0
2
4
63
11
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_BINOM_HEAP_H |
|
20 |
#define LEMON_BINOM_HEAP_H |
|
21 |
|
|
22 |
///\file |
|
23 |
///\ingroup heaps |
|
24 |
///\brief Binomial Heap implementation. |
|
25 |
|
|
26 |
#include <vector> |
|
27 |
#include <utility> |
|
28 |
#include <functional> |
|
29 |
#include <lemon/math.h> |
|
30 |
#include <lemon/counter.h> |
|
31 |
|
|
32 |
namespace lemon { |
|
33 |
|
|
34 |
/// \ingroup heaps |
|
35 |
/// |
|
36 |
///\brief Binomial heap data structure. |
|
37 |
/// |
|
38 |
/// This class implements the \e binomial \e heap data structure. |
|
39 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
40 |
/// |
|
41 |
/// The methods \ref increase() and \ref erase() are not efficient |
|
42 |
/// in a binomial heap. In case of many calls of these operations, |
|
43 |
/// it is better to use other heap structure, e.g. \ref BinHeap |
|
44 |
/// "binary heap". |
|
45 |
/// |
|
46 |
/// \tparam PR Type of the priorities of the items. |
|
47 |
/// \tparam IM A read-writable item map with \c int values, used |
|
48 |
/// internally to handle the cross references. |
|
49 |
/// \tparam CMP A functor class for comparing the priorities. |
|
50 |
/// The default is \c std::less<PR>. |
|
51 |
#ifdef DOXYGEN |
|
52 |
template <typename PR, typename IM, typename CMP> |
|
53 |
#else |
|
54 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
55 |
#endif |
|
56 |
class BinomHeap { |
|
57 |
public: |
|
58 |
/// Type of the item-int map. |
|
59 |
typedef IM ItemIntMap; |
|
60 |
/// Type of the priorities. |
|
61 |
typedef PR Prio; |
|
62 |
/// Type of the items stored in the heap. |
|
63 |
typedef typename ItemIntMap::Key Item; |
|
64 |
/// Functor type for comparing the priorities. |
|
65 |
typedef CMP Compare; |
|
66 |
|
|
67 |
/// \brief Type to represent the states of the items. |
|
68 |
/// |
|
69 |
/// Each item has a state associated to it. It can be "in heap", |
|
70 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
71 |
/// heap's point of view, but may be useful to the user. |
|
72 |
/// |
|
73 |
/// The item-int map must be initialized in such way that it assigns |
|
74 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
75 |
enum State { |
|
76 |
IN_HEAP = 0, ///< = 0. |
|
77 |
PRE_HEAP = -1, ///< = -1. |
|
78 |
POST_HEAP = -2 ///< = -2. |
|
79 |
}; |
|
80 |
|
|
81 |
private: |
|
82 |
class Store; |
|
83 |
|
|
84 |
std::vector<Store> _data; |
|
85 |
int _min, _head; |
|
86 |
ItemIntMap &_iim; |
|
87 |
Compare _comp; |
|
88 |
int _num_items; |
|
89 |
|
|
90 |
public: |
|
91 |
/// \brief Constructor. |
|
92 |
/// |
|
93 |
/// Constructor. |
|
94 |
/// \param map A map that assigns \c int values to the items. |
|
95 |
/// It is used internally to handle the cross references. |
|
96 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
97 |
explicit BinomHeap(ItemIntMap &map) |
|
98 |
: _min(0), _head(-1), _iim(map), _num_items(0) {} |
|
99 |
|
|
100 |
/// \brief Constructor. |
|
101 |
/// |
|
102 |
/// Constructor. |
|
103 |
/// \param map A map that assigns \c int values to the items. |
|
104 |
/// It is used internally to handle the cross references. |
|
105 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
106 |
/// \param comp The function object used for comparing the priorities. |
|
107 |
BinomHeap(ItemIntMap &map, const Compare &comp) |
|
108 |
: _min(0), _head(-1), _iim(map), _comp(comp), _num_items(0) {} |
|
109 |
|
|
110 |
/// \brief The number of items stored in the heap. |
|
111 |
/// |
|
112 |
/// This function returns the number of items stored in the heap. |
|
113 |
int size() const { return _num_items; } |
|
114 |
|
|
115 |
/// \brief Check if the heap is empty. |
|
116 |
/// |
|
117 |
/// This function returns \c true if the heap is empty. |
|
118 |
bool empty() const { return _num_items==0; } |
|
119 |
|
|
120 |
/// \brief Make the heap empty. |
|
121 |
/// |
|
122 |
/// This functon makes the heap empty. |
|
123 |
/// It does not change the cross reference map. If you want to reuse |
|
124 |
/// a heap that is not surely empty, you should first clear it and |
|
125 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
126 |
/// for each item. |
|
127 |
void clear() { |
|
128 |
_data.clear(); _min=0; _num_items=0; _head=-1; |
|
129 |
} |
|
130 |
|
|
131 |
/// \brief Set the priority of an item or insert it, if it is |
|
132 |
/// not stored in the heap. |
|
133 |
/// |
|
134 |
/// This method sets the priority of the given item if it is |
|
135 |
/// already stored in the heap. Otherwise it inserts the given |
|
136 |
/// item into the heap with the given priority. |
|
137 |
/// \param item The item. |
|
138 |
/// \param value The priority. |
|
139 |
void set (const Item& item, const Prio& value) { |
|
140 |
int i=_iim[item]; |
|
141 |
if ( i >= 0 && _data[i].in ) { |
|
142 |
if ( _comp(value, _data[i].prio) ) decrease(item, value); |
|
143 |
if ( _comp(_data[i].prio, value) ) increase(item, value); |
|
144 |
} else push(item, value); |
|
145 |
} |
|
146 |
|
|
147 |
/// \brief Insert an item into the heap with the given priority. |
|
148 |
/// |
|
149 |
/// This function inserts the given item into the heap with the |
|
150 |
/// given priority. |
|
151 |
/// \param item The item to insert. |
|
152 |
/// \param value The priority of the item. |
|
153 |
/// \pre \e item must not be stored in the heap. |
|
154 |
void push (const Item& item, const Prio& value) { |
|
155 |
int i=_iim[item]; |
|
156 |
if ( i<0 ) { |
|
157 |
int s=_data.size(); |
|
158 |
_iim.set( item,s ); |
|
159 |
Store st; |
|
160 |
st.name=item; |
|
161 |
st.prio=value; |
|
162 |
_data.push_back(st); |
|
163 |
i=s; |
|
164 |
} |
|
165 |
else { |
|
166 |
_data[i].parent=_data[i].right_neighbor=_data[i].child=-1; |
|
167 |
_data[i].degree=0; |
|
168 |
_data[i].in=true; |
|
169 |
_data[i].prio=value; |
|
170 |
} |
|
171 |
|
|
172 |
if( 0==_num_items ) { |
|
173 |
_head=i; |
|
174 |
_min=i; |
|
175 |
} else { |
|
176 |
merge(i); |
|
177 |
if( _comp(_data[i].prio, _data[_min].prio) ) _min=i; |
|
178 |
} |
|
179 |
++_num_items; |
|
180 |
} |
|
181 |
|
|
182 |
/// \brief Return the item having minimum priority. |
|
183 |
/// |
|
184 |
/// This function returns the item having minimum priority. |
|
185 |
/// \pre The heap must be non-empty. |
|
186 |
Item top() const { return _data[_min].name; } |
|
187 |
|
|
188 |
/// \brief The minimum priority. |
|
189 |
/// |
|
190 |
/// This function returns the minimum priority. |
|
191 |
/// \pre The heap must be non-empty. |
|
192 |
Prio prio() const { return _data[_min].prio; } |
|
193 |
|
|
194 |
/// \brief The priority of the given item. |
|
195 |
/// |
|
196 |
/// This function returns the priority of the given item. |
|
197 |
/// \param item The item. |
|
198 |
/// \pre \e item must be in the heap. |
|
199 |
const Prio& operator[](const Item& item) const { |
|
200 |
return _data[_iim[item]].prio; |
|
201 |
} |
|
202 |
|
|
203 |
/// \brief Remove the item having minimum priority. |
|
204 |
/// |
|
205 |
/// This function removes the item having minimum priority. |
|
206 |
/// \pre The heap must be non-empty. |
|
207 |
void pop() { |
|
208 |
_data[_min].in=false; |
|
209 |
|
|
210 |
int head_child=-1; |
|
211 |
if ( _data[_min].child!=-1 ) { |
|
212 |
int child=_data[_min].child; |
|
213 |
