gravatar
deba@inf.elte.hu
deba@inf.elte.hu
Port maximum matching algorithms from svn 3498 (ticket #48)
0 3 3
default
6 files changed with 3550 insertions and 0 deletions:
↑ Collapse diff ↑
Ignore white space 6 line context
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library.
4
 *
5
 * Copyright (C) 2003-2008
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#ifndef LEMON_MAX_MATCHING_H
20
#define LEMON_MAX_MATCHING_H
21

	
22
#include <vector>
23
#include <queue>
24
#include <set>
25
#include <limits>
26

	
27
#include <lemon/core.h>
28
#include <lemon/unionfind.h>
29
#include <lemon/bin_heap.h>
30
#include <lemon/maps.h>
31

	
32
///\ingroup matching
33
///\file
34
///\brief Maximum matching algorithms in graph.
35

	
36
namespace lemon {
37

	
38
  ///\ingroup matching
39
  ///
40
  ///\brief Edmonds' alternating forest maximum matching algorithm.
41
  ///
42
  ///This class provides Edmonds' alternating forest matching
43
  ///algorithm. The starting matching (if any) can be passed to the
44
  ///algorithm using some of init functions.
45
  ///
46
  ///The dual side of a matching is a map of the nodes to
47
  ///MaxMatching::DecompType, having values \c D, \c A and \c C
48
  ///showing the Gallai-Edmonds decomposition of the digraph. The nodes
49
  ///in \c D induce a digraph with factor-critical components, the nodes
50
  ///in \c A form the barrier, and the nodes in \c C induce a digraph
51
  ///having a perfect matching. This decomposition can be attained by
52
  ///calling \c decomposition() after running the algorithm.
53
  ///
54
  ///\param Digraph The graph type the algorithm runs on.
55
  template <typename Graph>
56
  class MaxMatching {
57

	
58
  protected:
59

	
60
    TEMPLATE_GRAPH_TYPEDEFS(Graph);
61

	
62
    typedef typename Graph::template NodeMap<int> UFECrossRef;
63
    typedef UnionFindEnum<UFECrossRef> UFE;
64
    typedef std::vector<Node> NV;
65

	
66
    typedef typename Graph::template NodeMap<int> EFECrossRef;
67
    typedef ExtendFindEnum<EFECrossRef> EFE;
68

	
69
  public:
70

	
71
    ///\brief Indicates the Gallai-Edmonds decomposition of the digraph.
72
    ///
73
    ///Indicates the Gallai-Edmonds decomposition of the digraph, which
74
    ///shows an upper bound on the size of a maximum matching. The
75
    ///nodes with DecompType \c D induce a digraph with factor-critical
76
    ///components, the nodes in \c A form the canonical barrier, and the
77
    ///nodes in \c C induce a digraph having a perfect matching.
78
    enum DecompType {
79
      D=0,
80
      A=1,
81
      C=2
82
    };
83

	
84
  protected:
85

	
86
    static const int HEUR_density=2;
87
    const Graph& g;
88
    typename Graph::template NodeMap<Node> _mate;
89
    typename Graph::template NodeMap<DecompType> position;
90

	
91
  public:
92

	
93
    MaxMatching(const Graph& _g)
94
      : g(_g), _mate(_g), position(_g) {}
95

	
96
    ///\brief Sets the actual matching to the empty matching.
97
    ///
98
    ///Sets the actual matching to the empty matching.
99
    ///
100
    void init() {
101
      for(NodeIt v(g); v!=INVALID; ++v) {
102
        _mate.set(v,INVALID);
103
        position.set(v,C);
104
      }
105
    }
106

	
107
    ///\brief Finds a greedy matching for initial matching.
108
    ///
109
    ///For initial matchig it finds a maximal greedy matching.
110
    void greedyInit() {
111
      for(NodeIt v(g); v!=INVALID; ++v) {
112
        _mate.set(v,INVALID);
113
        position.set(v,C);
114
      }
115
      for(NodeIt v(g); v!=INVALID; ++v)
116
        if ( _mate[v]==INVALID ) {
117
          for( IncEdgeIt e(g,v); e!=INVALID ; ++e ) {
118
            Node y=g.runningNode(e);
119
            if ( _mate[y]==INVALID && y!=v ) {
120
              _mate.set(v,y);
121
              _mate.set(y,v);
122
              break;
123
            }
124
          }
125
        }
126
    }
127

	
128
    ///\brief Initialize the matching from each nodes' mate.
129
    ///
130
    ///Initialize the matching from a \c Node valued \c Node map. This
131
    ///map must be \e symmetric, i.e. if \c map[u]==v then \c
132
    ///map[v]==u must hold, and \c uv will be an arc of the initial
133
    ///matching.
134
    template <typename MateMap>
135
    void mateMapInit(MateMap& map) {
136
      for(NodeIt v(g); v!=INVALID; ++v) {
137
        _mate.set(v,map[v]);
138
        position.set(v,C);
139
      }
140
    }
141

	
142
    ///\brief Initialize the matching from a node map with the
143
    ///incident matching arcs.
144
    ///
145
    ///Initialize the matching from an \c Edge valued \c Node map. \c
146
    ///map[v] must be an \c Edge incident to \c v. This map must have
147
    ///the property that if \c g.oppositeNode(u,map[u])==v then \c \c
148
    ///g.oppositeNode(v,map[v])==u holds, and now some arc joining \c
149
    ///u to \c v will be an arc of the matching.
150
    template<typename MatchingMap>
151
    void matchingMapInit(MatchingMap& map) {
152
      for(NodeIt v(g); v!=INVALID; ++v) {
153
        position.set(v,C);
154
        Edge e=map[v];
155
        if ( e!=INVALID )
156
          _mate.set(v,g.oppositeNode(v,e));
157
        else
158
          _mate.set(v,INVALID);
159
      }
160
    }
161

	
162
    ///\brief Initialize the matching from the map containing the
163
    ///undirected matching arcs.
164
    ///
165
    ///Initialize the matching from a \c bool valued \c Edge map. This
166
    ///map must have the property that there are no two incident arcs
167
    ///\c e, \c f with \c map[e]==map[f]==true. The arcs \c e with \c
168
    ///map[e]==true form the matching.
169
    template <typename MatchingMap>
170
    void matchingInit(MatchingMap& map) {
171
      for(NodeIt v(g); v!=INVALID; ++v) {
172
        _mate.set(v,INVALID);
173
        position.set(v,C);
174
      }
175
      for(EdgeIt e(g); e!=INVALID; ++e) {
176
        if ( map[e] ) {
177
          Node u=g.u(e);
178
          Node v=g.v(e);
179
          _mate.set(u,v);
180
          _mate.set(v,u);
181
        }
182
      }
183
    }
184

	
185

	
186
    ///\brief Runs Edmonds' algorithm.
187
    ///
188
    ///Runs Edmonds' algorithm for sparse digraphs (number of arcs <
189
    ///2*number of nodes), and a heuristical Edmonds' algorithm with a
190
    ///heuristic of postponing shrinks for dense digraphs.
191
    void run() {
192
      if (countEdges(g) < HEUR_density * countNodes(g)) {
193
        greedyInit();
194
        startSparse();
195
      } else {
196
        init();
197
        startDense();
198
      }
199
    }
200

	
201

	
202
    ///\brief Starts Edmonds' algorithm.
203
    ///
204
    ///If runs the original Edmonds' algorithm.
205
    void startSparse() {
206

	
207
      typename Graph::template NodeMap<Node> ear(g,INVALID);
208
      //undefined for the base nodes of the blossoms (i.e. for the
209
      //representative elements of UFE blossom) and for the nodes in C
210

	
211
      UFECrossRef blossom_base(g);
212
      UFE blossom(blossom_base);
213
      NV rep(countNodes(g));
214

	
215
      EFECrossRef tree_base(g);
216
      EFE tree(tree_base);
217

	
218
      //If these UFE's would be members of the class then also
219
      //blossom_base and tree_base should be a member.
220

	
221
      //We build only one tree and the other vertices uncovered by the
222
      //matching belong to C. (They can be considered as singleton
223
      //trees.) If this tree can be augmented or no more
224
      //grow/augmentation/shrink is possible then we return to this
225
      //"for" cycle.
226
      for(NodeIt v(g); v!=INVALID; ++v) {
227
        if (position[v]==C && _mate[v]==INVALID) {
228
          rep[blossom.insert(v)] = v;
229
          tree.insert(v);
230
          position.set(v,D);
231
          normShrink(v, ear, blossom, rep, tree);
232
        }
233
      }
234
    }
235

	
236
    ///\brief Starts Edmonds' algorithm.
237
    ///
238
    ///It runs Edmonds' algorithm with a heuristic of postponing
239
    ///shrinks, giving a faster algorithm for dense digraphs.
240
    void startDense() {
241

	
242
      typename Graph::template NodeMap<Node> ear(g,INVALID);
243
      //undefined for the base nodes of the blossoms (i.e. for the
244
      //representative elements of UFE blossom) and for the nodes in C
245

	
246
      UFECrossRef blossom_base(g);
247
      UFE blossom(blossom_base);
248
      NV rep(countNodes(g));
249

	
250
      EFECrossRef tree_base(g);
251
      EFE tree(tree_base);
252

	
253
      //If these UFE's would be members of the class then also
254
      //blossom_base and tree_base should be a member.
255

	
256
      //We build only one tree and the other vertices uncovered by the
257
      //matching belong to C. (They can be considered as singleton
258
      //trees.) If this tree can be augmented or no more
259
      //grow/augmentation/shrink is possible then we return to this
260
      //"for" cycle.
261
      for(NodeIt v(g); v!=INVALID; ++v) {
262
        if ( position[v]==C && _mate[v]==INVALID ) {
263
          rep[blossom.insert(v)] = v;
264
          tree.insert(v);
265
          position.set(v,D);
266
          lateShrink(v, ear, blossom, rep, tree);
267
        }
268
      }
269
    }
270

	
271

	
272

	
273
    ///\brief Returns the size of the actual matching stored.
274
    ///
275
    ///Returns the size of the actual matching stored. After \ref
276
    ///run() it returns the size of a maximum matching in the digraph.
277
    int size() const {
278
      int s=0;
279
      for(NodeIt v(g); v!=INVALID; ++v) {
280
        if ( _mate[v]!=INVALID ) {
281
          ++s;
282
        }
283
      }
284
      return s/2;
285
    }
286

	
287

	
288
    ///\brief Returns the mate of a node in the actual matching.
289
    ///
290
    ///Returns the mate of a \c node in the actual matching.
291
    ///Returns INVALID if the \c node is not covered by the actual matching.
292
    Node mate(const Node& node) const {
293
      return _mate[node];
294
    }
295

	
296
    ///\brief Returns the matching arc incident to the given node.
297
    ///
298
    ///Returns the matching arc of a \c node in the actual matching.
299
    ///Returns INVALID if the \c node is not covered by the actual matching.
300
    Edge matchingArc(const Node& node) const {
301
      if (_mate[node] == INVALID) return INVALID;
302
      Node n = node < _mate[node] ? node : _mate[node];
303
      for (IncEdgeIt e(g, n); e != INVALID; ++e) {
304
        if (g.oppositeNode(n, e) == _mate[n]) {
305
          return e;
306
        }
307
      }
308
      return INVALID;
309
    }
310

	
311
    /// \brief Returns the class of the node in the Edmonds-Gallai
312
    /// decomposition.
313
    ///
314
    /// Returns the class of the node in the Edmonds-Gallai
315
    /// decomposition.
316
    DecompType decomposition(const Node& n) {
317
      return position[n] == A;
318
    }
319

	
320
    /// \brief Returns true when the node is in the barrier.
321
    ///
322
    /// Returns true when the node is in the barrier.
323
    bool barrier(const Node& n) {
324
      return position[n] == A;
325
    }
326

	
327
    ///\brief Gives back the matching in a \c Node of mates.
328
    ///
329
    ///Writes the stored matching to a \c Node valued \c Node map. The
330
    ///resulting map will be \e symmetric, i.e. if \c map[u]==v then \c
331
    ///map[v]==u will hold, and now \c uv is an arc of the matching.
332
    template <typename MateMap>
333
    void mateMap(MateMap& map) const {
334
      for(NodeIt v(g); v!=INVALID; ++v) {
335
        map.set(v,_mate[v]);
336
      }
337
    }
338

