... |
... |
@@ -31,76 +31,405 @@
|
31 |
31 |
|
32 |
32 |
///\ingroup matching
|
33 |
33 |
///\file
|
34 |
|
///\brief Maximum matching algorithms in graph.
|
|
34 |
///\brief Maximum matching algorithms in general graphs.
|
35 |
35 |
|
36 |
36 |
namespace lemon {
|
37 |
37 |
|
38 |
|
///\ingroup matching
|
|
38 |
/// \ingroup matching
|
39 |
39 |
///
|
40 |
|
///\brief Edmonds' alternating forest maximum matching algorithm.
|
|
40 |
/// \brief Edmonds' alternating forest maximum matching algorithm.
|
41 |
41 |
///
|
42 |
|
///This class provides Edmonds' alternating forest matching
|
43 |
|
///algorithm. The starting matching (if any) can be passed to the
|
44 |
|
///algorithm using some of init functions.
|
|
42 |
/// This class provides Edmonds' alternating forest matching
|
|
43 |
/// algorithm. The starting matching (if any) can be passed to the
|
|
44 |
/// algorithm using some of init functions.
|
45 |
45 |
///
|
46 |
|
///The dual side of a matching is a map of the nodes to
|
47 |
|
///MaxMatching::DecompType, having values \c D, \c A and \c C
|
48 |
|
///showing the Gallai-Edmonds decomposition of the digraph. The nodes
|
49 |
|
///in \c D induce a digraph with factor-critical components, the nodes
|
50 |
|
///in \c A form the barrier, and the nodes in \c C induce a digraph
|
51 |
|
///having a perfect matching. This decomposition can be attained by
|
52 |
|
///calling \c decomposition() after running the algorithm.
|
|
46 |
/// The dual side of a matching is a map of the nodes to
|
|
47 |
/// MaxMatching::Status, having values \c EVEN/D, \c ODD/A and \c
|
|
48 |
/// MATCHED/C showing the Gallai-Edmonds decomposition of the
|
|
49 |
/// graph. The nodes in \c EVEN/D induce a graph with
|
|
50 |
/// factor-critical components, the nodes in \c ODD/A form the
|
|
51 |
/// barrier, and the nodes in \c MATCHED/C induce a graph having a
|
|
52 |
/// perfect matching. The number of the fractor critical components
|
|
53 |
/// minus the number of barrier nodes is a lower bound on the
|
|
54 |
/// unmatched nodes, and if the matching is optimal this bound is
|
|
55 |
/// tight. This decomposition can be attained by calling \c
|
|
56 |
/// decomposition() after running the algorithm.
|
53 |
57 |
///
|
54 |
|
///\param Digraph The graph type the algorithm runs on.
|
55 |
|
template <typename Graph>
|
|
58 |
/// \param _Graph The graph type the algorithm runs on.
|
|
59 |
template <typename _Graph>
|
56 |
60 |
class MaxMatching {
|
57 |
|
|
58 |
|
protected:
|
|
61 |
public:
|
|
62 |
|
|
63 |
typedef _Graph Graph;
|
|
64 |
typedef typename Graph::template NodeMap<typename Graph::Arc>
|
|
65 |
MatchingMap;
|
|
66 |
|
|
67 |
///\brief Indicates the Gallai-Edmonds decomposition of the graph.
|
|
68 |
///
|
|
69 |
///Indicates the Gallai-Edmonds decomposition of the graph, which
|
|
70 |
///shows an upper bound on the size of a maximum matching. The
|
|
71 |
///nodes with Status \c EVEN/D induce a graph with factor-critical
|
|
72 |
///components, the nodes in \c ODD/A form the canonical barrier,
|
|
73 |
///and the nodes in \c MATCHED/C induce a graph having a perfect
|
|
74 |
///matching.
|
|
75 |
enum Status {
|
|
76 |
EVEN = 1, D = 1, MATCHED = 0, C = 0, ODD = -1, A = -1, UNMATCHED = -2
|
|
77 |
};
|
|
78 |
|
|
79 |
typedef typename Graph::template NodeMap<Status> StatusMap;
|
|
80 |
|
|
81 |
private:
|
59 |
82 |
|
60 |
83 |
TEMPLATE_GRAPH_TYPEDEFS(Graph);
|
61 |
84 |
|
62 |
|
typedef typename Graph::template NodeMap<int> UFECrossRef;
|
63 |
|
typedef UnionFindEnum<UFECrossRef> UFE;
|
64 |
|
typedef std::vector<Node> NV;
|
65 |
|
|
66 |
|
typedef typename Graph::template NodeMap<int> EFECrossRef;
|
67 |
|
typedef ExtendFindEnum<EFECrossRef> EFE;
|
|
85 |
typedef UnionFindEnum<IntNodeMap> BlossomSet;
|
|
86 |
typedef ExtendFindEnum<IntNodeMap> TreeSet;
|
|
87 |
typedef RangeMap<Node> NodeIntMap;
|
|
88 |
typedef MatchingMap EarMap;
|
|
89 |
typedef std::vector<Node> NodeQueue;
|
|
90 |
|
|
91 |
const Graph& _graph;
|
|
92 |
MatchingMap* _matching;
|
|
93 |
StatusMap* _status;
|
|
94 |
|
|
95 |
EarMap* _ear;
|
|
96 |
|
|
97 |
IntNodeMap* _blossom_set_index;
|
|
98 |
BlossomSet* _blossom_set;
|
|
99 |
NodeIntMap* _blossom_rep;
|
|
100 |
|
|
101 |
IntNodeMap* _tree_set_index;
|
|
102 |
TreeSet* _tree_set;
|
|
103 |
|
|
104 |
NodeQueue _node_queue;
|
|
105 |
int _process, _postpone, _last;
|
|
106 |
|
|
107 |
int _node_num;
|
|
108 |
|
|
109 |
private:
|
|
110 |
|
|
111 |
void createStructures() {
|
|
112 |
_node_num = countNodes(_graph);
|
|
113 |
if (!_matching) {
|
|
114 |
_matching = new MatchingMap(_graph);
|
|
115 |
}
|
|
116 |
if (!_status) {
|
|
117 |
_status = new StatusMap(_graph);
|
|
118 |
}
|
|
119 |
if (!_ear) {
|
|
120 |
_ear = new EarMap(_graph);
|
|
121 |
}
|
|
122 |
if (!_blossom_set) {
|
|
123 |
_blossom_set_index = new IntNodeMap(_graph);
|
|
124 |
_blossom_set = new BlossomSet(*_blossom_set_index);
|
|
125 |
}
|
|
126 |
if (!_blossom_rep) {
|
|
127 |
_blossom_rep = new NodeIntMap(_node_num);
|
|
128 |
}
|
|
129 |
if (!_tree_set) {
|
|
130 |
_tree_set_index = new IntNodeMap(_graph);
|
|
131 |
_tree_set = new TreeSet(*_tree_set_index);
|
|
132 |
}
|
|
133 |
_node_queue.resize(_node_num);
|
|
134 |
}
|
|
135 |
|
|
136 |
void destroyStructures() {
|
|
137 |
if (_matching) {
|
|
138 |
delete _matching;
|
|
139 |
}
|
|
140 |
if (_status) {
|
|
141 |
delete _status;
|
|
142 |
}
|
|
143 |
if (_ear) {
|
|
144 |
delete _ear;
|
|
145 |
}
|
|
146 |
if (_blossom_set) {
|
|
147 |
delete _blossom_set;
|
|
148 |
delete _blossom_set_index;
|
|
149 |
}
|
|
150 |
if (_blossom_rep) {
|
|
151 |
delete _blossom_rep;
|
|
152 |
}
|
|
153 |
if (_tree_set) {
|
|
154 |
delete _tree_set_index;
|
|
155 |
delete _tree_set;
|
|
156 |
}
|
|
157 |
}
|
|
158 |
|
|
159 |
void processDense(const Node& n) {
|
|
160 |
_process = _postpone = _last = 0;
|
|
161 |
_node_queue[_last++] = n;
|
|
162 |
|
|
163 |
while (_process != _last) {
|
|
164 |
Node u = _node_queue[_process++];
|
|
165 |
for (OutArcIt a(_graph, u); a != INVALID; ++a) {
|
|
166 |
Node v = _graph.target(a);
|
|
167 |
if ((*_status)[v] == MATCHED) {
|
|
168 |
extendOnArc(a);
|
|
169 |
} else if ((*_status)[v] == UNMATCHED) {
|
|
170 |
augmentOnArc(a);
|
|
171 |
return;
|
|
172 |
}
|
|
173 |
}
|
|
174 |
}
|
|
175 |
|
|
176 |
while (_postpone != _last) {
|
|
177 |
Node u = _node_queue[_postpone++];
|
|
178 |
|
|
179 |
for (OutArcIt a(_graph, u); a != INVALID ; ++a) {
|
|
180 |
Node v = _graph.target(a);
|
|
181 |
|
|
182 |
if ((*_status)[v] == EVEN) {
|
|
183 |
if (_blossom_set->find(u) != _blossom_set->find(v)) {
|
|
184 |
shrinkOnEdge(a);
|
|
185 |
}
|
|
186 |
}
|
|
187 |
|
|
188 |
while (_process != _last) {
|
|
189 |
Node w = _node_queue[_process++];
|
|
190 |
for (OutArcIt b(_graph, w); b != INVALID; ++b) {
|
|
191 |
Node x = _graph.target(b);
|
|
192 |
if ((*_status)[x] == MATCHED) {
|
|
193 |
extendOnArc(b);
|
|
194 |
} else if ((*_status)[x] == UNMATCHED) {
|
|
195 |
augmentOnArc(b);
|
|
196 |
return;
|
|
197 |
}
|
|
198 |
}
|
|
199 |
}
|
|
200 |
}
|
|
201 |
}
|
|
202 |
}
|
|
203 |
|
|
204 |
void processSparse(const Node& n) {
|
|
205 |
_process = _last = 0;
|
|
206 |
_node_queue[_last++] = n;
|
|
207 |
while (_process != _last) {
|
|
208 |
Node u = _node_queue[_process++];
|
|
209 |
for (OutArcIt a(_graph, u); a != INVALID; ++a) {
|
|
210 |
Node v = _graph.target(a);
|
|
211 |
|
|
212 |
if ((*_status)[v] == EVEN) {
|
|
213 |
if (_blossom_set->find(u) != _blossom_set->find(v)) {
|
|
214 |
shrinkOnEdge(a);