int neighb; |
|
214 |
while( child!=-1 ) { |
|
215 |
neighb=_data[child].right_neighbor; |
|
216 |
_data[child].parent=-1; |
|
217 |
_data[child].right_neighbor=head_child; |
|
218 |
head_child=child; |
|
219 |
child=neighb; |
|
220 |
} |
|
221 |
} |
|
222 |
|
|
223 |
if ( _data[_head].right_neighbor==-1 ) { |
|
224 |
// there was only one root |
|
225 |
_head=head_child; |
|
226 |
} |
|
227 |
else { |
|
228 |
// there were more roots |
|
229 |
if( _head!=_min ) { unlace(_min); } |
|
230 |
else { _head=_data[_head].right_neighbor; } |
|
231 |
merge(head_child); |
|
232 |
} |
|
233 |
_min=findMin(); |
|
234 |
--_num_items; |
|
235 |
} |
|
236 |
|
|
237 |
/// \brief Remove the given item from the heap. |
|
238 |
/// |
|
239 |
/// This function removes the given item from the heap if it is |
|
240 |
/// already stored. |
|
241 |
/// \param item The item to delete. |
|
242 |
/// \pre \e item must be in the heap. |
|
243 |
void erase (const Item& item) { |
|
244 |
int i=_iim[item]; |
|
245 |
if ( i >= 0 && _data[i].in ) { |
|
246 |
decrease( item, _data[_min].prio-1 ); |
|
247 |
pop(); |
|
248 |
} |
|
249 |
} |
|
250 |
|
|
251 |
/// \brief Decrease the priority of an item to the given value. |
|
252 |
/// |
|
253 |
/// This function decreases the priority of an item to the given value. |
|
254 |
/// \param item The item. |
|
255 |
/// \param value The priority. |
|
256 |
/// \pre \e item must be stored in the heap with priority at least \e value. |
|
257 |
void decrease (Item item, const Prio& value) { |
|
258 |
int i=_iim[item]; |
|
259 |
int p=_data[i].parent; |
|
260 |
_data[i].prio=value; |
|
261 |
|
|
262 |
while( p!=-1 && _comp(value, _data[p].prio) ) { |
|
263 |
_data[i].name=_data[p].name; |
|
264 |
_data[i].prio=_data[p].prio; |
|
265 |
_data[p].name=item; |
|
266 |
_data[p].prio=value; |
|
267 |
_iim[_data[i].name]=i; |
|
268 |
i=p; |
|
269 |
p=_data[p].parent; |
|
270 |
} |
|
271 |
_iim[item]=i; |
|
272 |
if ( _comp(value, _data[_min].prio) ) _min=i; |
|
273 |
} |
|
274 |
|
|
275 |
/// \brief Increase the priority of an item to the given value. |
|
276 |
/// |
|
277 |
/// This function increases the priority of an item to the given value. |
|
278 |
/// \param item The item. |
|
279 |
/// \param value The priority. |
|
280 |
/// \pre \e item must be stored in the heap with priority at most \e value. |
|
281 |
void increase (Item item, const Prio& value) { |
|
282 |
erase(item); |
|
283 |
push(item, value); |
|
284 |
} |
|
285 |
|
|
286 |
/// \brief Return the state of an item. |
|
287 |
/// |
|
288 |
/// This method returns \c PRE_HEAP if the given item has never |
|
289 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
290 |
/// and \c POST_HEAP otherwise. |
|
291 |
/// In the latter case it is possible that the item will get back |
|
292 |
/// to the heap again. |
|
293 |
/// \param item The item. |
|
294 |
State state(const Item &item) const { |
|
295 |
int i=_iim[item]; |
|
296 |
if( i>=0 ) { |
|
297 |
if ( _data[i].in ) i=0; |
|
298 |
else i=-2; |
|
299 |
} |
|
300 |
return State(i); |
|
301 |
} |
|
302 |
|
|
303 |
/// \brief Set the state of an item in the heap. |
|
304 |
/// |
|
305 |
/// This function sets the state of the given item in the heap. |
|
306 |
/// It can be used to manually clear the heap when it is important |
|
307 |
/// to achive better time complexity. |
|
308 |
/// \param i The item. |
|
309 |
/// \param st The state. It should not be \c IN_HEAP. |
|
310 |
void state(const Item& i, State st) { |
|
311 |
switch (st) { |
|
312 |
case POST_HEAP: |
|
313 |
case PRE_HEAP: |
|
314 |
if (state(i) == IN_HEAP) { |
|
315 |
erase(i); |
|
316 |
} |
|
317 |
_iim[i] = st; |
|
318 |
break; |
|
319 |
case IN_HEAP: |
|
320 |
break; |
|
321 |
} |
|
322 |
} |
|
323 |
|
|
324 |
private: |
|
325 |
|
|
326 |
// Find the minimum of the roots |
|
327 |
int findMin() { |
|
328 |
if( _head!=-1 ) { |
|
329 |
int min_loc=_head, min_val=_data[_head].prio; |
|
330 |
for( int x=_data[_head].right_neighbor; x!=-1; |
|
331 |
x=_data[x].right_neighbor ) { |
|
332 |
if( _comp( _data[x].prio,min_val ) ) { |
|
333 |
min_val=_data[x].prio; |
|
334 |
min_loc=x; |
|
335 |
} |
|
336 |
} |
|
337 |
return min_loc; |
|
338 |
} |
|
339 |
else return -1; |
|
340 |
} |
|
341 |
|
|
342 |
// Merge the heap with another heap starting at the given position |
|
343 |
void merge(int a) { |
|
344 |
if( _head==-1 || a==-1 ) return; |
|
345 |
if( _data[a].right_neighbor==-1 && |
|
346 |
_data[a].degree<=_data[_head].degree ) { |
|
347 |
_data[a].right_neighbor=_head; |
|
348 |
_head=a; |
|
349 |
} else { |
|
350 |
interleave(a); |
|
351 |
} |
|
352 |
if( _data[_head].right_neighbor==-1 ) return; |
|
353 |
|
|
354 |
int x=_head; |
|
355 |
int x_prev=-1, x_next=_data[x].right_neighbor; |
|
356 |
while( x_next!=-1 ) { |
|
357 |
if( _data[x].degree!=_data[x_next].degree || |
|
358 |
( _data[x_next].right_neighbor!=-1 && |
|
359 |
_data[_data[x_next].right_neighbor].degree==_data[x].degree ) ) { |
|
360 |
x_prev=x; |
|
361 |
x=x_next; |
|
362 |
} |
|
363 |
else { |
|
364 |
if( _comp(_data[x_next].prio,_data[x].prio) ) { |
|
365 |
if( x_prev==-1 ) { |
|
366 |
_head=x_next; |
|
367 |
} else { |
|
368 |
_data[x_prev].right_neighbor=x_next; |
|
369 |
} |
|
370 |
fuse(x,x_next); |
|
371 |
x=x_next; |
|
372 |
} |
|
373 |
else { |
|
374 |
_data[x].right_neighbor=_data[x_next].right_neighbor; |
|
375 |
fuse(x_next,x); |
|
376 |
} |
|
377 |
} |
|
378 |
x_next=_data[x].right_neighbor; |
|
379 |
} |
|
380 |
} |
|
381 |
|
|
382 |
// Interleave the elements of the given list into the list of the roots |
|
383 |
void interleave(int a) { |
|
384 |
int p=_head, q=a; |
|
385 |
int curr=_data.size(); |
|
386 |
_data.push_back(Store()); |
|
387 |
|
|
388 |
while( p!=-1 || q!=-1 ) { |
|
389 |
if( q==-1 || ( p!=-1 && _data[p].degree<_data[q].degree ) ) { |
|
390 |
_data[curr].right_neighbor=p; |
|
391 |
curr=p; |
|
392 |
p=_data[p].right_neighbor; |
|
393 |
} |
|
394 |
else { |
|
395 |
_data[curr].right_neighbor=q; |
|
396 |
curr=q; |
|
397 |
q=_data[q].right_neighbor; |
|
398 |
} |
|
399 |
} |
|
400 |
|
|
401 |
_head=_data.back().right_neighbor; |
|
402 |
_data.pop_back(); |
|
403 |
} |
|
404 |
|
|
405 |
// Lace node a under node b |
|
406 |
void fuse(int a, int b) { |
|
407 |
_data[a].parent=b; |
|
408 |
_data[a].right_neighbor=_data[b].child; |
|
409 |
_data[b].child=a; |
|
410 |
|
|
411 |
++_data[b].degree; |
|
412 |
} |
|
413 |
|
|
414 |
// Unlace node a (if it has siblings) |
|
415 |
void unlace(int a) { |
|
416 |
int neighb=_data[a].right_neighbor; |
|
417 |
int other=_head; |
|
418 |
|
|
419 |
while( _data[other].right_neighbor!=a ) |
|
420 |
other=_data[other].right_neighbor; |
|
421 |
_data[other].right_neighbor=neighb; |
|
422 |
} |
|
423 |
|
|
424 |
private: |
|
425 |
|
|
426 |
class Store { |
|
427 |
friend class BinomHeap; |
|
428 |
|
|
429 |
Item name; |
|
430 |
int parent; |
|
431 |
int right_neighbor; |
|
432 |
int child; |
|
433 |
int degree; |
|
434 |
bool in; |
|
435 |
Prio prio; |
|
436 |
|
|
437 |
Store() : parent(-1), right_neighbor(-1), child(-1), degree(0), |
|
438 |
in(true) {} |
|
439 |
}; |
|
440 |
}; |
|
441 |
|
|
442 |
} //namespace lemon |
|
443 |
|
|
444 |
#endif //LEMON_BINOM_HEAP_H |
|
445 |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_FOURARY_HEAP_H |
|
20 |
#define LEMON_FOURARY_HEAP_H |
