |
| 151 | 139 |
const CapacityMap* _capacity; |
| 152 | 140 |
|
| 153 | 141 |
int _node_num; |
| 154 | 142 |
|
| 155 | 143 |
Node _source, _target; |
| 156 | 144 |
|
| 157 | 145 |
FlowMap* _flow; |
| 158 | 146 |
bool _local_flow; |
| 159 | 147 |
|
| 160 | 148 |
Elevator* _level; |
| 161 | 149 |
bool _local_level; |
| 162 | 150 |
|
| 163 | 151 |
typedef typename Digraph::template NodeMap<Value> ExcessMap; |
| 164 | 152 |
ExcessMap* _excess; |
| 165 | 153 |
|
| 166 | 154 |
Tolerance _tolerance; |
| 167 | 155 |
|
| 168 | 156 |
bool _phase; |
| 169 | 157 |
|
| 170 | 158 |
|
| 171 | 159 |
void createStructures() {
|
| 172 | 160 |
_node_num = countNodes(_graph); |
| 173 | 161 |
|
| 174 | 162 |
if (!_flow) {
|
| 175 | 163 |
_flow = Traits::createFlowMap(_graph); |
| 176 | 164 |
_local_flow = true; |
| 177 | 165 |
} |
| 178 | 166 |
if (!_level) {
|
| 179 | 167 |
_level = Traits::createElevator(_graph, _node_num); |
| 180 | 168 |
_local_level = true; |
| 181 | 169 |
} |
| 182 | 170 |
if (!_excess) {
|
| 183 | 171 |
_excess = new ExcessMap(_graph); |
| 184 | 172 |
} |
| 185 | 173 |
} |
| 186 | 174 |
|
| 187 | 175 |
void destroyStructures() {
|
| 188 | 176 |
if (_local_flow) {
|
| 189 | 177 |
delete _flow; |
| 190 | 178 |
} |
| 191 | 179 |
if (_local_level) {
|
| 192 | 180 |
delete _level; |
| 193 | 181 |
} |
| 194 | 182 |
if (_excess) {
|
| 195 | 183 |
delete _excess; |
| 196 | 184 |
} |
| 197 | 185 |
} |
| 198 | 186 |
|
| 199 | 187 |
public: |
| 200 | 188 |
|
| 201 | 189 |
typedef Preflow Create; |
| 202 | 190 |
|
| 203 | 191 |
///\name Named template parameters |
| 204 | 192 |
|
| 205 | 193 |
///@{
|
| 206 | 194 |
|
| 207 | 195 |
template <typename _FlowMap> |
| 208 | 196 |
struct DefFlowMapTraits : public Traits {
|
| 209 | 197 |
typedef _FlowMap FlowMap; |
| 210 | 198 |
static FlowMap *createFlowMap(const Digraph&) {
|
| 211 |
|
|
| 199 |
LEMON_ASSERT(false, "FlowMap is not initialized"); |
|
| 200 |
return 0; // ignore warnings |
|
| 212 | 201 |
} |
| 213 | 202 |
}; |
| 214 | 203 |
|
| 215 | 204 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 216 | 205 |
/// FlowMap type |
| 217 | 206 |
/// |
| 218 | 207 |
/// \ref named-templ-param "Named parameter" for setting FlowMap |
| 219 | 208 |
/// type |
| 220 | 209 |
template <typename _FlowMap> |
| 221 | 210 |
struct DefFlowMap |
| 222 | 211 |
: public Preflow<Digraph, CapacityMap, DefFlowMapTraits<_FlowMap> > {
|
| 223 | 212 |
typedef Preflow<Digraph, CapacityMap, |
| 224 | 213 |
DefFlowMapTraits<_FlowMap> > Create; |
| 225 | 214 |
}; |
| 226 | 215 |
|
| 227 | 216 |
template <typename _Elevator> |
| 228 | 217 |
struct DefElevatorTraits : public Traits {
|
| 229 | 218 |
typedef _Elevator Elevator; |
| 230 | 219 |
static Elevator *createElevator(const Digraph&, int) {
|
| 231 |
|
|
| 220 |
LEMON_ASSERT(false, "Elevator is not initialized"); |
|
| 221 |
return 0; // ignore warnings |
|
| 232 | 222 |
} |
| 233 | 223 |
}; |
| 234 | 224 |
|
| 235 | 225 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 236 | 226 |
/// Elevator type |
| 237 | 227 |
/// |
| 238 | 228 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
| 239 | 229 |
/// type |
| 240 | 230 |
template <typename _Elevator> |
| 241 | 231 |
struct DefElevator |
| 242 | 232 |
: public Preflow<Digraph, CapacityMap, DefElevatorTraits<_Elevator> > {
|
| 243 | 233 |
typedef Preflow<Digraph, CapacityMap, |
| 244 | 234 |
DefElevatorTraits<_Elevator> > Create; |
| 245 | 235 |
}; |
| 246 | 236 |
|
| 247 | 237 |
template <typename _Elevator> |
| 248 | 238 |
struct DefStandardElevatorTraits : public Traits {
|
| 249 | 239 |
typedef _Elevator Elevator; |
| 250 | 240 |
static Elevator *createElevator(const Digraph& digraph, int max_level) {
|
| 251 | 241 |
return new Elevator(digraph, max_level); |
| 252 | 242 |
} |
| 253 | 243 |
}; |
