0
3
0
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_SUURBALLE_H |
20 | 20 |
#define LEMON_SUURBALLE_H |
21 | 21 |
|
22 | 22 |
///\ingroup shortest_path |
23 | 23 |
///\file |
24 | 24 |
///\brief An algorithm for finding arc-disjoint paths between two |
25 | 25 |
/// nodes having minimum total length. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 |
#include <limits> |
|
28 | 29 |
#include <lemon/bin_heap.h> |
29 | 30 |
#include <lemon/path.h> |
30 | 31 |
#include <lemon/list_graph.h> |
31 | 32 |
#include <lemon/maps.h> |
32 | 33 |
|
33 | 34 |
namespace lemon { |
34 | 35 |
|
35 | 36 |
/// \addtogroup shortest_path |
36 | 37 |
/// @{ |
37 | 38 |
|
38 | 39 |
/// \brief Algorithm for finding arc-disjoint paths between two nodes |
39 | 40 |
/// having minimum total length. |
40 | 41 |
/// |
41 | 42 |
/// \ref lemon::Suurballe "Suurballe" implements an algorithm for |
42 | 43 |
/// finding arc-disjoint paths having minimum total length (cost) |
43 | 44 |
/// from a given source node to a given target node in a digraph. |
44 | 45 |
/// |
45 |
/// In fact, this implementation is the specialization of the |
|
46 |
/// \ref CapacityScaling "successive shortest path" algorithm. |
|
46 |
/// Note that this problem is a special case of the \ref min_cost_flow |
|
47 |
/// "minimum cost flow problem". This implementation is actually an |
|
48 |
/// efficient specialized version of the \ref CapacityScaling |
|
49 |
/// "Successive Shortest Path" algorithm directly for this problem. |
|
50 |
/// Therefore this class provides query functions for flow values and |
|
51 |
/// node potentials (the dual solution) just like the minimum cost flow |
|
52 |
/// algorithms. |
|
47 | 53 |
/// |
48 | 54 |
/// \tparam GR The digraph type the algorithm runs on. |
49 |
/// The default value is \c ListDigraph. |
|
50 |
/// \tparam LEN The type of the length (cost) map. |
|
51 |
/// The |
|
55 |
/// \tparam LEN The type of the length map. |
|
56 |
/// The default value is <tt>GR::ArcMap<int></tt>. |
|
52 | 57 |
/// |
53 | 58 |
/// \warning Length values should be \e non-negative \e integers. |
54 | 59 |
/// |
55 | 60 |
/// \note For finding node-disjoint paths this algorithm can be used |
56 |
/// with \ref SplitNodes. |
|
61 |
/// along with the \ref SplitNodes adaptor. |
|
57 | 62 |
#ifdef DOXYGEN |
58 | 63 |
template <typename GR, typename LEN> |
59 | 64 |
#else |
60 |
template < typename GR |
|
65 |
template < typename GR, |
|
61 | 66 |
typename LEN = typename GR::template ArcMap<int> > |
62 | 67 |
#endif |
63 | 68 |
class Suurballe |
64 | 69 |
{ |
65 | 70 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
66 | 71 |
|
67 | 72 |
typedef ConstMap<Arc, int> ConstArcMap; |
68 | 73 |
typedef typename GR::template NodeMap<Arc> PredMap; |
69 | 74 |
|
70 | 75 |
public: |
71 | 76 |
|
72 | 77 |
/// The type of the digraph the algorithm runs on. |
73 | 78 |
typedef GR Digraph; |
74 | 79 |
/// The type of the length map. |
75 | 80 |
typedef LEN LengthMap; |
76 | 81 |
/// The type of the lengths. |
77 | 82 |
typedef typename LengthMap::Value Length; |
83 |
#ifdef DOXYGEN |
|
84 |
/// The type of the flow map. |
|
85 |
typedef GR::ArcMap<int> FlowMap; |
|
86 |
/// The type of the potential map. |
|
87 |
typedef GR::NodeMap<Length> PotentialMap; |
|
88 |
#else |
|
78 | 89 |
/// The type of the flow map. |
79 | 90 |
typedef typename Digraph::template ArcMap<int> FlowMap; |
80 | 91 |
/// The type of the potential map. |
81 | 92 |
typedef typename Digraph::template NodeMap<Length> PotentialMap; |
93 |
#endif |
|
94 |
|
|
82 | 95 |
/// The type of the path structures. |
83 |
typedef SimplePath< |
|
96 |
typedef SimplePath<GR> Path; |
|
84 | 97 |
|
85 | 98 |
private: |
86 | 99 |
|
87 |
/// \brief Special implementation of the Dijkstra algorithm |
|
88 |
/// for finding shortest paths in the residual network. |
|
89 |
/// |
|
90 |
/// \ref ResidualDijkstra is a special implementation of the |
|
91 |
/// \ref Dijkstra algorithm for finding shortest paths in the |
|
92 |
/// residual network of the digraph with respect to the reduced arc |
|
93 |
/// lengths and modifying the node potentials according to the |
|
94 |
/// distance of the nodes. |
|
100 |
// ResidualDijkstra is a special implementation of the |
|
101 |
// Dijkstra algorithm for finding shortest paths in the |
|
102 |
// residual network with respect to the reduced arc lengths |
|
103 |
// and modifying the node potentials according to the |
|
104 |
// distance of the nodes. |
|
95 | 105 |
class ResidualDijkstra |
96 | 106 |
{ |
97 | 107 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
98 | 108 |
typedef BinHeap<Length, HeapCrossRef> Heap; |
99 | 109 |
|
100 | 110 |
private: |
101 | 111 |
|
102 | 112 |
// The digraph the algorithm runs on |
103 | 113 |
const Digraph &_graph; |
104 | 114 |
|
105 | 115 |
// The main maps |
106 | 116 |
const FlowMap &_flow; |
107 | 117 |
const LengthMap &_length; |
108 | 118 |
PotentialMap &_potential; |
109 | 119 |
|
110 | 120 |
// The distance map |
111 | 121 |
PotentialMap _dist; |
112 | 122 |
// The pred arc map |
113 | 123 |
PredMap &_pred; |
114 | 124 |
// The processed (i.e. permanently labeled) nodes |
115 | 125 |
std::vector<Node> _proc_nodes; |
116 | 126 |
|
117 | 127 |
Node _s; |
118 | 128 |
Node _t; |