	
339
    ///\brief Gives back the matching in an \c Edge valued \c Node
340
    ///map.
341
    ///
342
    ///Writes the stored matching to an \c Edge valued \c Node
343
    ///map. \c map[v] will be an \c Edge incident to \c v. This
344
    ///map will have the property that if \c g.oppositeNode(u,map[u])
345
    ///== v then \c map[u]==map[v] holds, and now this arc is an arc
346
    ///of the matching.
347
    template <typename MatchingMap>
348
    void matchingMap(MatchingMap& map)  const {
349
      typename Graph::template NodeMap<bool> todo(g,true);
350
      for(NodeIt v(g); v!=INVALID; ++v) {
351
        if (_mate[v]!=INVALID && v < _mate[v]) {
352
          Node u=_mate[v];
353
          for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
354
            if ( g.runningNode(e) == u ) {
355
              map.set(u,e);
356
              map.set(v,e);
357
              todo.set(u,false);
358
              todo.set(v,false);
359
              break;
360
            }
361
          }
362
        }
363
      }
364
    }
365

	
366

	
367
    ///\brief Gives back the matching in a \c bool valued \c Edge
368
    ///map.
369
    ///
370
    ///Writes the matching stored to a \c bool valued \c Arc
371
    ///map. This map will have the property that there are no two
372
    ///incident arcs \c e, \c f with \c map[e]==map[f]==true. The
373
    ///arcs \c e with \c map[e]==true form the matching.
374
    template<typename MatchingMap>
375
    void matching(MatchingMap& map) const {
376
      for(EdgeIt e(g); e!=INVALID; ++e) map.set(e,false);
377

	
378
      typename Graph::template NodeMap<bool> todo(g,true);
379
      for(NodeIt v(g); v!=INVALID; ++v) {
380
        if ( todo[v] && _mate[v]!=INVALID ) {
381
          Node u=_mate[v];
382
          for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
383
            if ( g.runningNode(e) == u ) {
384
              map.set(e,true);
385
              todo.set(u,false);
386
              todo.set(v,false);
387
              break;
388
            }
389
          }
390
        }
391
      }
392
    }
393

	
394

	
395
    ///\brief Returns the canonical decomposition of the digraph after running
396
    ///the algorithm.
397
    ///
398
    ///After calling any run methods of the class, it writes the
399
    ///Gallai-Edmonds canonical decomposition of the digraph. \c map
400
    ///must be a node map of \ref DecompType 's.
401
    template <typename DecompositionMap>
402
    void decomposition(DecompositionMap& map) const {
403
      for(NodeIt v(g); v!=INVALID; ++v) map.set(v,position[v]);
404
    }
405

	
406
    ///\brief Returns a barrier on the nodes.
407
    ///
408
    ///After calling any run methods of the class, it writes a
409
    ///canonical barrier on the nodes. The odd component number of the
410
    ///remaining digraph minus the barrier size is a lower bound for the
411
    ///uncovered nodes in the digraph. The \c map must be a node map of
412
    ///bools.
413
    template <typename BarrierMap>
414
    void barrier(BarrierMap& barrier) {
415
      for(NodeIt v(g); v!=INVALID; ++v) barrier.set(v,position[v] == A);
416
    }
417

	
418
  private:
419

	
420

	
421
    void lateShrink(Node v, typename Graph::template NodeMap<Node>& ear,
422
                    UFE& blossom, NV& rep, EFE& tree) {
423
      //We have one tree which we grow, and also shrink but only if it
424
      //cannot be postponed. If we augment then we return to the "for"
425
      //cycle of runEdmonds().
426

	
427
      std::queue<Node> Q;   //queue of the totally unscanned nodes
428
      Q.push(v);
429
      std::queue<Node> R;
430
      //queue of the nodes which must be scanned for a possible shrink
431

	
432
      while ( !Q.empty() ) {
433
        Node x=Q.front();
434
        Q.pop();
435
        for( IncEdgeIt e(g,x); e!= INVALID; ++e ) {
436
          Node y=g.runningNode(e);
437
          //growOrAugment grows if y is covered by the matching and
438
          //augments if not. In this latter case it returns 1.
439
          if (position[y]==C &&
440
              growOrAugment(y, x, ear, blossom, rep, tree, Q)) return;
441
        }
442
        R.push(x);
443
      }
444

	
445
      while ( !R.empty() ) {
446
        Node x=R.front();
447
        R.pop();
448

	
449
        for( IncEdgeIt e(g,x); e!=INVALID ; ++e ) {
450
          Node y=g.runningNode(e);
451

	
452
          if ( position[y] == D && blossom.find(x) != blossom.find(y) )
453
            //Recall that we have only one tree.
454
            shrink( x, y, ear, blossom, rep, tree, Q);
455

	
456
          while ( !Q.empty() ) {
457
            Node z=Q.front();
458
            Q.pop();
459
            for( IncEdgeIt f(g,z); f!= INVALID; ++f ) {
460
              Node w=g.runningNode(f);
461
              //growOrAugment grows if y is covered by the matching and
462
              //augments if not. In this latter case it returns 1.
463
              if (position[w]==C &&
464
                  growOrAugment(w, z, ear, blossom, rep, tree, Q)) return;
465
            }
466
            R.push(z);
467
          }
468
        } //for e
469
      } // while ( !R.empty() )
470
    }
471

	
472
    void normShrink(Node v, typename Graph::template NodeMap<Node>& ear,
473
                    UFE& blossom, NV& rep, EFE& tree) {
474
      //We have one tree, which we grow and shrink. If we augment then we
475
      //return to the "for" cycle of runEdmonds().
476

	
477
      std::queue<Node> Q;   //queue of the unscanned nodes
478
      Q.push(v);
479
      while ( !Q.empty() ) {
480

	
481
        Node x=Q.front();
482
        Q.pop();
483

	
484
        for( IncEdgeIt e(g,x); e!=INVALID; ++e ) {
485
          Node y=g.runningNode(e);
486

	
487
          switch ( position[y] ) {
488
          case D:          //x and y must be in the same tree
489
            if ( blossom.find(x) != blossom.find(y))
490
              //x and y are in the same tree
491
              shrink(x, y, ear, blossom, rep, tree, Q);
492
            break;
493
          case C:
494
            //growOrAugment grows if y is covered by the matching and
495
            //augments if not. In this latter case it returns 1.
496
            if (growOrAugment(y, x, ear, blossom, rep, tree, Q)) return;
497
            break;
498
          default: break;
499
          }
500
        }
501
      }
502
    }
503

	
504
    void shrink(Node x,Node y, typename Graph::template NodeMap<Node>& ear,
505
                UFE& blossom, NV& rep, EFE& tree,std::queue<Node>& Q) {
506
      //x and y are the two adjacent vertices in two blossoms.
507

	
508
      typename Graph::template NodeMap<bool> path(g,false);
509

	
510
      Node b=rep[blossom.find(x)];
511
      path.set(b,true);
512
      b=_mate[b];
513
      while ( b!=INVALID ) {
514
        b=rep[blossom.find(ear[b])];
515
        path.set(b,true);
516
        b=_mate[b];
517
      } //we go until the root through bases of blossoms and odd vertices
518

	
519
      Node top=y;
520
      Node middle=rep[blossom.find(top)];
521
      Node bottom=x;
522
      while ( !path[middle] )
523
        shrinkStep(top, middle, bottom, ear, blossom, rep, tree, Q);
524
      //Until we arrive to a node on the path, we update blossom, tree
525
      //and the positions of the odd nodes.
526

	
527
      Node base=middle;
528
      top=x;
529
      middle=rep[blossom.find(top)];
530
      bottom=y;
531
      Node blossom_base=rep[blossom.find(base)];
532
      while ( middle!=blossom_base )
533
        shrinkStep(top, middle, bottom, ear, blossom, rep, tree, Q);
534
      //Until we arrive to a node on the path, we update blossom, tree
535
      //and the positions of the odd nodes.
536

	
537
      rep[blossom.find(base)] = base;
538
    }
539

	
540
    void shrinkStep(Node& top, Node& middle, Node& bottom,
541
                    typename Graph::template NodeMap<Node>& ear,
542
                    UFE& blossom, NV& rep, EFE& tree, std::queue<Node>& Q) {
543
      //We traverse a blossom and update everything.
544

	
545
      ear.set(top,bottom);
546
      Node t=top;
547
      while ( t!=middle ) {
548
        Node u=_mate[t];
549
        t=ear[u];
550
        ear.set(t,u);
551
      }
552
      bottom=_mate[middle];
553
      position.set(bottom,D);
554
      Q.push(bottom);
555
      top=ear[bottom];
556
      Node oldmiddle=middle;
557
      middle=rep[blossom.find(top)];
558
      tree.erase(bottom);
559
      tree.erase(oldmiddle);
560
      blossom.insert(bottom);
561
      blossom.join(bottom, oldmiddle);
562
      blossom.join(top, oldmiddle);
563
    }
564

	
565

	
566

	
567
    bool growOrAugment(Node& y, Node& x, typename Graph::template
568
                       NodeMap<Node>& ear, UFE& blossom, NV& rep, EFE& tree,
569
                       std::queue<Node>& Q) {
570
      //x is in a blossom in the tree, y is outside. If y is covered by
571
      //the matching we grow, otherwise we augment. In this case we
572
      //return 1.
573

	
574
      if ( _mate[y]!=INVALID ) {       //grow
575
        ear.set(y,x);
576
        Node w=_mate[y];
577
        rep[blossom.insert(w)] = w;
578
        position.set(y,A);
579
        position.set(w,D);
580
        int t = tree.find(rep[blossom.find(x)]);
581
        tree.insert(y,t);
582
        tree.insert(w,t);
583
        Q.push(w);
584
      } else {                      //augment
585
        augment(x, ear, blossom, rep, tree);
586
        _mate.set(x,y);
587
        _mate.set(y,x);
588
        return true;
589
      }
590
      return false;
591
    }
592

	
593
    void augment(Node x, typename Graph::template NodeMap<Node>& ear,
594
                 UFE& blossom, NV& rep, EFE& tree) {
595
      Node v=_mate[x];
596
      while ( v!=INVALID ) {
597

	
598
        Node u=ear[v];
599
        _mate.set(v,u);
600
        Node tmp=v;
601
        v=_mate[u];
602
        _mate.set(u,tmp);
603
      }
604
      int y = tree.find(rep[blossom.find(x)]);
605
      for (typename EFE::ItemIt tit(tree, y); tit != INVALID; ++tit) {
606
        if ( position[tit] == D ) {
607
          int b = blossom.find(tit);
608
          for (typename UFE::ItemIt bit(blossom, b); bit != INVALID; ++bit) {
609
            position.set(bit, C);
610
          }
611
          blossom.eraseClass(b);
612
        } else position.set(tit, C);
613
      }
614
      tree.eraseClass(y);
615

	
616
    }
617

	
618
  };
619

	
620
  /// \ingroup matching
621
  ///
622
  /// \brief Weighted matching in general graphs
623
  ///
624
  /// This class provides an efficient implementation of Edmond's
625
  /// maximum weighted matching algorithm. The implementation is based
626
  /// on extensive use of priority queues and provides
627
  /// \f$O(nm\log(n))\f$ time complexity.
628
  ///
629
  /// The maximum weighted matching problem is to find undirected
630
  /// arcs in the digraph with maximum overall weight and no two of
631
  /// them shares their endpoints. The problem can be formulated with
632
  /// the next linear program:
633
  /// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f]
634
  ///\f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} \quad \forall B\in\mathcal{O}\f]
635
  /// \f[x_e \ge 0\quad \forall e\in E\f]
636
  /// \f[\max \sum_{e\in E}x_ew_e\f]
637
  /// where \f$\delta(X)\f$ is the set of arcs incident to a node in
638
  /// \f$X\f$, \f$\gamma(X)\f$ is the set of arcs with both endpoints in
639
  /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality subsets of
640
  /// the nodes.
641
  ///
642
  /// The algorithm calculates an optimal matching and a proof of the
643
  /// optimality. The solution of the dual problem can be used to check
644
  /// the result of the algorithm. The dual linear problem is the next:
645
  /// \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge w_{uv} \quad \forall uv\in E\f]
646
  /// \f[y_u \ge 0 \quad \forall u \in V\f]
647
  /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
648
  /// \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}\frac{\vert B \vert - 1}{2}z_B\f]
649
  ///
650
  /// The algorithm can be executed with \c run() or the \c init() and
651
  /// then the \c start() member functions. After it the matching can
652
  /// be asked with \c matching() or mate() functions. The dual
653
  /// solution can be get with \c nodeValue(), \c blossomNum() and \c
654
  /// blossomValue() members and \ref MaxWeightedMatching::BlossomIt
655
  /// "BlossomIt" nested class which is able to iterate on the nodes
656
  /// of a blossom. If the value type is integral then the dual
657
  /// solution is multiplied by \ref MaxWeightedMatching::dualScale "4".
658
  template <typename _Graph,
659
            typename _WeightMap = typename _Graph::template EdgeMap<int> >
660
  class MaxWeightedMatching {
661
  public:
662