| 254 | 244 |
|
| 255 | 245 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 256 | 246 |
/// Elevator type |
| 257 | 247 |
/// |
| 258 | 248 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
| 259 | 249 |
/// type. The Elevator should be standard constructor interface, ie. |
| 260 | 250 |
/// the digraph and the maximum level should be passed to it. |
| 261 | 251 |
template <typename _Elevator> |
| 262 | 252 |
struct DefStandardElevator |
| 263 | 253 |
: public Preflow<Digraph, CapacityMap, |
| 264 | 254 |
DefStandardElevatorTraits<_Elevator> > {
|
| 265 | 255 |
typedef Preflow<Digraph, CapacityMap, |
| 266 | 256 |
DefStandardElevatorTraits<_Elevator> > Create; |
| 267 | 257 |
}; |
| 268 | 258 |
|
| 269 | 259 |
/// @} |
| 270 | 260 |
|
| 271 | 261 |
protected: |
| 272 | 262 |
|
| 273 | 263 |
Preflow() {}
|
| 274 | 264 |
|
| 275 | 265 |
public: |
| 276 | 266 |
|
| 277 | 267 |
|
| 278 | 268 |
/// \brief The constructor of the class. |
| 279 | 269 |
/// |
| 280 | 270 |
/// The constructor of the class. |
| 281 | 271 |
/// \param digraph The digraph the algorithm runs on. |
| 282 | 272 |
/// \param capacity The capacity of the arcs. |
| 283 | 273 |
/// \param source The source node. |
| 284 | 274 |
/// \param target The target node. |
| 285 | 275 |
Preflow(const Digraph& digraph, const CapacityMap& capacity, |
| 286 | 276 |
Node source, Node target) |
| 287 | 277 |
: _graph(digraph), _capacity(&capacity), |
| 288 | 278 |
_node_num(0), _source(source), _target(target), |
| 289 | 279 |
_flow(0), _local_flow(false), |
| 290 | 280 |
_level(0), _local_level(false), |
| 291 | 281 |
_excess(0), _tolerance(), _phase() {}
|
| 292 | 282 |
|
| 293 | 283 |
/// \brief Destrcutor. |
| 294 | 284 |
/// |
| 295 | 285 |
/// Destructor. |
| 296 | 286 |
~Preflow() {
|
| 297 | 287 |
destroyStructures(); |
| 298 | 288 |
} |
| 299 | 289 |
|
| 300 | 290 |
/// \brief Sets the capacity map. |
| 301 | 291 |
/// |
| 302 | 292 |
/// Sets the capacity map. |
| 303 | 293 |
/// \return \c (*this) |
| 304 | 294 |
Preflow& capacityMap(const CapacityMap& map) {
|
| 305 | 295 |
_capacity = ↦ |
| 306 | 296 |
return *this; |
| 307 | 297 |
} |
| 308 | 298 |
|
| 309 | 299 |
/// \brief Sets the flow map. |
| 310 | 300 |
/// |
| 311 | 301 |
/// Sets the flow map. |
| 312 | 302 |
/// \return \c (*this) |
| 313 | 303 |
Preflow& flowMap(FlowMap& map) {
|
| 314 | 304 |
if (_local_flow) {
|
| 315 | 305 |
delete _flow; |
| 316 | 306 |
_local_flow = false; |
| 317 | 307 |
} |
| 318 | 308 |
_flow = ↦ |
| 319 | 309 |
return *this; |
| 320 | 310 |
} |
| 321 | 311 |
|
| 322 | 312 |
/// \brief Returns the flow map. |
| 323 | 313 |
/// |
| 324 | 314 |
/// \return The flow map. |
| 325 | 315 |
const FlowMap& flowMap() {
|
| 326 | 316 |
return *_flow; |
| 327 | 317 |
} |
| 328 | 318 |
|
| 329 | 319 |
/// \brief Sets the elevator. |
| 330 | 320 |
/// |
| 331 | 321 |
/// Sets the elevator. |
| 332 | 322 |
/// \return \c (*this) |
| 333 | 323 |
Preflow& elevator(Elevator& elevator) {
|
| 334 | 324 |
if (_local_level) {
|
| 335 | 325 |
delete _level; |
| 336 | 326 |
_local_level = false; |
| 337 | 327 |
} |
| 338 | 328 |
_level = &elevator; |
| 339 | 329 |
return *this; |
| 340 | 330 |
} |
| 341 | 331 |
|
| 342 | 332 |
/// \brief Returns the elevator. |
| 343 | 333 |
/// |
| 344 | 334 |
/// \return The elevator. |
| 345 | 335 |
const Elevator& elevator() {
|
| 346 | 336 |
return *_level; |
| 347 | 337 |
} |
| 348 | 338 |
|
| 349 | 339 |
/// \brief Sets the source node. |
| 350 | 340 |
/// |
| 351 | 341 |
/// Sets the source node. |
| 352 | 342 |
/// \return \c (*this) |
| 353 | 343 |
Preflow& source(const Node& node) {
|
| 354 | 344 |
_source = node; |
| 355 | 345 |
return *this; |
| 356 | 346 |
} |
| 357 | 347 |
|
| 358 | 348 |
/// \brief Sets the target node. |
| 359 | 349 |