119 | 129 |
|
120 | 130 |
public: |
121 | 131 |
|
122 | 132 |
/// Constructor. |
123 |
ResidualDijkstra( const Digraph & |
|
133 |
ResidualDijkstra( const Digraph &graph, |
|
124 | 134 |
const FlowMap &flow, |
125 | 135 |
const LengthMap &length, |
126 | 136 |
PotentialMap &potential, |
127 | 137 |
PredMap &pred, |
128 | 138 |
Node s, Node t ) : |
129 |
_graph(digraph), _flow(flow), _length(length), _potential(potential), |
|
130 |
_dist(digraph), _pred(pred), _s(s), _t(t) {} |
|
139 |
_graph(graph), _flow(flow), _length(length), _potential(potential), |
|
140 |
_dist(graph), _pred(pred), _s(s), _t(t) {} |
|
131 | 141 |
|
132 | 142 |
/// \brief Run the algorithm. It returns \c true if a path is found |
133 | 143 |
/// from the source node to the target node. |
134 | 144 |
bool run() { |
135 | 145 |
HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP); |
136 | 146 |
Heap heap(heap_cross_ref); |
137 | 147 |
heap.push(_s, 0); |
138 | 148 |
_pred[_s] = INVALID; |
139 | 149 |
_proc_nodes.clear(); |
140 | 150 |
|
141 | 151 |
// Process nodes |
142 | 152 |
while (!heap.empty() && heap.top() != _t) { |
143 | 153 |
Node u = heap.top(), v; |
144 | 154 |
Length d = heap.prio() + _potential[u], nd; |
145 | 155 |
_dist[u] = heap.prio(); |
146 | 156 |
heap.pop(); |
147 | 157 |
_proc_nodes.push_back(u); |
148 | 158 |
|
149 | 159 |
// Traverse outgoing arcs |
150 | 160 |
for (OutArcIt e(_graph, u); e != INVALID; ++e) { |
151 | 161 |
if (_flow[e] == 0) { |
152 | 162 |
v = _graph.target(e); |
153 | 163 |
switch(heap.state(v)) { |
154 | 164 |
case Heap::PRE_HEAP: |
155 | 165 |
heap.push(v, d + _length[e] - _potential[v]); |
156 | 166 |
_pred[v] = e; |
157 | 167 |
break; |
158 | 168 |
case Heap::IN_HEAP: |
159 | 169 |
nd = d + _length[e] - _potential[v]; |
160 | 170 |
if (nd < heap[v]) { |
161 | 171 |
heap.decrease(v, nd); |
162 | 172 |
_pred[v] = e; |
163 | 173 |
} |
164 | 174 |
break; |
165 | 175 |
case Heap::POST_HEAP: |
166 | 176 |
break; |
167 | 177 |
} |
168 | 178 |
} |
169 | 179 |
} |
170 | 180 |
|
171 | 181 |
// Traverse incoming arcs |
172 | 182 |
for (InArcIt e(_graph, u); e != INVALID; ++e) { |
173 | 183 |
if (_flow[e] == 1) { |
174 | 184 |
v = _graph.source(e); |
175 | 185 |
switch(heap.state(v)) { |
176 | 186 |
case Heap::PRE_HEAP: |
177 | 187 |
heap.push(v, d - _length[e] - _potential[v]); |
178 | 188 |
_pred[v] = e; |
179 | 189 |
break; |
180 | 190 |
case Heap::IN_HEAP: |
181 | 191 |
nd = d - _length[e] - _potential[v]; |
182 | 192 |
if (nd < heap[v]) { |
183 | 193 |
heap.decrease(v, nd); |
184 | 194 |
_pred[v] = e; |
185 | 195 |
} |
186 | 196 |
break; |
187 | 197 |
case Heap::POST_HEAP: |
188 | 198 |
break; |
189 | 199 |
} |
190 | 200 |
} |
191 | 201 |
} |
192 | 202 |
} |
193 | 203 |
if (heap.empty()) return false; |
194 | 204 |
|
195 | 205 |
// Update potentials of processed nodes |
196 | 206 |
Length t_dist = heap.prio(); |
197 | 207 |
for (int i = 0; i < int(_proc_nodes.size()); ++i) |
198 | 208 |
_potential[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist; |
199 | 209 |
return true; |
200 | 210 |
} |
201 | 211 |
|
202 | 212 |
}; //class ResidualDijkstra |
203 | 213 |
|
204 | 214 |
private: |
205 | 215 |
|
206 | 216 |
// The digraph the algorithm runs on |
207 | 217 |
const Digraph &_graph; |
208 | 218 |
// The length map |
209 | 219 |
const LengthMap &_length; |
210 | 220 |
|
211 | 221 |
// Arc map of the current flow |
212 | 222 |
FlowMap *_flow; |
213 | 223 |
bool _local_flow; |
214 | 224 |
// Node map of the current potentials |
215 | 225 |
PotentialMap *_potential; |
216 | 226 |
bool _local_potential; |
217 | 227 |
|
218 | 228 |
// The source node |
219 | 229 |
Node _source; |
220 | 230 |
// The target node |
221 | 231 |
Node _target; |
222 | 232 |
|
223 | 233 |
// Container to store the found paths |
224 | 234 |
std::vector< SimplePath<Digraph> > paths; |
225 | 235 |
int _path_num; |
226 | 236 |
|
227 | 237 |
// The pred arc map |
228 | 238 |
PredMap _pred; |
229 | 239 |
// Implementation of the Dijkstra algorithm for finding augmenting |
230 | 240 |
// shortest paths in the residual network |
231 | 241 |
ResidualDijkstra *_dijkstra; |
232 | 242 |
|
233 | 243 |
public: |
234 | 244 |
|
235 | 245 |
/// \brief Constructor. |
236 | 246 |
/// |
237 | 247 |
/// Constructor. |
238 | 248 |
/// |
239 |
/// \param |
|
249 |
/// \param graph The digraph the algorithm runs on. |
|
240 | 250 |
/// \param length The length (cost) values of the arcs. |
241 |
/// \param s The source node. |
|
242 |
/// \param t The target node. |
|
243 |
Suurballe( const Digraph &digraph, |
|
244 |
const LengthMap &length, |
|
245 |
Node s, Node t ) : |
|
246 |
_graph(digraph), _length(length), _flow(0), _local_flow(false), |
|
247 |
_potential(0), _local_potential(false), _source(s), _target(t), |
|
248 |
_pred(digraph) {} |
|
251 |
Suurballe( const Digraph &graph, |
|
252 |
const LengthMap &length ) : |
|
253 |
_graph(graph), _length(length), _flow(0), _local_flow(false), |
|
254 |
_potential(0), _local_potential(false), _pred(graph) |
|
255 |
{ |
|
256 |
LEMON_ASSERT(std::numeric_limits<Length>::is_integer, |
|
257 |
"The length type of Suurballe must be integer"); |
|
258 |
} |
|
249 | 259 |
|
250 | 260 |
/// Destructor. |
251 | 261 |
~Suurballe() { |
252 | 262 |