	
663
    typedef _Graph Graph;
664
    typedef _WeightMap WeightMap;
665
    typedef typename WeightMap::Value Value;
666

	
667
    /// \brief Scaling factor for dual solution
668
    ///
669
    /// Scaling factor for dual solution, it is equal to 4 or 1
670
    /// according to the value type.
671
    static const int dualScale =
672
      std::numeric_limits<Value>::is_integer ? 4 : 1;
673

	
674
    typedef typename Graph::template NodeMap<typename Graph::Arc>
675
    MatchingMap;
676

	
677
  private:
678

	
679
    TEMPLATE_GRAPH_TYPEDEFS(Graph);
680

	
681
    typedef typename Graph::template NodeMap<Value> NodePotential;
682
    typedef std::vector<Node> BlossomNodeList;
683

	
684
    struct BlossomVariable {
685
      int begin, end;
686
      Value value;
687

	
688
      BlossomVariable(int _begin, int _end, Value _value)
689
        : begin(_begin), end(_end), value(_value) {}
690

	
691
    };
692

	
693
    typedef std::vector<BlossomVariable> BlossomPotential;
694

	
695
    const Graph& _graph;
696
    const WeightMap& _weight;
697

	
698
    MatchingMap* _matching;
699

	
700
    NodePotential* _node_potential;
701

	
702
    BlossomPotential _blossom_potential;
703
    BlossomNodeList _blossom_node_list;
704

	
705
    int _node_num;
706
    int _blossom_num;
707

	
708
    typedef typename Graph::template NodeMap<int> NodeIntMap;
709
    typedef typename Graph::template ArcMap<int> ArcIntMap;
710
    typedef typename Graph::template EdgeMap<int> EdgeIntMap;
711
    typedef RangeMap<int> IntIntMap;
712

	
713
    enum Status {
714
      EVEN = -1, MATCHED = 0, ODD = 1, UNMATCHED = -2
715
    };
716

	
717
    typedef HeapUnionFind<Value, NodeIntMap> BlossomSet;
718
    struct BlossomData {
719
      int tree;
720
      Status status;
721
      Arc pred, next;
722
      Value pot, offset;
723
      Node base;
724
    };
725

	
726
    NodeIntMap *_blossom_index;
727
    BlossomSet *_blossom_set;
728
    RangeMap<BlossomData>* _blossom_data;
729

	
730
    NodeIntMap *_node_index;
731
    ArcIntMap *_node_heap_index;
732

	
733
    struct NodeData {
734

	
735
      NodeData(ArcIntMap& node_heap_index)
736
        : heap(node_heap_index) {}
737

	
738
      int blossom;
739
      Value pot;
740
      BinHeap<Value, ArcIntMap> heap;
741
      std::map<int, Arc> heap_index;
742

	
743
      int tree;
744
    };
745

	
746
    RangeMap<NodeData>* _node_data;
747

	
748
    typedef ExtendFindEnum<IntIntMap> TreeSet;
749

	
750
    IntIntMap *_tree_set_index;
751
    TreeSet *_tree_set;
752

	
753
    NodeIntMap *_delta1_index;
754
    BinHeap<Value, NodeIntMap> *_delta1;
755

	
756
    IntIntMap *_delta2_index;
757
    BinHeap<Value, IntIntMap> *_delta2;
758

	
759
    EdgeIntMap *_delta3_index;
760
    BinHeap<Value, EdgeIntMap> *_delta3;
761

	
762
    IntIntMap *_delta4_index;
763
    BinHeap<Value, IntIntMap> *_delta4;
764

	
765
    Value _delta_sum;
766

	
767
    void createStructures() {
768
      _node_num = countNodes(_graph);
769
      _blossom_num = _node_num * 3 / 2;
770

	
771
      if (!_matching) {
772
        _matching = new MatchingMap(_graph);
773
      }
774
      if (!_node_potential) {
775
        _node_potential = new NodePotential(_graph);
776
      }
777
      if (!_blossom_set) {
778
        _blossom_index = new NodeIntMap(_graph);
779
        _blossom_set = new BlossomSet(*_blossom_index);
780
        _blossom_data = new RangeMap<BlossomData>(_blossom_num);
781
      }
782

	
783
      if (!_node_index) {
784
        _node_index = new NodeIntMap(_graph);
785
        _node_heap_index = new ArcIntMap(_graph);
786
        _node_data = new RangeMap<NodeData>(_node_num,
787
                                              NodeData(*_node_heap_index));
788
      }
789

	
790
      if (!_tree_set) {
791
        _tree_set_index = new IntIntMap(_blossom_num);
792
        _tree_set = new TreeSet(*_tree_set_index);
793
      }
794
      if (!_delta1) {
795
        _delta1_index = new NodeIntMap(_graph);
796
        _delta1 = new BinHeap<Value, NodeIntMap>(*_delta1_index);
797
      }
798
      if (!_delta2) {
799
        _delta2_index = new IntIntMap(_blossom_num);
800
        _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
801
      }
802
      if (!_delta3) {
803
        _delta3_index = new EdgeIntMap(_graph);
804
        _delta3 = new BinHeap<Value, EdgeIntMap>(*_delta3_index);
805
      }
806
      if (!_delta4) {
807
        _delta4_index = new IntIntMap(_blossom_num);
808
        _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
809
      }
810
    }
811

	
812
    void destroyStructures() {
813
      _node_num = countNodes(_graph);
814
      _blossom_num = _node_num * 3 / 2;
815

	
816
      if (_matching) {
817
        delete _matching;
818
      }
819
      if (_node_potential) {
820
        delete _node_potential;
821
      }
822
      if (_blossom_set) {
823
        delete _blossom_index;
824
        delete _blossom_set;
825
        delete _blossom_data;
826
      }
827

	
828
      if (_node_index) {
829
        delete _node_index;
830
        delete _node_heap_index;
831
        delete _node_data;
832
      }
833

	
834
      if (_tree_set) {
835
        delete _tree_set_index;
836
        delete _tree_set;
837
      }
838
      if (_delta1) {
839
        delete _delta1_index;
840
        delete _delta1;
841
      }
842
      if (_delta2) {
843
        delete _delta2_index;
844
        delete _delta2;
845
      }
846
      if (_delta3) {
847
        delete _delta3_index;
848
        delete _delta3;
849
      }
850
      if (_delta4) {
851
        delete _delta4_index;
852
        delete _delta4;
853
      }
854
    }
855

	
856
    void matchedToEven(int blossom, int tree) {
857
      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
858
        _delta2->erase(blossom);
859
      }
860

	
861
      if (!_blossom_set->trivial(blossom)) {
862
        (*_blossom_data)[blossom].pot -=
863
          2 * (_delta_sum - (*_blossom_data)[blossom].offset);
864
      }
865

	
866
      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
867
           n != INVALID; ++n) {
868

	
869
        _blossom_set->increase(n, std::numeric_limits<Value>::max());
870
        int ni = (*_node_index)[n];
871

	
872
        (*_node_data)[ni].heap.clear();
873
        (*_node_data)[ni].heap_index.clear();
874

	
875
        (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset;
876

	
877
        _delta1->push(n, (*_node_data)[ni].pot);
878

	
879
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
880
          Node v = _graph.source(e);
881
          int vb = _blossom_set->find(v);
882
          int vi = (*_node_index)[v];
883

	
884
          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
885
            dualScale * _weight[e];
886

	
887
          if ((*_blossom_data)[vb].status == EVEN) {
888
            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
889
              _delta3->push(e, rw / 2);
890
            }
891
          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
892
            if (_delta3->state(e) != _delta3->IN_HEAP) {
893
              _delta3->push(e, rw);
894
            }
895
          } else {
896
            typename std::map<int, Arc>::iterator it =
897
              (*_node_data)[vi].heap_index.find(tree);
898

	
899
            if (it != (*_node_data)[vi].heap_index.end()) {
900
              if ((*_node_data)[vi].heap[it->second] > rw) {
901
                (*_node_data)[vi].heap.replace(it->second, e);
902
                (*_node_data)[vi].heap.decrease(e, rw);
903
                it->second = e;
904
              }
905
            } else {
906
              (*_node_data)[vi].heap.push(e, rw);
907
              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
908
            }
909

	
910
            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
911
              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
912

	
913
              if ((*_blossom_data)[vb].status == MATCHED) {
914
                if (_delta2->state(vb) != _delta2->IN_HEAP) {
915
                  _delta2->push(vb, _blossom_set->classPrio(vb) -
916
                               (*_blossom_data)[vb].offset);
917
                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
918
                           (*_blossom_data)[vb].offset){
919
                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
920
                                   (*_blossom_data)[vb].offset);
921
                }
922
              }
923
            }
924
          }
925
        }
926
      }
927
      (*_blossom_data)[blossom].offset = 0;
928
    }
929

	
930
    void matchedToOdd(int blossom) {
931
      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
932
        _delta2->erase(blossom);
933
      }
934
      (*_blossom_data)[blossom].offset += _delta_sum;
935
      if (!_blossom_set->trivial(blossom)) {
936
        _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 +
937
                     (*_blossom_data)[blossom].offset);
938
      }
939
    }
940

	
941
    void evenToMatched(int blossom, int tree) {
942
      if (!_blossom_set->trivial(blossom)) {
943
        (*_blossom_data)[blossom].pot += 2 * _delta_sum;
944
      }
945

	
946
      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
947
           n != INVALID; ++n) {
948
        int ni = (*_node_index)[n];
949
        (*_node_data)[ni].pot -= _delta_sum;
950

	
951
        _delta1->erase(n);
952

	
953
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
954
          Node v = _graph.source(e);
955
          int vb = _blossom_set->find(v);
956
          int vi = (*_node_index)[v];
957

	
958
          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
959
            dualScale * _weight[e];
960

	
961
          if (vb == blossom) {
962
            if (_delta3->state(e) == _delta3->IN_HEAP) {
963
              _delta3->erase(e);
964
            }
965
          } else if ((*_blossom_data)[vb].status == EVEN) {
966

	
967
            if (_delta3->state(e) == _delta3->IN_HEAP) {
968
              _delta3->erase(e);
969
            }
970

	
971
            int vt = _tree_set->find(vb);
972

	
973
            if (vt != tree) {
974

	
975
              Arc r = _graph.oppositeArc(e);
976

	
977
              typename std::map<int, Arc>::iterator it =
978
                (*_node_data)[ni].heap_index.find(vt);
979

	
980
              if (it != (*_node_data)[ni].heap_index.end()) {
981
                if ((*_node_data)[ni].heap[it->second] > rw) {
982
                  (*_node_data)[ni].heap.replace(it->second, r);
983
                  (*_node_data)[ni].heap.decrease(r, rw);
984
                  it->second = r;
985
                }
986
              } else {
987
                (*_node_data)[ni].heap.push(r, rw);
988
                (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
989
              }
990

	
991
              if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
992
                _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
993