|
|
215 |
}
|
|
216 |
} else if ((*_status)[v] == MATCHED) {
|
|
217 |
extendOnArc(a);
|
|
218 |
} else if ((*_status)[v] == UNMATCHED) {
|
|
219 |
augmentOnArc(a);
|
|
220 |
return;
|
|
221 |
}
|
|
222 |
}
|
|
223 |
}
|
|
224 |
}
|
|
225 |
|
|
226 |
void shrinkOnEdge(const Edge& e) {
|
|
227 |
Node nca = INVALID;
|
|
228 |
|
|
229 |
{
|
|
230 |
std::set<Node> left_set, right_set;
|
|
231 |
|
|
232 |
Node left = (*_blossom_rep)[_blossom_set->find(_graph.u(e))];
|
|
233 |
left_set.insert(left);
|
|
234 |
|
|
235 |
Node right = (*_blossom_rep)[_blossom_set->find(_graph.v(e))];
|
|
236 |
right_set.insert(right);
|
|
237 |
|
|
238 |
while (true) {
|
|
239 |
if ((*_matching)[left] == INVALID) break;
|
|
240 |
left = _graph.target((*_matching)[left]);
|
|
241 |
left = (*_blossom_rep)[_blossom_set->
|
|
242 |
find(_graph.target((*_ear)[left]))];
|
|
243 |
if (right_set.find(left) != right_set.end()) {
|
|
244 |
nca = left;
|
|
245 |
break;
|
|
246 |
}
|
|
247 |
left_set.insert(left);
|
|
248 |
|
|
249 |
if ((*_matching)[right] == INVALID) break;
|
|
250 |
right = _graph.target((*_matching)[right]);
|
|
251 |
right = (*_blossom_rep)[_blossom_set->
|
|
252 |
find(_graph.target((*_ear)[right]))];
|
|
253 |
if (left_set.find(right) != left_set.end()) {
|
|
254 |
nca = right;
|
|
255 |
break;
|
|
256 |
}
|
|
257 |
right_set.insert(right);
|
|
258 |
}
|
|
259 |
|
|
260 |
if (nca == INVALID) {
|
|
261 |
if ((*_matching)[left] == INVALID) {
|
|
262 |
nca = right;
|
|
263 |
while (left_set.find(nca) == left_set.end()) {
|
|
264 |
nca = _graph.target((*_matching)[nca]);
|
|
265 |
nca =(*_blossom_rep)[_blossom_set->
|
|
266 |
find(_graph.target((*_ear)[nca]))];
|
|
267 |
}
|
|
268 |
} else {
|
|
269 |
nca = left;
|
|
270 |
while (right_set.find(nca) == right_set.end()) {
|
|
271 |
nca = _graph.target((*_matching)[nca]);
|
|
272 |
nca = (*_blossom_rep)[_blossom_set->
|
|
273 |
find(_graph.target((*_ear)[nca]))];
|
|
274 |
}
|
|
275 |
}
|
|
276 |
}
|
|
277 |
}
|
|
278 |
|
|
279 |
{
|
|
280 |
|
|
281 |
Node node = _graph.u(e);
|
|
282 |
Arc arc = _graph.direct(e, true);
|
|
283 |
Node base = (*_blossom_rep)[_blossom_set->find(node)];
|
|
284 |
|
|
285 |
while (base != nca) {
|
|
286 |
_ear->set(node, arc);
|
|
287 |
|
|
288 |
Node n = node;
|
|
289 |
while (n != base) {
|
|
290 |
n = _graph.target((*_matching)[n]);
|
|
291 |
Arc a = (*_ear)[n];
|
|
292 |
n = _graph.target(a);
|
|
293 |
_ear->set(n, _graph.oppositeArc(a));
|
|
294 |
}
|
|
295 |
node = _graph.target((*_matching)[base]);
|
|
296 |
_tree_set->erase(base);
|
|
297 |
_tree_set->erase(node);
|
|
298 |
_blossom_set->insert(node, _blossom_set->find(base));
|
|
299 |
_status->set(node, EVEN);
|
|
300 |
_node_queue[_last++] = node;
|
|
301 |
arc = _graph.oppositeArc((*_ear)[node]);
|
|
302 |
node = _graph.target((*_ear)[node]);
|
|
303 |
base = (*_blossom_rep)[_blossom_set->find(node)];
|
|
304 |
_blossom_set->join(_graph.target(arc), base);
|
|
305 |
}
|
|
306 |
}
|
|
307 |
|
|
308 |
_blossom_rep->set(_blossom_set->find(nca), nca);
|
|
309 |
|
|
310 |
{
|
|
311 |
|
|
312 |
Node node = _graph.v(e);
|
|
313 |
Arc arc = _graph.direct(e, false);
|
|
314 |
Node base = (*_blossom_rep)[_blossom_set->find(node)];
|
|
315 |
|
|
316 |
while (base != nca) {
|
|
317 |
_ear->set(node, arc);
|
|
318 |
|
|
319 |
Node n = node;
|
|
320 |
while (n != base) {
|
|
321 |
n = _graph.target((*_matching)[n]);
|
|
322 |
Arc a = (*_ear)[n];
|
|
323 |
n = _graph.target(a);
|
|
324 |
_ear->set(n, _graph.oppositeArc(a));
|
|
325 |
}
|
|
326 |
node = _graph.target((*_matching)[base]);
|
|
327 |
_tree_set->erase(base);
|
|
328 |
_tree_set->erase(node);
|
|
329 |
_blossom_set->insert(node, _blossom_set->find(base));
|
|
330 |
_status->set(node, EVEN);
|
|
331 |
_node_queue[_last++] = node;
|
|
332 |
arc = _graph.oppositeArc((*_ear)[node]);
|
|
333 |
node = _graph.target((*_ear)[node]);
|
|
334 |
base = (*_blossom_rep)[_blossom_set->find(node)];
|
|
335 |
_blossom_set->join(_graph.target(arc), base);
|
|
336 |
}
|
|
337 |
}
|
|
338 |
|
|
339 |
_blossom_rep->set(_blossom_set->find(nca), nca);
|
|
340 |
}
|
|
341 |
|
|
342 |
|
|
343 |
|
|
344 |
void extendOnArc(const Arc& a) {
|
|
345 |
Node base = _graph.source(a);
|
|
346 |
Node odd = _graph.target(a);
|
|
347 |
|
|
348 |
_ear->set(odd, _graph.oppositeArc(a));
|
|
349 |
Node even = _graph.target((*_matching)[odd]);
|
|
350 |
_blossom_rep->set(_blossom_set->insert(even), even);
|
|
351 |
_status->set(odd, ODD);
|
|
352 |
_status->set(even, EVEN);
|
|
353 |
int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(base)]);
|
|
354 |
_tree_set->insert(odd, tree);
|
|
355 |
_tree_set->insert(even, tree);
|
|
356 |
_node_queue[_last++] = even;
|
|
357 |
|
|
358 |
}
|
|
359 |
|
|
360 |
void augmentOnArc(const Arc& a) {
|
|
361 |
Node even = _graph.source(a);
|
|
362 |
Node odd = _graph.target(a);
|
|
363 |
|
|
364 |
int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(even)]);
|
|
365 |
|
|
366 |
_matching->set(odd, _graph.oppositeArc(a));
|
|
367 |
_status->set(odd, MATCHED);
|
|
368 |
|
|
369 |
Arc arc = (*_matching)[even];
|
|
370 |
_matching->set(even, a);
|
|
371 |
|
|
372 |
while (arc != INVALID) {
|
|
373 |
odd = _graph.target(arc);
|
|
374 |
arc = (*_ear)[odd];
|
|
375 |
even = _graph.target(arc);
|
|
376 |
_matching->set(odd, arc);
|
|
377 |
arc = (*_matching)[even];
|
|
378 |
_matching->set(even, _graph.oppositeArc((*_matching)[odd]));
|
|
379 |
}
|
|
380 |
|
|
381 |
for (typename TreeSet::ItemIt it(*_tree_set, tree);
|
|
382 |
it != INVALID; ++it) {
|
|
383 |
if ((*_status)[it] == ODD) {
|
|
384 |
_status->set(it, MATCHED);
|
|
385 |
} else {
|
|
386 |
int blossom = _blossom_set->find(it);
|
|
387 |
for (typename BlossomSet::ItemIt jt(*_blossom_set, blossom);
|
|
388 |
jt != INVALID; ++jt) {
|
|
389 |
_status->set(jt, MATCHED);
|
|
390 |
}
|
|
391 |
_blossom_set->eraseClass(blossom);
|
|
392 |
}
|
|
393 |
}
|
|
394 |
_tree_set->eraseClass(tree);
|
|
395 |
|
|
396 |
}
|
68 |
397 |
|
69 |
398 |
public:
|
70 |
399 |
|
71 |
|
///\brief Indicates the Gallai-Edmonds decomposition of the digraph.
|
|
400 |
/// \brief Constructor
|
72 |
401 |
///
|
73 |
|
///Indicates the Gallai-Edmonds decomposition of the digraph, which
|
74 |
|
///shows an upper bound on the size of a maximum matching. The
|
75 |
|
///nodes with DecompType \c D induce a digraph with factor-critical
|
76 |
|
///components, the nodes in \c A form the canonical barrier, and the
|
77 |
|
///nodes in \c C induce a digraph having a perfect matching.
|
78 |
|
enum DecompType {
|
79 |
|
D=0,
|
80 |
|
A=1,
|
81 |
|
C=2
|
82 |
|
};
|
83 |
|
|
84 |
|
protected:
|
85 |
|
|
86 |
|
static const int HEUR_density=2;
|
87 |
|
const Graph& g;
|
88 |
|
typename Graph::template NodeMap<Node> _mate;
|
89 |
|
typename Graph::template NodeMap<DecompType> position;
|
90 |
|
|
91 |
|
public:
|
92 |
|
|
93 |
|
MaxMatching(const Graph& _g)
|
94 |
|
: g(_g), _mate(_g), position(_g) {}
|
95 |
|
|
96 |
|
///\brief Sets the actual matching to the empty matching.
|
|
402 |
/// Constructor.
|
|
403 |
MaxMatching(const Graph& graph)
|
|
404 |
: _graph(graph), _matching(0), _status(0), _ear(0),
|
|
405 |
_blossom_set_index(0), _blossom_set(0), _blossom_rep(0),
|
|
406 |
_tree_set_index(0), _tree_set(0) {}
|
|
407 |
|
|
408 |
~MaxMatching() {
|
|
409 |
destroyStructures();
|
|
410 |
}
|
|
411 |
|
|
412 |
/// \name Execution control
|
|
413 |
/// The simplest way to execute the algorithm is to use the member
|
|
414 |
/// \c run() member function.