if (_local_flow) delete _flow; |
253 | 263 |
if (_local_potential) delete _potential; |
254 | 264 |
delete _dijkstra; |
255 | 265 |
} |
256 | 266 |
|
257 | 267 |
/// \brief Set the flow map. |
258 | 268 |
/// |
259 | 269 |
/// This function sets the flow map. |
270 |
/// If it is not used before calling \ref run() or \ref init(), |
|
271 |
/// an instance will be allocated automatically. The destructor |
|
272 |
/// deallocates this automatically allocated map, of course. |
|
260 | 273 |
/// |
261 |
/// The found flow contains only 0 and 1 values. It is the union of |
|
262 |
/// the found arc-disjoint paths. |
|
274 |
/// The found flow contains only 0 and 1 values, since it is the |
|
275 |
/// union of the found arc-disjoint paths. |
|
263 | 276 |
/// |
264 | 277 |
/// \return <tt>(*this)</tt> |
265 | 278 |
Suurballe& flowMap(FlowMap &map) { |
266 | 279 |
if (_local_flow) { |
267 | 280 |
delete _flow; |
268 | 281 |
_local_flow = false; |
269 | 282 |
} |
270 | 283 |
_flow = ↦ |
271 | 284 |
return *this; |
272 | 285 |
} |
273 | 286 |
|
274 | 287 |
/// \brief Set the potential map. |
275 | 288 |
/// |
276 | 289 |
/// This function sets the potential map. |
290 |
/// If it is not used before calling \ref run() or \ref init(), |
|
291 |
/// an instance will be allocated automatically. The destructor |
|
292 |
/// deallocates this automatically allocated map, of course. |
|
277 | 293 |
/// |
278 |
/// The potentials provide the dual solution of the underlying |
|
279 |
/// minimum cost flow problem. |
|
294 |
/// The node potentials provide the dual solution of the underlying |
|
295 |
/// \ref min_cost_flow "minimum cost flow problem". |
|
280 | 296 |
/// |
281 | 297 |
/// \return <tt>(*this)</tt> |
282 | 298 |
Suurballe& potentialMap(PotentialMap &map) { |
283 | 299 |
if (_local_potential) { |
284 | 300 |
delete _potential; |
285 | 301 |
_local_potential = false; |
286 | 302 |
} |
287 | 303 |
_potential = ↦ |
288 | 304 |
return *this; |
289 | 305 |
} |
290 | 306 |
|
291 | 307 |
/// \name Execution Control |
292 | 308 |
/// The simplest way to execute the algorithm is to call the run() |
293 | 309 |
/// function. |
294 | 310 |
/// \n |
295 | 311 |
/// If you only need the flow that is the union of the found |
296 | 312 |
/// arc-disjoint paths, you may call init() and findFlow(). |
297 | 313 |
|
298 | 314 |
/// @{ |
299 | 315 |
|
300 | 316 |
/// \brief Run the algorithm. |
301 | 317 |
/// |
302 | 318 |
/// This function runs the algorithm. |
303 | 319 |
/// |
320 |
/// \param s The source node. |
|
321 |
/// \param t The target node. |
|
304 | 322 |
/// \param k The number of paths to be found. |
305 | 323 |
/// |
306 | 324 |
/// \return \c k if there are at least \c k arc-disjoint paths from |
307 | 325 |
/// \c s to \c t in the digraph. Otherwise it returns the number of |
308 | 326 |
/// arc-disjoint paths found. |
309 | 327 |
/// |
310 |
/// \note Apart from the return value, <tt>s.run(k)</tt> is just a |
|
311 |
/// shortcut of the following code. |
|
328 |
/// \note Apart from the return value, <tt>s.run(s, t, k)</tt> is |
|
329 |
/// just a shortcut of the following code. |
|
312 | 330 |
/// \code |
313 |
/// s.init(); |
|
314 |
/// s.findFlow(k); |
|
331 |
/// s.init(s); |
|
332 |
/// s.findFlow(t, k); |
|
315 | 333 |
/// s.findPaths(); |
316 | 334 |
/// \endcode |
317 |
int run(int k = 2) { |
|
318 |
init(); |
|
319 |
|
|
335 |
int run(const Node& s, const Node& t, int k = 2) { |
|
336 |
init(s); |
|
337 |
findFlow(t, k); |
|
320 | 338 |
findPaths(); |
321 | 339 |
return _path_num; |
322 | 340 |
} |
323 | 341 |
|
324 | 342 |
/// \brief Initialize the algorithm. |
325 | 343 |
/// |
326 | 344 |
/// This function initializes the algorithm. |
327 |
|
|
345 |
/// |
|
346 |
/// \param s The source node. |
|
347 |
void init(const Node& s) { |
|
348 |
_source = s; |
|
349 |
|
|
328 | 350 |
// Initialize maps |
329 | 351 |
if (!_flow) { |
330 | 352 |
_flow = new FlowMap(_graph); |
331 | 353 |
_local_flow = true; |
332 | 354 |
} |
333 | 355 |
if (!_potential) { |
334 | 356 |
_potential = new PotentialMap(_graph); |
335 | 357 |
_local_potential = true; |
336 | 358 |
} |
337 | 359 |
for (ArcIt e(_graph); e != INVALID; ++e) (*_flow)[e] = 0; |
338 | 360 |
for (NodeIt n(_graph); n != INVALID; ++n) (*_potential)[n] = 0; |
339 |
|
|
340 |
_dijkstra = new ResidualDijkstra( _graph, *_flow, _length, |
|
341 |
*_potential, _pred, |
|
342 |
_source, _target ); |
|
343 | 361 |
} |
344 | 362 |
|
345 |
/// \brief Execute the successive shortest path algorithm to find |
|
346 |
/// an optimal flow. |
|
363 |
/// \brief Execute the algorithm to find an optimal flow. |
|
347 | 364 |
/// |
348 | 365 |
/// This function executes the successive shortest path algorithm to |
349 |
/// find a minimum cost flow, which is the union of \c k or less |
|
366 |
/// find a minimum cost flow, which is the union of \c k (or less) |
|
350 | 367 |
/// arc-disjoint paths. |
351 | 368 |
/// |
369 |
/// \param t The target node. |
|
370 |
/// \param k The number of paths to be found. |
|
371 |
/// |
|
352 | 372 |
/// \return \c k if there are at least \c k arc-disjoint paths from |
353 |
/// \c s to \c t in the digraph. Otherwise it returns the number of |
|
354 |
/// arc-disjoint paths found. |
|
373 |