	
994
                if (_delta2->state(blossom) != _delta2->IN_HEAP) {
995
                  _delta2->push(blossom, _blossom_set->classPrio(blossom) -
996
                               (*_blossom_data)[blossom].offset);
997
                } else if ((*_delta2)[blossom] >
998
                           _blossom_set->classPrio(blossom) -
999
                           (*_blossom_data)[blossom].offset){
1000
                  _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
1001
                                   (*_blossom_data)[blossom].offset);
1002
                }
1003
              }
1004
            }
1005

	
1006
          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
1007
            if (_delta3->state(e) == _delta3->IN_HEAP) {
1008
              _delta3->erase(e);
1009
            }
1010
          } else {
1011

	
1012
            typename std::map<int, Arc>::iterator it =
1013
              (*_node_data)[vi].heap_index.find(tree);
1014

	
1015
            if (it != (*_node_data)[vi].heap_index.end()) {
1016
              (*_node_data)[vi].heap.erase(it->second);
1017
              (*_node_data)[vi].heap_index.erase(it);
1018
              if ((*_node_data)[vi].heap.empty()) {
1019
                _blossom_set->increase(v, std::numeric_limits<Value>::max());
1020
              } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
1021
                _blossom_set->increase(v, (*_node_data)[vi].heap.prio());
1022
              }
1023

	
1024
              if ((*_blossom_data)[vb].status == MATCHED) {
1025
                if (_blossom_set->classPrio(vb) ==
1026
                    std::numeric_limits<Value>::max()) {
1027
                  _delta2->erase(vb);
1028
                } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
1029
                           (*_blossom_data)[vb].offset) {
1030
                  _delta2->increase(vb, _blossom_set->classPrio(vb) -
1031
                                   (*_blossom_data)[vb].offset);
1032
                }
1033
              }
1034
            }
1035
          }
1036
        }
1037
      }
1038
    }
1039

	
1040
    void oddToMatched(int blossom) {
1041
      (*_blossom_data)[blossom].offset -= _delta_sum;
1042

	
1043
      if (_blossom_set->classPrio(blossom) !=
1044
          std::numeric_limits<Value>::max()) {
1045
        _delta2->push(blossom, _blossom_set->classPrio(blossom) -
1046
                       (*_blossom_data)[blossom].offset);
1047
      }
1048

	
1049
      if (!_blossom_set->trivial(blossom)) {
1050
        _delta4->erase(blossom);
1051
      }
1052
    }
1053

	
1054
    void oddToEven(int blossom, int tree) {
1055
      if (!_blossom_set->trivial(blossom)) {
1056
        _delta4->erase(blossom);
1057
        (*_blossom_data)[blossom].pot -=
1058
          2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
1059
      }
1060

	
1061
      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
1062
           n != INVALID; ++n) {
1063
        int ni = (*_node_index)[n];
1064

	
1065
        _blossom_set->increase(n, std::numeric_limits<Value>::max());
1066

	
1067
        (*_node_data)[ni].heap.clear();
1068
        (*_node_data)[ni].heap_index.clear();
1069
        (*_node_data)[ni].pot +=
1070
          2 * _delta_sum - (*_blossom_data)[blossom].offset;
1071

	
1072
        _delta1->push(n, (*_node_data)[ni].pot);
1073

	
1074
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
1075
          Node v = _graph.source(e);
1076
          int vb = _blossom_set->find(v);
1077
          int vi = (*_node_index)[v];
1078

	
1079
          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
1080
            dualScale * _weight[e];
1081

	
1082
          if ((*_blossom_data)[vb].status == EVEN) {
1083
            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
1084
              _delta3->push(e, rw / 2);
1085
            }
1086
          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
1087
            if (_delta3->state(e) != _delta3->IN_HEAP) {
1088
              _delta3->push(e, rw);
1089
            }
1090
          } else {
1091

	
1092
            typename std::map<int, Arc>::iterator it =
1093
              (*_node_data)[vi].heap_index.find(tree);
1094

	
1095
            if (it != (*_node_data)[vi].heap_index.end()) {
1096
              if ((*_node_data)[vi].heap[it->second] > rw) {
1097
                (*_node_data)[vi].heap.replace(it->second, e);
1098
                (*_node_data)[vi].heap.decrease(e, rw);
1099
                it->second = e;
1100
              }
1101
            } else {
1102
              (*_node_data)[vi].heap.push(e, rw);
1103
              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
1104
            }
1105

	
1106
            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
1107
              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
1108

	
1109
              if ((*_blossom_data)[vb].status == MATCHED) {
1110
                if (_delta2->state(vb) != _delta2->IN_HEAP) {
1111
                  _delta2->push(vb, _blossom_set->classPrio(vb) -
1112
                               (*_blossom_data)[vb].offset);
1113
                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
1114
                           (*_blossom_data)[vb].offset) {
1115
                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
1116
                                   (*_blossom_data)[vb].offset);
1117
                }
1118
              }
1119
            }
1120
          }
1121
        }
1122
      }
1123
      (*_blossom_data)[blossom].offset = 0;
1124
    }
1125

	
1126

	
1127
    void matchedToUnmatched(int blossom) {
1128
      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
1129
        _delta2->erase(blossom);
1130
      }
1131

	
1132
      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
1133
           n != INVALID; ++n) {
1134
        int ni = (*_node_index)[n];
1135

	
1136
        _blossom_set->increase(n, std::numeric_limits<Value>::max());
1137

	
1138
        (*_node_data)[ni].heap.clear();
1139
        (*_node_data)[ni].heap_index.clear();
1140

	
1141
        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
1142
          Node v = _graph.target(e);
1143
          int vb = _blossom_set->find(v);
1144
          int vi = (*_node_index)[v];
1145

	
1146
          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
1147
            dualScale * _weight[e];
1148

	
1149
          if ((*_blossom_data)[vb].status == EVEN) {
1150
            if (_delta3->state(e) != _delta3->IN_HEAP) {
1151
              _delta3->push(e, rw);
1152
            }
1153
          }
1154
        }
1155
      }
1156
    }
1157

	
1158
    void unmatchedToMatched(int blossom) {
1159
      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
1160
           n != INVALID; ++n) {
1161
        int ni = (*_node_index)[n];
1162

	
1163
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
1164
          Node v = _graph.source(e);
1165
          int vb = _blossom_set->find(v);
1166
          int vi = (*_node_index)[v];
1167

	
1168
          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
1169
            dualScale * _weight[e];
1170

	
1171
          if (vb == blossom) {
1172
            if (_delta3->state(e) == _delta3->IN_HEAP) {
1173
              _delta3->erase(e);
1174
            }
1175
          } else if ((*_blossom_data)[vb].status == EVEN) {
1176

	
1177
            if (_delta3->state(e) == _delta3->IN_HEAP) {
1178
              _delta3->erase(e);
1179
            }
1180

	
1181
            int vt = _tree_set->find(vb);
1182

	
1183
            Arc r = _graph.oppositeArc(e);
1184

	
1185
            typename std::map<int, Arc>::iterator it =
1186
              (*_node_data)[ni].heap_index.find(vt);
1187

	
1188
            if (it != (*_node_data)[ni].heap_index.end()) {
1189
              if ((*_node_data)[ni].heap[it->second] > rw) {
1190
                (*_node_data)[ni].heap.replace(it->second, r);
1191
                (*_node_data)[ni].heap.decrease(r, rw);
1192
                it->second = r;
1193
              }
1194
            } else {
1195
              (*_node_data)[ni].heap.push(r, rw);
1196
              (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
1197
            }
1198

	
1199
            if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
1200
              _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
1201

	
1202
              if (_delta2->state(blossom) != _delta2->IN_HEAP) {
1203
                _delta2->push(blossom, _blossom_set->classPrio(blossom) -
1204
                             (*_blossom_data)[blossom].offset);
1205
              } else if ((*_delta2)[blossom] > _blossom_set->classPrio(blossom)-
1206
                         (*_blossom_data)[blossom].offset){
1207
                _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
1208
                                 (*_blossom_data)[blossom].offset);
1209
              }
1210
            }
1211

	
1212
          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
1213
            if (_delta3->state(e) == _delta3->IN_HEAP) {
1214
              _delta3->erase(e);
1215
            }
1216
          }
1217
        }
1218
      }
1219
    }
1220

	
1221
    void alternatePath(int even, int tree) {
1222
      int odd;
1223

	
1224
      evenToMatched(even, tree);
1225
      (*_blossom_data)[even].status = MATCHED;
1226

	
1227
      while ((*_blossom_data)[even].pred != INVALID) {
1228
        odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred));
1229
        (*_blossom_data)[odd].status = MATCHED;
1230
        oddToMatched(odd);
1231
        (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred;
1232

	
1233
        even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred));
1234
        (*_blossom_data)[even].status = MATCHED;
1235
        evenToMatched(even, tree);
1236
        (*_blossom_data)[even].next =
1237
          _graph.oppositeArc((*_blossom_data)[odd].pred);
1238
      }
1239

	
1240
    }
1241

	
1242
    void destroyTree(int tree) {
1243
      for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) {
1244
        if ((*_blossom_data)[b].status == EVEN) {
1245
          (*_blossom_data)[b].status = MATCHED;
1246
          evenToMatched(b, tree);
1247
        } else if ((*_blossom_data)[b].status == ODD) {
1248
          (*_blossom_data)[b].status = MATCHED;
1249
          oddToMatched(b);
1250
        }
1251
      }
1252
      _tree_set->eraseClass(tree);
1253
    }
1254

	
1255

	
1256
    void unmatchNode(const Node& node) {
1257
      int blossom = _blossom_set->find(node);
1258
      int tree = _tree_set->find(blossom);
1259

	
1260
      alternatePath(blossom, tree);
1261
      destroyTree(tree);
1262

	
1263
      (*_blossom_data)[blossom].status = UNMATCHED;
1264
      (*_blossom_data)[blossom].base = node;
1265
      matchedToUnmatched(blossom);
1266
    }
1267

	
1268

	
1269
    void augmentOnArc(const Edge& arc) {
1270

	
1271
      int left = _blossom_set->find(_graph.u(arc));
1272
      int right = _blossom_set->find(_graph.v(arc));
1273

	
1274
      if ((*_blossom_data)[left].status == EVEN) {
1275
        int left_tree = _tree_set->find(left);
1276
        alternatePath(left, left_tree);
1277
        destroyTree(left_tree);
1278
      } else {
1279
        (*_blossom_data)[left].status = MATCHED;
1280
        unmatchedToMatched(left);
1281
      }
1282

	
1283
      if ((*_blossom_data)[right].status == EVEN) {
1284
        int right_tree = _tree_set->find(right);
1285
        alternatePath(right, right_tree);
1286
        destroyTree(right_tree);
1287
      } else {
1288
        (*_blossom_data)[right].status = MATCHED;
1289
        unmatchedToMatched(right);
1290
      }
1291

	
1292
      (*_blossom_data)[left].next = _graph.direct(arc, true);
1293
      (*_blossom_data)[right].next = _graph.direct(arc, false);
1294
    }
1295

	
1296
    void extendOnArc(const Arc& arc) {
1297
      int base = _blossom_set->find(_graph.target(arc));
1298
      int tree = _tree_set->find(base);
1299

	
1300
      int odd = _blossom_set->find(_graph.source(arc));
1301
      _tree_set->insert(odd, tree);
1302
      (*_blossom_data)[odd].status = ODD;
1303
      matchedToOdd(odd);
1304
      (*_blossom_data)[odd].pred = arc;
1305

	
1306
      int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next));
1307
      (*_blossom_data)[even].pred = (*_blossom_data)[even].next;
1308
      _tree_set->insert(even, tree);
1309
      (*_blossom_data)[even].status = EVEN;
1310
      matchedToEven(even, tree);
1311
    }
1312

	
1313
    void shrinkOnArc(const Edge& edge, int tree) {
1314
      int nca = -1;
1315
      std::vector<int> left_path, right_path;
1316

	
1317
      {
1318
        std::set<int> left_set, right_set;
1319
        int left = _blossom_set->find(_graph.u(edge));
1320
        left_path.push_back(left);
1321
        left_set.insert(left);
1322

	
1323
        int right = _blossom_set->find(_graph.v(edge));
1324
        right_path.push_back(right);
1325
        right_set.insert(right);
1326