|
|
415 |
/// \n
|
|
416 |
|
|
417 |
/// If you need more control on the execution, first you must call
|
|
418 |
/// \ref init(), \ref greedyInit() or \ref matchingInit()
|
|
419 |
/// functions, then you can start the algorithm with the \ref
|
|
420 |
/// startParse() or startDense() functions.
|
|
421 |
|
|
422 |
///@{
|
|
423 |
|
|
424 |
/// \brief Sets the actual matching to the empty matching.
|
97 |
425 |
///
|
98 |
|
///Sets the actual matching to the empty matching.
|
|
426 |
/// Sets the actual matching to the empty matching.
|
99 |
427 |
///
|
100 |
428 |
void init() {
|
101 |
|
for(NodeIt v(g); v!=INVALID; ++v) {
|
102 |
|
_mate.set(v,INVALID);
|
103 |
|
position.set(v,C);
|
|
429 |
createStructures();
|
|
430 |
for(NodeIt n(_graph); n != INVALID; ++n) {
|
|
431 |
_matching->set(n, INVALID);
|
|
432 |
_status->set(n, UNMATCHED);
|
104 |
433 |
}
|
105 |
434 |
}
|
106 |
435 |
|
... |
... |
@@ -108,88 +437,96 @@
|
108 |
437 |
///
|
109 |
438 |
///For initial matchig it finds a maximal greedy matching.
|
110 |
439 |
void greedyInit() {
|
111 |
|
for(NodeIt v(g); v!=INVALID; ++v) {
|
112 |
|
_mate.set(v,INVALID);
|
113 |
|
position.set(v,C);
|
|
440 |
createStructures();
|
|
441 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
442 |
_matching->set(n, INVALID);
|
|
443 |
_status->set(n, UNMATCHED);
|
114 |
444 |
}
|
115 |
|
for(NodeIt v(g); v!=INVALID; ++v)
|
116 |
|
if ( _mate[v]==INVALID ) {
|
117 |
|
for( IncEdgeIt e(g,v); e!=INVALID ; ++e ) {
|
118 |
|
Node y=g.runningNode(e);
|
119 |
|
if ( _mate[y]==INVALID && y!=v ) {
|
120 |
|
_mate.set(v,y);
|
121 |
|
_mate.set(y,v);
|
|
445 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
446 |
if ((*_matching)[n] == INVALID) {
|
|
447 |
for (OutArcIt a(_graph, n); a != INVALID ; ++a) {
|
|
448 |
Node v = _graph.target(a);
|
|
449 |
if ((*_matching)[v] == INVALID && v != n) {
|
|
450 |
_matching->set(n, a);
|
|
451 |
_status->set(n, MATCHED);
|
|
452 |
_matching->set(v, _graph.oppositeArc(a));
|
|
453 |
_status->set(v, MATCHED);
|
122 |
454 |
break;
|
123 |
455 |
}
|
124 |
456 |
}
|
125 |
457 |
}
|
126 |
|
}
|
127 |
|
|
128 |
|
///\brief Initialize the matching from each nodes' mate.
|
129 |
|
///
|
130 |
|
///Initialize the matching from a \c Node valued \c Node map. This
|
131 |
|
///map must be \e symmetric, i.e. if \c map[u]==v then \c
|
132 |
|
///map[v]==u must hold, and \c uv will be an arc of the initial
|
133 |
|
///matching.
|
134 |
|
template <typename MateMap>
|
135 |
|
void mateMapInit(MateMap& map) {
|
136 |
|
for(NodeIt v(g); v!=INVALID; ++v) {
|
137 |
|
_mate.set(v,map[v]);
|
138 |
|
position.set(v,C);
|
139 |
458 |
}
|
140 |
459 |
}
|
141 |
460 |
|
142 |
|
///\brief Initialize the matching from a node map with the
|
143 |
|
///incident matching arcs.
|
|
461 |
|
|
462 |
/// \brief Initialize the matching from the map containing a matching.
|
144 |
463 |
///
|
145 |
|
///Initialize the matching from an \c Edge valued \c Node map. \c
|
146 |
|
///map[v] must be an \c Edge incident to \c v. This map must have
|
147 |
|
///the property that if \c g.oppositeNode(u,map[u])==v then \c \c
|
148 |
|
///g.oppositeNode(v,map[v])==u holds, and now some arc joining \c
|
149 |
|
///u to \c v will be an arc of the matching.
|
150 |
|
template<typename MatchingMap>
|
151 |
|
void matchingMapInit(MatchingMap& map) {
|
152 |
|
for(NodeIt v(g); v!=INVALID; ++v) {
|
153 |
|
position.set(v,C);
|
154 |
|
Edge e=map[v];
|
155 |
|
if ( e!=INVALID )
|
156 |
|
_mate.set(v,g.oppositeNode(v,e));
|
157 |
|
else
|
158 |
|
_mate.set(v,INVALID);
|
|
464 |
/// Initialize the matching from a \c bool valued \c Edge map. This
|
|
465 |
/// map must have the property that there are no two incident edges
|
|
466 |
/// with true value, ie. it contains a matching.
|
|
467 |
/// \return %True if the map contains a matching.
|
|
468 |
template <typename MatchingMap>
|
|
469 |
bool matchingInit(const MatchingMap& matching) {
|
|
470 |
createStructures();
|
|
471 |
|
|
472 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
473 |
_matching->set(n, INVALID);
|
|
474 |
_status->set(n, UNMATCHED);
|
159 |
475 |
}
|
|
476 |
for(EdgeIt e(_graph); e!=INVALID; ++e) {
|
|
477 |
if (matching[e]) {
|
|
478 |
|
|
479 |
Node u = _graph.u(e);
|
|
480 |
if ((*_matching)[u] != INVALID) return false;
|
|
481 |
_matching->set(u, _graph.direct(e, true));
|
|
482 |
_status->set(u, MATCHED);
|
|
483 |
|
|
484 |
Node v = _graph.v(e);
|
|
485 |
if ((*_matching)[v] != INVALID) return false;
|
|
486 |
_matching->set(v, _graph.direct(e, false));
|
|
487 |
_status->set(v, MATCHED);
|
|
488 |
}
|
|
489 |
}
|
|
490 |
return true;
|
160 |
491 |
}
|
161 |
492 |
|
162 |
|
///\brief Initialize the matching from the map containing the
|
163 |
|
///undirected matching arcs.
|
|
493 |
/// \brief Starts Edmonds' algorithm
|
164 |
494 |
///
|
165 |
|
///Initialize the matching from a \c bool valued \c Edge map. This
|
166 |
|
///map must have the property that there are no two incident arcs
|
167 |
|
///\c e, \c f with \c map[e]==map[f]==true. The arcs \c e with \c
|
168 |
|
///map[e]==true form the matching.
|
169 |
|
template <typename MatchingMap>
|
170 |
|
void matchingInit(MatchingMap& map) {
|
171 |
|
for(NodeIt v(g); v!=INVALID; ++v) {
|
172 |
|
_mate.set(v,INVALID);
|
173 |
|
position.set(v,C);
|
174 |
|
}
|
175 |
|
for(EdgeIt e(g); e!=INVALID; ++e) {
|
176 |
|
if ( map[e] ) {
|
177 |
|
Node u=g.u(e);
|
178 |
|
Node v=g.v(e);
|
179 |
|
_mate.set(u,v);
|
180 |
|
_mate.set(v,u);
|
|
495 |
/// If runs the original Edmonds' algorithm.
|
|
496 |
void startSparse() {
|
|
497 |
for(NodeIt n(_graph); n != INVALID; ++n) {
|
|
498 |
if ((*_status)[n] == UNMATCHED) {
|
|
499 |
(*_blossom_rep)[_blossom_set->insert(n)] = n;
|
|
500 |
_tree_set->insert(n);
|
|
501 |
_status->set(n, EVEN);
|
|
502 |
processSparse(n);
|
181 |
503 |
}
|
182 |
504 |
}
|
183 |
505 |
}
|
184 |
506 |
|
185 |
|
|
186 |
|
///\brief Runs Edmonds' algorithm.
|
|
507 |
/// \brief Starts Edmonds' algorithm.
|
187 |
508 |
///
|
188 |
|
///Runs Edmonds' algorithm for sparse digraphs (number of arcs <
|
189 |
|
///2*number of nodes), and a heuristical Edmonds' algorithm with a
|
190 |
|
///heuristic of postponing shrinks for dense digraphs.
|
|
509 |
/// It runs Edmonds' algorithm with a heuristic of postponing
|
|
510 |
/// shrinks, giving a faster algorithm for dense graphs.
|
|
511 |
void startDense() {
|
|
512 |
for(NodeIt n(_graph); n != INVALID; ++n) {
|
|
513 |
if ((*_status)[n] == UNMATCHED) {
|
|
514 |
(*_blossom_rep)[_blossom_set->insert(n)] = n;
|
|
515 |
_tree_set->insert(n);
|
|
516 |
_status->set(n, EVEN);
|
|
517 |
processDense(n);
|
|
518 |
}
|
|
519 |
}
|
|
520 |
}
|
|
521 |
|
|
522 |
|
|
523 |
/// \brief Runs Edmonds' algorithm
|
|
524 |
///
|
|
525 |
/// Runs Edmonds' algorithm for sparse graphs (<tt>m<2*n</tt>)
|
|
526 |
/// or Edmonds' algorithm with a heuristic of
|
|
527 |
/// postponing shrinks for dense graphs.
|
191 |
528 |
void run() {
|
192 |
|
if (countEdges(g) < HEUR_density * countNodes(g)) {
|
|
529 |
if (countEdges(_graph) < 2 * countNodes(_graph)) {
|
193 |
530 |
greedyInit();
|
194 |
531 |
startSparse();
|
195 |
532 |
} else {
|
... |
... |
@@ -198,422 +535,75 @@
|
198 |
535 |
}
|
199 |
536 |
}
|
200 |
537 |
|
201 |
|
|
202 |
|
///\brief Starts Edmonds' algorithm.
|
203 |
|
///
|
204 |
|
///If runs the original Edmonds' algorithm.
|
205 |
|
void startSparse() {
|
206 |
|
|
207 |
|
typename Graph::template NodeMap<Node> ear(g,INVALID);
|
208 |
|
//undefined for the base nodes of the blossoms (i.e. for the
|
209 |
|
//representative elements of UFE blossom) and for the nodes in C
|
210 |
|
|
211 |
|
UFECrossRef blossom_base(g);
|
212 |
|
UFE blossom(blossom_base);
|
213 |
|
NV rep(countNodes(g));
|
214 |
|
|
215 |
|
EFECrossRef tree_base(g);
|
216 |
|
EFE tree(tree_base);
|
217 |
|
|
218 |
|
//If these UFE's would be members of the class then also
|
219 |
|
//blossom_base and tree_base should be a member.