/// the source node to the given node \c t in the digraph. |
|
374 |
/// Otherwise it returns the number of arc-disjoint paths found. |
|
355 | 375 |
/// |
356 | 376 |
/// \pre \ref init() must be called before using this function. |
357 |
int findFlow(int k = 2) { |
|
377 |
int findFlow(const Node& t, int k = 2) { |
|
378 |
_target = t; |
|
379 |
_dijkstra = |
|
380 |
new ResidualDijkstra( _graph, *_flow, _length, *_potential, _pred, |
|
381 |
_source, _target ); |
|
382 |
|
|
358 | 383 |
// Find shortest paths |
359 | 384 |
_path_num = 0; |
360 | 385 |
while (_path_num < k) { |
361 | 386 |
// Run Dijkstra |
362 | 387 |
if (!_dijkstra->run()) break; |
363 | 388 |
++_path_num; |
364 | 389 |
|
365 | 390 |
// Set the flow along the found shortest path |
366 | 391 |
Node u = _target; |
367 | 392 |
Arc e; |
368 | 393 |
while ((e = _pred[u]) != INVALID) { |
369 | 394 |
if (u == _graph.target(e)) { |
370 | 395 |
(*_flow)[e] = 1; |
371 | 396 |
u = _graph.source(e); |
372 | 397 |
} else { |
373 | 398 |
(*_flow)[e] = 0; |
374 | 399 |
u = _graph.target(e); |
375 | 400 |
} |
376 | 401 |
} |
377 | 402 |
} |
378 | 403 |
return _path_num; |
379 | 404 |
} |
380 | 405 |
|
381 | 406 |
/// \brief Compute the paths from the flow. |
382 | 407 |
/// |
383 |
/// This function computes the paths from the flow |
|
408 |
/// This function computes the paths from the found minimum cost flow, |
|
409 |
/// which is the union of some arc-disjoint paths. |
|
384 | 410 |
/// |
385 | 411 |
/// \pre \ref init() and \ref findFlow() must be called before using |
386 | 412 |
/// this function. |
387 | 413 |
void findPaths() { |
388 |
// Create the residual flow map (the union of the paths not found |
|
389 |
// so far) |
|
390 | 414 |
FlowMap res_flow(_graph); |
391 | 415 |
for(ArcIt a(_graph); a != INVALID; ++a) res_flow[a] = (*_flow)[a]; |
392 | 416 |
|
393 | 417 |
paths.clear(); |
394 | 418 |
paths.resize(_path_num); |
395 | 419 |
for (int i = 0; i < _path_num; ++i) { |
396 | 420 |
Node n = _source; |
397 | 421 |
while (n != _target) { |
398 | 422 |
OutArcIt e(_graph, n); |
399 | 423 |
for ( ; res_flow[e] == 0; ++e) ; |
400 | 424 |
n = _graph.target(e); |
401 | 425 |
paths[i].addBack(e); |
402 | 426 |
res_flow[e] = 0; |
403 | 427 |
} |
404 | 428 |
} |
405 | 429 |
} |
406 | 430 |
|
407 | 431 |
/// @} |
408 | 432 |
|
409 | 433 |
/// \name Query Functions |
410 | 434 |
/// The results of the algorithm can be obtained using these |
411 | 435 |
/// functions. |
412 | 436 |
/// \n The algorithm should be executed before using them. |
413 | 437 |
|
414 | 438 |
/// @{ |
415 | 439 |
|
416 |
/// \brief Return |
|
440 |
/// \brief Return the total length of the found paths. |
|
441 |
/// |
|
442 |
/// This function returns the total length of the found paths, i.e. |
|
443 |
/// the total cost of the found flow. |
|
444 |
/// The complexity of the function is O(e). |
|
445 |
/// |
|
446 |
/// \pre \ref run() or \ref findFlow() must be called before using |
|
447 |
/// this function. |
|
448 |
Length totalLength() const { |
|
449 |
Length c = 0; |
|
450 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
451 |
c += (*_flow)[e] * _length[e]; |
|
452 |
return c; |
|
453 |
} |
|
454 |
|
|
455 |
/// \brief Return the flow value on the given arc. |
|
456 |
/// |
|
457 |
/// This function returns the flow value on the given arc. |
|
458 |
/// It is \c 1 if the arc is involved in one of the found arc-disjoint |
|
459 |
/// paths, otherwise it is \c 0. |
|
460 |
/// |
|
461 |
/// \pre \ref run() or \ref findFlow() must be called before using |
|
462 |
/// this function. |
|
463 |
int flow(const Arc& arc) const { |
|
464 |
return (*_flow)[arc]; |
|
465 |
} |
|
466 |
|
|
467 |
/// \brief Return a const reference to an arc map storing the |
|
417 | 468 |
/// found flow. |
418 | 469 |
/// |
419 |
/// This function returns a const reference to |
|
470 |
/// This function returns a const reference to an arc map storing |
|
420 | 471 |
/// the flow that is the union of the found arc-disjoint paths. |
421 | 472 |
/// |
422 | 473 |
/// \pre \ref run() or \ref findFlow() must be called before using |
423 | 474 |
/// this function. |
424 | 475 |
const FlowMap& flowMap() const { |
425 | 476 |
return *_flow; |
426 | 477 |
} |
427 | 478 |
|
428 |
/// \brief Return a const reference to the node map storing the |
|
429 |
/// found potentials (the dual solution). |
|
430 |
/// |
|
431 |
/// This function returns a const reference to the node map storing |
|
432 |
/// the found potentials that provide the dual solution of the |
|
433 |
/// underlying minimum cost flow problem. |
|
434 |
/// |
|
435 |
/// \pre \ref run() or \ref findFlow() must be called before using |
|
436 |
/// this function. |
|
437 |
const PotentialMap& potentialMap() const { |
|
438 |
return *_potential; |
|
439 |
} |
|
440 |
|
|
441 |
/// \brief Return the flow on the given arc. |
|
442 |
/// |
|
443 |
/// This function returns the flow on the given arc. |
|
444 |
/// It is \c 1 if the arc is involved in one of the found paths, |
|
445 |
/// otherwise it is \c 0. |
|
446 |
/// |
|
447 |
/// \pre \ref run() or \ref findFlow() must be called before using |
|
448 |
/// this function. |
|
449 |
int flow(const Arc& arc) const { |
|
450 |
return (*_flow)[arc]; |
|
451 |
} |
|
452 |
|
|
453 | 479 |