	
1327
        while (true) {
1328

	
1329
          if ((*_blossom_data)[left].pred == INVALID) break;
1330

	
1331
          left =
1332
            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
1333
          left_path.push_back(left);
1334
          left =
1335
            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
1336
          left_path.push_back(left);
1337

	
1338
          left_set.insert(left);
1339

	
1340
          if (right_set.find(left) != right_set.end()) {
1341
            nca = left;
1342
            break;
1343
          }
1344

	
1345
          if ((*_blossom_data)[right].pred == INVALID) break;
1346

	
1347
          right =
1348
            _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
1349
          right_path.push_back(right);
1350
          right =
1351
            _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
1352
          right_path.push_back(right);
1353

	
1354
          right_set.insert(right);
1355

	
1356
          if (left_set.find(right) != left_set.end()) {
1357
            nca = right;
1358
            break;
1359
          }
1360

	
1361
        }
1362

	
1363
        if (nca == -1) {
1364
          if ((*_blossom_data)[left].pred == INVALID) {
1365
            nca = right;
1366
            while (left_set.find(nca) == left_set.end()) {
1367
              nca =
1368
                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
1369
              right_path.push_back(nca);
1370
              nca =
1371
                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
1372
              right_path.push_back(nca);
1373
            }
1374
          } else {
1375
            nca = left;
1376
            while (right_set.find(nca) == right_set.end()) {
1377
              nca =
1378
                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
1379
              left_path.push_back(nca);
1380
              nca =
1381
                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
1382
              left_path.push_back(nca);
1383
            }
1384
          }
1385
        }
1386
      }
1387

	
1388
      std::vector<int> subblossoms;
1389
      Arc prev;
1390

	
1391
      prev = _graph.direct(edge, true);
1392
      for (int i = 0; left_path[i] != nca; i += 2) {
1393
        subblossoms.push_back(left_path[i]);
1394
        (*_blossom_data)[left_path[i]].next = prev;
1395
        _tree_set->erase(left_path[i]);
1396

	
1397
        subblossoms.push_back(left_path[i + 1]);
1398
        (*_blossom_data)[left_path[i + 1]].status = EVEN;
1399
        oddToEven(left_path[i + 1], tree);
1400
        _tree_set->erase(left_path[i + 1]);
1401
        prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred);
1402
      }
1403

	
1404
      int k = 0;
1405
      while (right_path[k] != nca) ++k;
1406

	
1407
      subblossoms.push_back(nca);
1408
      (*_blossom_data)[nca].next = prev;
1409

	
1410
      for (int i = k - 2; i >= 0; i -= 2) {
1411
        subblossoms.push_back(right_path[i + 1]);
1412
        (*_blossom_data)[right_path[i + 1]].status = EVEN;
1413
        oddToEven(right_path[i + 1], tree);
1414
        _tree_set->erase(right_path[i + 1]);
1415

	
1416
        (*_blossom_data)[right_path[i + 1]].next =
1417
          (*_blossom_data)[right_path[i + 1]].pred;
1418

	
1419
        subblossoms.push_back(right_path[i]);
1420
        _tree_set->erase(right_path[i]);
1421
      }
1422

	
1423
      int surface =
1424
        _blossom_set->join(subblossoms.begin(), subblossoms.end());
1425

	
1426
      for (int i = 0; i < int(subblossoms.size()); ++i) {
1427
        if (!_blossom_set->trivial(subblossoms[i])) {
1428
          (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum;
1429
        }
1430
        (*_blossom_data)[subblossoms[i]].status = MATCHED;
1431
      }
1432

	
1433
      (*_blossom_data)[surface].pot = -2 * _delta_sum;
1434
      (*_blossom_data)[surface].offset = 0;
1435
      (*_blossom_data)[surface].status = EVEN;
1436
      (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred;
1437
      (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred;
1438

	
1439
      _tree_set->insert(surface, tree);
1440
      _tree_set->erase(nca);
1441
    }
1442

	
1443
    void splitBlossom(int blossom) {
1444
      Arc next = (*_blossom_data)[blossom].next;
1445
      Arc pred = (*_blossom_data)[blossom].pred;
1446

	
1447
      int tree = _tree_set->find(blossom);
1448

	
1449
      (*_blossom_data)[blossom].status = MATCHED;
1450
      oddToMatched(blossom);
1451
      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
1452
        _delta2->erase(blossom);
1453
      }
1454

	
1455
      std::vector<int> subblossoms;
1456
      _blossom_set->split(blossom, std::back_inserter(subblossoms));
1457

	
1458
      Value offset = (*_blossom_data)[blossom].offset;
1459
      int b = _blossom_set->find(_graph.source(pred));
1460
      int d = _blossom_set->find(_graph.source(next));
1461

	
1462
      int ib = -1, id = -1;
1463
      for (int i = 0; i < int(subblossoms.size()); ++i) {
1464
        if (subblossoms[i] == b) ib = i;
1465
        if (subblossoms[i] == d) id = i;
1466

	
1467
        (*_blossom_data)[subblossoms[i]].offset = offset;
1468
        if (!_blossom_set->trivial(subblossoms[i])) {
1469
          (*_blossom_data)[subblossoms[i]].pot -= 2 * offset;
1470
        }
1471
        if (_blossom_set->classPrio(subblossoms[i]) !=
1472
            std::numeric_limits<Value>::max()) {
1473
          _delta2->push(subblossoms[i],
1474
                        _blossom_set->classPrio(subblossoms[i]) -
1475
                        (*_blossom_data)[subblossoms[i]].offset);
1476
        }
1477
      }
1478

	
1479
      if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) {
1480
        for (int i = (id + 1) % subblossoms.size();
1481
             i != ib; i = (i + 2) % subblossoms.size()) {
1482
          int sb = subblossoms[i];
1483
          int tb = subblossoms[(i + 1) % subblossoms.size()];
1484
          (*_blossom_data)[sb].next =
1485
            _graph.oppositeArc((*_blossom_data)[tb].next);
1486
        }
1487

	
1488
        for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
1489
          int sb = subblossoms[i];
1490
          int tb = subblossoms[(i + 1) % subblossoms.size()];
1491
          int ub = subblossoms[(i + 2) % subblossoms.size()];
1492

	
1493
          (*_blossom_data)[sb].status = ODD;
1494
          matchedToOdd(sb);
1495
          _tree_set->insert(sb, tree);
1496
          (*_blossom_data)[sb].pred = pred;
1497
          (*_blossom_data)[sb].next =
1498
                           _graph.oppositeArc((*_blossom_data)[tb].next);
1499

	
1500
          pred = (*_blossom_data)[ub].next;
1501

	
1502
          (*_blossom_data)[tb].status = EVEN;
1503
          matchedToEven(tb, tree);
1504
          _tree_set->insert(tb, tree);
1505
          (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next;
1506
        }
1507

	
1508
        (*_blossom_data)[subblossoms[id]].status = ODD;
1509
        matchedToOdd(subblossoms[id]);
1510
        _tree_set->insert(subblossoms[id], tree);
1511
        (*_blossom_data)[subblossoms[id]].next = next;
1512
        (*_blossom_data)[subblossoms[id]].pred = pred;
1513

	
1514
      } else {
1515

	
1516
        for (int i = (ib + 1) % subblossoms.size();
1517
             i != id; i = (i + 2) % subblossoms.size()) {
1518
          int sb = subblossoms[i];
1519
          int tb = subblossoms[(i + 1) % subblossoms.size()];
1520
          (*_blossom_data)[sb].next =
1521
            _graph.oppositeArc((*_blossom_data)[tb].next);
1522
        }
1523

	
1524
        for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) {
1525
          int sb = subblossoms[i];
1526
          int tb = subblossoms[(i + 1) % subblossoms.size()];
1527
          int ub = subblossoms[(i + 2) % subblossoms.size()];
1528

	
1529
          (*_blossom_data)[sb].status = ODD;
1530
          matchedToOdd(sb);
1531
          _tree_set->insert(sb, tree);
1532
          (*_blossom_data)[sb].next = next;
1533
          (*_blossom_data)[sb].pred =
1534
            _graph.oppositeArc((*_blossom_data)[tb].next);
1535

	
1536
          (*_blossom_data)[tb].status = EVEN;
1537
          matchedToEven(tb, tree);
1538
          _tree_set->insert(tb, tree);
1539
          (*_blossom_data)[tb].pred =
1540
            (*_blossom_data)[tb].next =
1541
            _graph.oppositeArc((*_blossom_data)[ub].next);
1542
          next = (*_blossom_data)[ub].next;
1543
        }
1544

	
1545
        (*_blossom_data)[subblossoms[ib]].status = ODD;
1546
        matchedToOdd(subblossoms[ib]);
1547
        _tree_set->insert(subblossoms[ib], tree);
1548
        (*_blossom_data)[subblossoms[ib]].next = next;
1549
        (*_blossom_data)[subblossoms[ib]].pred = pred;
1550
      }
1551
      _tree_set->erase(blossom);
1552
    }
1553

	
1554
    void extractBlossom(int blossom, const Node& base, const Arc& matching) {
1555
      if (_blossom_set->trivial(blossom)) {
1556
        int bi = (*_node_index)[base];
1557
        Value pot = (*_node_data)[bi].pot;
1558

	
1559
        _matching->set(base, matching);
1560
        _blossom_node_list.push_back(base);
1561
        _node_potential->set(base, pot);
1562
      } else {
1563

	
1564
        Value pot = (*_blossom_data)[blossom].pot;
1565
        int bn = _blossom_node_list.size();
1566

	
1567
        std::vector<int> subblossoms;
1568
        _blossom_set->split(blossom, std::back_inserter(subblossoms));
1569
        int b = _blossom_set->find(base);
1570
        int ib = -1;
1571
        for (int i = 0; i < int(subblossoms.size()); ++i) {
1572
          if (subblossoms[i] == b) { ib = i; break; }
1573
        }
1574

	
1575
        for (int i = 1; i < int(subblossoms.size()); i += 2) {
1576
          int sb = subblossoms[(ib + i) % subblossoms.size()];
1577
          int tb = subblossoms[(ib + i + 1) % subblossoms.size()];
1578

	
1579
          Arc m = (*_blossom_data)[tb].next;
1580
          extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m));
1581
          extractBlossom(tb, _graph.source(m), m);
1582
        }
1583
        extractBlossom(subblossoms[ib], base, matching);
1584

	
1585
        int en = _blossom_node_list.size();
1586

	
1587
        _blossom_potential.push_back(BlossomVariable(bn, en, pot));
1588
      }
1589
    }
1590

	
1591
    void extractMatching() {
1592
      std::vector<int> blossoms;
1593
      for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
1594
        blossoms.push_back(c);
1595
      }
1596

	
1597
      for (int i = 0; i < int(blossoms.size()); ++i) {
1598
        if ((*_blossom_data)[blossoms[i]].status == MATCHED) {
1599

	
1600
          Value offset = (*_blossom_data)[blossoms[i]].offset;
1601
          (*_blossom_data)[blossoms[i]].pot += 2 * offset;
1602
          for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]);
1603
               n != INVALID; ++n) {
1604
            (*_node_data)[(*_node_index)[n]].pot -= offset;
1605
          }
1606

	
1607
          Arc matching = (*_blossom_data)[blossoms[i]].next;
1608
          Node base = _graph.source(matching);
1609
          extractBlossom(blossoms[i], base, matching);
1610
        } else {
1611
          Node base = (*_blossom_data)[blossoms[i]].base;
1612
          extractBlossom(blossoms[i], base, INVALID);
1613
        }
1614
      }
1615
    }
1616

	
1617
  public:
1618

	
1619
    /// \brief Constructor
1620
    ///
1621
    /// Constructor.
1622
    MaxWeightedMatching(const Graph& graph, const WeightMap& weight)
1623
      : _graph(graph), _weight(weight), _matching(0),
1624
        _node_potential(0), _blossom_potential(), _blossom_node_list(),
1625
        _node_num(0), _blossom_num(0),
1626

	
1627
        _blossom_index(0), _blossom_set(0), _blossom_data(0),
1628
        _node_index(0), _node_heap_index(0), _node_data(0),
1629
        _tree_set_index(0), _tree_set(0),
1630