/// |
| 360 | 350 |
/// Sets the target node. |
| 361 | 351 |
/// \return \c (*this) |
| 362 | 352 |
Preflow& target(const Node& node) {
|
| 363 | 353 |
_target = node; |
| 364 | 354 |
return *this; |
| 365 | 355 |
} |
| 366 | 356 |
|
| 367 | 357 |
/// \brief Sets the tolerance used by algorithm. |
| 368 | 358 |
/// |
| 369 | 359 |
/// Sets the tolerance used by algorithm. |
| 370 | 360 |
Preflow& tolerance(const Tolerance& tolerance) const {
|
| 371 | 361 |
_tolerance = tolerance; |
| 372 | 362 |
return *this; |
| 373 | 363 |
} |
| 374 | 364 |
|
| 375 | 365 |
/// \brief Returns the tolerance used by algorithm. |
| 376 | 366 |
/// |
| 377 | 367 |
/// Returns the tolerance used by algorithm. |
| 378 | 368 |
const Tolerance& tolerance() const {
|
| 379 | 369 |
return tolerance; |
| 380 | 370 |
} |
| 381 | 371 |
|
| 382 | 372 |
/// \name Execution control The simplest way to execute the |
| 383 | 373 |
/// algorithm is to use one of the member functions called \c |
| 384 | 374 |
/// run(). |
| 385 | 375 |
/// \n |
| 386 | 376 |
/// If you need more control on initial solution or |
| 387 | 377 |
/// execution then you have to call one \ref init() function and then |
| 388 | 378 |
/// the startFirstPhase() and if you need the startSecondPhase(). |
| 389 | 379 |
|
| 390 | 380 |
///@{
|
| 391 | 381 |
|
| 392 | 382 |
/// \brief Initializes the internal data structures. |
| 393 | 383 |
/// |
| 394 | 384 |
/// Initializes the internal data structures. |
| 395 | 385 |
/// |
| 396 | 386 |
void init() {
|
| 397 | 387 |
createStructures(); |
| 398 | 388 |
|
| 399 | 389 |
_phase = true; |
| 400 | 390 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 401 | 391 |
_excess->set(n, 0); |
| 402 | 392 |
} |
| 403 | 393 |
|
| 404 | 394 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
| 405 | 395 |
_flow->set(e, 0); |
| 406 | 396 |
} |
| 407 | 397 |
|
| 408 | 398 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
| 409 | 399 |
|
| 410 | 400 |
_level->initStart(); |
| 411 | 401 |
_level->initAddItem(_target); |
| 412 | 402 |
|
| 413 | 403 |
std::vector<Node> queue; |
| 414 | 404 |
reached.set(_source, true); |
| 415 | 405 |
|
| 416 | 406 |
queue.push_back(_target); |
| 417 | 407 |
reached.set(_target, true); |
| 418 | 408 |
while (!queue.empty()) {
|
| 419 | 409 |
_level->initNewLevel(); |
| 420 | 410 |
std::vector<Node> nqueue; |
| 421 | 411 |
for (int i = 0; i < int(queue.size()); ++i) {
|
| 422 | 412 |
Node n = queue[i]; |
| 423 | 413 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 424 | 414 |
Node u = _graph.source(e); |
| 425 | 415 |
if (!reached[u] && _tolerance.positive((*_capacity)[e])) {
|
| 426 | 416 |
reached.set(u, true); |
| 427 | 417 |
_level->initAddItem(u); |
| 428 | 418 |
nqueue.push_back(u); |
| 429 | 419 |
} |
| 430 | 420 |
} |
| 431 | 421 |
} |
| 432 | 422 |
queue.swap(nqueue); |
| 433 | 423 |
} |
| 434 | 424 |
_level->initFinish(); |
| 435 | 425 |
|
| 436 | 426 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
|
| 437 | 427 |
if (_tolerance.positive((*_capacity)[e])) {
|
| 438 | 428 |
Node u = _graph.target(e); |
| 439 | 429 |
if ((*_level)[u] == _level->maxLevel()) continue; |
| 440 | 430 |
_flow->set(e, (*_capacity)[e]); |
| 441 | 431 |
_excess->set(u, (*_excess)[u] + (*_capacity)[e]); |
| 442 | 432 |
if (u != _target && !_level->active(u)) {
|
| 443 | 433 |
_level->activate(u); |
| 444 | 434 |
} |
| 445 | 435 |
} |
| 446 | 436 |
} |
| 447 | 437 |
} |
| 448 | 438 |
|
| 449 | 439 |
/// \brief Initializes the internal data structures. |
| 450 | 440 |
/// |
| 451 | 441 |
/// Initializes the internal data structures and sets the initial |
| 452 | 442 |
/// flow to the given \c flowMap. The \c flowMap should contain a |
| 453 | 443 |
/// flow or at least a preflow, ie. in each node excluding the |
| 454 | 444 |