|
21 |
|
|
22 |
///\ingroup heaps |
|
23 |
///\file |
|
24 |
///\brief Fourary heap implementation. |
|
25 |
|
|
26 |
#include <vector> |
|
27 |
#include <utility> |
|
28 |
#include <functional> |
|
29 |
|
|
30 |
namespace lemon { |
|
31 |
|
|
32 |
/// \ingroup heaps |
|
33 |
/// |
|
34 |
///\brief Fourary heap data structure. |
|
35 |
/// |
|
36 |
/// This class implements the \e fourary \e heap data structure. |
|
37 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
38 |
/// |
|
39 |
/// The fourary heap is a specialization of the \ref KaryHeap "K-ary heap" |
|
40 |
/// for <tt>K=4</tt>. It is similar to the \ref BinHeap "binary heap", |
|
41 |
/// but its nodes have at most four children, instead of two. |
|
42 |
/// |
|
43 |
/// \tparam PR Type of the priorities of the items. |
|
44 |
/// \tparam IM A read-writable item map with \c int values, used |
|
45 |
/// internally to handle the cross references. |
|
46 |
/// \tparam CMP A functor class for comparing the priorities. |
|
47 |
/// The default is \c std::less<PR>. |
|
48 |
/// |
|
49 |
///\sa BinHeap |
|
50 |
///\sa KaryHeap |
|
51 |
#ifdef DOXYGEN |
|
52 |
template <typename PR, typename IM, typename CMP> |
|
53 |
#else |
|
54 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
55 |
#endif |
|
56 |
class FouraryHeap { |
|
57 |
public: |
|
58 |
/// Type of the item-int map. |
|
59 |
typedef IM ItemIntMap; |
|
60 |
/// Type of the priorities. |
|
61 |
typedef PR Prio; |
|
62 |
/// Type of the items stored in the heap. |
|
63 |
typedef typename ItemIntMap::Key Item; |
|
64 |
/// Type of the item-priority pairs. |
|
65 |
typedef std::pair<Item,Prio> Pair; |
|
66 |
/// Functor type for comparing the priorities. |
|
67 |
typedef CMP Compare; |
|
68 |
|
|
69 |
/// \brief Type to represent the states of the items. |
|
70 |
/// |
|
71 |
/// Each item has a state associated to it. It can be "in heap", |
|
72 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
73 |
/// heap's point of view, but may be useful to the user. |
|
74 |
/// |
|
75 |
/// The item-int map must be initialized in such way that it assigns |
|
76 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
77 |
enum State { |
|
78 |
IN_HEAP = 0, ///< = 0. |
|
79 |
PRE_HEAP = -1, ///< = -1. |
|
80 |
POST_HEAP = -2 ///< = -2. |
|
81 |
}; |
|
82 |
|
|
83 |
private: |
|
84 |
std::vector<Pair> _data; |
|
85 |
Compare _comp; |
|
86 |
ItemIntMap &_iim; |
|
87 |
|
|
88 |
public: |
|
89 |
/// \brief Constructor. |
|
90 |
/// |
|
91 |
/// Constructor. |
|
92 |
/// \param map A map that assigns \c int values to the items. |
|
93 |
/// It is used internally to handle the cross references. |
|
94 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
95 |
explicit FouraryHeap(ItemIntMap &map) : _iim(map) {} |
|
96 |
|
|
97 |
/// \brief Constructor. |
|
98 |
/// |
|
99 |
/// Constructor. |
|
100 |
/// \param map A map that assigns \c int values to the items. |
|
101 |
/// It is used internally to handle the cross references. |
|
102 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
103 |
/// \param comp The function object used for comparing the priorities. |
|
104 |
FouraryHeap(ItemIntMap &map, const Compare &comp) |
|
105 |
: _iim(map), _comp(comp) {} |
|
106 |
|
|
107 |
/// \brief The number of items stored in the heap. |
|
108 |
/// |
|
109 |
/// This function returns the number of items stored in the heap. |
|
110 |
int size() const { return _data.size(); } |
|
111 |
|
|
112 |
/// \brief Check if the heap is empty. |
|
113 |
/// |
|
114 |
/// This function returns \c true if the heap is empty. |
|
115 |
bool empty() const { return _data.empty(); } |
|
116 |
|
|
117 |
/// \brief Make the heap empty. |
|
118 |
/// |
|
119 |
/// This functon makes the heap empty. |
|
120 |
/// It does not change the cross reference map. If you want to reuse |
|
121 |
/// a heap that is not surely empty, you should first clear it and |
|
122 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
123 |
/// for each item. |
|
124 |
void clear() { _data.clear(); } |
|
125 |
|
|
126 |
private: |
|
127 |
static int parent(int i) { return (i-1)/4; } |
|
128 |
static int firstChild(int i) { return 4*i+1; } |
|
129 |
|
|
130 |
bool less(const Pair &p1, const Pair &p2) const { |
|
131 |
return _comp(p1.second, p2.second); |
|
132 |
} |
|
133 |
|
|
134 |
void bubbleUp(int hole, Pair p) { |
|
135 |
int par = parent(hole); |
|
136 |
while( hole>0 && less(p,_data[par]) ) { |
|
137 |
move(_data[par],hole); |
|
138 |
hole = par; |
|
139 |
par = parent(hole); |
|
140 |
} |
|
141 |
move(p, hole); |
|
142 |
} |
|
143 |
|
|
144 |
void bubbleDown(int hole, Pair p, int length) { |
|
145 |
if( length>1 ) { |
|
146 |
int child = firstChild(hole); |
|
147 |
while( child+3<length ) { |
|
148 |
int min=child; |
|
149 |
if( less(_data[++child], _data[min]) ) min=child; |
|
150 |
if( less(_data[++child], _data[min]) ) min=child; |
|
151 |
if( less(_data[++child], _data[min]) ) min=child; |
|
152 |
if( !less(_data[min], p) ) |
|
153 |
goto ok; |
|
154 |
move(_data[min], hole); |
|
155 |
hole = min; |
|
156 |
child = firstChild(hole); |
|
157 |
} |
|
158 |
if ( child<length ) { |
|
159 |
int min = child; |
|
160 |
if( ++child<length && less(_data[child], _data[min]) ) min=child; |
|
161 |
if( ++child<length && less(_data[child], _data[min]) ) min=child; |
|
162 |
if( less(_data[min], p) ) { |
|
163 |
move(_data[min], hole); |
|
164 |
hole = min; |
|
165 |
} |
|
166 |
} |
|
167 |
} |
|
168 |
ok: |
|
169 |
move(p, hole); |
|
170 |
} |
|
171 |
|
|
172 |
void move(const Pair &p, int i) { |
|
173 |
_data[i] = p; |
|
174 |
_iim.set(p.first, i); |
|
175 |
} |
|
176 |
|
|
177 |
public: |
|
178 |
/// \brief Insert a pair of item and priority into the heap. |
|
179 |
/// |
|
180 |
/// This function inserts \c p.first to the heap with priority |
|
181 |
/// \c p.second. |
|
182 |
/// \param p The pair to insert. |
|
183 |
/// \pre \c p.first must not be stored in the heap. |
|
184 |
void push(const Pair &p) { |
|
185 |
int n = _data.size(); |
|
186 |
_data.resize(n+1); |
|
187 |
bubbleUp(n, p); |
|
188 |
} |
|
189 |
|
|
190 |
/// \brief Insert an item into the heap with the given priority. |
|
191 |
/// |
|
192 |
/// This function inserts the given item into the heap with the |
|
193 |
/// given priority. |
|
194 |
/// \param i The item to insert. |
|
195 |
/// \param p The priority of the item. |
|
196 |
/// \pre \e i must not be stored in the heap. |
|
197 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); } |
|
198 |
|
|
199 |
/// \brief Return the item having minimum priority. |
|
200 |
/// |
|
201 |
/// This function returns the item having minimum priority. |
|
202 |
/// \pre The heap must be non-empty. |
|
203 |
Item top() const { return _data[0].first; } |
|
204 |
|
|
205 |
/// \brief The minimum priority. |
|
206 |
/// |
|
207 |
/// This function returns the minimum priority. |
|
208 |
/// \pre The heap must be non-empty. |
|
209 |
Prio prio() const { return _data[0].second; } |
|
210 |
|
|
211 |
/// \brief Remove the item having minimum priority. |
|
212 |
/// |
|
213 |
/// This function removes the item having minimum priority. |
|
214 |
/// \pre The heap must be non-empty. |
|
215 |
void pop() { |
|
216 |
int n = _data.size()-1; |
|
217 |
_iim.set(_data[0].first, POST_HEAP); |
|
218 |