|
220 |
|
|
221 |
|
//We build only one tree and the other vertices uncovered by the
|
222 |
|
//matching belong to C. (They can be considered as singleton
|
223 |
|
//trees.) If this tree can be augmented or no more
|
224 |
|
//grow/augmentation/shrink is possible then we return to this
|
225 |
|
//"for" cycle.
|
226 |
|
for(NodeIt v(g); v!=INVALID; ++v) {
|
227 |
|
if (position[v]==C && _mate[v]==INVALID) {
|
228 |
|
rep[blossom.insert(v)] = v;
|
229 |
|
tree.insert(v);
|
230 |
|
position.set(v,D);
|
231 |
|
normShrink(v, ear, blossom, rep, tree);
|
232 |
|
}
|
233 |
|
}
|
234 |
|
}
|
235 |
|
|
236 |
|
///\brief Starts Edmonds' algorithm.
|
237 |
|
///
|
238 |
|
///It runs Edmonds' algorithm with a heuristic of postponing
|
239 |
|
///shrinks, giving a faster algorithm for dense digraphs.
|
240 |
|
void startDense() {
|
241 |
|
|
242 |
|
typename Graph::template NodeMap<Node> ear(g,INVALID);
|
243 |
|
//undefined for the base nodes of the blossoms (i.e. for the
|
244 |
|
//representative elements of UFE blossom) and for the nodes in C
|
245 |
|
|
246 |
|
UFECrossRef blossom_base(g);
|
247 |
|
UFE blossom(blossom_base);
|
248 |
|
NV rep(countNodes(g));
|
249 |
|
|
250 |
|
EFECrossRef tree_base(g);
|
251 |
|
EFE tree(tree_base);
|
252 |
|
|
253 |
|
//If these UFE's would be members of the class then also
|
254 |
|
//blossom_base and tree_base should be a member.
|
255 |
|
|
256 |
|
//We build only one tree and the other vertices uncovered by the
|
257 |
|
//matching belong to C. (They can be considered as singleton
|
258 |
|
//trees.) If this tree can be augmented or no more
|
259 |
|
//grow/augmentation/shrink is possible then we return to this
|
260 |
|
//"for" cycle.
|
261 |
|
for(NodeIt v(g); v!=INVALID; ++v) {
|
262 |
|
if ( position[v]==C && _mate[v]==INVALID ) {
|
263 |
|
rep[blossom.insert(v)] = v;
|
264 |
|
tree.insert(v);
|
265 |
|
position.set(v,D);
|
266 |
|
lateShrink(v, ear, blossom, rep, tree);
|
267 |
|
}
|
268 |
|
}
|
269 |
|
}
|
270 |
|
|
271 |
|
|
|
538 |
/// @}
|
|
539 |
|
|
540 |
/// \name Primal solution
|
|
541 |
/// Functions for get the primal solution, ie. the matching.
|
|
542 |
|
|
543 |
/// @{
|
272 |
544 |
|
273 |
545 |
///\brief Returns the size of the actual matching stored.
|
274 |
546 |
///
|
275 |
547 |
///Returns the size of the actual matching stored. After \ref
|
276 |
|
///run() it returns the size of a maximum matching in the digraph.
|
277 |
|
int size() const {
|
278 |
|
int s=0;
|
279 |
|
for(NodeIt v(g); v!=INVALID; ++v) {
|
280 |
|
if ( _mate[v]!=INVALID ) {
|
281 |
|
++s;
|
|
548 |
///run() it returns the size of the maximum matching in the graph.
|
|
549 |
int matchingSize() const {
|
|
550 |
int size = 0;
|
|
551 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
552 |
if ((*_matching)[n] != INVALID) {
|
|
553 |
++size;
|
282 |
554 |
}
|
283 |
555 |
}
|
284 |
|
return s/2;
|
|
556 |
return size / 2;
|
285 |
557 |
}
|
286 |
558 |
|
|
559 |
/// \brief Returns true when the edge is in the matching.
|
|
560 |
///
|
|
561 |
/// Returns true when the edge is in the matching.
|
|
562 |
bool matching(const Edge& edge) const {
|
|
563 |
return edge == (*_matching)[_graph.u(edge)];
|
|
564 |
}
|
|
565 |
|
|
566 |
/// \brief Returns the matching edge incident to the given node.
|
|
567 |
///
|
|
568 |
/// Returns the matching edge of a \c node in the actual matching or
|
|
569 |
/// INVALID if the \c node is not covered by the actual matching.
|
|
570 |
Arc matching(const Node& n) const {
|
|
571 |
return (*_matching)[n];
|
|
572 |
}
|
287 |
573 |
|
288 |
574 |
///\brief Returns the mate of a node in the actual matching.
|
289 |
575 |
///
|
290 |
|
///Returns the mate of a \c node in the actual matching.
|
291 |
|
///Returns INVALID if the \c node is not covered by the actual matching.
|
292 |
|
Node mate(const Node& node) const {
|
293 |
|
return _mate[node];
|
|
576 |
///Returns the mate of a \c node in the actual matching or
|
|
577 |
///INVALID if the \c node is not covered by the actual matching.
|
|
578 |
Node mate(const Node& n) const {
|
|
579 |
return (*_matching)[n] != INVALID ?
|
|
580 |
_graph.target((*_matching)[n]) : INVALID;
|
294 |
581 |
}
|
295 |
582 |
|
296 |
|
///\brief Returns the matching arc incident to the given node.
|
297 |
|
///
|
298 |
|
///Returns the matching arc of a \c node in the actual matching.
|
299 |
|
///Returns INVALID if the \c node is not covered by the actual matching.
|
300 |
|
Edge matchingArc(const Node& node) const {
|
301 |
|
if (_mate[node] == INVALID) return INVALID;
|
302 |
|
Node n = node < _mate[node] ? node : _mate[node];
|
303 |
|
for (IncEdgeIt e(g, n); e != INVALID; ++e) {
|
304 |
|
if (g.oppositeNode(n, e) == _mate[n]) {
|
305 |
|
return e;
|
306 |
|
}
|
307 |
|
}
|
308 |
|
return INVALID;
|
309 |
|
}
|
|
583 |
/// @}
|
|
584 |
|
|
585 |
/// \name Dual solution
|
|
586 |
/// Functions for get the dual solution, ie. the decomposition.
|
|
587 |
|
|
588 |
/// @{
|
310 |
589 |
|
311 |
590 |
/// \brief Returns the class of the node in the Edmonds-Gallai
|
312 |
591 |
/// decomposition.
|
313 |
592 |
///
|
314 |
593 |
/// Returns the class of the node in the Edmonds-Gallai
|
315 |
594 |
/// decomposition.
|
316 |
|
DecompType decomposition(const Node& n) {
|
317 |
|
return position[n] == A;
|
|
595 |
Status decomposition(const Node& n) const {
|
|
596 |
return (*_status)[n];
|
318 |
597 |
}
|
319 |
598 |
|
320 |
599 |
/// \brief Returns true when the node is in the barrier.
|
321 |
600 |
///
|
322 |
601 |
/// Returns true when the node is in the barrier.
|
323 |
|
bool barrier(const Node& n) {
|
324 |
|
return position[n] == A;
|
|
602 |
bool barrier(const Node& n) const {
|
|
603 |
return (*_status)[n] == ODD;
|
325 |
604 |
}
|
326 |
605 |
|
327 |
|
///\brief Gives back the matching in a \c Node of mates.
|
328 |
|
///
|
329 |
|
///Writes the stored matching to a \c Node valued \c Node map. The
|
330 |
|
///resulting map will be \e symmetric, i.e. if \c map[u]==v then \c
|
331 |
|
///map[v]==u will hold, and now \c uv is an arc of the matching.
|
332 |
|
template <typename MateMap>
|
333 |
|
void mateMap(MateMap& map) const {
|
334 |
|
for(NodeIt v(g); v!=INVALID; ++v) {
|
335 |
|
map.set(v,_mate[v]);
|
336 |
|
}
|
337 |
|
}
|
338 |
|
|
339 |
|
///\brief Gives back the matching in an \c Edge valued \c Node
|
340 |
|
///map.
|
341 |
|
///
|
342 |
|
///Writes the stored matching to an \c Edge valued \c Node
|
343 |
|
///map. \c map[v] will be an \c Edge incident to \c v. This
|
344 |
|
///map will have the property that if \c g.oppositeNode(u,map[u])
|
345 |
|
///== v then \c map[u]==map[v] holds, and now this arc is an arc
|
346 |
|
///of the matching.
|
347 |
|
template <typename MatchingMap>
|
348 |
|
void matchingMap(MatchingMap& map) const {
|
349 |
|
typename Graph::template NodeMap<bool> todo(g,true);
|
350 |
|
for(NodeIt v(g); v!=INVALID; ++v) {
|
351 |
|
if (_mate[v]!=INVALID && v < _mate[v]) {
|
352 |
|
Node u=_mate[v];
|
353 |
|
for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
|
354 |
|
if ( g.runningNode(e) == u ) {
|
355 |
|
map.set(u,e);
|
356 |
|
map.set(v,e);
|
357 |
|
todo.set(u,false);
|
358 |
|
todo.set(v,false);
|
359 |
|
break;
|
360 |
|
}
|
361 |
|
}
|
362 |
|
}
|
363 |
|
}
|
364 |
|
}
|
365 |
|
|
366 |
|
|
367 |
|
///\brief Gives back the matching in a \c bool valued \c Edge
|
368 |
|
///map.
|
369 |
|
///
|
370 |
|
///Writes the matching stored to a \c bool valued \c Arc
|
371 |
|
///map. This map will have the property that there are no two
|
372 |
|
///incident arcs \c e, \c f with \c map[e]==map[f]==true. The
|
373 |
|
///arcs \c e with \c map[e]==true form the matching.
|
374 |
|
template<typename MatchingMap>
|
375 |
|
void matching(MatchingMap& map) const {
|
376 |
|
for(EdgeIt e(g); e!=INVALID; ++e) map.set(e,false);
|
377 |
|
|
378 |
|
typename Graph::template NodeMap<bool> todo(g,true);
|
379 |
|
for(NodeIt v(g); v!=INVALID; ++v) {
|
380 |
|
if ( todo[v] && _mate[v]!=INVALID ) {
|
381 |
|
Node u=_mate[v];
|
382 |
|
for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
|
383 |
|
if ( g.runningNode(e) == u ) {
|
384 |
|
map.set(e,true);
|
385 |
|
todo.set(u,false);
|
386 |
|
todo.set(v,false);
|
387 |
|
break;
|
388 |
|
}
|
389 |
|
}
|
390 |
|
}
|
391 |
|
}
|
392 |
|
}
|
393 |
|
|
394 |
|
|
395 |
|
///\brief Returns the canonical decomposition of the digraph after running
|
396 |
|
///the algorithm.