/// target the incoming flow should greater or equal to the |
| 455 | 445 |
/// outgoing flow. |
| 456 | 446 |
/// \return %False when the given \c flowMap is not a preflow. |
| 457 | 447 |
template <typename FlowMap> |
| 458 | 448 |
bool flowInit(const FlowMap& flowMap) {
|
| 459 | 449 |
createStructures(); |
| 460 | 450 |
|
| 461 | 451 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
| 462 | 452 |
_flow->set(e, flowMap[e]); |
| 463 | 453 |
} |
| 464 | 454 |
|
| 465 | 455 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 466 | 456 |
Value excess = 0; |
| 467 | 457 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 468 | 458 |
excess += (*_flow)[e]; |
| 469 | 459 |
} |
| 470 | 460 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 471 | 461 |
excess -= (*_flow)[e]; |
| 472 | 462 |
} |
| 473 | 463 |
if (excess < 0 && n != _source) return false; |
| 474 | 464 |
_excess->set(n, excess); |
| 475 | 465 |
} |
| 476 | 466 |
|
| 477 | 467 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
| 478 | 468 |
|
| 479 | 469 |
_level->initStart(); |
| 480 | 470 |
_level->initAddItem(_target); |
| 481 | 471 |
|
| 482 | 472 |
std::vector<Node> queue; |
| 483 | 473 |
reached.set(_source, true); |
| 484 | 474 |
|
| 485 | 475 |
queue.push_back(_target); |
| 486 | 476 |
reached.set(_target, true); |
| 487 | 477 |
while (!queue.empty()) {
|
| 488 | 478 |
_level->initNewLevel(); |
| 489 | 479 |
std::vector<Node> nqueue; |
| 490 | 480 |
for (int i = 0; i < int(queue.size()); ++i) {
|
| 491 | 481 |
Node n = queue[i]; |
| 492 | 482 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 493 | 483 |
Node u = _graph.source(e); |
| 494 | 484 |
if (!reached[u] && |
| 495 | 485 |
_tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
|
| 496 | 486 |
reached.set(u, true); |
| 497 | 487 |
_level->initAddItem(u); |
| 498 | 488 |
nqueue.push_back(u); |
| 499 | 489 |
} |
| 500 | 490 |
} |
| 501 | 491 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 502 | 492 |
Node v = _graph.target(e); |
| 503 | 493 |
if (!reached[v] && _tolerance.positive((*_flow)[e])) {
|
| 504 | 494 |
reached.set(v, true); |
| 505 | 495 |
_level->initAddItem(v); |
| 506 | 496 |
nqueue.push_back(v); |
| 507 | 497 |
} |
| 508 | 498 |
} |
| 509 | 499 |
} |
| 510 | 500 |
queue.swap(nqueue); |
| 511 | 501 |
} |
| 512 | 502 |
_level->initFinish(); |
| 513 | 503 |
|
| 514 | 504 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
|
| 515 | 505 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
| 516 | 506 |
if (_tolerance.positive(rem)) {
|
| 517 | 507 |
Node u = _graph.target(e); |
| 518 | 508 |
if ((*_level)[u] == _level->maxLevel()) continue; |
| 519 | 509 |
_flow->set(e, (*_capacity)[e]); |
| 520 | 510 |
_excess->set(u, (*_excess)[u] + rem); |
| 521 | 511 |
if (u != _target && !_level->active(u)) {
|
| 522 | 512 |
_level->activate(u); |
| 523 | 513 |
} |
| 524 | 514 |
} |
| 525 | 515 |
} |
| 526 | 516 |
for (InArcIt e(_graph, _source); e != INVALID; ++e) {
|
| 527 | 517 |
Value rem = (*_flow)[e]; |
| 528 | 518 |
if (_tolerance.positive(rem)) {
|
| 529 | 519 |
Node v = _graph.source(e); |
| 530 | 520 |
if ((*_level)[v] == _level->maxLevel()) continue; |
| 531 | 521 |
_flow->set(e, 0); |
| 532 | 522 |
_excess->set(v, (*_excess)[v] + rem); |
| 533 | 523 |
if (v != _target && !_level->active(v)) {
|
| 534 | 524 |
_level->activate(v); |
| 535 | 525 |
} |
| 536 | 526 |
} |
| 537 | 527 |
} |
| 538 | 528 |
return true; |
| 539 | 529 |
} |
| 540 | 530 |
|
| 541 | 531 |
/// \brief Starts the first phase of the preflow algorithm. |
| 542 | 532 |
/// |
| 543 | 533 |
/// The preflow algorithm consists of two phases, this method runs |
| 544 | 534 |
/// the first phase. After the first phase the maximum flow value |
| 545 | 535 |
/// and a minimum value cut can already be computed, although a |