	
1631
        _delta1_index(0), _delta1(0),
1632
        _delta2_index(0), _delta2(0),
1633
        _delta3_index(0), _delta3(0),
1634
        _delta4_index(0), _delta4(0),
1635

	
1636
        _delta_sum() {}
1637

	
1638
    ~MaxWeightedMatching() {
1639
      destroyStructures();
1640
    }
1641

	
1642
    /// \name Execution control
1643
    /// The simplest way to execute the algorithm is to use the member
1644
    /// \c run() member function.
1645

	
1646
    ///@{
1647

	
1648
    /// \brief Initialize the algorithm
1649
    ///
1650
    /// Initialize the algorithm
1651
    void init() {
1652
      createStructures();
1653

	
1654
      for (ArcIt e(_graph); e != INVALID; ++e) {
1655
        _node_heap_index->set(e, BinHeap<Value, ArcIntMap>::PRE_HEAP);
1656
      }
1657
      for (NodeIt n(_graph); n != INVALID; ++n) {
1658
        _delta1_index->set(n, _delta1->PRE_HEAP);
1659
      }
1660
      for (EdgeIt e(_graph); e != INVALID; ++e) {
1661
        _delta3_index->set(e, _delta3->PRE_HEAP);
1662
      }
1663
      for (int i = 0; i < _blossom_num; ++i) {
1664
        _delta2_index->set(i, _delta2->PRE_HEAP);
1665
        _delta4_index->set(i, _delta4->PRE_HEAP);
1666
      }
1667

	
1668
      int index = 0;
1669
      for (NodeIt n(_graph); n != INVALID; ++n) {
1670
        Value max = 0;
1671
        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
1672
          if (_graph.target(e) == n) continue;
1673
          if ((dualScale * _weight[e]) / 2 > max) {
1674
            max = (dualScale * _weight[e]) / 2;
1675
          }
1676
        }
1677
        _node_index->set(n, index);
1678
        (*_node_data)[index].pot = max;
1679
        _delta1->push(n, max);
1680
        int blossom =
1681
          _blossom_set->insert(n, std::numeric_limits<Value>::max());
1682

	
1683
        _tree_set->insert(blossom);
1684

	
1685
        (*_blossom_data)[blossom].status = EVEN;
1686
        (*_blossom_data)[blossom].pred = INVALID;
1687
        (*_blossom_data)[blossom].next = INVALID;
1688
        (*_blossom_data)[blossom].pot = 0;
1689
        (*_blossom_data)[blossom].offset = 0;
1690
        ++index;
1691
      }
1692
      for (EdgeIt e(_graph); e != INVALID; ++e) {
1693
        int si = (*_node_index)[_graph.u(e)];
1694
        int ti = (*_node_index)[_graph.v(e)];
1695
        if (_graph.u(e) != _graph.v(e)) {
1696
          _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
1697
                            dualScale * _weight[e]) / 2);
1698
        }
1699
      }
1700
    }
1701

	
1702
    /// \brief Starts the algorithm
1703
    ///
1704
    /// Starts the algorithm
1705
    void start() {
1706
      enum OpType {
1707
        D1, D2, D3, D4
1708
      };
1709

	
1710
      int unmatched = _node_num;
1711
      while (unmatched > 0) {
1712
        Value d1 = !_delta1->empty() ?
1713
          _delta1->prio() : std::numeric_limits<Value>::max();
1714

	
1715
        Value d2 = !_delta2->empty() ?
1716
          _delta2->prio() : std::numeric_limits<Value>::max();
1717

	
1718
        Value d3 = !_delta3->empty() ?
1719
          _delta3->prio() : std::numeric_limits<Value>::max();
1720

	
1721
        Value d4 = !_delta4->empty() ?
1722
          _delta4->prio() : std::numeric_limits<Value>::max();
1723

	
1724
        _delta_sum = d1; OpType ot = D1;
1725
        if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
1726
        if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
1727
        if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
1728

	
1729

	
1730
        switch (ot) {
1731
        case D1:
1732
          {
1733
            Node n = _delta1->top();
1734
            unmatchNode(n);
1735
            --unmatched;
1736
          }
1737
          break;
1738
        case D2:
1739
          {
1740
            int blossom = _delta2->top();
1741
            Node n = _blossom_set->classTop(blossom);
1742
            Arc e = (*_node_data)[(*_node_index)[n]].heap.top();
1743
            extendOnArc(e);
1744
          }
1745
          break;
1746
        case D3:
1747
          {
1748
            Edge e = _delta3->top();
1749

	
1750
            int left_blossom = _blossom_set->find(_graph.u(e));
1751
            int right_blossom = _blossom_set->find(_graph.v(e));
1752

	
1753
            if (left_blossom == right_blossom) {
1754
              _delta3->pop();
1755
            } else {
1756
              int left_tree;
1757
              if ((*_blossom_data)[left_blossom].status == EVEN) {
1758
                left_tree = _tree_set->find(left_blossom);
1759
              } else {
1760
                left_tree = -1;
1761
                ++unmatched;
1762
              }
1763
              int right_tree;
1764
              if ((*_blossom_data)[right_blossom].status == EVEN) {
1765
                right_tree = _tree_set->find(right_blossom);
1766
              } else {
1767
                right_tree = -1;
1768
                ++unmatched;
1769
              }
1770

	
1771
              if (left_tree == right_tree) {
1772
                shrinkOnArc(e, left_tree);
1773
              } else {
1774
                augmentOnArc(e);
1775
                unmatched -= 2;
1776
              }
1777
            }
1778
          } break;
1779
        case D4:
1780
          splitBlossom(_delta4->top());
1781
          break;
1782
        }
1783
      }
1784
      extractMatching();
1785
    }
1786

	
1787
    /// \brief Runs %MaxWeightedMatching algorithm.
1788
    ///
1789
    /// This method runs the %MaxWeightedMatching algorithm.
1790
    ///
1791
    /// \note mwm.run() is just a shortcut of the following code.
1792
    /// \code
1793
    ///   mwm.init();
1794
    ///   mwm.start();
1795
    /// \endcode
1796
    void run() {
1797
      init();
1798
      start();
1799
    }
1800

	
1801
    /// @}
1802

	
1803
    /// \name Primal solution
1804
    /// Functions for get the primal solution, ie. the matching.
1805

	
1806
    /// @{
1807

	
1808
    /// \brief Returns the matching value.
1809
    ///
1810
    /// Returns the matching value.
1811
    Value matchingValue() const {
1812
      Value sum = 0;
1813
      for (NodeIt n(_graph); n != INVALID; ++n) {
1814
        if ((*_matching)[n] != INVALID) {
1815
          sum += _weight[(*_matching)[n]];
1816
        }
1817
      }
1818
      return sum /= 2;
1819
    }
1820

	
1821
    /// \brief Returns true when the arc is in the matching.
1822
    ///
1823
    /// Returns true when the arc is in the matching.
1824
    bool matching(const Edge& arc) const {
1825
      return (*_matching)[_graph.u(arc)] == _graph.direct(arc, true);
1826
    }
1827

	
1828
    /// \brief Returns the incident matching arc.
1829
    ///
1830
    /// Returns the incident matching arc from given node. If the
1831
    /// node is not matched then it gives back \c INVALID.
1832
    Arc matching(const Node& node) const {
1833
      return (*_matching)[node];
1834
    }
1835

	
1836
    /// \brief Returns the mate of the node.
1837
    ///
1838
    /// Returns the adjancent node in a mathcing arc. If the node is
1839
    /// not matched then it gives back \c INVALID.
1840
    Node mate(const Node& node) const {
1841
      return (*_matching)[node] != INVALID ?
1842
        _graph.target((*_matching)[node]) : INVALID;
1843
    }
1844

	
1845
    /// @}
1846

	
1847
    /// \name Dual solution
1848
    /// Functions for get the dual solution.
1849

	
1850
    /// @{
1851

	
1852
    /// \brief Returns the value of the dual solution.
1853
    ///
1854
    /// Returns the value of the dual solution. It should be equal to
1855
    /// the primal value scaled by \ref dualScale "dual scale".
1856
    Value dualValue() const {
1857
      Value sum = 0;
1858
      for (NodeIt n(_graph); n != INVALID; ++n) {
1859
        sum += nodeValue(n);
1860
      }
1861
      for (int i = 0; i < blossomNum(); ++i) {
1862
        sum += blossomValue(i) * (blossomSize(i) / 2);
1863
      }
1864
      return sum;
1865
    }
1866

	
1867
    /// \brief Returns the value of the node.
1868
    ///
1869
    /// Returns the the value of the node.
1870
    Value nodeValue(const Node& n) const {
1871
      return (*_node_potential)[n];
1872
    }
1873

	
1874
    /// \brief Returns the number of the blossoms in the basis.
1875
    ///
1876
    /// Returns the number of the blossoms in the basis.
1877
    /// \see BlossomIt
1878
    int blossomNum() const {
1879
      return _blossom_potential.size();
1880
    }
1881

	
1882

	
1883
    /// \brief Returns the number of the nodes in the blossom.
1884
    ///
1885
    /// Returns the number of the nodes in the blossom.
1886
    int blossomSize(int k) const {
1887
      return _blossom_potential[k].end - _blossom_potential[k].begin;
1888
    }
1889

	
1890
    /// \brief Returns the value of the blossom.
1891
    ///
1892
    /// Returns the the value of the blossom.
1893
    /// \see BlossomIt
1894
    Value blossomValue(int k) const {
1895
      return _blossom_potential[k].value;
1896
    }
1897

	
1898
    /// \brief Lemon iterator for get the items of the blossom.
1899
    ///
1900
    /// Lemon iterator for get the nodes of the blossom. This class
1901
    /// provides a common style lemon iterator which gives back a
1902
    /// subset of the nodes.
1903
    class BlossomIt {
1904
    public:
1905

	
1906
      /// \brief Constructor.
1907
      ///
1908
      /// Constructor for get the nodes of the variable.
1909
      BlossomIt(const MaxWeightedMatching& algorithm, int variable)
1910
        : _algorithm(&algorithm)
1911
      {
1912
        _index = _algorithm->_blossom_potential[variable].begin;
1913
        _last = _algorithm->_blossom_potential[variable].end;
1914
      }
1915

	
1916
      /// \brief Invalid constructor.
1917
      ///
1918
      /// Invalid constructor.
1919
      BlossomIt(Invalid) : _index(-1) {}
1920

	
1921
      /// \brief Conversion to node.
1922
      ///
1923
      /// Conversion to node.
1924
      operator Node() const {
1925
        return _algorithm ? _algorithm->_blossom_node_list[_index] : INVALID;
1926
      }
1927

	
1928
      /// \brief Increment operator.
1929
      ///
1930
      /// Increment operator.
1931
      BlossomIt& operator++() {
1932
        ++_index;
1933
        if (_index == _last) {
1934
          _index = -1;
1935
        }
1936
        return *this;
1937
      }
1938

	
1939
      bool operator==(const BlossomIt& it) const {
1940
        return _index == it._index;
1941
      }
1942
      bool operator!=(const BlossomIt& it) const {
1943
        return _index != it._index;
1944
      }
1945

	
1946
    private:
1947
      const MaxWeightedMatching* _algorithm;
1948
      int _last;
1949
      int _index;
1950
    };
1951