if (n>0) bubbleDown(0, _data[n], n); |
|
219 |
_data.pop_back(); |
|
220 |
} |
|
221 |
|
|
222 |
/// \brief Remove the given item from the heap. |
|
223 |
/// |
|
224 |
/// This function removes the given item from the heap if it is |
|
225 |
/// already stored. |
|
226 |
/// \param i The item to delete. |
|
227 |
/// \pre \e i must be in the heap. |
|
228 |
void erase(const Item &i) { |
|
229 |
int h = _iim[i]; |
|
230 |
int n = _data.size()-1; |
|
231 |
_iim.set(_data[h].first, POST_HEAP); |
|
232 |
if( h<n ) { |
|
233 |
if( less(_data[parent(h)], _data[n]) ) |
|
234 |
bubbleDown(h, _data[n], n); |
|
235 |
else |
|
236 |
bubbleUp(h, _data[n]); |
|
237 |
} |
|
238 |
_data.pop_back(); |
|
239 |
} |
|
240 |
|
|
241 |
/// \brief The priority of the given item. |
|
242 |
/// |
|
243 |
/// This function returns the priority of the given item. |
|
244 |
/// \param i The item. |
|
245 |
/// \pre \e i must be in the heap. |
|
246 |
Prio operator[](const Item &i) const { |
|
247 |
int idx = _iim[i]; |
|
248 |
return _data[idx].second; |
|
249 |
} |
|
250 |
|
|
251 |
/// \brief Set the priority of an item or insert it, if it is |
|
252 |
/// not stored in the heap. |
|
253 |
/// |
|
254 |
/// This method sets the priority of the given item if it is |
|
255 |
/// already stored in the heap. Otherwise it inserts the given |
|
256 |
/// item into the heap with the given priority. |
|
257 |
/// \param i The item. |
|
258 |
/// \param p The priority. |
|
259 |
void set(const Item &i, const Prio &p) { |
|
260 |
int idx = _iim[i]; |
|
261 |
if( idx < 0 ) |
|
262 |
push(i,p); |
|
263 |
else if( _comp(p, _data[idx].second) ) |
|
264 |
bubbleUp(idx, Pair(i,p)); |
|
265 |
else |
|
266 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
267 |
} |
|
268 |
|
|
269 |
/// \brief Decrease the priority of an item to the given value. |
|
270 |
/// |
|
271 |
/// This function decreases the priority of an item to the given value. |
|
272 |
/// \param i The item. |
|
273 |
/// \param p The priority. |
|
274 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
275 |
void decrease(const Item &i, const Prio &p) { |
|
276 |
int idx = _iim[i]; |
|
277 |
bubbleUp(idx, Pair(i,p)); |
|
278 |
} |
|
279 |
|
|
280 |
/// \brief Increase the priority of an item to the given value. |
|
281 |
/// |
|
282 |
/// This function increases the priority of an item to the given value. |
|
283 |
/// \param i The item. |
|
284 |
/// \param p The priority. |
|
285 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
286 |
void increase(const Item &i, const Prio &p) { |
|
287 |
int idx = _iim[i]; |
|
288 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
289 |
} |
|
290 |
|
|
291 |
/// \brief Return the state of an item. |
|
292 |
/// |
|
293 |
/// This method returns \c PRE_HEAP if the given item has never |
|
294 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
295 |
/// and \c POST_HEAP otherwise. |
|
296 |
/// In the latter case it is possible that the item will get back |
|
297 |
/// to the heap again. |
|
298 |
/// \param i The item. |
|
299 |
State state(const Item &i) const { |
|
300 |
int s = _iim[i]; |
|
301 |
if (s>=0) s=0; |
|
302 |
return State(s); |
|
303 |
} |
|
304 |
|
|
305 |
/// \brief Set the state of an item in the heap. |
|
306 |
/// |
|
307 |
/// This function sets the state of the given item in the heap. |
|
308 |
/// It can be used to manually clear the heap when it is important |
|
309 |
/// to achive better time complexity. |
|
310 |
/// \param i The item. |
|
311 |
/// \param st The state. It should not be \c IN_HEAP. |
|
312 |
void state(const Item& i, State st) { |
|
313 |
switch (st) { |
|
314 |
case POST_HEAP: |
|
315 |
case PRE_HEAP: |
|
316 |
if (state(i) == IN_HEAP) erase(i); |
|
317 |
_iim[i] = st; |
|
318 |
break; |
|
319 |
case IN_HEAP: |
|
320 |
break; |
|
321 |
} |
|
322 |
} |
|
323 |
|
|
324 |
/// \brief Replace an item in the heap. |
|
325 |
/// |
|
326 |
/// This function replaces item \c i with item \c j. |
|
327 |
/// Item \c i must be in the heap, while \c j must be out of the heap. |
|
328 |
/// After calling this method, item \c i will be out of the |
|
329 |
/// heap and \c j will be in the heap with the same prioriority |
|
330 |
/// as item \c i had before. |
|
331 |
void replace(const Item& i, const Item& j) { |
|
332 |
int idx = _iim[i]; |
|
333 |
_iim.set(i, _iim[j]); |
|
334 |
_iim.set(j, idx); |
|
335 |
_data[idx].first = j; |
|
336 |
} |
|
337 |
|
|
338 |
}; // class FouraryHeap |
|
339 |
|
|
340 |
} // namespace lemon |
|
341 |
|
|
342 |
#endif // LEMON_FOURARY_HEAP_H |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_KARY_HEAP_H |
|
20 |
#define LEMON_KARY_HEAP_H |
|
21 |
|
|
22 |
///\ingroup heaps |
|
23 |
///\file |
|
24 |
///\brief Fourary heap implementation. |
|
25 |
|
|
26 |
#include <vector> |
|
27 |
#include <utility> |
|
28 |
#include <functional> |
|
29 |
|
|
30 |
namespace lemon { |
|
31 |
|
|
32 |
/// \ingroup heaps |
|
33 |
/// |
|
34 |
///\brief K-ary heap data structure. |
|
35 |
/// |
|
36 |
/// This class implements the \e K-ary \e heap data structure. |
|
37 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
38 |
/// |
|
39 |
/// The \ref KaryHeap "K-ary heap" is a generalization of the |
|
40 |
/// \ref BinHeap "binary heap" structure, its nodes have at most |
|
41 |
/// \c K children, instead of two. |
|
42 |
/// \ref BinHeap and \ref FouraryHeap are specialized implementations |
|
43 |
/// of this structure for <tt>K=2</tt> and <tt>K=4</tt>, respectively. |
|
44 |
/// |
|
45 |
/// \tparam PR Type of the priorities of the items. |
|
46 |
/// \tparam IM A read-writable item map with \c int values, used |
|
47 |
/// internally to handle the cross references. |
|
48 |
/// \tparam K The degree of the heap, each node have at most \e K |
|
49 |
/// children. The default is 16. Powers of two are suggested to use |
|
50 |
/// so that the multiplications and divisions needed to traverse the |
|
51 |
/// nodes of the heap could be performed faster. |
|
52 |
/// \tparam CMP A functor class for comparing the priorities. |
|
53 |
/// The default is \c std::less<PR>. |
|
54 |
/// |
|
55 |
///\sa BinHeap |
|
56 |
///\sa FouraryHeap |
|
57 |
#ifdef DOXYGEN |
|
58 |
template <typename PR, typename IM, int K, typename CMP> |
|
59 |
#else |
|
60 |
template <typename PR, typename IM, int K = 16, |
|
61 |
typename CMP = std::less<PR> > |
|
62 |
#endif |
|
63 |
class KaryHeap { |
|
64 |
public: |
|
65 |
/// Type of the item-int map. |
|
66 |
typedef IM ItemIntMap; |
|
67 |
/// Type of the priorities. |
|
68 |
typedef PR Prio; |
|
69 |
/// Type of the items stored in the heap. |
|
70 |
typedef typename ItemIntMap::Key Item; |
|
71 |
/// Type of the item-priority pairs. |
|
72 |
typedef std::pair<Item,Prio> Pair; |
|
73 |
/// Functor type for comparing the priorities. |
|
74 |
typedef CMP Compare; |
|
75 |
|
|
76 |
/// \brief Type to represent the states of the items. |
|
77 |
/// |
|
78 |
/// Each item has a state associated to it. It can be "in heap", |
|
79 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
80 |
/// heap's point of view, but may be useful to the user. |
|
81 |
/// |
|
82 |
/// The item-int map must be initialized in such way that it assigns |
|
83 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
84 |
enum State { |
|
85 |