| 546 | 536 |
/// maximum flow is not yet obtained. So after calling this method |
| 547 | 537 |
/// \ref flowValue() returns the value of a maximum flow and \ref |
| 548 | 538 |
/// minCut() returns a minimum cut. |
| 549 | 539 |
/// \pre One of the \ref init() functions should be called. |
| 550 | 540 |
void startFirstPhase() {
|
| 551 | 541 |
_phase = true; |
| 552 | 542 |
|
| 553 | 543 |
Node n = _level->highestActive(); |
| 554 | 544 |
int level = _level->highestActiveLevel(); |
| 555 | 545 |
while (n != INVALID) {
|
| 556 | 546 |
int num = _node_num; |
| 557 | 547 |
|
| 558 | 548 |
while (num > 0 && n != INVALID) {
|
| 559 | 549 |
Value excess = (*_excess)[n]; |
| 560 | 550 |
int new_level = _level->maxLevel(); |
| 561 | 551 |
|
| 562 | 552 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 563 | 553 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
| 564 | 554 |
if (!_tolerance.positive(rem)) continue; |
| 565 | 555 |
Node v = _graph.target(e); |
| 566 | 556 |
if ((*_level)[v] < level) {
|
| 567 | 557 |
if (!_level->active(v) && v != _target) {
|
| 568 | 558 |
_level->activate(v); |
| 569 | 559 |
} |
| 570 | 560 |
if (!_tolerance.less(rem, excess)) {
|
| 571 | 561 |
_flow->set(e, (*_flow)[e] + excess); |
| 572 | 562 |
_excess->set(v, (*_excess)[v] + excess); |
| 573 | 563 |
excess = 0; |
| 574 | 564 |
goto no_more_push_1; |
| 575 | 565 |
} else {
|
| 576 | 566 |
excess -= rem; |
| 577 | 567 |
_excess->set(v, (*_excess)[v] + rem); |
| 578 | 568 |
_flow->set(e, (*_capacity)[e]); |
| 579 | 569 |
} |
| 580 | 570 |
} else if (new_level > (*_level)[v]) {
|
| 581 | 571 |
new_level = (*_level)[v]; |
| 582 | 572 |
} |
| 583 | 573 |
} |
| 584 | 574 |
|
| 585 | 575 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 586 | 576 |
Value rem = (*_flow)[e]; |
| 587 | 577 |
if (!_tolerance.positive(rem)) continue; |
| 588 | 578 |
Node v = _graph.source(e); |
| 589 | 579 |
if ((*_level)[v] < level) {
|
| 590 | 580 |
if (!_level->active(v) && v != _target) {
|
| 591 | 581 |
_level->activate(v); |
| 592 | 582 |
} |
| 593 | 583 |
if (!_tolerance.less(rem, excess)) {
|
| 594 | 584 |
_flow->set(e, (*_flow)[e] - excess); |
| 595 | 585 |
_excess->set(v, (*_excess)[v] + excess); |
| 596 | 586 |
excess = 0; |
| 597 | 587 |
goto no_more_push_1; |
| 598 | 588 |
} else {
|
| 599 | 589 |
excess -= rem; |
| 600 | 590 |
_excess->set(v, (*_excess)[v] + rem); |
| 601 | 591 |
_flow->set(e, 0); |
| 602 | 592 |
} |
| 603 | 593 |
} else if (new_level > (*_level)[v]) {
|
| 604 | 594 |
new_level = (*_level)[v]; |
| 605 | 595 |
} |
| 606 | 596 |
} |
| 607 | 597 |
|
| 608 | 598 |
no_more_push_1: |
| 609 | 599 |
|
| 610 | 600 |
_excess->set(n, excess); |
| 611 | 601 |
|
| 612 | 602 |
if (excess != 0) {
|
| 613 | 603 |
if (new_level + 1 < _level->maxLevel()) {
|
| 614 | 604 |
_level->liftHighestActive(new_level + 1); |
| 615 | 605 |
} else {
|
| 616 | 606 |
_level->liftHighestActiveToTop(); |
| 617 | 607 |
} |
| 618 | 608 |
if (_level->emptyLevel(level)) {
|
| 619 | 609 |
_level->liftToTop(level); |
| 620 | 610 |
} |
| 621 | 611 |
} else {
|
| 622 | 612 |
_level->deactivate(n); |
| 623 | 613 |
} |
| 624 | 614 |
|
| 625 | 615 |
n = _level->highestActive(); |
| 626 | 616 |
level = _level->highestActiveLevel(); |
| 627 | 617 |
--num; |
| 628 | 618 |
} |
| 629 | 619 |
|
| 630 | 620 |
num = _node_num * 20; |
| 631 | 621 |
while (num > 0 && n != INVALID) {
|
| 632 | 622 |
Value excess = (*_excess)[n]; |
| 633 | 623 |
int new_level = _level->maxLevel(); |
| 634 | 624 |
|
| 635 | 625 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 636 | 626 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
| 637 | 627 |
if (!_tolerance.positive(rem)) continue; |
| 638 | 628 |
Node v = _graph.target(e); |
| 639 | 629 |
if ((*_level)[v] < level) {
|
| 640 | 630 |