	
1952
    /// @}
1953

	
1954
  };
1955

	
1956
  /// \ingroup matching
1957
  ///
1958
  /// \brief Weighted perfect matching in general graphs
1959
  ///
1960
  /// This class provides an efficient implementation of Edmond's
1961
  /// maximum weighted perfecr matching algorithm. The implementation
1962
  /// is based on extensive use of priority queues and provides
1963
  /// \f$O(nm\log(n))\f$ time complexity.
1964
  ///
1965
  /// The maximum weighted matching problem is to find undirected
1966
  /// arcs in the digraph with maximum overall weight and no two of
1967
  /// them shares their endpoints and covers all nodes. The problem
1968
  /// can be formulated with the next linear program:
1969
  /// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f]
1970
  ///\f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} \quad \forall B\in\mathcal{O}\f]
1971
  /// \f[x_e \ge 0\quad \forall e\in E\f]
1972
  /// \f[\max \sum_{e\in E}x_ew_e\f]
1973
  /// where \f$\delta(X)\f$ is the set of arcs incident to a node in
1974
  /// \f$X\f$, \f$\gamma(X)\f$ is the set of arcs with both endpoints in
1975
  /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality subsets of
1976
  /// the nodes.
1977
  ///
1978
  /// The algorithm calculates an optimal matching and a proof of the
1979
  /// optimality. The solution of the dual problem can be used to check
1980
  /// the result of the algorithm. The dual linear problem is the next:
1981
  /// \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge w_{uv} \quad \forall uv\in E\f]
1982
  /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
1983
  /// \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}\frac{\vert B \vert - 1}{2}z_B\f]
1984
  ///
1985
  /// The algorithm can be executed with \c run() or the \c init() and
1986
  /// then the \c start() member functions. After it the matching can
1987
  /// be asked with \c matching() or mate() functions. The dual
1988
  /// solution can be get with \c nodeValue(), \c blossomNum() and \c
1989
  /// blossomValue() members and \ref MaxWeightedMatching::BlossomIt
1990
  /// "BlossomIt" nested class which is able to iterate on the nodes
1991
  /// of a blossom. If the value type is integral then the dual
1992
  /// solution is multiplied by \ref MaxWeightedMatching::dualScale "4".
1993
  template <typename _Graph,
1994
            typename _WeightMap = typename _Graph::template EdgeMap<int> >
1995
  class MaxWeightedPerfectMatching {
1996
  public:
1997

	
1998
    typedef _Graph Graph;
1999
    typedef _WeightMap WeightMap;
2000
    typedef typename WeightMap::Value Value;
2001

	
2002
    /// \brief Scaling factor for dual solution
2003
    ///
2004
    /// Scaling factor for dual solution, it is equal to 4 or 1
2005
    /// according to the value type.
2006
    static const int dualScale =
2007
      std::numeric_limits<Value>::is_integer ? 4 : 1;
2008

	
2009
    typedef typename Graph::template NodeMap<typename Graph::Arc>
2010
    MatchingMap;
2011

	
2012
  private:
2013

	
2014
    TEMPLATE_GRAPH_TYPEDEFS(Graph);
2015

	
2016
    typedef typename Graph::template NodeMap<Value> NodePotential;
2017
    typedef std::vector<Node> BlossomNodeList;
2018

	
2019
    struct BlossomVariable {
2020
      int begin, end;
2021
      Value value;
2022

	
2023
      BlossomVariable(int _begin, int _end, Value _value)
2024
        : begin(_begin), end(_end), value(_value) {}
2025

	
2026
    };
2027

	
2028
    typedef std::vector<BlossomVariable> BlossomPotential;
2029

	
2030
    const Graph& _graph;
2031
    const WeightMap& _weight;
2032

	
2033
    MatchingMap* _matching;
2034

	
2035
    NodePotential* _node_potential;
2036

	
2037
    BlossomPotential _blossom_potential;
2038
    BlossomNodeList _blossom_node_list;
2039

	
2040
    int _node_num;
2041
    int _blossom_num;
2042

	
2043
    typedef typename Graph::template NodeMap<int> NodeIntMap;
2044
    typedef typename Graph::template ArcMap<int> ArcIntMap;
2045
    typedef typename Graph::template EdgeMap<int> EdgeIntMap;
2046
    typedef RangeMap<int> IntIntMap;
2047

	
2048
    enum Status {
2049
      EVEN = -1, MATCHED = 0, ODD = 1
2050
    };
2051

	
2052
    typedef HeapUnionFind<Value, NodeIntMap> BlossomSet;
2053
    struct BlossomData {
2054
      int tree;
2055
      Status status;
2056
      Arc pred, next;
2057
      Value pot, offset;
2058
    };
2059

	
2060
    NodeIntMap *_blossom_index;
2061
    BlossomSet *_blossom_set;
2062
    RangeMap<BlossomData>* _blossom_data;
2063

	
2064
    NodeIntMap *_node_index;
2065
    ArcIntMap *_node_heap_index;
2066

	
2067
    struct NodeData {
2068

	
2069
      NodeData(ArcIntMap& node_heap_index)
2070
        : heap(node_heap_index) {}
2071

	
2072
      int blossom;
2073
      Value pot;
2074
      BinHeap<Value, ArcIntMap> heap;
2075
      std::map<int, Arc> heap_index;
2076

	
2077
      int tree;
2078
    };
2079

	
2080
    RangeMap<NodeData>* _node_data;
2081

	
2082
    typedef ExtendFindEnum<IntIntMap> TreeSet;
2083

	
2084
    IntIntMap *_tree_set_index;
2085
    TreeSet *_tree_set;
2086

	
2087
    IntIntMap *_delta2_index;
2088
    BinHeap<Value, IntIntMap> *_delta2;
2089

	
2090
    EdgeIntMap *_delta3_index;
2091
    BinHeap<Value, EdgeIntMap> *_delta3;
2092

	
2093
    IntIntMap *_delta4_index;
2094
    BinHeap<Value, IntIntMap> *_delta4;
2095

	
2096
    Value _delta_sum;
2097

	
2098
    void createStructures() {
2099
      _node_num = countNodes(_graph);
2100
      _blossom_num = _node_num * 3 / 2;
2101

	
2102
      if (!_matching) {
2103
        _matching = new MatchingMap(_graph);
2104
      }
2105
      if (!_node_potential) {
2106
        _node_potential = new NodePotential(_graph);
2107
      }
2108
      if (!_blossom_set) {
2109
        _blossom_index = new NodeIntMap(_graph);
2110
        _blossom_set = new BlossomSet(*_blossom_index);
2111
        _blossom_data = new RangeMap<BlossomData>(_blossom_num);
2112
      }
2113

	
2114
      if (!_node_index) {
2115
        _node_index = new NodeIntMap(_graph);
2116
        _node_heap_index = new ArcIntMap(_graph);
2117
        _node_data = new RangeMap<NodeData>(_node_num,
2118
                                              NodeData(*_node_heap_index));
2119
      }
2120

	
2121
      if (!_tree_set) {
2122
        _tree_set_index = new IntIntMap(_blossom_num);
2123
        _tree_set = new TreeSet(*_tree_set_index);
2124
      }
2125
      if (!_delta2) {
2126
        _delta2_index = new IntIntMap(_blossom_num);
2127
        _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
2128
      }
2129
      if (!_delta3) {
2130
        _delta3_index = new EdgeIntMap(_graph);
2131
        _delta3 = new BinHeap<Value, EdgeIntMap>(*_delta3_index);
2132
      }
2133
      if (!_delta4) {
2134
        _delta4_index = new IntIntMap(_blossom_num);
2135
        _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
2136
      }
2137
    }
2138

	
2139
    void destroyStructures() {
2140
      _node_num = countNodes(_graph);
2141
      _blossom_num = _node_num * 3 / 2;
2142

	
2143
      if (_matching) {
2144
        delete _matching;
2145
      }
2146
      if (_node_potential) {
2147
        delete _node_potential;
2148
      }
2149
      if (_blossom_set) {
2150
        delete _blossom_index;
2151
        delete _blossom_set;
2152
        delete _blossom_data;
2153
      }
2154

	
2155
      if (_node_index) {
2156
        delete _node_index;
2157
        delete _node_heap_index;
2158
        delete _node_data;
2159
      }
2160

	
2161
      if (_tree_set) {
2162
        delete _tree_set_index;
2163
        delete _tree_set;
2164
      }
2165
      if (_delta2) {
2166
        delete _delta2_index;
2167
        delete _delta2;
2168
      }
2169
      if (_delta3) {
2170
        delete _delta3_index;
2171
        delete _delta3;
2172
      }
2173
      if (_delta4) {
2174
        delete _delta4_index;
2175
        delete _delta4;
2176
      }
2177
    }
2178

	
2179
    void matchedToEven(int blossom, int tree) {
2180
      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
2181
        _delta2->erase(blossom);
2182
      }
2183

	
2184
      if (!_blossom_set->trivial(blossom)) {
2185
        (*_blossom_data)[blossom].pot -=
2186
          2 * (_delta_sum - (*_blossom_data)[blossom].offset);
2187
      }
2188

	
2189
      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
2190
           n != INVALID; ++n) {
2191

	
2192
        _blossom_set->increase(n, std::numeric_limits<Value>::max());
2193
        int ni = (*_node_index)[n];
2194

	
2195
        (*_node_data)[ni].heap.clear();
2196
        (*_node_data)[ni].heap_index.clear();
2197

	
2198
        (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset;
2199

	
2200
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
2201
          Node v = _graph.source(e);
2202
          int vb = _blossom_set->find(v);
2203
          int vi = (*_node_index)[v];
2204

	
2205
          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
2206
            dualScale * _weight[e];
2207

	
2208
          if ((*_blossom_data)[vb].status == EVEN) {
2209
            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
2210
              _delta3->push(e, rw / 2);
2211
            }
2212
          } else {
2213
            typename std::map<int, Arc>::iterator it =
2214
              (*_node_data)[vi].heap_index.find(tree);
2215

	
2216
            if (it != (*_node_data)[vi].heap_index.end()) {
2217
              if ((*_node_data)[vi].heap[it->second] > rw) {
2218
                (*_node_data)[vi].heap.replace(it->second, e);
2219
                (*_node_data)[vi].heap.decrease(e, rw);
2220
                it->second = e;
2221
              }
2222
            } else {
2223
              (*_node_data)[vi].heap.push(e, rw);
2224
              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
2225
            }
2226

	
2227
            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
2228
              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
2229

	
2230
              if ((*_blossom_data)[vb].status == MATCHED) {
2231
                if (_delta2->state(vb) != _delta2->IN_HEAP) {
2232
                  _delta2->push(vb, _blossom_set->classPrio(vb) -
2233
                               (*_blossom_data)[vb].offset);
2234
                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
2235
                           (*_blossom_data)[vb].offset){
2236
                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
2237
                                   (*_blossom_data)[vb].offset);
2238
                }
2239
              }
2240
            }
2241
          }
2242
        }
2243
      }
2244
      (*_blossom_data)[blossom].offset = 0;
2245
    }
2246

	
2247
    void matchedToOdd(int blossom) {
2248
      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
2249
        _delta2->erase(blossom);
2250
      }
2251
      (*_blossom_data)[blossom].offset += _delta_sum;
2252
      if (!_blossom_set->trivial(blossom)) {
2253
        _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 +
2254
                     (*_blossom_data)[blossom].offset);
2255
      }
2256
    }
2257

	
2258
    void evenToMatched(int blossom, int tree) {
2259
      if (!_blossom_set->trivial(blossom)) {
2260
        (*_blossom_data)[blossom].pot += 2 * _delta_sum;
2261
      }
2262

	
2263
      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
2264
           n != INVALID; ++n) {
2265
        int ni = (*_node_index)[n];
2266
        (*_node_data)[ni].pot -= _delta_sum;
2267

	
2268
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
2269
          Node v = _graph.source(e);
2270
          int vb = _blossom_set->find(v);
2271
          int vi = (*_node_index)[v];
2272

	
2273
          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
2274
            dualScale * _weight[e];
2275

	
2276
          if (vb == blossom) {
2277
            if (_delta3->state(e) == _delta3->IN_HEAP) {
2278
              _delta3->erase(e);
2279
            }
2280
          } else if ((*_blossom_data)[vb].status == EVEN) {
2281

	
2282
            if (_delta3->state(e) == _delta3->IN_HEAP) {
2283
              _delta3->erase(e);
2284
            }
2285

	
2286
            int vt = _tree_set->find(vb);
2287

	
2288
            if (vt != tree) {
2289

	
2290
              Arc r = _graph.oppositeArc(e);
2291

	
2292
              typename std::map<int, Arc>::iterator it =
2293
                (*_node_data)[ni].heap_index.find(vt);
2294

	
2295
              if (it != (*_node_data)[ni].heap_index.end()) {
2296
                if ((*_node_data)[ni].heap[it->second] > rw) {
2297
                  (*_node_data)[ni].heap.replace(it->second, r);
2298
                  (*_node_data)[ni].heap.decrease(r, rw);
2299
                  it->second = r;
2300
                }
2301
              } else {
2302
                (*_node_data)[ni].heap.push(r, rw);
2303
                (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
2304
              }
2305