IN_HEAP = 0, ///< = 0. |
|
86 |
PRE_HEAP = -1, ///< = -1. |
|
87 |
POST_HEAP = -2 ///< = -2. |
|
88 |
}; |
|
89 |
|
|
90 |
private: |
|
91 |
std::vector<Pair> _data; |
|
92 |
Compare _comp; |
|
93 |
ItemIntMap &_iim; |
|
94 |
|
|
95 |
public: |
|
96 |
/// \brief Constructor. |
|
97 |
/// |
|
98 |
/// Constructor. |
|
99 |
/// \param map A map that assigns \c int values to the items. |
|
100 |
/// It is used internally to handle the cross references. |
|
101 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
102 |
explicit KaryHeap(ItemIntMap &map) : _iim(map) {} |
|
103 |
|
|
104 |
/// \brief Constructor. |
|
105 |
/// |
|
106 |
/// Constructor. |
|
107 |
/// \param map A map that assigns \c int values to the items. |
|
108 |
/// It is used internally to handle the cross references. |
|
109 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
110 |
/// \param comp The function object used for comparing the priorities. |
|
111 |
KaryHeap(ItemIntMap &map, const Compare &comp) |
|
112 |
: _iim(map), _comp(comp) {} |
|
113 |
|
|
114 |
/// \brief The number of items stored in the heap. |
|
115 |
/// |
|
116 |
/// This function returns the number of items stored in the heap. |
|
117 |
int size() const { return _data.size(); } |
|
118 |
|
|
119 |
/// \brief Check if the heap is empty. |
|
120 |
/// |
|
121 |
/// This function returns \c true if the heap is empty. |
|
122 |
bool empty() const { return _data.empty(); } |
|
123 |
|
|
124 |
/// \brief Make the heap empty. |
|
125 |
/// |
|
126 |
/// This functon makes the heap empty. |
|
127 |
/// It does not change the cross reference map. If you want to reuse |
|
128 |
/// a heap that is not surely empty, you should first clear it and |
|
129 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
130 |
/// for each item. |
|
131 |
void clear() { _data.clear(); } |
|
132 |
|
|
133 |
private: |
|
134 |
int parent(int i) { return (i-1)/K; } |
|
135 |
int firstChild(int i) { return K*i+1; } |
|
136 |
|
|
137 |
bool less(const Pair &p1, const Pair &p2) const { |
|
138 |
return _comp(p1.second, p2.second); |
|
139 |
} |
|
140 |
|
|
141 |
void bubbleUp(int hole, Pair p) { |
|
142 |
int par = parent(hole); |
|
143 |
while( hole>0 && less(p,_data[par]) ) { |
|
144 |
move(_data[par],hole); |
|
145 |
hole = par; |
|
146 |
par = parent(hole); |
|
147 |
} |
|
148 |
move(p, hole); |
|
149 |
} |
|
150 |
|
|
151 |
void bubbleDown(int hole, Pair p, int length) { |
|
152 |
if( length>1 ) { |
|
153 |
int child = firstChild(hole); |
|
154 |
while( child+K<=length ) { |
|
155 |
int min=child; |
|
156 |
for (int i=1; i<K; ++i) { |
|
157 |
if( less(_data[child+i], _data[min]) ) |
|
158 |
min=child+i; |
|
159 |
} |
|
160 |
if( !less(_data[min], p) ) |
|
161 |
goto ok; |
|
162 |
move(_data[min], hole); |
|
163 |
hole = min; |
|
164 |
child = firstChild(hole); |
|
165 |
} |
|
166 |
if ( child<length ) { |
|
167 |
int min = child; |
|
168 |
while (++child < length) { |
|
169 |
if( less(_data[child], _data[min]) ) |
|
170 |
min=child; |
|
171 |
} |
|
172 |
if( less(_data[min], p) ) { |
|
173 |
move(_data[min], hole); |
|
174 |
hole = min; |
|
175 |
} |
|
176 |
} |
|
177 |
} |
|
178 |
ok: |
|
179 |
move(p, hole); |
|
180 |
} |
|
181 |
|
|
182 |
void move(const Pair &p, int i) { |
|
183 |
_data[i] = p; |
|
184 |
_iim.set(p.first, i); |
|
185 |
} |
|
186 |
|
|
187 |
public: |
|
188 |
/// \brief Insert a pair of item and priority into the heap. |
|
189 |
/// |
|
190 |
/// This function inserts \c p.first to the heap with priority |
|
191 |
/// \c p.second. |
|
192 |
/// \param p The pair to insert. |
|
193 |
/// \pre \c p.first must not be stored in the heap. |
|
194 |
void push(const Pair &p) { |
|
195 |
int n = _data.size(); |
|
196 |
_data.resize(n+1); |
|
197 |
bubbleUp(n, p); |
|
198 |
} |
|
199 |
|
|
200 |
/// \brief Insert an item into the heap with the given priority. |
|
201 |
/// |
|
202 |
/// This function inserts the given item into the heap with the |
|
203 |
/// given priority. |
|
204 |
/// \param i The item to insert. |
|
205 |
/// \param p The priority of the item. |
|
206 |
/// \pre \e i must not be stored in the heap. |
|
207 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); } |
|
208 |
|
|
209 |
/// \brief Return the item having minimum priority. |
|
210 |
/// |
|
211 |
/// This function returns the item having minimum priority. |
|
212 |
/// \pre The heap must be non-empty. |
|
213 |
Item top() const { return _data[0].first; } |
|
214 |
|
|
215 |
/// \brief The minimum priority. |
|
216 |
/// |
|
217 |
/// This function returns the minimum priority. |
|
218 |
/// \pre The heap must be non-empty. |
|
219 |
Prio prio() const { return _data[0].second; } |
|
220 |
|
|
221 |
/// \brief Remove the item having minimum priority. |
|
222 |
/// |
|
223 |
/// This function removes the item having minimum priority. |
|
224 |
/// \pre The heap must be non-empty. |
|
225 |
void pop() { |
|
226 |
int n = _data.size()-1; |
|
227 |
_iim.set(_data[0].first, POST_HEAP); |
|
228 |
if (n>0) bubbleDown(0, _data[n], n); |
|
229 |
_data.pop_back(); |
|
230 |
} |
|
231 |
|
|
232 |
/// \brief Remove the given item from the heap. |
|
233 |
/// |
|
234 |
/// This function removes the given item from the heap if it is |
|
235 |
/// already stored. |
|
236 |
/// \param i The item to delete. |
|
237 |
/// \pre \e i must be in the heap. |
|
238 |
void erase(const Item &i) { |
|
239 |
int h = _iim[i]; |
|
240 |
int n = _data.size()-1; |
|
241 |
_iim.set(_data[h].first, POST_HEAP); |
|
242 |
if( h<n ) { |
|
243 |
if( less(_data[parent(h)], _data[n]) ) |
|
244 |
bubbleDown(h, _data[n], n); |
|
245 |
else |
|
246 |
bubbleUp(h, _data[n]); |
|
247 |
} |
|
248 |
_data.pop_back(); |
|
249 |
} |
|
250 |
|
|
251 |
/// \brief The priority of the given item. |
|
252 |
/// |
|
253 |
/// This function returns the priority of the given item. |
|
254 |
/// \param i The item. |
|
255 |
/// \pre \e i must be in the heap. |
|
256 |
Prio operator[](const Item &i) const { |
|
257 |
int idx = _iim[i]; |
|
258 |
return _data[idx].second; |
|
259 |
} |
|
260 |
|
|
261 |
/// \brief Set the priority of an item or insert it, if it is |
|
262 |
/// not stored in the heap. |
|
263 |
/// |
|
264 |
/// This method sets the priority of the given item if it is |
|
265 |
/// already stored in the heap. Otherwise it inserts the given |
|
266 |
/// item into the heap with the given priority. |
|
267 |
/// \param i The item. |
|
268 |
/// \param p The priority. |
|
269 |
void set(const Item &i, const Prio &p) { |
|
270 |
int idx = _iim[i]; |
|
271 |
if( idx<0 ) |
|
272 |
push(i,p); |
|
273 |
else if( _comp(p, _data[idx].second) ) |
|
274 |
bubbleUp(idx, Pair(i,p)); |
|
275 |
else |
|
276 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
277 |
} |
|
278 |
|
|
279 |
/// \brief Decrease the priority of an item to the given value. |
|
280 |
/// |
|
281 |
/// This function decreases the priority of an item to the given value. |
|
282 |
/// \param i The item. |
|
283 |
/// \param p The priority. |
|
284 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
285 |
void decrease(const Item &i, const Prio &p) { |
|
286 |
int idx = _iim[i]; |
|
287 |
bubbleUp(idx, Pair(i,p)); |
|
288 |
} |
|
289 |
|
|
290 |
/// \brief Increase the priority of an item to the given value. |
|
291 |
/// |
|
292 |