if (!_level->active(v) && v != _target) {
|
| 641 | 631 |
_level->activate(v); |
| 642 | 632 |
} |
| 643 | 633 |
if (!_tolerance.less(rem, excess)) {
|
| 644 | 634 |
_flow->set(e, (*_flow)[e] + excess); |
| 645 | 635 |
_excess->set(v, (*_excess)[v] + excess); |
| 646 | 636 |
excess = 0; |
| 647 | 637 |
goto no_more_push_2; |
| 648 | 638 |
} else {
|
| 649 | 639 |
excess -= rem; |
| 650 | 640 |
_excess->set(v, (*_excess)[v] + rem); |
| 651 | 641 |
_flow->set(e, (*_capacity)[e]); |
| 652 | 642 |
} |
| 653 | 643 |
} else if (new_level > (*_level)[v]) {
|
| 654 | 644 |
new_level = (*_level)[v]; |
| 655 | 645 |
} |
| 656 | 646 |
} |
| 657 | 647 |
|
| 658 | 648 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 659 | 649 |
Value rem = (*_flow)[e]; |
| 660 | 650 |
if (!_tolerance.positive(rem)) continue; |
| 661 | 651 |
Node v = _graph.source(e); |
| 662 | 652 |
if ((*_level)[v] < level) {
|
| 663 | 653 |
if (!_level->active(v) && v != _target) {
|
| 664 | 654 |
_level->activate(v); |
| 665 | 655 |
} |
| 666 | 656 |
if (!_tolerance.less(rem, excess)) {
|
| 667 | 657 |
_flow->set(e, (*_flow)[e] - excess); |
| 668 | 658 |
_excess->set(v, (*_excess)[v] + excess); |
| 669 | 659 |
excess = 0; |
| 670 | 660 |
goto no_more_push_2; |
| 671 | 661 |
} else {
|
| 672 | 662 |
excess -= rem; |
| 673 | 663 |
_excess->set(v, (*_excess)[v] + rem); |
| 674 | 664 |
_flow->set(e, 0); |
| 675 | 665 |
} |
| 676 | 666 |
} else if (new_level > (*_level)[v]) {
|
| 677 | 667 |
new_level = (*_level)[v]; |
| 678 | 668 |
} |
| 679 | 669 |
} |
| 680 | 670 |
|
| 681 | 671 |
no_more_push_2: |
| 682 | 672 |
|
| 683 | 673 |
_excess->set(n, excess); |
| 684 | 674 |
|
| 685 | 675 |
if (excess != 0) {
|
| 686 | 676 |
if (new_level + 1 < _level->maxLevel()) {
|
| 687 | 677 |
_level->liftActiveOn(level, new_level + 1); |
| 688 | 678 |
} else {
|
| 689 | 679 |
_level->liftActiveToTop(level); |
| 690 | 680 |
} |
| 691 | 681 |
if (_level->emptyLevel(level)) {
|
| 692 | 682 |
_level->liftToTop(level); |
| 693 | 683 |
} |
| 694 | 684 |
} else {
|
| 695 | 685 |
_level->deactivate(n); |
| 696 | 686 |
} |
| 697 | 687 |
|
| 698 | 688 |
while (level >= 0 && _level->activeFree(level)) {
|
| 699 | 689 |
--level; |
| 700 | 690 |
} |
| 701 | 691 |
if (level == -1) {
|
| 702 | 692 |
n = _level->highestActive(); |
| 703 | 693 |
level = _level->highestActiveLevel(); |
| 704 | 694 |
} else {
|
| 705 | 695 |
n = _level->activeOn(level); |
| 706 | 696 |
} |
| 707 | 697 |
--num; |
| 708 | 698 |
} |
| 709 | 699 |
} |
| 710 | 700 |
} |
| 711 | 701 |
|
| 712 | 702 |
/// \brief Starts the second phase of the preflow algorithm. |
| 713 | 703 |
/// |
| 714 | 704 |
/// The preflow algorithm consists of two phases, this method runs |
| 715 | 705 |
/// the second phase. After calling \ref init() and \ref |
| 716 | 706 |
/// startFirstPhase() and then \ref startSecondPhase(), \ref |
| 717 | 707 |
/// flowMap() return a maximum flow, \ref flowValue() returns the |
| 718 | 708 |
/// value of a maximum flow, \ref minCut() returns a minimum cut |
| 719 | 709 |
/// \pre The \ref init() and startFirstPhase() functions should be |
| 720 | 710 |
/// called before. |
| 721 | 711 |
void startSecondPhase() {
|
| 722 | 712 |
_phase = false; |
| 723 | 713 |
|
| 724 | 714 |
typename Digraph::template NodeMap<bool> reached(_graph); |
| 725 | 715 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 726 | 716 |
reached.set(n, (*_level)[n] < _level->maxLevel()); |
| 727 | 717 |
} |
| 728 | 718 |
|
| 729 | 719 |
_level->initStart(); |
| 730 | 720 |
_level->initAddItem(_source); |
| 731 | 721 |
|
| 732 | 722 |
std::vector<Node> queue; |
| 733 | 723 |
queue.push_back(_source); |
| 734 | 724 |
reached.set(_source, true); |
| 735 | 725 |
|
| 736 | 726 |
while (!queue.empty()) {
|
| 737 | 727 |
_level->initNewLevel(); |