/// \brief Return the potential of the given node. |
454 | 480 |
/// |
455 | 481 |
/// This function returns the potential of the given node. |
482 |
/// The node potentials provide the dual solution of the |
|
483 |
/// underlying \ref min_cost_flow "minimum cost flow problem". |
|
456 | 484 |
/// |
457 | 485 |
/// \pre \ref run() or \ref findFlow() must be called before using |
458 | 486 |
/// this function. |
459 | 487 |
Length potential(const Node& node) const { |
460 | 488 |
return (*_potential)[node]; |
461 | 489 |
} |
462 | 490 |
|
463 |
/// \brief Return |
|
491 |
/// \brief Return a const reference to a node map storing the |
|
492 |
/// found potentials (the dual solution). |
|
464 | 493 |
/// |
465 |
/// This function returns the total length (cost) of the found paths |
|
466 |
/// (flow). The complexity of the function is O(e). |
|
494 |
/// This function returns a const reference to a node map storing |
|
495 |
/// the found potentials that provide the dual solution of the |
|
496 |
/// underlying \ref min_cost_flow "minimum cost flow problem". |
|
467 | 497 |
/// |
468 | 498 |
/// \pre \ref run() or \ref findFlow() must be called before using |
469 | 499 |
/// this function. |
470 |
Length totalLength() const { |
|
471 |
Length c = 0; |
|
472 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
473 |
c += (*_flow)[e] * _length[e]; |
|
474 |
|
|
500 |
const PotentialMap& potentialMap() const { |
|
501 |
return *_potential; |
|
475 | 502 |
} |
476 | 503 |
|
477 | 504 |
/// \brief Return the number of the found paths. |
478 | 505 |
/// |
479 | 506 |
/// This function returns the number of the found paths. |
480 | 507 |
/// |
481 | 508 |
/// \pre \ref run() or \ref findFlow() must be called before using |
482 | 509 |
/// this function. |
483 | 510 |
int pathNum() const { |
484 | 511 |
return _path_num; |
485 | 512 |
} |
486 | 513 |
|
487 | 514 |
/// \brief Return a const reference to the specified path. |
488 | 515 |
/// |
489 | 516 |
/// This function returns a const reference to the specified path. |
490 | 517 |
/// |
491 |
/// \param i The function returns the |
|
518 |
/// \param i The function returns the <tt>i</tt>-th path. |
|
492 | 519 |
/// \c i must be between \c 0 and <tt>%pathNum()-1</tt>. |
493 | 520 |
/// |
494 | 521 |
/// \pre \ref run() or \ref findPaths() must be called before using |
495 | 522 |
/// this function. |
496 | 523 |
Path path(int i) const { |
497 | 524 |
return paths[i]; |
498 | 525 |
} |
499 | 526 |
|
500 | 527 |
/// @} |
501 | 528 |
|
502 | 529 |
}; //class Suurballe |
503 | 530 |
|
504 | 531 |
///@} |
505 | 532 |
|
506 | 533 |
} //namespace lemon |
507 | 534 |
|
508 | 535 |
#endif //LEMON_SUURBALLE_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <iostream> |
20 | 20 |
|
21 | 21 |
#include <lemon/list_graph.h> |
22 | 22 |
#include <lemon/lgf_reader.h> |
23 | 23 |
#include <lemon/path.h> |
24 | 24 |
#include <lemon/suurballe.h> |
25 |
#include <lemon/concepts/digraph.h> |
|
25 | 26 |
|
26 | 27 |
#include "test_tools.h" |
27 | 28 |
|
28 | 29 |
using namespace lemon; |
29 | 30 |
|
30 | 31 |
char test_lgf[] = |
31 | 32 |
"@nodes\n" |
32 |
"label supply1 supply2 supply3\n" |
|
33 |
"1 0 20 27\n" |
|
34 |
"2 0 -4 0\n" |
|
35 |
"3 0 0 0\n" |
|
36 |
"4 0 0 0\n" |
|
37 |
"5 0 9 0\n" |
|
38 |
"6 0 -6 0\n" |
|
39 |
"7 0 0 0\n" |
|
40 |
"8 0 0 0\n" |
|
41 |
"9 0 3 0\n" |
|
42 |
"10 0 -2 0\n" |
|
43 |
"11 0 0 0\n" |
|
44 |
" |
|
33 |
"label\n" |
|
34 |
"1\n" |
|
35 |
"2\n" |
|
36 |
"3\n" |
|
37 |
"4\n" |
|
38 |
"5\n" |
|
39 |
"6\n" |
|
40 |
"7\n" |
|
41 |
"8\n" |
|
42 |
"9\n" |
|
43 |
"10\n" |
|
44 |
"11\n" |
|
45 |
"12\n" |
|
45 | 46 |
"@arcs\n" |
46 |
" cost capacity lower1 lower2\n" |
|
47 |
" 1 2 70 11 0 8\n" |
|
48 |
" 1 3 150 3 0 1\n" |
|
49 |
" 1 4 80 15 0 2\n" |
|
50 |
" 2 8 80 12 0 0\n" |
|
51 |
" 3 5 140 5 0 3\n" |
|
52 |
" 4 6 60 10 0 1\n" |
|
53 |
" 4 7 80 2 0 0\n" |
|
54 |
" 4 8 110 3 0 0\n" |
|
55 |
" 5 7 60 14 0 0\n" |
|
56 |
" 5 11 120 12 0 0\n" |
|
57 |
" 6 3 0 3 0 0\n" |
|
58 |
" 6 9 140 4 0 0\n" |
|
59 |
" 6 10 90 8 0 0\n" |
|
60 |
" 7 1 30 5 0 0\n" |
|
61 |
" 8 12 60 16 0 4\n" |
|
62 |
" 9 12 50 6 0 0\n" |
|
63 |
"10 12 70 13 0 5\n" |
|
64 |
"10 2 100 7 0 0\n" |
|
65 |
"10 7 60 10 0 0\n" |
|
66 |
"11 10 20 14 0 6\n" |
|
67 |
"12 11 30 10 0 0\n" |
|
47 |
" length\n" |
|
48 |
" 1 2 70\n" |
|
49 |
" 1 3 150\n" |
|
50 |
" 1 4 80\n" |
|
51 |
" 2 8 80\n" |
|
52 |
" 3 5 140\n" |
|
53 |
" 4 6 60\n" |
|
54 |
" 4 7 80\n" |
|
55 |
" 4 8 110\n" |
|
56 |
" 5 7 60\n" |
|
57 |
" 5 11 120\n" |
|
58 |
" 6 3 0\n" |
|
59 |
" 6 9 140\n" |
|
60 |
" 6 10 90\n" |
|
61 |
" 7 1 30\n" |
|
62 |
" 8 12 60\n" |
|
63 |
" 9 12 50\n" |
|
64 |
"10 12 70\n" |
|
65 |
"10 2 100\n" |
|
66 |
"10 7 60\n" |
|
67 |
"11 10 20\n" |
|
68 |
"12 11 30\n" |
|
68 | 69 |
"@attributes\n" |
69 | 70 |
"source 1\n" |
70 | 71 |
"target 12\n" |
71 | 72 |
"@end\n"; |
72 | 73 |
|
74 |
// Check the interface of Suurballe |
|
75 |
void checkSuurballeCompile() |
|
76 |
{ |
|
77 |
typedef int VType; |
|
78 |
typedef concepts::Digraph Digraph; |
|
79 |
|
|
80 |
typedef Digraph::Node Node; |
|
81 |
typedef Digraph::Arc Arc; |
|
82 |
typedef concepts::ReadMap<Arc, VType> LengthMap; |
|
83 |
|
|
84 |
typedef Suurballe<Digraph, LengthMap> SuurballeType; |
|
85 |
|
|
86 |
Digraph g; |