|
397 |
|
///
|
398 |
|
///After calling any run methods of the class, it writes the
|
399 |
|
///Gallai-Edmonds canonical decomposition of the digraph. \c map
|
400 |
|
///must be a node map of \ref DecompType 's.
|
401 |
|
template <typename DecompositionMap>
|
402 |
|
void decomposition(DecompositionMap& map) const {
|
403 |
|
for(NodeIt v(g); v!=INVALID; ++v) map.set(v,position[v]);
|
404 |
|
}
|
405 |
|
|
406 |
|
///\brief Returns a barrier on the nodes.
|
407 |
|
///
|
408 |
|
///After calling any run methods of the class, it writes a
|
409 |
|
///canonical barrier on the nodes. The odd component number of the
|
410 |
|
///remaining digraph minus the barrier size is a lower bound for the
|
411 |
|
///uncovered nodes in the digraph. The \c map must be a node map of
|
412 |
|
///bools.
|
413 |
|
template <typename BarrierMap>
|
414 |
|
void barrier(BarrierMap& barrier) {
|
415 |
|
for(NodeIt v(g); v!=INVALID; ++v) barrier.set(v,position[v] == A);
|
416 |
|
}
|
417 |
|
|
418 |
|
private:
|
419 |
|
|
420 |
|
|
421 |
|
void lateShrink(Node v, typename Graph::template NodeMap<Node>& ear,
|
422 |
|
UFE& blossom, NV& rep, EFE& tree) {
|
423 |
|
//We have one tree which we grow, and also shrink but only if it
|
424 |
|
//cannot be postponed. If we augment then we return to the "for"
|
425 |
|
//cycle of runEdmonds().
|
426 |
|
|
427 |
|
std::queue<Node> Q; //queue of the totally unscanned nodes
|
428 |
|
Q.push(v);
|
429 |
|
std::queue<Node> R;
|
430 |
|
//queue of the nodes which must be scanned for a possible shrink
|
431 |
|
|
432 |
|
while ( !Q.empty() ) {
|
433 |
|
Node x=Q.front();
|
434 |
|
Q.pop();
|
435 |
|
for( IncEdgeIt e(g,x); e!= INVALID; ++e ) {
|
436 |
|
Node y=g.runningNode(e);
|
437 |
|
//growOrAugment grows if y is covered by the matching and
|
438 |
|
//augments if not. In this latter case it returns 1.
|
439 |
|
if (position[y]==C &&
|
440 |
|
growOrAugment(y, x, ear, blossom, rep, tree, Q)) return;
|
441 |
|
}
|
442 |
|
R.push(x);
|
443 |
|
}
|
444 |
|
|
445 |
|
while ( !R.empty() ) {
|
446 |
|
Node x=R.front();
|
447 |
|
R.pop();
|
448 |
|
|
449 |
|
for( IncEdgeIt e(g,x); e!=INVALID ; ++e ) {
|
450 |
|
Node y=g.runningNode(e);
|
451 |
|
|
452 |
|
if ( position[y] == D && blossom.find(x) != blossom.find(y) )
|
453 |
|
//Recall that we have only one tree.
|
454 |
|
shrink( x, y, ear, blossom, rep, tree, Q);
|
455 |
|
|
456 |
|
while ( !Q.empty() ) {
|
457 |
|
Node z=Q.front();
|
458 |
|
Q.pop();
|
459 |
|
for( IncEdgeIt f(g,z); f!= INVALID; ++f ) {
|
460 |
|
Node w=g.runningNode(f);
|
461 |
|
//growOrAugment grows if y is covered by the matching and
|
462 |
|
//augments if not. In this latter case it returns 1.
|
463 |
|
if (position[w]==C &&
|
464 |
|
growOrAugment(w, z, ear, blossom, rep, tree, Q)) return;
|
465 |
|
}
|
466 |
|
R.push(z);
|
467 |
|
}
|
468 |
|
} //for e
|
469 |
|
} // while ( !R.empty() )
|
470 |
|
}
|
471 |
|
|
472 |
|
void normShrink(Node v, typename Graph::template NodeMap<Node>& ear,
|
473 |
|
UFE& blossom, NV& rep, EFE& tree) {
|
474 |
|
//We have one tree, which we grow and shrink. If we augment then we
|
475 |
|
//return to the "for" cycle of runEdmonds().
|
476 |
|
|
477 |
|
std::queue<Node> Q; //queue of the unscanned nodes
|
478 |
|
Q.push(v);
|
479 |
|
while ( !Q.empty() ) {
|
480 |
|
|
481 |
|
Node x=Q.front();
|
482 |
|
Q.pop();
|
483 |
|
|
484 |
|
for( IncEdgeIt e(g,x); e!=INVALID; ++e ) {
|
485 |
|
Node y=g.runningNode(e);
|
486 |
|
|
487 |
|
switch ( position[y] ) {
|
488 |
|
case D: //x and y must be in the same tree
|
489 |
|
if ( blossom.find(x) != blossom.find(y))
|
490 |
|
//x and y are in the same tree
|
491 |
|
shrink(x, y, ear, blossom, rep, tree, Q);
|
492 |
|
break;
|
493 |
|
case C:
|
494 |
|
//growOrAugment grows if y is covered by the matching and
|
495 |
|
//augments if not. In this latter case it returns 1.
|
496 |
|
if (growOrAugment(y, x, ear, blossom, rep, tree, Q)) return;
|
497 |
|
break;
|
498 |
|
default: break;
|
499 |
|
}
|
500 |
|
}
|
501 |
|
}
|
502 |
|
}
|
503 |
|
|
504 |
|
void shrink(Node x,Node y, typename Graph::template NodeMap<Node>& ear,
|
505 |
|
UFE& blossom, NV& rep, EFE& tree,std::queue<Node>& Q) {
|
506 |
|
//x and y are the two adjacent vertices in two blossoms.
|
507 |
|
|
508 |
|
typename Graph::template NodeMap<bool> path(g,false);
|
509 |
|
|
510 |
|
Node b=rep[blossom.find(x)];
|
511 |
|
path.set(b,true);
|
512 |
|
b=_mate[b];
|
513 |
|
while ( b!=INVALID ) {
|
514 |
|
b=rep[blossom.find(ear[b])];
|
515 |
|
path.set(b,true);
|
516 |
|
b=_mate[b];
|
517 |
|
} //we go until the root through bases of blossoms and odd vertices
|
518 |
|
|
519 |
|
Node top=y;
|
520 |
|
Node middle=rep[blossom.find(top)];
|
521 |
|
Node bottom=x;
|
522 |
|
while ( !path[middle] )
|
523 |
|
shrinkStep(top, middle, bottom, ear, blossom, rep, tree, Q);
|
524 |
|
//Until we arrive to a node on the path, we update blossom, tree
|
525 |
|
//and the positions of the odd nodes.
|
526 |
|
|
527 |
|
Node base=middle;
|
528 |
|
top=x;
|
529 |
|
middle=rep[blossom.find(top)];
|
530 |
|
bottom=y;
|
531 |
|
Node blossom_base=rep[blossom.find(base)];
|
532 |
|
while ( middle!=blossom_base )
|
533 |
|
shrinkStep(top, middle, bottom, ear, blossom, rep, tree, Q);
|
534 |
|
//Until we arrive to a node on the path, we update blossom, tree
|
535 |
|
//and the positions of the odd nodes.
|
536 |
|
|
537 |
|
rep[blossom.find(base)] = base;
|
538 |
|
}
|
539 |
|
|
540 |
|
void shrinkStep(Node& top, Node& middle, Node& bottom,
|
541 |
|
typename Graph::template NodeMap<Node>& ear,
|
542 |
|
UFE& blossom, NV& rep, EFE& tree, std::queue<Node>& Q) {
|
543 |
|
//We traverse a blossom and update everything.
|
544 |
|
|
545 |
|
ear.set(top,bottom);
|
546 |
|
Node t=top;
|
547 |
|
while ( t!=middle ) {
|
548 |
|
Node u=_mate[t];
|
549 |
|
t=ear[u];
|
550 |
|
ear.set(t,u);
|
551 |
|
}
|
552 |
|
bottom=_mate[middle];
|
553 |
|
position.set(bottom,D);
|
554 |
|
Q.push(bottom);
|
555 |
|
top=ear[bottom];
|
556 |
|
Node oldmiddle=middle;
|
557 |
|
middle=rep[blossom.find(top)];
|
558 |
|
tree.erase(bottom);
|
559 |
|
tree.erase(oldmiddle);
|
560 |
|
blossom.insert(bottom);
|
561 |
|
blossom.join(bottom, oldmiddle);
|
562 |
|
blossom.join(top, oldmiddle);
|
563 |
|
}
|
564 |
|
|
565 |
|
|
566 |
|
|
567 |
|
bool growOrAugment(Node& y, Node& x, typename Graph::template
|
568 |
|
NodeMap<Node>& ear, UFE& blossom, NV& rep, EFE& tree,
|
569 |
|
std::queue<Node>& Q) {
|
570 |
|
//x is in a blossom in the tree, y is outside. If y is covered by
|
571 |
|
//the matching we grow, otherwise we augment. In this case we
|
572 |
|
//return 1.