| 738 | 728 |
std::vector<Node> nqueue; |
| 739 | 729 |
for (int i = 0; i < int(queue.size()); ++i) {
|
| 740 | 730 |
Node n = queue[i]; |
| 741 | 731 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 742 | 732 |
Node v = _graph.target(e); |
| 743 | 733 |
if (!reached[v] && _tolerance.positive((*_flow)[e])) {
|
| 744 | 734 |
reached.set(v, true); |
| 745 | 735 |
_level->initAddItem(v); |
| 746 | 736 |
nqueue.push_back(v); |
| 747 | 737 |
} |
| 748 | 738 |
} |
| 749 | 739 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 750 | 740 |
Node u = _graph.source(e); |
| 751 | 741 |
if (!reached[u] && |
| 752 | 742 |
_tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
|
| 753 | 743 |
reached.set(u, true); |
| 754 | 744 |
_level->initAddItem(u); |
| 755 | 745 |
nqueue.push_back(u); |
| 756 | 746 |
} |
| 757 | 747 |
} |
| 758 | 748 |
} |
| 759 | 749 |
queue.swap(nqueue); |
| 760 | 750 |
} |
| 761 | 751 |
_level->initFinish(); |
| 762 | 752 |
|
| 763 | 753 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 764 | 754 |
if (!reached[n]) {
|
| 765 | 755 |
_level->dirtyTopButOne(n); |
| 766 | 756 |
} else if ((*_excess)[n] > 0 && _target != n) {
|
| 767 | 757 |
_level->activate(n); |
| 768 | 758 |
} |
| 769 | 759 |
} |
| 770 | 760 |
|
| 771 | 761 |
Node n; |
| 772 | 762 |
while ((n = _level->highestActive()) != INVALID) {
|
| 773 | 763 |
Value excess = (*_excess)[n]; |
| 774 | 764 |
int level = _level->highestActiveLevel(); |
| 775 | 765 |
int new_level = _level->maxLevel(); |
| 776 | 766 |
|
| 777 | 767 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 778 | 768 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
| 779 | 769 |
if (!_tolerance.positive(rem)) continue; |
| 780 | 770 |
Node v = _graph.target(e); |
| 781 | 771 |
if ((*_level)[v] < level) {
|
| 782 | 772 |
if (!_level->active(v) && v != _source) {
|
| 783 | 773 |
_level->activate(v); |
| 784 | 774 |
} |
| 785 | 775 |
if (!_tolerance.less(rem, excess)) {
|
| 786 | 776 |
_flow->set(e, (*_flow)[e] + excess); |
| 787 | 777 |
_excess->set(v, (*_excess)[v] + excess); |
| 788 | 778 |
excess = 0; |
| 789 | 779 |
goto no_more_push; |
| 790 | 780 |
} else {
|
| 791 | 781 |
excess -= rem; |
| 792 | 782 |
_excess->set(v, (*_excess)[v] + rem); |
| 793 | 783 |
_flow->set(e, (*_capacity)[e]); |
| 794 | 784 |
} |
| 795 | 785 |
} else if (new_level > (*_level)[v]) {
|
| 796 | 786 |
new_level = (*_level)[v]; |
| 797 | 787 |
} |
| 798 | 788 |
} |
| 799 | 789 |
|
| 800 | 790 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 801 | 791 |
Value rem = (*_flow)[e]; |
| 802 | 792 |
if (!_tolerance.positive(rem)) continue; |
| 803 | 793 |
Node v = _graph.source(e); |
| 804 | 794 |
if ((*_level)[v] < level) {
|
| 805 | 795 |
if (!_level->active(v) && v != _source) {
|
| 806 | 796 |
_level->activate(v); |
| 807 | 797 |
} |
| 808 | 798 |
if (!_tolerance.less(rem, excess)) {
|
| 809 | 799 |
_flow->set(e, (*_flow)[e] - excess); |
| 810 | 800 |
_excess->set(v, (*_excess)[v] + excess); |
| 811 | 801 |
excess = 0; |
| 812 | 802 |
goto no_more_push; |
| 813 | 803 |
} else {
|
| 814 | 804 |
excess -= rem; |
| 815 | 805 |
_excess->set(v, (*_excess)[v] + rem); |
| 816 | 806 |
_flow->set(e, 0); |
| 817 | 807 |
} |
| 818 | 808 |
} else if (new_level > (*_level)[v]) {
|
| 819 | 809 |
new_level = (*_level)[v]; |
| 820 | 810 |
} |
| 821 | 811 |
} |
| 822 | 812 |
|
| 823 | 813 |
no_more_push: |
| 824 | 814 |
|
| 825 | 815 |
_excess->set(n, excess); |
| 826 | 816 |
|
| 827 | 817 |
if (excess != 0) {
|
| 828 | 818 |
if (new_level + 1 < _level->maxLevel()) {
|
| 829 | 819 |
_level->liftHighestActive(new_level + 1); |
| 830 | 820 |
} else {
|
| 831 | 821 |
// Calculation error |
| 832 | 822 |
_level->liftHighestActiveToTop(); |
| 833 | 823 |
} |
| 834 | 824 |
if (_level->emptyLevel(level)) {
|