|
87 |
Node n; |
|
88 |
Arc e; |
|
89 |
LengthMap len; |
|
90 |
SuurballeType::FlowMap flow(g); |
|
91 |
SuurballeType::PotentialMap pi(g); |
|
92 |
|
|
93 |
SuurballeType suurb_test(g, len); |
|
94 |
const SuurballeType& const_suurb_test = suurb_test; |
|
95 |
|
|
96 |
suurb_test |
|
97 |
.flowMap(flow) |
|
98 |
.potentialMap(pi); |
|
99 |
|
|
100 |
int k; |
|
101 |
k = suurb_test.run(n, n); |
|
102 |
k = suurb_test.run(n, n, k); |
|
103 |
suurb_test.init(n); |
|
104 |
k = suurb_test.findFlow(n); |
|
105 |
k = suurb_test.findFlow(n, k); |
|
106 |
suurb_test.findPaths(); |
|
107 |
|
|
108 |
int f; |
|
109 |
VType c; |
|
110 |
c = const_suurb_test.totalLength(); |
|
111 |
f = const_suurb_test.flow(e); |
|
112 |
const SuurballeType::FlowMap& fm = |
|
113 |
const_suurb_test.flowMap(); |
|
114 |
c = const_suurb_test.potential(n); |
|
115 |
const SuurballeType::PotentialMap& pm = |
|
116 |
const_suurb_test.potentialMap(); |
|
117 |
k = const_suurb_test.pathNum(); |
|
118 |
Path<Digraph> p = const_suurb_test.path(k); |
|
119 |
|
|
120 |
ignore_unused_variable_warning(fm); |
|
121 |
ignore_unused_variable_warning(pm); |
|
122 |
} |
|
123 |
|
|
73 | 124 |
// Check the feasibility of the flow |
74 | 125 |
template <typename Digraph, typename FlowMap> |
75 | 126 |
bool checkFlow( const Digraph& gr, const FlowMap& flow, |
76 | 127 |
typename Digraph::Node s, typename Digraph::Node t, |
77 | 128 |
int value ) |
78 | 129 |
{ |
79 | 130 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
80 | 131 |
for (ArcIt e(gr); e != INVALID; ++e) |
81 | 132 |
if (!(flow[e] == 0 || flow[e] == 1)) return false; |
82 | 133 |
|
83 | 134 |
for (NodeIt n(gr); n != INVALID; ++n) { |
84 | 135 |
int sum = 0; |
85 | 136 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
86 | 137 |
sum += flow[e]; |
87 | 138 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
88 | 139 |
sum -= flow[e]; |
89 | 140 |
if (n == s && sum != value) return false; |
90 | 141 |
if (n == t && sum != -value) return false; |
91 | 142 |
if (n != s && n != t && sum != 0) return false; |
92 | 143 |
} |
93 | 144 |
|
94 | 145 |
return true; |
95 | 146 |
} |
96 | 147 |
|
97 | 148 |
// Check the optimalitiy of the flow |
98 | 149 |
template < typename Digraph, typename CostMap, |
99 | 150 |
typename FlowMap, typename PotentialMap > |
100 | 151 |
bool checkOptimality( const Digraph& gr, const CostMap& cost, |
101 | 152 |
const FlowMap& flow, const PotentialMap& pi ) |
102 | 153 |
{ |
103 | 154 |
// Check the "Complementary Slackness" optimality condition |
104 | 155 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
105 | 156 |
bool opt = true; |
106 | 157 |
for (ArcIt e(gr); e != INVALID; ++e) { |
107 | 158 |
typename CostMap::Value red_cost = |
108 | 159 |
cost[e] + pi[gr.source(e)] - pi[gr.target(e)]; |
109 | 160 |
opt = (flow[e] == 0 && red_cost >= 0) || |
110 | 161 |
(flow[e] == 1 && red_cost <= 0); |
111 | 162 |
if (!opt) break; |
112 | 163 |
} |
113 | 164 |
return opt; |
114 | 165 |
} |
115 | 166 |
|
116 | 167 |
// Check a path |
117 | 168 |
template <typename Digraph, typename Path> |
118 | 169 |
bool checkPath( const Digraph& gr, const Path& path, |
119 | 170 |
typename Digraph::Node s, typename Digraph::Node t) |
120 | 171 |
{ |
121 |
// Check the "Complementary Slackness" optimality condition |
|
122 | 172 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
123 | 173 |
Node n = s; |
124 | 174 |
for (int i = 0; i < path.length(); ++i) { |
125 | 175 |
if (gr.source(path.nth(i)) != n) return false; |
126 | 176 |
n = gr.target(path.nth(i)); |
127 | 177 |
} |
128 | 178 |
return n == t; |
129 | 179 |
} |
130 | 180 |
|
131 | 181 |
|
132 | 182 |
int main() |
133 | 183 |
{ |
134 | 184 |
DIGRAPH_TYPEDEFS(ListDigraph); |
135 | 185 |
|
136 | 186 |
// Read the test digraph |
137 | 187 |
ListDigraph digraph; |
138 | 188 |
ListDigraph::ArcMap<int> length(digraph); |
139 |
Node |
|
189 |
Node s, t; |
|
140 | 190 |
|
141 | 191 |
std::istringstream input(test_lgf); |
142 | 192 |
DigraphReader<ListDigraph>(digraph, input). |
143 |
arcMap("cost", length). |
|
144 |
node("source", source). |
|
145 |
|
|
193 |
arcMap("length", length). |
|
194 |
node("source", s). |
|
195 |
node("target", t). |
|
146 | 196 |
run(); |
147 | 197 |
|
148 | 198 |
// Find 2 paths |
149 | 199 |
{ |
150 |
Suurballe<ListDigraph> suurballe(digraph, length, source, target); |
|
151 |
check(suurballe.run(2) == 2, "Wrong number of paths"); |
|
152 |
|
|
200 |
Suurballe<ListDigraph> suurballe(digraph, length); |
|
201 |
check(suurballe.run(s, t) == 2, "Wrong number of paths"); |
|
202 |
check(checkFlow(digraph, suurballe.flowMap(), s, t, 2), |
|
153 | 203 |
"The flow is not feasible"); |
154 | 204 |
check(suurballe.totalLength() == 510, "The flow is not optimal"); |
155 | 205 |
check(checkOptimality(digraph, length, suurballe.flowMap(), |
156 | 206 |
suurballe.potentialMap()), |
157 | 207 |
"Wrong potentials"); |
158 | 208 |
for (int i = 0; i < suurballe.pathNum(); ++i) |
159 |
check(checkPath(digraph, suurballe.path(i), source, target), |
|
160 |
"Wrong path"); |
|
209 |
check(checkPath(digraph, suurballe.path(i), s, t), "Wrong path"); |
|
161 | 210 |
} |
162 | 211 |
|
163 | 212 |
// Find 3 paths |
164 | 213 |
{ |
165 |
Suurballe<ListDigraph> suurballe(digraph, length, source, target); |