|
573 |
|
|
574 |
|
if ( _mate[y]!=INVALID ) { //grow
|
575 |
|
ear.set(y,x);
|
576 |
|
Node w=_mate[y];
|
577 |
|
rep[blossom.insert(w)] = w;
|
578 |
|
position.set(y,A);
|
579 |
|
position.set(w,D);
|
580 |
|
int t = tree.find(rep[blossom.find(x)]);
|
581 |
|
tree.insert(y,t);
|
582 |
|
tree.insert(w,t);
|
583 |
|
Q.push(w);
|
584 |
|
} else { //augment
|
585 |
|
augment(x, ear, blossom, rep, tree);
|
586 |
|
_mate.set(x,y);
|
587 |
|
_mate.set(y,x);
|
588 |
|
return true;
|
589 |
|
}
|
590 |
|
return false;
|
591 |
|
}
|
592 |
|
|
593 |
|
void augment(Node x, typename Graph::template NodeMap<Node>& ear,
|
594 |
|
UFE& blossom, NV& rep, EFE& tree) {
|
595 |
|
Node v=_mate[x];
|
596 |
|
while ( v!=INVALID ) {
|
597 |
|
|
598 |
|
Node u=ear[v];
|
599 |
|
_mate.set(v,u);
|
600 |
|
Node tmp=v;
|
601 |
|
v=_mate[u];
|
602 |
|
_mate.set(u,tmp);
|
603 |
|
}
|
604 |
|
int y = tree.find(rep[blossom.find(x)]);
|
605 |
|
for (typename EFE::ItemIt tit(tree, y); tit != INVALID; ++tit) {
|
606 |
|
if ( position[tit] == D ) {
|
607 |
|
int b = blossom.find(tit);
|
608 |
|
for (typename UFE::ItemIt bit(blossom, b); bit != INVALID; ++bit) {
|
609 |
|
position.set(bit, C);
|
610 |
|
}
|
611 |
|
blossom.eraseClass(b);
|
612 |
|
} else position.set(tit, C);
|
613 |
|
}
|
614 |
|
tree.eraseClass(y);
|
615 |
|
|
616 |
|
}
|
|
606 |
/// @}
|
617 |
607 |
|
618 |
608 |
};
|
619 |
609 |
|
... |
... |
@@ -627,25 +617,28 @@
|
627 |
617 |
/// \f$O(nm\log(n))\f$ time complexity.
|
628 |
618 |
///
|
629 |
619 |
/// The maximum weighted matching problem is to find undirected
|
630 |
|
/// arcs in the digraph with maximum overall weight and no two of
|
631 |
|
/// them shares their endpoints. The problem can be formulated with
|
632 |
|
/// the next linear program:
|
|
620 |
/// edges in the graph with maximum overall weight and no two of
|
|
621 |
/// them shares their ends. The problem can be formulated with the
|
|
622 |
/// following linear program.
|
633 |
623 |
/// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f]
|
634 |
|
///\f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} \quad \forall B\in\mathcal{O}\f]
|
|
624 |
/** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
|
|
625 |
\quad \forall B\in\mathcal{O}\f] */
|
635 |
626 |
/// \f[x_e \ge 0\quad \forall e\in E\f]
|
636 |
627 |
/// \f[\max \sum_{e\in E}x_ew_e\f]
|
637 |
|
/// where \f$\delta(X)\f$ is the set of arcs incident to a node in
|
638 |
|
/// \f$X\f$, \f$\gamma(X)\f$ is the set of arcs with both endpoints in
|
639 |
|
/// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality subsets of
|
640 |
|
/// the nodes.
|
|
628 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in
|
|
629 |
/// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in
|
|
630 |
/// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality
|
|
631 |
/// subsets of the nodes.
|
641 |
632 |
///
|
642 |
633 |
/// The algorithm calculates an optimal matching and a proof of the
|
643 |
634 |
/// optimality. The solution of the dual problem can be used to check
|
644 |
|
/// the result of the algorithm. The dual linear problem is the next:
|
645 |
|
/// \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge w_{uv} \quad \forall uv\in E\f]
|
|
635 |
/// the result of the algorithm. The dual linear problem is the
|
|
636 |
/** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}
|
|
637 |
z_B \ge w_{uv} \quad \forall uv\in E\f] */
|
646 |
638 |
/// \f[y_u \ge 0 \quad \forall u \in V\f]
|
647 |
639 |
/// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
|
648 |
|
/// \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}\frac{\vert B \vert - 1}{2}z_B\f]
|
|
640 |
/** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
|
|
641 |
\frac{\vert B \vert - 1}{2}z_B\f] */
|
649 |
642 |
///
|
650 |
643 |
/// The algorithm can be executed with \c run() or the \c init() and
|
651 |
644 |
/// then the \c start() member functions. After it the matching can
|
... |
... |
@@ -705,16 +698,13 @@
|
705 |
698 |
int _node_num;
|
706 |
699 |
int _blossom_num;
|
707 |
700 |
|
708 |
|
typedef typename Graph::template NodeMap<int> NodeIntMap;
|
709 |
|
typedef typename Graph::template ArcMap<int> ArcIntMap;
|
710 |
|
typedef typename Graph::template EdgeMap<int> EdgeIntMap;
|
711 |
701 |
typedef RangeMap<int> IntIntMap;
|
712 |
702 |
|
713 |
703 |
enum Status {
|
714 |
704 |
EVEN = -1, MATCHED = 0, ODD = 1, UNMATCHED = -2
|
715 |
705 |
};
|
716 |
706 |
|
717 |
|
typedef HeapUnionFind<Value, NodeIntMap> BlossomSet;
|
|
707 |
typedef HeapUnionFind<Value, IntNodeMap> BlossomSet;
|
718 |
708 |
struct BlossomData {
|
719 |
709 |
int tree;
|
720 |
710 |
Status status;
|
... |
... |
@@ -723,21 +713,21 @@
|
723 |
713 |
Node base;
|
724 |
714 |
};
|
725 |
715 |
|
726 |
|
NodeIntMap *_blossom_index;
|
|
716 |
IntNodeMap *_blossom_index;
|
727 |
717 |
BlossomSet *_blossom_set;
|
728 |
718 |
RangeMap<BlossomData>* _blossom_data;
|
729 |
719 |
|
730 |
|
NodeIntMap *_node_index;
|
731 |
|
ArcIntMap *_node_heap_index;
|
|
720 |
IntNodeMap *_node_index;
|
|
721 |
IntArcMap *_node_heap_index;
|
732 |
722 |
|
733 |
723 |
struct NodeData {
|
734 |
724 |
|
735 |
|
NodeData(ArcIntMap& node_heap_index)
|
|
725 |
NodeData(IntArcMap& node_heap_index)
|
736 |
726 |
: heap(node_heap_index) {}
|
737 |
727 |
|
738 |
728 |
int blossom;
|
739 |
729 |
Value pot;
|
740 |
|
BinHeap<Value, ArcIntMap> heap;
|
|
730 |
BinHeap<Value, IntArcMap> heap;
|
741 |
731 |
std::map<int, Arc> heap_index;
|
742 |
732 |
|
743 |
733 |
int tree;
|
... |
... |
@@ -750,14 +740,14 @@
|
750 |
740 |
IntIntMap *_tree_set_index;
|
751 |
741 |
TreeSet *_tree_set;
|
752 |
742 |
|
753 |
|
NodeIntMap *_delta1_index;
|
754 |
|
BinHeap<Value, NodeIntMap> *_delta1;
|
|
743 |
IntNodeMap *_delta1_index;
|
|
744 |
BinHeap<Value, IntNodeMap> *_delta1;
|
755 |
745 |
|
756 |
746 |
IntIntMap *_delta2_index;
|
757 |
747 |
BinHeap<Value, IntIntMap> *_delta2;
|
758 |
748 |
|
759 |
|
EdgeIntMap *_delta3_index;
|
760 |
|
BinHeap<Value, EdgeIntMap> *_delta3;
|
|
749 |
IntEdgeMap *_delta3_index;
|
|
750 |
BinHeap<Value, IntEdgeMap> *_delta3;
|
761 |
751 |
|
762 |
752 |
IntIntMap *_delta4_index;
|
763 |
753 |
BinHeap<Value, IntIntMap> *_delta4;
|
... |
... |
@@ -775,14 +765,14 @@
|
775 |
765 |
_node_potential = new NodePotential(_graph);
|
776 |
766 |
}
|
777 |
767 |
if (!_blossom_set) {
|
778 |
|
_blossom_index = new NodeIntMap(_graph);
|
|
768 |
_blossom_index = new IntNodeMap(_graph);
|
779 |
769 |
_blossom_set = new BlossomSet(*_blossom_index);
|
780 |
770 |
_blossom_data = new RangeMap<BlossomData>(_blossom_num);
|
781 |
771 |
}
|
782 |
772 |
|
783 |
773 |
if (!_node_index) {
|
784 |
|
_node_index = new NodeIntMap(_graph);
|
785 |
|
_node_heap_index = new ArcIntMap(_graph);
|
|
774 |
_node_index = new IntNodeMap(_graph);
|
|
775 |
_node_heap_index = new IntArcMap(_graph);
|
786 |
776 |
_node_data = new RangeMap<NodeData>(_node_num,
|
787 |
777 |
NodeData(*_node_heap_index));
|
788 |
778 |
}
|
... |
... |
@@ -792,16 +782,16 @@
|
792 |
782 |
_tree_set = new TreeSet(*_tree_set_index);
|
793 |
783 |
}
|
794 |
784 |
if (!_delta1) {
|
795 |
|
_delta1_index = new NodeIntMap(_graph);
|
796 |
|
_delta1 = new BinHeap<Value, NodeIntMap>(*_delta1_index);
|
|
785 |
_delta1_index = new IntNodeMap(_graph);
|
|
786 |
_delta1 = new BinHeap<Value, IntNodeMap>(*_delta1_index);
|
797 |
787 |
}
|
798 |
788 |
if (!_delta2) {
|
799 |
789 |
_delta2_index = new IntIntMap(_blossom_num);
|
800 |
790 |
_delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
|
801 |
791 |
}
|
802 |
792 |
if (!_delta3) {
|
803 |
|
_delta3_index = new EdgeIntMap(_graph);
|
804 |
|
_delta3 = new BinHeap<Value, EdgeIntMap>(*_delta3_index);
|
|
793 |
_delta3_index = new IntEdgeMap(_graph);
|
|
794 |
_delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index);
|
805 |
795 |
}
|
806 |
796 |
if (!_delta4) {
|
807 |
797 |
_delta4_index = new IntIntMap(_blossom_num);
|
... |
... |
@@ -1266,10 +1256,10 @@
|
1266 |
1256 |
}
|
1267 |
1257 |
|
1268 |
1258 |
|
1269 |
|
void augmentOnArc(const Edge& arc) {
|
1270 |
|
|
1271 |
|
int left = _blossom_set->find(_graph.u(arc));
|
1272 |
|
int right = _blossom_set->find(_graph.v(arc));
|
|
1259 |
void augmentOnEdge(const Edge& edge) {
|
|
1260 |
|
|
1261 |
int left = _blossom_set->find(_graph.u(edge));
|
|
1262 |
int right = _blossom_set->find(_graph.v(edge));
|
1273 |
1263 |
|
1274 |
1264 |
if ((*_blossom_data)[left].status == EVEN) {
|
1275 |
1265 |
int left_tree = _tree_set->find(left);
|
... |
... |
@@ -1289,8 +1279,8 @@
|
1289 |
1279 |
unmatchedToMatched(right);
|
1290 |
1280 |
}
|
1291 |
1281 |
|
1292 |
|
(*_blossom_data)[left].next = _graph.direct(arc, true);
|
1293 |
|
(*_blossom_data)[right].next = _graph.direct(arc, false);
|
|
1282 |
(*_blossom_data)[left].next = _graph.direct(edge, true);
|
|
1283 |
(*_blossom_data)[right].next = _graph.direct(edge, false);
|
1294 |
1284 |
}
|
1295 |
1285 |
|
1296 |
1286 |
void extendOnArc(const Arc& arc) {
|
... |
... |
@@ -1310,7 +1300,7 @@
|
1310 |
1300 |
matchedToEven(even, tree);
|
1311 |
1301 |
}
|
1312 |
1302 |
|
1313 |
|
void shrinkOnArc(const Edge& edge, int tree) {
|
|
1303 |
void shrinkOnEdge(const Edge& edge, int tree) {
|
1314 |
1304 |
int nca = -1;
|
1315 |
1305 |
std::vector<int> left_path, right_path;
|
1316 |
1306 |
|
... |
... |
@@ -1652,7 +1642,7 @@
|
1652 |
1642 |
createStructures();
|
1653 |
1643 |
|
1654 |
1644 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
1655 |
|
_node_heap_index->set(e, BinHeap<Value, ArcIntMap>::PRE_HEAP);
|
|
1645 |
_node_heap_index->set(e, BinHeap<Value, IntArcMap>::PRE_HEAP);
|
1656 |
1646 |
}
|
1657 |
1647 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
1658 |
1648 |
_delta1_index->set(n, _delta1->PRE_HEAP);
|
... |
... |
@@ -1769,9 +1759,9 @@
|
1769 |
1759 |
}
|
1770 |
1760 |
|
1771 |
1761 |
if (left_tree == right_tree) {
|
1772 |
|
shrinkOnArc(e, left_tree);
|
|
1762 |
shrinkOnEdge(e, left_tree);
|
1773 |
1763 |
} else {
|
1774 |
|
augmentOnArc(e);
|
|
1764 |
augmentOnEdge(e);
|
1775 |
1765 |
unmatched -= 2;
|
1776 |
1766 |
}
|
1777 |
1767 |
}
|
... |
... |
@@ -1818,11 +1808,24 @@
|
1818 |
1808 |
return sum /= 2;
|
1819 |
1809 |
}
|
1820 |
1810 |
|
1821 |
|
/// \brief Returns true when the arc is in the matching.