| 835 | 825 |
// Calculation error |
| 836 | 826 |
_level->liftToTop(level); |
| 837 | 827 |
} |
| 838 | 828 |
} else {
|
| 839 | 829 |
_level->deactivate(n); |
| 840 | 830 |
} |
| 841 | 831 |
|
| 842 | 832 |
} |
| 843 | 833 |
} |
| 844 | 834 |
|
| 845 | 835 |
/// \brief Runs the preflow algorithm. |
| 846 | 836 |
/// |
| 847 | 837 |
/// Runs the preflow algorithm. |
| 848 | 838 |
/// \note pf.run() is just a shortcut of the following code. |
| 849 | 839 |
/// \code |
| 850 | 840 |
/// pf.init(); |
| 851 | 841 |
/// pf.startFirstPhase(); |
| 852 | 842 |
/// pf.startSecondPhase(); |
| 853 | 843 |
/// \endcode |
| 854 | 844 |
void run() {
|
| 855 | 845 |
init(); |
| 856 | 846 |
startFirstPhase(); |
| 857 | 847 |
startSecondPhase(); |
| 858 | 848 |
} |
| 859 | 849 |
|
| 860 | 850 |
/// \brief Runs the preflow algorithm to compute the minimum cut. |
| 861 | 851 |
/// |
| 862 | 852 |
/// Runs the preflow algorithm to compute the minimum cut. |
| 863 | 853 |
/// \note pf.runMinCut() is just a shortcut of the following code. |
| 864 | 854 |
/// \code |
| 865 | 855 |
/// pf.init(); |
| 866 | 856 |
/// pf.startFirstPhase(); |
| 867 | 857 |
/// \endcode |
| 868 | 858 |
void runMinCut() {
|
| 869 | 859 |
init(); |
| 870 | 860 |
startFirstPhase(); |
| 871 | 861 |
} |
| 872 | 862 |
|
| 873 | 863 |
/// @} |
| 874 | 864 |
|
| 875 | 865 |
/// \name Query Functions |
| 876 | 866 |
/// The result of the %Preflow algorithm can be obtained using these |
| 877 | 867 |
/// functions.\n |
| 878 | 868 |
/// Before the use of these functions, |
| 879 | 869 |
/// either run() or start() must be called. |
| 880 | 870 |
|
| 881 | 871 |
///@{
|
| 882 | 872 |
|
| 883 | 873 |
/// \brief Returns the value of the maximum flow. |
| 884 | 874 |
/// |
| 885 | 875 |
/// Returns the value of the maximum flow by returning the excess |
| 886 | 876 |
/// of the target node \c t. This value equals to the value of |
| 887 | 877 |
/// the maximum flow already after the first phase. |
| 888 | 878 |
Value flowValue() const {
|
| 889 | 879 |
return (*_excess)[_target]; |
| 890 | 880 |
} |
| 891 | 881 |
|
| 892 | 882 |
/// \brief Returns true when the node is on the source side of minimum cut. |
| 893 | 883 |
/// |
| 894 | 884 |
/// Returns true when the node is on the source side of minimum |
| 895 | 885 |
/// cut. This method can be called both after running \ref |
| 896 | 886 |
/// startFirstPhase() and \ref startSecondPhase(). |
| 897 | 887 |
bool minCut(const Node& node) const {
|
| 898 | 888 |
return ((*_level)[node] == _level->maxLevel()) == _phase; |
| 899 | 889 |
} |
| 900 | 890 |
|
| 901 | 891 |
/// \brief Returns a minimum value cut. |
| 902 | 892 |
/// |
| 903 | 893 |
/// Sets the \c cutMap to the characteristic vector of a minimum value |
| 904 | 894 |
/// cut. This method can be called both after running \ref |
| 905 | 895 |
/// startFirstPhase() and \ref startSecondPhase(). The result after second |
| 906 | 896 |
/// phase could be changed slightly if inexact computation is used. |
| 907 | 897 |
/// \pre The \c cutMap should be a bool-valued node-map. |
| 908 | 898 |
template <typename CutMap> |
| 909 | 899 |
void minCutMap(CutMap& cutMap) const {
|
| 910 | 900 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 911 | 901 |
cutMap.set(n, minCut(n)); |
| 912 | 902 |
} |
| 913 | 903 |
} |
| 914 | 904 |
|
| 915 | 905 |
/// \brief Returns the flow on the arc. |
| 916 | 906 |
/// |
| 917 | 907 |
/// Sets the \c flowMap to the flow on the arcs. This method can |
| 918 | 908 |
/// be called after the second phase of algorithm. |
| 919 | 909 |
Value flow(const Arc& arc) const {
|
| 920 | 910 |
return (*_flow)[arc]; |
| 921 | 911 |
} |
| 922 | 912 |
|
| 923 | 913 |
/// @} |
| 924 | 914 |
}; |
| 925 | 915 |
} |
| 926 | 916 |
|
| 927 | 917 |
#endif |
0 comments (0 inline)