/// This function increases the priority of an item to the given value. |
|
293 |
/// \param i The item. |
|
294 |
/// \param p The priority. |
|
295 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
296 |
void increase(const Item &i, const Prio &p) { |
|
297 |
int idx = _iim[i]; |
|
298 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
299 |
} |
|
300 |
|
|
301 |
/// \brief Return the state of an item. |
|
302 |
/// |
|
303 |
/// This method returns \c PRE_HEAP if the given item has never |
|
304 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
305 |
/// and \c POST_HEAP otherwise. |
|
306 |
/// In the latter case it is possible that the item will get back |
|
307 |
/// to the heap again. |
|
308 |
/// \param i The item. |
|
309 |
State state(const Item &i) const { |
|
310 |
int s = _iim[i]; |
|
311 |
if (s>=0) s=0; |
|
312 |
return State(s); |
|
313 |
} |
|
314 |
|
|
315 |
/// \brief Set the state of an item in the heap. |
|
316 |
/// |
|
317 |
/// This function sets the state of the given item in the heap. |
|
318 |
/// It can be used to manually clear the heap when it is important |
|
319 |
/// to achive better time complexity. |
|
320 |
/// \param i The item. |
|
321 |
/// \param st The state. It should not be \c IN_HEAP. |
|
322 |
void state(const Item& i, State st) { |
|
323 |
switch (st) { |
|
324 |
case POST_HEAP: |
|
325 |
case PRE_HEAP: |
|
326 |
if (state(i) == IN_HEAP) erase(i); |
|
327 |
_iim[i] = st; |
|
328 |
break; |
|
329 |
case IN_HEAP: |
|
330 |
break; |
|
331 |
} |
|
332 |
} |
|
333 |
|
|
334 |
/// \brief Replace an item in the heap. |
|
335 |
/// |
|
336 |
/// This function replaces item \c i with item \c j. |
|
337 |
/// Item \c i must be in the heap, while \c j must be out of the heap. |
|
338 |
/// After calling this method, item \c i will be out of the |
|
339 |
/// heap and \c j will be in the heap with the same prioriority |
|
340 |
/// as item \c i had before. |
|
341 |
void replace(const Item& i, const Item& j) { |
|
342 |
int idx=_iim[i]; |
|
343 |
_iim.set(i, _iim[j]); |
|
344 |
_iim.set(j, idx); |
|
345 |
_data[idx].first=j; |
|
346 |
} |
|
347 |
|
|
348 |
}; // class KaryHeap |
|
349 |
|
|
350 |
} // namespace lemon |
|
351 |
|
|
352 |
#endif // LEMON_KARY_HEAP_H |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_PAIRING_HEAP_H |
|
20 |
#define LEMON_PAIRING_HEAP_H |
|
21 |
|
|
22 |
///\file |
|
23 |
///\ingroup heaps |
|
24 |
///\brief Pairing heap implementation. |
|
25 |
|
|
26 |
#include <vector> |
|
27 |
#include <utility> |
|
28 |
#include <functional> |
|
29 |
#include <lemon/math.h> |
|
30 |
|
|
31 |
namespace lemon { |
|
32 |
|
|
33 |
/// \ingroup heaps |
|
34 |
/// |
|
35 |
///\brief Pairing Heap. |
|
36 |
/// |
|
37 |
/// This class implements the \e pairing \e heap data structure. |
|
38 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
39 |
/// |
|
40 |
/// The methods \ref increase() and \ref erase() are not efficient |
|
41 |
/// in a pairing heap. In case of many calls of these operations, |
|
42 |
/// it is better to use other heap structure, e.g. \ref BinHeap |
|
43 |
/// "binary heap". |
|
44 |
/// |
|
45 |
/// \tparam PR Type of the priorities of the items. |
|
46 |
/// \tparam IM A read-writable item map with \c int values, used |
|
47 |
/// internally to handle the cross references. |
|
48 |
/// \tparam CMP A functor class for comparing the priorities. |
|
49 |
/// The default is \c std::less<PR>. |
|
50 |
#ifdef DOXYGEN |
|
51 |
template <typename PR, typename IM, typename CMP> |
|
52 |
#else |
|
53 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
54 |
#endif |
|
55 |
class PairingHeap { |
|
56 |
public: |
|
57 |
/// Type of the item-int map. |
|
58 |
typedef IM ItemIntMap; |
|
59 |
/// Type of the priorities. |
|
60 |
typedef PR Prio; |
|
61 |
/// Type of the items stored in the heap. |
|
62 |
typedef typename ItemIntMap::Key Item; |
|
63 |
/// Functor type for comparing the priorities. |
|
64 |
typedef CMP Compare; |
|
65 |
|
|
66 |
/// \brief Type to represent the states of the items. |
|
67 |
/// |
|
68 |
/// Each item has a state associated to it. It can be "in heap", |
|
69 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
70 |
/// heap's point of view, but may be useful to the user. |
|
71 |
/// |
|
72 |
/// The item-int map must be initialized in such way that it assigns |
|
73 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
74 |
enum State { |
|
75 |
IN_HEAP = 0, ///< = 0. |
|
76 |
PRE_HEAP = -1, ///< = -1. |
|
77 |
POST_HEAP = -2 ///< = -2. |
|
78 |
}; |
|
79 |
|
|
80 |
private: |
|
81 |
class store; |
|
82 |
|
|
83 |
std::vector<store> _data; |
|
84 |
int _min; |
|
85 |
ItemIntMap &_iim; |
|
86 |
Compare _comp; |
|
87 |
int _num_items; |
|
88 |
|
|
89 |
public: |
|
90 |
/// \brief Constructor. |
|
91 |
/// |
|
92 |
/// Constructor. |
|
93 |
/// \param map A map that assigns \c int values to the items. |
|
94 |
/// It is used internally to handle the cross references. |
|
95 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
96 |
explicit PairingHeap(ItemIntMap &map) |
|
97 |
: _min(0), _iim(map), _num_items(0) {} |
|
98 |
|
|
99 |
/// \brief Constructor. |
|
100 |
/// |
|
101 |
/// Constructor. |
|
102 |
/// \param map A map that assigns \c int values to the items. |
|
103 |
/// It is used internally to handle the cross references. |
|
104 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
105 |
/// \param comp The function object used for comparing the priorities. |
|
106 |
PairingHeap(ItemIntMap &map, const Compare &comp) |
|
107 |
: _min(0), _iim(map), _comp(comp), _num_items(0) {} |
|
108 |
|
|
109 |
/// \brief The number of items stored in the heap. |
|
110 |
/// |
|
111 |
/// This function returns the number of items stored in the heap. |
|
112 |
int size() const { return _num_items; } |
|
113 |
|
|
114 |
/// \brief Check if the heap is empty. |
|
115 |
/// |
|
116 |
/// This function returns \c true if the heap is empty. |
|
117 |
bool empty() const { return _num_items==0; } |
|
118 |
|
|
119 |
/// \brief Make the heap empty. |
|
120 |
/// |
|
121 |
/// This functon makes the heap empty. |
|
122 |
/// It does not change the cross reference map. If you want to reuse |
|
123 |
/// a heap that is not surely empty, you should first clear it and |
|
124 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
125 |
/// for each item. |
|
126 |
void clear() { |
|
127 |
_data.clear(); |
|
128 |
_min = 0; |
|
129 |
_num_items = 0; |
|
130 |
} |
|
131 |
|
|
132 |
/// \brief Set the priority of an item or insert it, if it is |
|
133 |
/// not stored in the heap. |
|
134 |
/// |
|
135 |
/// This method sets the priority of the given item if it is |
|
136 |
/// already stored in the heap. Otherwise it inserts the given |
|
137 |
/// item into the heap with the given priority. |
|
138 |
/// \param item The item. |
|
139 |
/// \param value The priority. |
|
140 |
void set (const Item& item, const Prio& value) { |
|
141 |
int i=_iim[item]; |
|
142 |
if ( i>=0 && _data[i].in ) { |
|
143 |
if ( _comp(value, _data[i].prio) ) decrease(item, value); |
|
144 |
if ( _comp(_data[i].prio, value) ) increase(item, value); |
|
145 |
} else push(item, value); |
|
146 |
} |
|
147 |
|
|
148 |
/// \brief Insert an item into the heap with the given priority. |
|
149 |
/// |
|
150 |