|
|
1811 |
/// \brief Returns the cardinality of the matching.
|
1822 |
1812 |
///
|
1823 |
|
/// Returns true when the arc is in the matching.
|
1824 |
|
bool matching(const Edge& arc) const {
|
1825 |
|
return (*_matching)[_graph.u(arc)] == _graph.direct(arc, true);
|
|
1813 |
/// Returns the cardinality of the matching.
|
|
1814 |
int matchingSize() const {
|
|
1815 |
int num = 0;
|
|
1816 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
1817 |
if ((*_matching)[n] != INVALID) {
|
|
1818 |
++num;
|
|
1819 |
}
|
|
1820 |
}
|
|
1821 |
return num /= 2;
|
|
1822 |
}
|
|
1823 |
|
|
1824 |
/// \brief Returns true when the edge is in the matching.
|
|
1825 |
///
|
|
1826 |
/// Returns true when the edge is in the matching.
|
|
1827 |
bool matching(const Edge& edge) const {
|
|
1828 |
return edge == (*_matching)[_graph.u(edge)];
|
1826 |
1829 |
}
|
1827 |
1830 |
|
1828 |
1831 |
/// \brief Returns the incident matching arc.
|
... |
... |
@@ -1913,16 +1916,11 @@
|
1913 |
1916 |
_last = _algorithm->_blossom_potential[variable].end;
|
1914 |
1917 |
}
|
1915 |
1918 |
|
1916 |
|
/// \brief Invalid constructor.
|
1917 |
|
///
|
1918 |
|
/// Invalid constructor.
|
1919 |
|
BlossomIt(Invalid) : _index(-1) {}
|
1920 |
|
|
1921 |
1919 |
/// \brief Conversion to node.
|
1922 |
1920 |
///
|
1923 |
1921 |
/// Conversion to node.
|
1924 |
1922 |
operator Node() const {
|
1925 |
|
return _algorithm ? _algorithm->_blossom_node_list[_index] : INVALID;
|
|
1923 |
return _algorithm->_blossom_node_list[_index];
|
1926 |
1924 |
}
|
1927 |
1925 |
|
1928 |
1926 |
/// \brief Increment operator.
|
... |
... |
@@ -1930,18 +1928,18 @@
|
1930 |
1928 |
/// Increment operator.
|
1931 |
1929 |
BlossomIt& operator++() {
|
1932 |
1930 |
++_index;
|
1933 |
|
if (_index == _last) {
|
1934 |
|
_index = -1;
|
1935 |
|
}
|
1936 |
1931 |
return *this;
|
1937 |
1932 |
}
|
1938 |
1933 |
|
1939 |
|
bool operator==(const BlossomIt& it) const {
|
1940 |
|
return _index == it._index;
|
1941 |
|
}
|
1942 |
|
bool operator!=(const BlossomIt& it) const {
|
1943 |
|
return _index != it._index;
|
1944 |
|
}
|
|
1934 |
/// \brief Validity checking
|
|
1935 |
///
|
|
1936 |
/// Checks whether the iterator is invalid.
|
|
1937 |
bool operator==(Invalid) const { return _index == _last; }
|
|
1938 |
|
|
1939 |
/// \brief Validity checking
|
|
1940 |
///
|
|
1941 |
/// Checks whether the iterator is valid.
|
|
1942 |
bool operator!=(Invalid) const { return _index != _last; }
|
1945 |
1943 |
|
1946 |
1944 |
private:
|
1947 |
1945 |
const MaxWeightedMatching* _algorithm;
|
... |
... |
@@ -1958,29 +1956,32 @@
|
1958 |
1956 |
/// \brief Weighted perfect matching in general graphs
|
1959 |
1957 |
///
|
1960 |
1958 |
/// This class provides an efficient implementation of Edmond's
|
1961 |
|
/// maximum weighted perfecr matching algorithm. The implementation
|
|
1959 |
/// maximum weighted perfect matching algorithm. The implementation
|
1962 |
1960 |
/// is based on extensive use of priority queues and provides
|
1963 |
1961 |
/// \f$O(nm\log(n))\f$ time complexity.
|
1964 |
1962 |
///
|
1965 |
1963 |
/// The maximum weighted matching problem is to find undirected
|
1966 |
|
/// arcs in the digraph with maximum overall weight and no two of
|
1967 |
|
/// them shares their endpoints and covers all nodes. The problem
|
1968 |
|
/// can be formulated with the next linear program:
|
|
1964 |
/// edges in the graph with maximum overall weight and no two of
|
|
1965 |
/// them shares their ends and covers all nodes. The problem can be
|
|
1966 |
/// formulated with the following linear program.
|
1969 |
1967 |
/// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f]
|
1970 |
|
///\f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} \quad \forall B\in\mathcal{O}\f]
|
|
1968 |
/** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2}
|
|
1969 |
\quad \forall B\in\mathcal{O}\f] */
|
1971 |
1970 |
/// \f[x_e \ge 0\quad \forall e\in E\f]
|
1972 |
1971 |
/// \f[\max \sum_{e\in E}x_ew_e\f]
|
1973 |
|
/// where \f$\delta(X)\f$ is the set of arcs incident to a node in
|
1974 |
|
/// \f$X\f$, \f$\gamma(X)\f$ is the set of arcs with both endpoints in
|
1975 |
|
/// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality subsets of
|
1976 |
|
/// the nodes.
|
|
1972 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in
|
|
1973 |
/// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in
|
|
1974 |
/// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality
|
|
1975 |
/// subsets of the nodes.