|
166 |
check(suurballe.run(3) == 3, "Wrong number of paths"); |
|
167 |
|
|
214 |
Suurballe<ListDigraph> suurballe(digraph, length); |
|
215 |
check(suurballe.run(s, t, 3) == 3, "Wrong number of paths"); |
|
216 |
check(checkFlow(digraph, suurballe.flowMap(), s, t, 3), |
|
168 | 217 |
"The flow is not feasible"); |
169 | 218 |
check(suurballe.totalLength() == 1040, "The flow is not optimal"); |
170 | 219 |
check(checkOptimality(digraph, length, suurballe.flowMap(), |
171 | 220 |
suurballe.potentialMap()), |
172 | 221 |
"Wrong potentials"); |
173 | 222 |
for (int i = 0; i < suurballe.pathNum(); ++i) |
174 |
check(checkPath(digraph, suurballe.path(i), source, target), |
|
175 |
"Wrong path"); |
|
223 |
check(checkPath(digraph, suurballe.path(i), s, t), "Wrong path"); |
|
176 | 224 |
} |
177 | 225 |
|
178 | 226 |
// Find 5 paths (only 3 can be found) |
179 | 227 |
{ |
180 |
Suurballe<ListDigraph> suurballe(digraph, length, source, target); |
|
181 |
check(suurballe.run(5) == 3, "Wrong number of paths"); |
|
182 |
|
|
228 |
Suurballe<ListDigraph> suurballe(digraph, length); |
|
229 |
check(suurballe.run(s, t, 5) == 3, "Wrong number of paths"); |
|
230 |
check(checkFlow(digraph, suurballe.flowMap(), s, t, 3), |
|
183 | 231 |
"The flow is not feasible"); |
184 | 232 |
check(suurballe.totalLength() == 1040, "The flow is not optimal"); |
185 | 233 |
check(checkOptimality(digraph, length, suurballe.flowMap(), |
186 | 234 |
suurballe.potentialMap()), |
187 | 235 |
"Wrong potentials"); |
188 | 236 |
for (int i = 0; i < suurballe.pathNum(); ++i) |
189 |
check(checkPath(digraph, suurballe.path(i), source, target), |
|
190 |
"Wrong path"); |
|
237 |
check(checkPath(digraph, suurballe.path(i), s, t), "Wrong path"); |
|
191 | 238 |
} |
192 | 239 |
|
193 | 240 |
return 0; |
194 | 241 |
} |
... | ... |
@@ -387,226 +387,225 @@ |
387 | 387 |
arc = curr < next ? |
388 | 388 |
std::make_pair(curr, next) : std::make_pair(next, curr); |
389 | 389 |
|
390 | 390 |
if (arcs.find(arc) == arcs.end()) { |
391 | 391 |
arcs.insert(arc); |
392 | 392 |
g.addEdge(nodes[curr], nodes[next]); |
393 | 393 |
++cnt; |
394 | 394 |
} |
395 | 395 |
} |
396 | 396 |
|
397 | 397 |
Beach::iterator pbit = bit; --pbit; |
398 | 398 |
int ppv = pbit->first.prev; |
399 | 399 |
Beach::iterator nbit = bit; ++nbit; |
400 | 400 |
int nnt = nbit->first.next; |
401 | 401 |
|
402 | 402 |
if (bit->second != spikeheap.end()) spikeheap.erase(bit->second); |
403 | 403 |
if (pbit->second != spikeheap.end()) spikeheap.erase(pbit->second); |
404 | 404 |
if (nbit->second != spikeheap.end()) spikeheap.erase(nbit->second); |
405 | 405 |
|
406 | 406 |
beach.erase(nbit); |
407 | 407 |
beach.erase(bit); |
408 | 408 |
beach.erase(pbit); |
409 | 409 |
|
410 | 410 |
SpikeHeap::iterator pit = spikeheap.end(); |
411 | 411 |
if (ppv != -1 && ppv != next && |
412 | 412 |
circle_form(points[ppv], points[prev], points[next])) { |
413 | 413 |
double x = circle_point(points[ppv], points[prev], points[next]); |
414 | 414 |
if (x < sweep) x = sweep; |
415 | 415 |
pit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end()))); |
416 | 416 |
pit->second.it = |
417 | 417 |
beach.insert(std::make_pair(Part(ppv, prev, next), pit)); |
418 | 418 |
} else { |
419 | 419 |
beach.insert(std::make_pair(Part(ppv, prev, next), pit)); |
420 | 420 |
} |
421 | 421 |
|
422 | 422 |
SpikeHeap::iterator nit = spikeheap.end(); |
423 | 423 |
if (nnt != -1 && prev != nnt && |
424 | 424 |
circle_form(points[prev], points[next], points[nnt])) { |
425 | 425 |
double x = circle_point(points[prev], points[next], points[nnt]); |
426 | 426 |
if (x < sweep) x = sweep; |
427 | 427 |
nit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end()))); |
428 | 428 |
nit->second.it = |
429 | 429 |
beach.insert(std::make_pair(Part(prev, next, nnt), nit)); |
430 | 430 |
} else { |
431 | 431 |
beach.insert(std::make_pair(Part(prev, next, nnt), nit)); |
432 | 432 |
} |
433 | 433 |
|
434 | 434 |
} |
435 | 435 |
} |
436 | 436 |
|
437 | 437 |
for (Beach::iterator it = beach.begin(); it != beach.end(); ++it) { |
438 | 438 |
int curr = it->first.curr; |
439 | 439 |
int next = it->first.next; |
440 | 440 |
|
441 | 441 |
if (next == -1) continue; |
442 | 442 |
|
443 | 443 |
std::pair<int, int> arc; |
444 | 444 |
|
445 | 445 |
arc = curr < next ? |
446 | 446 |
std::make_pair(curr, next) : std::make_pair(next, curr); |
447 | 447 |
|
448 | 448 |
if (arcs.find(arc) == arcs.end()) { |
449 | 449 |
arcs.insert(arc); |
450 | 450 |
g.addEdge(nodes[curr], nodes[next]); |
451 | 451 |
++cnt; |
452 | 452 |
} |
453 | 453 |
} |
454 | 454 |
} |
455 | 455 |
|
456 | 456 |
void sparse(int d) |
457 | 457 |
{ |
458 | 458 |
Counter cnt("Number of arcs removed: "); |
459 | 459 |
Bfs<ListGraph> bfs(g); |
460 | 460 |
for(std::vector<Edge>::reverse_iterator ei=arcs.rbegin(); |
461 | 461 |
ei!=arcs.rend();++ei) |
462 | 462 |
{ |
463 | 463 |
Node a=g.u(*ei); |
464 | 464 |
Node b=g.v(*ei); |
465 | 465 |
g.erase(*ei); |
466 | 466 |
bfs.run(a,b); |
467 | 467 |
if(bfs.predArc(b)==INVALID || bfs.dist(b)>d) |
468 | 468 |
g.addEdge(a,b); |
469 | 469 |
else cnt++; |
470 | 470 |
} |
471 | 471 |
} |
472 | 472 |
|
473 | 473 |
void sparse2(int d) |
474 | 474 |
{ |
475 | 475 |
Counter cnt("Number of arcs removed: "); |