/// This function inserts the given item into the heap with the |
|
151 |
/// given priority. |
|
152 |
/// \param item The item to insert. |
|
153 |
/// \param value The priority of the item. |
|
154 |
/// \pre \e item must not be stored in the heap. |
|
155 |
void push (const Item& item, const Prio& value) { |
|
156 |
int i=_iim[item]; |
|
157 |
if( i<0 ) { |
|
158 |
int s=_data.size(); |
|
159 |
_iim.set(item, s); |
|
160 |
store st; |
|
161 |
st.name=item; |
|
162 |
_data.push_back(st); |
|
163 |
i=s; |
|
164 |
} else { |
|
165 |
_data[i].parent=_data[i].child=-1; |
|
166 |
_data[i].left_child=false; |
|
167 |
_data[i].degree=0; |
|
168 |
_data[i].in=true; |
|
169 |
} |
|
170 |
|
|
171 |
_data[i].prio=value; |
|
172 |
|
|
173 |
if ( _num_items!=0 ) { |
|
174 |
if ( _comp( value, _data[_min].prio) ) { |
|
175 |
fuse(i,_min); |
|
176 |
_min=i; |
|
177 |
} |
|
178 |
else fuse(_min,i); |
|
179 |
} |
|
180 |
else _min=i; |
|
181 |
|
|
182 |
++_num_items; |
|
183 |
} |
|
184 |
|
|
185 |
/// \brief Return the item having minimum priority. |
|
186 |
/// |
|
187 |
/// This function returns the item having minimum priority. |
|
188 |
/// \pre The heap must be non-empty. |
|
189 |
Item top() const { return _data[_min].name; } |
|
190 |
|
|
191 |
/// \brief The minimum priority. |
|
192 |
/// |
|
193 |
/// This function returns the minimum priority. |
|
194 |
/// \pre The heap must be non-empty. |
|
195 |
const Prio& prio() const { return _data[_min].prio; } |
|
196 |
|
|
197 |
/// \brief The priority of the given item. |
|
198 |
/// |
|
199 |
/// This function returns the priority of the given item. |
|
200 |
/// \param item The item. |
|
201 |
/// \pre \e item must be in the heap. |
|
202 |
const Prio& operator[](const Item& item) const { |
|
203 |
return _data[_iim[item]].prio; |
|
204 |
} |
|
205 |
|
|
206 |
/// \brief Remove the item having minimum priority. |
|
207 |
/// |
|
208 |
/// This function removes the item having minimum priority. |
|
209 |
/// \pre The heap must be non-empty. |
|
210 |
void pop() { |
|
211 |
std::vector<int> trees; |
|
212 |
int i=0, child_right = 0; |
|
213 |
_data[_min].in=false; |
|
214 |
|
|
215 |
if( -1!=_data[_min].child ) { |
|
216 |
i=_data[_min].child; |
|
217 |
trees.push_back(i); |
|
218 |
_data[i].parent = -1; |
|
219 |
_data[_min].child = -1; |
|
220 |
|
|
221 |
int ch=-1; |
|
222 |
while( _data[i].child!=-1 ) { |
|
223 |
ch=_data[i].child; |
|
224 |
if( _data[ch].left_child && i==_data[ch].parent ) { |
|
225 |
break; |
|
226 |
} else { |
|
227 |
if( _data[ch].left_child ) { |
|
228 |
child_right=_data[ch].parent; |
|
229 |
_data[ch].parent = i; |
|
230 |
--_data[i].degree; |
|
231 |
} |
|
232 |
else { |
|
233 |
child_right=ch; |
|
234 |
_data[i].child=-1; |
|
235 |
_data[i].degree=0; |
|
236 |
} |
|
237 |
_data[child_right].parent = -1; |
|
238 |
trees.push_back(child_right); |
|
239 |
i = child_right; |
|
240 |
} |
|
241 |
} |
|
242 |
|
|
243 |
int num_child = trees.size(); |
|
244 |
int other; |
|
245 |
for( i=0; i<num_child-1; i+=2 ) { |
|
246 |
if ( !_comp(_data[trees[i]].prio, _data[trees[i+1]].prio) ) { |
|
247 |
other=trees[i]; |
|
248 |
trees[i]=trees[i+1]; |
|
249 |
trees[i+1]=other; |
|
250 |
} |
|
251 |
fuse( trees[i], trees[i+1] ); |
|
252 |
} |
|
253 |
|
|
254 |
i = (0==(num_child % 2)) ? num_child-2 : num_child-1; |
|
255 |
while(i>=2) { |
|
256 |
if ( _comp(_data[trees[i]].prio, _data[trees[i-2]].prio) ) { |
|
257 |
other=trees[i]; |
|
258 |
trees[i]=trees[i-2]; |
|
259 |
trees[i-2]=other; |
|
260 |
} |
|
261 |
fuse( trees[i-2], trees[i] ); |
|
262 |
i-=2; |
|
263 |
} |
|
264 |
_min = trees[0]; |
|
265 |
} |
|
266 |
else { |
|
267 |
_min = _data[_min].child; |
|
268 |
} |
|
269 |
|
|
270 |
if (_min >= 0) _data[_min].left_child = false; |
|
271 |
--_num_items; |
|
272 |
} |
|
273 |
|
|
274 |
/// \brief Remove the given item from the heap. |
|
275 |
/// |
|
276 |
/// This function removes the given item from the heap if it is |
|
277 |
/// already stored. |
|
278 |
/// \param item The item to delete. |
|
279 |
/// \pre \e item must be in the heap. |
|
280 |
void erase (const Item& item) { |
|
281 |
int i=_iim[item]; |
|
282 |
if ( i>=0 && _data[i].in ) { |
|
283 |
decrease( item, _data[_min].prio-1 ); |
|
284 |
pop(); |
|
285 |
} |
|
286 |
} |
|
287 |
|
|
288 |
/// \brief Decrease the priority of an item to the given value. |
|
289 |
/// |
|
290 |
/// This function decreases the priority of an item to the given value. |
|
291 |
/// \param item The item. |
|
292 |
/// \param value The priority. |
|
293 |
/// \pre \e item must be stored in the heap with priority at least \e value. |
|
294 |
void decrease (Item item, const Prio& value) { |
|
295 |
int i=_iim[item]; |
|
296 |
_data[i].prio=value; |
|
297 |
int p=_data[i].parent; |
|
298 |
|
|
299 |
if( _data[i].left_child && i!=_data[p].child ) { |
|
300 |
p=_data[p].parent; |
|
301 |
} |
|
302 |
|
|
303 |
if ( p!=-1 && _comp(value,_data[p].prio) ) { |
|
304 |
cut(i,p); |
|
305 |
if ( _comp(_data[_min].prio,value) ) { |
|
306 |
fuse(_min,i); |
|
307 |
} else { |
|
308 |
fuse(i,_min); |
|
309 |
_min=i; |
|
310 |
} |
|
311 |
} |
|
312 |
} |
|
313 |
|
|
314 |
/// \brief Increase the priority of an item to the given value. |
|
315 |
/// |
|
316 |
/// This function increases the priority of an item to the given value. |
|
317 |
/// \param item The item. |
|
318 |
/// \param value The priority. |
|
319 |
/// \pre \e item must be stored in the heap with priority at most \e value. |
|
320 |
void increase (Item item, const Prio& value) { |
|
321 |
erase(item); |
|
322 |
push(item,value); |
|
323 |
} |
|
324 |
|
|
325 |
/// \brief Return the state of an item. |
|
326 |
/// |
|
327 |
/// This method returns \c PRE_HEAP if the given item has never |
|
328 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
329 |
/// and \c POST_HEAP otherwise. |
|
330 |
/// In the latter case it is possible that the item will get back |
|
331 |
/// to the heap again. |
|
332 |
/// \param item The item. |
|
333 |
State state(const Item &item) const { |
|
334 |
int i=_iim[item]; |
|
335 |
if( i>=0 ) { |
|
336 |
if( _data[i].in ) i=0; |
|
337 |
else i=-2; |
|
338 |
} |
|
339 |
return State(i); |
|
340 |
} |
|
341 |
|
|
342 |
/// \brief Set the state of an item in the heap. |
|
343 |
/// |
|
344 |
/// This function sets the state of the given item in the heap. |
|
345 |
/// It can be used to manually clear the heap when it is important |
|
346 |
/// to achive better time complexity. |
|
347 |
/// \param i The item. |
|
348 |
/// \param st The state. It should not be \c IN_HEAP. |
|
349 |
void state(const Item& i, State st) { |
|
350 |
switch (st) { |
|
351 |
case POST_HEAP: |
|
352 |
case PRE_HEAP: |
|
353 |
if (state(i) == IN_HEAP) erase(i); |
|
354 |
_iim[i]=st; |
|
355 |
break; |
|
356 |
case IN_HEAP: |
|
357 |
break; |
|
358 |
} |
|
359 |
} |
|
360 |
|
|
361 |
private: |
|
362 |
|
|
363 |
void cut(int a, int b) { |
|
364 |
int child_a; |
|
365 |
switch (_data[a].degree) { |
|
366 |
case 2: |
|
367 |
child_a = _data[_data[a].child].parent; |
|
368 |
if( _data[a].left_child ) { |
|
369 |
_data[child_a].left_child=true; |
|
370 |
_data[b].child=child_a; |
|
371 |
_data[child_a].parent=_data[a].parent; |
|
372 |
} |
|
373 |
else { |
|
374 |
_data[child_a].left_child=false; |
|
375 |
_data[child_a].parent=b; |
|
376 |