|
1977 |
1976 |
///
|
1978 |
1977 |
/// The algorithm calculates an optimal matching and a proof of the
|
1979 |
1978 |
/// optimality. The solution of the dual problem can be used to check
|
1980 |
|
/// the result of the algorithm. The dual linear problem is the next:
|
1981 |
|
/// \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge w_{uv} \quad \forall uv\in E\f]
|
|
1979 |
/// the result of the algorithm. The dual linear problem is the
|
|
1980 |
/** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge
|
|
1981 |
w_{uv} \quad \forall uv\in E\f] */
|
1982 |
1982 |
/// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
|
1983 |
|
/// \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}\frac{\vert B \vert - 1}{2}z_B\f]
|
|
1983 |
/** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
|
|
1984 |
\frac{\vert B \vert - 1}{2}z_B\f] */
|
1984 |
1985 |
///
|
1985 |
1986 |
/// The algorithm can be executed with \c run() or the \c init() and
|
1986 |
1987 |
/// then the \c start() member functions. After it the matching can
|
... |
... |
@@ -2040,16 +2041,13 @@
|
2040 |
2041 |
int _node_num;
|
2041 |
2042 |
int _blossom_num;
|
2042 |
2043 |
|
2043 |
|
typedef typename Graph::template NodeMap<int> NodeIntMap;
|
2044 |
|
typedef typename Graph::template ArcMap<int> ArcIntMap;
|
2045 |
|
typedef typename Graph::template EdgeMap<int> EdgeIntMap;
|
2046 |
2044 |
typedef RangeMap<int> IntIntMap;
|
2047 |
2045 |
|
2048 |
2046 |
enum Status {
|
2049 |
2047 |
EVEN = -1, MATCHED = 0, ODD = 1
|
2050 |
2048 |
};
|
2051 |
2049 |
|
2052 |
|
typedef HeapUnionFind<Value, NodeIntMap> BlossomSet;
|
|
2050 |
typedef HeapUnionFind<Value, IntNodeMap> BlossomSet;
|
2053 |
2051 |
struct BlossomData {
|
2054 |
2052 |
int tree;
|
2055 |
2053 |
Status status;
|
... |
... |
@@ -2057,21 +2055,21 @@
|
2057 |
2055 |
Value pot, offset;
|
2058 |
2056 |
};
|
2059 |
2057 |
|
2060 |
|
NodeIntMap *_blossom_index;
|
|
2058 |
IntNodeMap *_blossom_index;
|
2061 |
2059 |
BlossomSet *_blossom_set;
|
2062 |
2060 |
RangeMap<BlossomData>* _blossom_data;
|
2063 |
2061 |
|
2064 |
|
NodeIntMap *_node_index;
|
2065 |
|
ArcIntMap *_node_heap_index;
|
|
2062 |
IntNodeMap *_node_index;
|
|
2063 |
IntArcMap *_node_heap_index;
|
2066 |
2064 |
|
2067 |
2065 |
struct NodeData {
|
2068 |
2066 |
|
2069 |
|
NodeData(ArcIntMap& node_heap_index)
|
|
2067 |
NodeData(IntArcMap& node_heap_index)
|
2070 |
2068 |
: heap(node_heap_index) {}
|
2071 |
2069 |
|
2072 |
2070 |
int blossom;
|
2073 |
2071 |
Value pot;
|
2074 |
|
BinHeap<Value, ArcIntMap> heap;
|
|
2072 |
BinHeap<Value, IntArcMap> heap;
|
2075 |
2073 |
std::map<int, Arc> heap_index;
|
2076 |
2074 |
|
2077 |
2075 |
int tree;
|
... |
... |
@@ -2087,8 +2085,8 @@
|
2087 |
2085 |
IntIntMap *_delta2_index;
|
2088 |
2086 |
BinHeap<Value, IntIntMap> *_delta2;
|
2089 |
2087 |
|
2090 |
|
EdgeIntMap *_delta3_index;
|
2091 |
|
BinHeap<Value, EdgeIntMap> *_delta3;
|
|
2088 |
IntEdgeMap *_delta3_index;
|
|
2089 |
BinHeap<Value, IntEdgeMap> *_delta3;
|
2092 |
2090 |
|
2093 |
2091 |
IntIntMap *_delta4_index;
|
2094 |
2092 |
BinHeap<Value, IntIntMap> *_delta4;
|
... |
... |
@@ -2106,16 +2104,16 @@
|
2106 |
2104 |
_node_potential = new NodePotential(_graph);
|
2107 |
2105 |
}
|
2108 |
2106 |
if (!_blossom_set) {
|
2109 |
|
_blossom_index = new NodeIntMap(_graph);
|
|
2107 |
_blossom_index = new IntNodeMap(_graph);
|
2110 |
2108 |
_blossom_set = new BlossomSet(*_blossom_index);
|
2111 |
2109 |
_blossom_data = new RangeMap<BlossomData>(_blossom_num);
|
2112 |
2110 |
}
|
2113 |
2111 |
|
2114 |
2112 |
if (!_node_index) {
|
2115 |
|
_node_index = new NodeIntMap(_graph);
|
2116 |
|
_node_heap_index = new ArcIntMap(_graph);
|
|
2113 |
_node_index = new IntNodeMap(_graph);
|
|
2114 |
_node_heap_index = new IntArcMap(_graph);
|
2117 |
2115 |
_node_data = new RangeMap<NodeData>(_node_num,
|
2118 |
|
NodeData(*_node_heap_index));
|
|
2116 |
NodeData(*_node_heap_index));
|
2119 |
2117 |
}
|
2120 |
2118 |
|
2121 |
2119 |
if (!_tree_set) {
|
... |
... |
@@ -2127,8 +2125,8 @@
|
2127 |
2125 |
_delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
|
2128 |
2126 |
}
|
2129 |
2127 |
if (!_delta3) {
|
2130 |
|
_delta3_index = new EdgeIntMap(_graph);
|
2131 |
|
_delta3 = new BinHeap<Value, EdgeIntMap>(*_delta3_index);
|
|
2128 |
_delta3_index = new IntEdgeMap(_graph);
|
|
2129 |
_delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index);
|
2132 |
2130 |
}
|
2133 |
2131 |
if (!_delta4) {
|
2134 |
2132 |
_delta4_index = new IntIntMap(_blossom_num);
|
... |
... |
@@ -2461,10 +2459,10 @@
|
2461 |
2459 |
_tree_set->eraseClass(tree);
|
2462 |
2460 |
}
|
2463 |
2461 |
|
2464 |
|
void augmentOnArc(const Edge& arc) {
|
2465 |
|
|
2466 |
|
int left = _blossom_set->find(_graph.u(arc));
|
2467 |
|
int right = _blossom_set->find(_graph.v(arc));
|
|
2462 |
void augmentOnEdge(const Edge& edge) {
|
|
2463 |
|
|
2464 |
int left = _blossom_set->find(_graph.u(edge));
|
|
2465 |
int right = _blossom_set->find(_graph.v(edge));
|
2468 |
2466 |
|
2469 |
2467 |
int left_tree = _tree_set->find(left);
|
2470 |
2468 |
alternatePath(left, left_tree);
|
... |
... |
@@ -2474,8 +2472,8 @@
|
2474 |
2472 |
alternatePath(right, right_tree);
|
2475 |
2473 |
destroyTree(right_tree);
|
2476 |
2474 |
|
2477 |
|
(*_blossom_data)[left].next = _graph.direct(arc, true);
|
2478 |
|
(*_blossom_data)[right].next = _graph.direct(arc, false);
|
|
2475 |
(*_blossom_data)[left].next = _graph.direct(edge, true);
|
|
2476 |
(*_blossom_data)[right].next = _graph.direct(edge, false);
|
2479 |
2477 |
}
|
2480 |
2478 |
|
2481 |
2479 |
void extendOnArc(const Arc& arc) {
|
... |
... |
@@ -2495,7 +2493,7 @@
|
2495 |
2493 |
matchedToEven(even, tree);
|
2496 |
2494 |
}
|
2497 |
2495 |
|
2498 |
|
void shrinkOnArc(const Edge& edge, int tree) {
|
|
2496 |
void shrinkOnEdge(const Edge& edge, int tree) {
|
2499 |
2497 |
int nca = -1;
|
2500 |
2498 |
std::vector<int> left_path, right_path;
|
2501 |
2499 |
|
... |
... |
@@ -2831,7 +2829,7 @@
|
2831 |
2829 |
createStructures();
|
2832 |
2830 |
|
2833 |
2831 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
2834 |
|
_node_heap_index->set(e, BinHeap<Value, ArcIntMap>::PRE_HEAP);
|
|
2832 |
_node_heap_index->set(e, BinHeap<Value, IntArcMap>::PRE_HEAP);
|
2835 |
2833 |
}
|
2836 |
2834 |
for (EdgeIt e(_graph); e != INVALID; ++e) {
|
2837 |
2835 |
_delta3_index->set(e, _delta3->PRE_HEAP);
|
... |
... |
@@ -2924,9 +2922,9 @@
|
2924 |
2922 |
int right_tree = _tree_set->find(right_blossom);
|
2925 |
2923 |
|
2926 |
2924 |
if (left_tree == right_tree) {
|
2927 |
|
shrinkOnArc(e, left_tree);
|
|
2925 |
shrinkOnEdge(e, left_tree);
|
2928 |
2926 |
} else {
|
2929 |
|
augmentOnArc(e);
|
|
2927 |
augmentOnEdge(e);
|
2930 |
2928 |
unmatched -= 2;
|
2931 |
2929 |
}
|
2932 |
2930 |
}
|
... |
... |
@@ -2974,16 +2972,16 @@
|
2974 |
2972 |
return sum /= 2;
|
2975 |
2973 |
}
|
2976 |
2974 |
|
2977 |
|
/// \brief Returns true when the arc is in the matching.
|
|
2975 |
/// \brief Returns true when the edge is in the matching.
|
2978 |
2976 |
///
|
2979 |
|
/// Returns true when the arc is in the matching.
|
2980 |
|
bool matching(const Edge& arc) const {
|
2981 |
|
return (*_matching)[_graph.u(arc)] == _graph.direct(arc, true);
|
|
2977 |
/// Returns true when the edge is in the matching.
|
|
2978 |
bool matching(const Edge& edge) const {
|
|
2979 |
return static_cast<const Edge&>((*_matching)[_graph.u(edge)]) == edge;
|
2982 |
2980 |
}
|
2983 |
2981 |
|
2984 |
|
/// \brief Returns the incident matching arc.
|
|
2982 |
/// \brief Returns the incident matching edge.
|
2985 |
2983 |
///
|
2986 |
|
/// Returns the incident matching arc from given node.
|
|
2984 |
/// Returns the incident matching arc from given edge.
|
2987 |
2985 |
Arc matching(const Node& node) const {
|
2988 |
2986 |
return (*_matching)[node];
|
2989 |
2987 |
}
|
... |
... |
@@ -3066,16 +3064,11 @@
|
3066 |
3064 |
_last = _algorithm->_blossom_potential[variable].end;
|
3067 |
3065 |
}
|
3068 |
3066 |
|
3069 |
|
/// \brief Invalid constructor.
|
3070 |
|
///
|
3071 |
|
/// Invalid constructor.
|
3072 |
|
BlossomIt(Invalid) : _index(-1) {}
|
3073 |
|
|
3074 |
3067 |
/// \brief Conversion to node.
|
3075 |
3068 |
///
|
3076 |
3069 |
/// Conversion to node.
|
3077 |
3070 |
operator Node() const {
|
3078 |
|
return _algorithm ? _algorithm->_blossom_node_list[_index] : INVALID;
|
|
3071 |
return _algorithm->_blossom_node_list[_index];
|
3079 |
3072 |
}
|
3080 |
3073 |
|
3081 |
3074 |
/// \brief Increment operator.
|
... |
... |
@@ -3083,18 +3076,18 @@
|
3083 |
3076 |
/// Increment operator.
|
3084 |
3077 |
BlossomIt& operator++() {
|
3085 |
3078 |
++_index;
|
3086 |
|
if (_index == _last) {
|
3087 |
|
_index = -1;
|
3088 |
|
}
|
3089 |
3079 |
return *this;
|
3090 |
3080 |
}
|
3091 |
3081 |
|
3092 |
|
bool operator==(const BlossomIt& it) const {
|
3093 |
|
return _index == it._index;
|
3094 |
|
}
|
3095 |
|
bool operator!=(const BlossomIt& it) const {
|
3096 |
|
return _index != it._index;
|
3097 |
|
}
|
|
3082 |
/// \brief Validity checking
|
|
3083 |
///
|
|
3084 |
/// Checks whether the iterator is invalid.
|
|
3085 |
bool operator==(Invalid) const { return _index == _last; }
|
|
3086 |
|
|
3087 |
/// \brief Validity checking
|
|
3088 |
///
|
|
3089 |
/// Checks whether the iterator is valid.
|
|
3090 |
bool operator!=(Invalid) const { return _index != _last; }
|
3098 |
3091 |
|
3099 |
3092 |
private:
|
3100 |
3093 |
const MaxWeightedPerfectMatching* _algorithm;
|