476 | 476 |
for(std::vector<Edge>::reverse_iterator ei=arcs.rbegin(); |
477 | 477 |
ei!=arcs.rend();++ei) |
478 | 478 |
{ |
479 | 479 |
Node a=g.u(*ei); |
480 | 480 |
Node b=g.v(*ei); |
481 | 481 |
g.erase(*ei); |
482 | 482 |
ConstMap<Arc,int> cegy(1); |
483 |
Suurballe<ListGraph,ConstMap<Arc,int> > sur(g,cegy,a,b); |
|
484 |
int k=sur.run(2); |
|
483 |
Suurballe<ListGraph,ConstMap<Arc,int> > sur(g,cegy); |
|
484 |
int k=sur.run(a,b,2); |
|
485 | 485 |
if(k<2 || sur.totalLength()>d) |
486 | 486 |
g.addEdge(a,b); |
487 | 487 |
else cnt++; |
488 | 488 |
// else std::cout << "Remove arc " << g.id(a) << "-" << g.id(b) << '\n'; |
489 | 489 |
} |
490 | 490 |
} |
491 | 491 |
|
492 | 492 |
void sparseTriangle(int d) |
493 | 493 |
{ |
494 | 494 |
Counter cnt("Number of arcs added: "); |
495 | 495 |
std::vector<Parc> pedges; |
496 | 496 |
for(NodeIt n(g);n!=INVALID;++n) |
497 | 497 |
for(NodeIt m=++(NodeIt(n));m!=INVALID;++m) |
498 | 498 |
{ |
499 | 499 |
Parc p; |
500 | 500 |
p.a=n; |
501 | 501 |
p.b=m; |
502 | 502 |
p.len=(coords[m]-coords[n]).normSquare(); |
503 | 503 |
pedges.push_back(p); |
504 | 504 |
} |
505 | 505 |
std::sort(pedges.begin(),pedges.end(),pedgeLess); |
506 | 506 |
for(std::vector<Parc>::iterator pi=pedges.begin();pi!=pedges.end();++pi) |
507 | 507 |
{ |
508 | 508 |
Line li(pi->a,pi->b); |
509 | 509 |
EdgeIt e(g); |
510 | 510 |
for(;e!=INVALID && !cross(e,li);++e) ; |
511 | 511 |
Edge ne; |
512 | 512 |
if(e==INVALID) { |
513 | 513 |
ConstMap<Arc,int> cegy(1); |
514 |
Suurballe<ListGraph,ConstMap<Arc,int> > |
|
515 |
sur(g,cegy,pi->a,pi->b); |
|
516 |
int |
|
514 |
Suurballe<ListGraph,ConstMap<Arc,int> > sur(g,cegy); |
|
515 |
int k=sur.run(pi->a,pi->b,2); |
|
517 | 516 |
if(k<2 || sur.totalLength()>d) |
518 | 517 |
{ |
519 | 518 |
ne=g.addEdge(pi->a,pi->b); |
520 | 519 |
arcs.push_back(ne); |
521 | 520 |
cnt++; |
522 | 521 |
} |
523 | 522 |
} |
524 | 523 |
} |
525 | 524 |
} |
526 | 525 |
|
527 | 526 |
template <typename Graph, typename CoordMap> |
528 | 527 |
class LengthSquareMap { |
529 | 528 |
public: |
530 | 529 |
typedef typename Graph::Edge Key; |
531 | 530 |
typedef typename CoordMap::Value::Value Value; |
532 | 531 |
|
533 | 532 |
LengthSquareMap(const Graph& graph, const CoordMap& coords) |
534 | 533 |
: _graph(graph), _coords(coords) {} |
535 | 534 |
|
536 | 535 |
Value operator[](const Key& key) const { |
537 | 536 |
return (_coords[_graph.v(key)] - |
538 | 537 |
_coords[_graph.u(key)]).normSquare(); |
539 | 538 |
} |
540 | 539 |
|
541 | 540 |
private: |
542 | 541 |
|
543 | 542 |
const Graph& _graph; |
544 | 543 |
const CoordMap& _coords; |
545 | 544 |
}; |
546 | 545 |
|
547 | 546 |
void minTree() { |
548 | 547 |
std::vector<Parc> pedges; |
549 | 548 |
Timer T; |
550 | 549 |
std::cout << T.realTime() << "s: Creating delaunay triangulation...\n"; |
551 | 550 |
delaunay(); |
552 | 551 |
std::cout << T.realTime() << "s: Calculating spanning tree...\n"; |
553 | 552 |
LengthSquareMap<ListGraph, ListGraph::NodeMap<Point> > ls(g, coords); |
554 | 553 |
ListGraph::EdgeMap<bool> tree(g); |
555 | 554 |
kruskal(g, ls, tree); |
556 | 555 |
std::cout << T.realTime() << "s: Removing non tree arcs...\n"; |
557 | 556 |
std::vector<Edge> remove; |
558 | 557 |
for (EdgeIt e(g); e != INVALID; ++e) { |
559 | 558 |
if (!tree[e]) remove.push_back(e); |
560 | 559 |
} |
561 | 560 |
for(int i = 0; i < int(remove.size()); ++i) { |
562 | 561 |
g.erase(remove[i]); |
563 | 562 |
} |
564 | 563 |
std::cout << T.realTime() << "s: Done\n"; |
565 | 564 |
} |
566 | 565 |
|
567 | 566 |
void tsp2() |
568 | 567 |
{ |
569 | 568 |
std::cout << "Find a tree..." << std::endl; |
570 | 569 |
|
571 | 570 |
minTree(); |
572 | 571 |
|
573 | 572 |
std::cout << "Total arc length (tree) : " << totalLen() << std::endl; |
574 | 573 |
|
575 | 574 |
std::cout << "Make it Euler..." << std::endl; |
576 | 575 |
|
577 | 576 |
{ |
578 | 577 |
std::vector<Node> leafs; |
579 | 578 |
for(NodeIt n(g);n!=INVALID;++n) |
580 | 579 |
if(countIncEdges(g,n)%2==1) leafs.push_back(n); |
581 | 580 |
|
582 | 581 |
// for(unsigned int i=0;i<leafs.size();i+=2) |
583 | 582 |
// g.addArc(leafs[i],leafs[i+1]); |
584 | 583 |
|
585 | 584 |
std::vector<Parc> pedges; |
586 | 585 |
for(unsigned int i=0;i<leafs.size()-1;i++) |
587 | 586 |
for(unsigned int j=i+1;j<leafs.size();j++) |
588 | 587 |
{ |
589 | 588 |
Node n=leafs[i]; |
590 | 589 |
Node m=leafs[j]; |
591 | 590 |
Parc p; |
592 | 591 |
p.a=n; |
593 | 592 |
p.b=m; |
594 | 593 |
p.len=(coords[m]-coords[n]).normSquare(); |
595 | 594 |
pedges.push_back(p); |
596 | 595 |
} |
597 | 596 |
std::sort(pedges.begin(),pedges.end(),pedgeLess); |
598 | 597 |
for(unsigned int i=0;i<pedges.size();i++) |
599 | 598 |
if(countIncEdges(g,pedges[i].a)%2 && |
600 | 599 |
countIncEdges(g,pedges[i].b)%2) |
601 | 600 |
g.addEdge(pedges[i].a,pedges[i].b); |
602 | 601 |
} |
603 | 602 |
|
604 | 603 |
for(NodeIt n(g);n!=INVALID;++n) |
605 | 604 |
if(countIncEdges(g,n)%2 || countIncEdges(g,n)==0 ) |
606 | 605 |
std::cout << "GEBASZ!!!" << std::endl; |
607 | 606 |
|
608 | 607 |
for(EdgeIt e(g);e!=INVALID;++e) |
609 | 608 |
if(g.u(e)==g.v(e)) |
610 | 609 |
std::cout << "LOOP GEBASZ!!!" << std::endl; |
611 | 610 |
|
612 | 611 |
std::cout << "Number of arcs : " << countEdges(g) << std::endl; |
0 comments (0 inline)