if( a!=_data[b].child ) |
|
377 |
_data[_data[b].child].parent=child_a; |
|
378 |
else |
|
379 |
_data[b].child=child_a; |
|
380 |
} |
|
381 |
--_data[a].degree; |
|
382 |
_data[_data[a].child].parent=a; |
|
383 |
break; |
|
384 |
|
|
385 |
case 1: |
|
386 |
child_a = _data[a].child; |
|
387 |
if( !_data[child_a].left_child ) { |
|
388 |
--_data[a].degree; |
|
389 |
if( _data[a].left_child ) { |
|
390 |
_data[child_a].left_child=true; |
|
391 |
_data[child_a].parent=_data[a].parent; |
|
392 |
_data[b].child=child_a; |
|
393 |
} |
|
394 |
else { |
|
395 |
_data[child_a].left_child=false; |
|
396 |
_data[child_a].parent=b; |
|
397 |
if( a!=_data[b].child ) |
|
398 |
_data[_data[b].child].parent=child_a; |
|
399 |
else |
|
400 |
_data[b].child=child_a; |
|
401 |
} |
|
402 |
_data[a].child=-1; |
|
403 |
} |
|
404 |
else { |
|
405 |
--_data[b].degree; |
|
406 |
if( _data[a].left_child ) { |
|
407 |
_data[b].child = |
|
408 |
(1==_data[b].degree) ? _data[a].parent : -1; |
|
409 |
} else { |
|
410 |
if (1==_data[b].degree) |
|
411 |
_data[_data[b].child].parent=b; |
|
412 |
else |
|
413 |
_data[b].child=-1; |
|
414 |
} |
|
415 |
} |
|
416 |
break; |
|
417 |
|
|
418 |
case 0: |
|
419 |
--_data[b].degree; |
|
420 |
if( _data[a].left_child ) { |
|
421 |
_data[b].child = |
|
422 |
(0!=_data[b].degree) ? _data[a].parent : -1; |
|
423 |
} else { |
|
424 |
if( 0!=_data[b].degree ) |
|
425 |
_data[_data[b].child].parent=b; |
|
426 |
else |
|
427 |
_data[b].child=-1; |
|
428 |
} |
|
429 |
break; |
|
430 |
} |
|
431 |
_data[a].parent=-1; |
|
432 |
_data[a].left_child=false; |
|
433 |
} |
|
434 |
|
|
435 |
void fuse(int a, int b) { |
|
436 |
int child_a = _data[a].child; |
|
437 |
int child_b = _data[b].child; |
|
438 |
_data[a].child=b; |
|
439 |
_data[b].parent=a; |
|
440 |
_data[b].left_child=true; |
|
441 |
|
|
442 |
if( -1!=child_a ) { |
|
443 |
_data[b].child=child_a; |
|
444 |
_data[child_a].parent=b; |
|
445 |
_data[child_a].left_child=false; |
|
446 |
++_data[b].degree; |
|
447 |
|
|
448 |
if( -1!=child_b ) { |
|
449 |
_data[b].child=child_b; |
|
450 |
_data[child_b].parent=child_a; |
|
451 |
} |
|
452 |
} |
|
453 |
else { ++_data[a].degree; } |
|
454 |
} |
|
455 |
|
|
456 |
class store { |
|
457 |
friend class PairingHeap; |
|
458 |
|
|
459 |
Item name; |
|
460 |
int parent; |
|
461 |
int child; |
|
462 |
bool left_child; |
|
463 |
int degree; |
|
464 |
bool in; |
|
465 |
Prio prio; |
|
466 |
|
|
467 |
store() : parent(-1), child(-1), left_child(false), degree(0), in(true) {} |
|
468 |
}; |
|
469 |
}; |
|
470 |
|
|
471 |
} //namespace lemon |
|
472 |
|
|
473 |
#endif //LEMON_PAIRING_HEAP_H |
|
474 |
... | ... |
@@ -62,2 +62,3 @@ |
62 | 62 |
lemon/bin_heap.h \ |
63 |
lemon/binom_heap.h \ |
|
63 | 64 |
lemon/bucket_heap.h \ |
... | ... |
@@ -81,2 +82,3 @@ |
81 | 82 |
lemon/fib_heap.h \ |
83 |
lemon/fourary_heap.h \ |
|
82 | 84 |
lemon/full_graph.h \ |
... | ... |
@@ -87,2 +89,3 @@ |
87 | 89 |
lemon/hypercube_graph.h \ |
90 |
lemon/kary_heap.h \ |
|
88 | 91 |
lemon/kruskal.h \ |
... | ... |
@@ -101,2 +104,3 @@ |
101 | 104 |
lemon/network_simplex.h \ |
105 |
lemon/pairing_heap.h \ |
|
102 | 106 |
lemon/path.h \ |
... | ... |
@@ -27,3 +27,2 @@ |
27 | 27 |
#include <lemon/smart_graph.h> |
28 |
|
|
29 | 28 |
#include <lemon/lgf_reader.h> |
... | ... |
@@ -33,4 +32,8 @@ |
33 | 32 |
#include <lemon/bin_heap.h> |
33 |
#include <lemon/fourary_heap.h> |
|
34 |
#include <lemon/kary_heap.h> |
|
34 | 35 |
#include <lemon/fib_heap.h> |
36 |
#include <lemon/pairing_heap.h> |
|
35 | 37 |
#include <lemon/radix_heap.h> |
38 |
#include <lemon/binom_heap.h> |
|
36 | 39 |
#include <lemon/bucket_heap.h> |
... | ... |
@@ -91,3 +94,2 @@ |
91 | 94 |
RangeMap<int> map(test_len, -1); |
92 |
|
|
93 | 95 |
Heap heap(map); |
... | ... |
@@ -95,3 +97,2 @@ |
95 | 97 |
std::vector<int> v(test_len); |
96 |
|
|
97 | 98 |
for (int i = 0; i < test_len; ++i) { |
... | ... |
@@ -102,3 +103,3 @@ |
102 | 103 |
for (int i = 0; i < test_len; ++i) { |
103 |
check(v[i] == heap.prio() |
|
104 |
check(v[i] == heap.prio(), "Wrong order in heap sort."); |
|
104 | 105 |
heap.pop(); |
... | ... |
@@ -114,3 +115,2 @@ |
114 | 115 |
std::vector<int> v(test_len); |
115 |
|
|
116 | 116 |
for (int i = 0; i < test_len; ++i) { |
... | ... |
@@ -125,3 +125,3 @@ |
125 | 125 |
for (int i = 0; i < test_len; ++i) { |
126 |
check(v[i] == heap.prio() |
|
126 |
check(v[i] == heap.prio(), "Wrong order in heap increase test."); |
|
127 | 127 |
heap.pop(); |
... | ... |
@@ -130,4 +130,2 @@ |
130 | 130 |
|
131 |
|
|
132 |
|
|
133 | 131 |
template <typename Heap> |
... | ... |
@@ -146,3 +144,3 @@ |
146 | 144 |
check( dijkstra.dist(t) - dijkstra.dist(s) <= length[a], |
147 |
"Error in |
|
145 |
"Error in shortest path tree."); |
|
148 | 146 |
} |
... | ... |
@@ -155,3 +153,3 @@ |
155 | 153 |
check( dijkstra.dist(n) - dijkstra.dist(s) == length[a], |
156 |
"Error in |
|
154 |
"Error in shortest path tree."); |
|
157 | 155 |
} |
... | ... |
@@ -177,2 +175,3 @@ |
177 | 175 |
|
176 |
// BinHeap |
|
178 | 177 |
{ |
... | ... |
@@ -188,2 +187,27 @@ |
188 | 187 |
|
188 |
// FouraryHeap |
|
189 |
{ |
|
190 |
typedef FouraryHeap<Prio, ItemIntMap> IntHeap; |
|
191 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
192 |
heapSortTest<IntHeap>(); |
|
193 |
heapIncreaseTest<IntHeap>(); |
|
194 |
|
|
195 |
typedef FouraryHeap<Prio, IntNodeMap > NodeHeap; |
|
196 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
197 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
198 |
} |
|
199 |
|
|
200 |
// KaryHeap |
|
201 |
{ |
|
202 |
typedef KaryHeap<Prio, ItemIntMap> IntHeap; |
|
203 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
204 |
heapSortTest<IntHeap>(); |
|
205 |
heapIncreaseTest<IntHeap>(); |
|
206 |
|
|
207 |
typedef KaryHeap<Prio, IntNodeMap > NodeHeap; |
|
208 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
209 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
210 |
} |
|
211 |
|
|
212 |
// FibHeap |
|
189 | 213 |
{ |
... | ... |
@@ -199,2 +223,15 @@ |
199 | 223 |
|
224 |
// PairingHeap |
|
225 |
{ |
|
226 |
typedef PairingHeap<Prio, ItemIntMap> IntHeap; |
|
227 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
228 |
heapSortTest<IntHeap>(); |
|
229 |
heapIncreaseTest<IntHeap>(); |
|
230 |
|
|
231 |
typedef PairingHeap<Prio, IntNodeMap > NodeHeap; |
|
232 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
233 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
234 |
} |
|
235 |
|
|
236 |
// RadixHeap |
|
200 | 237 |
{ |
... | ... |
@@ -210,2 +247,15 @@ |
210 | 247 |
|
248 |
// BinomHeap |
|
249 |
{ |
|
250 |
typedef BinomHeap<Prio, ItemIntMap> IntHeap; |
|
251 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
252 |
heapSortTest<IntHeap>(); |
|
253 |
heapIncreaseTest<IntHeap>(); |
|
254 |
|
|
255 |
typedef BinomHeap<Prio, IntNodeMap > NodeHeap; |
|
256 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
257 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
258 |
} |
|
259 |
|
|
260 |
// BucketHeap, SimpleBucketHeap |
|
211 | 261 |
{ |
... | ... |
@@ -219,5 +269,7 @@ |
219 | 269 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
270 |
|
|
271 |
typedef SimpleBucketHeap<ItemIntMap> SimpleIntHeap; |
|
272 |
heapSortTest<SimpleIntHeap>(); |
|
220 | 273 |
} |
221 | 274 |
|
222 |
|
|
223 | 275 |
return 0; |
0 comments (0 inline)