	
2306
              if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
2307
                _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
2308

	
2309
                if (_delta2->state(blossom) != _delta2->IN_HEAP) {
2310
                  _delta2->push(blossom, _blossom_set->classPrio(blossom) -
2311
                               (*_blossom_data)[blossom].offset);
2312
                } else if ((*_delta2)[blossom] >
2313
                           _blossom_set->classPrio(blossom) -
2314
                           (*_blossom_data)[blossom].offset){
2315
                  _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
2316
                                   (*_blossom_data)[blossom].offset);
2317
                }
2318
              }
2319
            }
2320
          } else {
2321

	
2322
            typename std::map<int, Arc>::iterator it =
2323
              (*_node_data)[vi].heap_index.find(tree);
2324

	
2325
            if (it != (*_node_data)[vi].heap_index.end()) {
2326
              (*_node_data)[vi].heap.erase(it->second);
2327
              (*_node_data)[vi].heap_index.erase(it);
2328
              if ((*_node_data)[vi].heap.empty()) {
2329
                _blossom_set->increase(v, std::numeric_limits<Value>::max());
2330
              } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
2331
                _blossom_set->increase(v, (*_node_data)[vi].heap.prio());
2332
              }
2333

	
2334
              if ((*_blossom_data)[vb].status == MATCHED) {
2335
                if (_blossom_set->classPrio(vb) ==
2336
                    std::numeric_limits<Value>::max()) {
2337
                  _delta2->erase(vb);
2338
                } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
2339
                           (*_blossom_data)[vb].offset) {
2340
                  _delta2->increase(vb, _blossom_set->classPrio(vb) -
2341
                                   (*_blossom_data)[vb].offset);
2342
                }
2343
              }
2344
            }
2345
          }
2346
        }
2347
      }
2348
    }
2349

	
2350
    void oddToMatched(int blossom) {
2351
      (*_blossom_data)[blossom].offset -= _delta_sum;
2352

	
2353
      if (_blossom_set->classPrio(blossom) !=
2354
          std::numeric_limits<Value>::max()) {
2355
        _delta2->push(blossom, _blossom_set->classPrio(blossom) -
2356
                       (*_blossom_data)[blossom].offset);
2357
      }
2358

	
2359
      if (!_blossom_set->trivial(blossom)) {
2360
        _delta4->erase(blossom);
2361
      }
2362
    }
2363

	
2364
    void oddToEven(int blossom, int tree) {
2365
      if (!_blossom_set->trivial(blossom)) {
2366
        _delta4->erase(blossom);
2367
        (*_blossom_data)[blossom].pot -=
2368
          2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
2369
      }
2370

	
2371
      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
2372
           n != INVALID; ++n) {
2373
        int ni = (*_node_index)[n];
2374

	
2375
        _blossom_set->increase(n, std::numeric_limits<Value>::max());
2376

	
2377
        (*_node_data)[ni].heap.clear();
2378
        (*_node_data)[ni].heap_index.clear();
2379
        (*_node_data)[ni].pot +=
2380
          2 * _delta_sum - (*_blossom_data)[blossom].offset;
2381

	
2382
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
2383
          Node v = _graph.source(e);
2384
          int vb = _blossom_set->find(v);
2385
          int vi = (*_node_index)[v];
2386

	
2387
          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
2388
            dualScale * _weight[e];
2389

	
2390
          if ((*_blossom_data)[vb].status == EVEN) {
2391
            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
2392
              _delta3->push(e, rw / 2);
2393
            }
2394
          } else {
2395

	
2396
            typename std::map<int, Arc>::iterator it =
2397
              (*_node_data)[vi].heap_index.find(tree);
2398

	
2399
            if (it != (*_node_data)[vi].heap_index.end()) {
2400
              if ((*_node_data)[vi].heap[it->second] > rw) {
2401
                (*_node_data)[vi].heap.replace(it->second, e);
2402
                (*_node_data)[vi].heap.decrease(e, rw);
2403
                it->second = e;
2404
              }
2405
            } else {
2406
              (*_node_data)[vi].heap.push(e, rw);
2407
              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
2408
            }
2409

	
2410
            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
2411
              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
2412

	
2413
              if ((*_blossom_data)[vb].status == MATCHED) {
2414
                if (_delta2->state(vb) != _delta2->IN_HEAP) {
2415
                  _delta2->push(vb, _blossom_set->classPrio(vb) -
2416
                               (*_blossom_data)[vb].offset);
2417
                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
2418
                           (*_blossom_data)[vb].offset) {
2419
                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
2420
                                   (*_blossom_data)[vb].offset);
2421
                }
2422
              }
2423
            }
2424
          }
2425
        }
2426
      }
2427
      (*_blossom_data)[blossom].offset = 0;
2428
    }
2429

	
2430
    void alternatePath(int even, int tree) {
2431
      int odd;
2432

	
2433
      evenToMatched(even, tree);
2434
      (*_blossom_data)[even].status = MATCHED;
2435

	
2436
      while ((*_blossom_data)[even].pred != INVALID) {
2437
        odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred));
2438
        (*_blossom_data)[odd].status = MATCHED;
2439
        oddToMatched(odd);
2440
        (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred;
2441

	
2442
        even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred));
2443
        (*_blossom_data)[even].status = MATCHED;
2444
        evenToMatched(even, tree);
2445
        (*_blossom_data)[even].next =
2446
          _graph.oppositeArc((*_blossom_data)[odd].pred);
2447
      }
2448

	
2449
    }
2450

	
2451
    void destroyTree(int tree) {
2452
      for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) {
2453
        if ((*_blossom_data)[b].status == EVEN) {
2454
          (*_blossom_data)[b].status = MATCHED;
2455
          evenToMatched(b, tree);
2456
        } else if ((*_blossom_data)[b].status == ODD) {
2457
          (*_blossom_data)[b].status = MATCHED;
2458
          oddToMatched(b);
2459
        }
2460
      }
2461
      _tree_set->eraseClass(tree);
2462
    }
2463

	
2464
    void augmentOnArc(const Edge& arc) {
2465

	
2466
      int left = _blossom_set->find(_graph.u(arc));
2467
      int right = _blossom_set->find(_graph.v(arc));
2468

	
2469
      int left_tree = _tree_set->find(left);
2470
      alternatePath(left, left_tree);
2471
      destroyTree(left_tree);
2472

	
2473
      int right_tree = _tree_set->find(right);
2474
      alternatePath(right, right_tree);
2475
      destroyTree(right_tree);
2476

	
2477
      (*_blossom_data)[left].next = _graph.direct(arc, true);
2478
      (*_blossom_data)[right].next = _graph.direct(arc, false);
2479
    }
2480

	
2481
    void extendOnArc(const Arc& arc) {
2482
      int base = _blossom_set->find(_graph.target(arc));
2483
      int tree = _tree_set->find(base);
2484

	
2485
      int odd = _blossom_set->find(_graph.source(arc));
2486
      _tree_set->insert(odd, tree);
2487
      (*_blossom_data)[odd].status = ODD;
2488
      matchedToOdd(odd);
2489
      (*_blossom_data)[odd].pred = arc;
2490

	
2491
      int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next));
2492
      (*_blossom_data)[even].pred = (*_blossom_data)[even].next;
2493
      _tree_set->insert(even, tree);
2494
      (*_blossom_data)[even].status = EVEN;
2495
      matchedToEven(even, tree);
2496
    }
2497

	
2498
    void shrinkOnArc(const Edge& edge, int tree) {
2499
      int nca = -1;
2500
      std::vector<int> left_path, right_path;
2501

	
2502
      {
2503
        std::set<int> left_set, right_set;
2504
        int left = _blossom_set->find(_graph.u(edge));
2505
        left_path.push_back(left);
2506
        left_set.insert(left);
2507

	
2508
        int right = _blossom_set->find(_graph.v(edge));
2509
        right_path.push_back(right);
2510
        right_set.insert(right);
2511

	
2512
        while (true) {
2513

	
2514
          if ((*_blossom_data)[left].pred == INVALID) break;
2515

	
2516
          left =
2517
            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
2518
          left_path.push_back(left);
2519
          left =
2520
            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
2521
          left_path.push_back(left);
2522

	
2523
          left_set.insert(left);
2524

	
2525
          if (right_set.find(left) != right_set.end()) {
2526
            nca = left;
2527
            break;
2528
          }
2529

	
2530
          if ((*_blossom_data)[right].pred == INVALID) break;
2531

	
2532
          right =
2533
            _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
2534
          right_path.push_back(right);
2535
          right =
2536
            _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
2537
          right_path.push_back(right);
2538

	
2539
          right_set.insert(right);
2540

	
2541
          if (left_set.find(right) != left_set.end()) {
2542
            nca = right;
2543
            break;
2544
          }
2545

	
2546
        }
2547

	
2548
        if (nca == -1) {
2549
          if ((*_blossom_data)[left].pred == INVALID) {
2550
            nca = right;
2551
            while (left_set.find(nca) == left_set.end()) {
2552
              nca =
2553
                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
2554
              right_path.push_back(nca);
2555
              nca =
2556
                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
2557
              right_path.push_back(nca);
2558
            }
2559
          } else {
2560
            nca = left;
2561
            while (right_set.find(nca) == right_set.end()) {
2562
              nca =
2563
                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
2564
              left_path.push_back(nca);
2565
              nca =
2566
                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
2567
              left_path.push_back(nca);
2568
            }
2569
          }
2570
        }
2571
      }
2572

	
2573
      std::vector<int> subblossoms;
2574
      Arc prev;
2575

	
2576
      prev = _graph.direct(edge, true);
2577
      for (int i = 0; left_path[i] != nca; i += 2) {
2578
        subblossoms.push_back(left_path[i]);
2579
        (*_blossom_data)[left_path[i]].next = prev;
2580
        _tree_set->erase(left_path[i]);
2581

	
2582
        subblossoms.push_back(left_path[i + 1]);
2583
        (*_blossom_data)[left_path[i + 1]].status = EVEN;
2584
        oddToEven(left_path[i + 1], tree);
2585
        _tree_set->erase(left_path[i + 1]);
2586
        prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred);
2587
      }
2588

	
2589
      int k = 0;
2590
      while (right_path[k] != nca) ++k;
2591

	
2592
      subblossoms.push_back(nca);
2593
      (*_blossom_data)[nca].next = prev;
2594

	
2595
      for (int i = k - 2; i >= 0; i -= 2) {
2596
        subblossoms.push_back(right_path[i + 1]);
2597
        (*_blossom_data)[right_path[i + 1]].status = EVEN;
2598
        oddToEven(right_path[i + 1], tree);
2599
        _tree_set->erase(right_path[i + 1]);
2600

	
2601
        (*_blossom_data)[right_path[i + 1]].next =
2602
          (*_blossom_data)[right_path[i + 1]].pred;
2603

	
2604
        subblossoms.push_back(right_path[i]);
2605
        _tree_set->erase(right_path[i]);
2606
      }
2607

	
2608
      int surface =
2609
        _blossom_set->join(subblossoms.begin(), subblossoms.end());
2610

	
2611
      for (int i = 0; i < int(subblossoms.size()); ++i) {
2612
        if (!_blossom_set->trivial(subblossoms[i])) {
2613
          (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum;
2614
        }
2615
        (*_blossom_data)[subblossoms[i]].status = MATCHED;
2616
      }
2617

	
2618
      (*_blossom_data)[surface].pot = -2 * _delta_sum;
2619
      (*_blossom_data)[surface].offset = 0;
2620
      (*_blossom_data)[surface].status = EVEN;
2621
      (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred;
2622
      (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred;
2623

	
2624
      _tree_set->insert(surface, tree);
2625
      _tree_set->erase(nca);
2626
    }
2627

	
2628
    void splitBlossom(int blossom) {
2629
      Arc next = (*_blossom_data)[blossom].next;
2630
      Arc pred = (*_blossom_data)[blossom].pred;
2631

	
2632
      int tree = _tree_set->find(blossom);
2633

	
2634
      (*_blossom_data)[blossom].status = MATCHED;
2635
      oddToMatched(blossom);
2636
      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
2637
        _delta2->erase(blossom);
2638
      }
2639

	
2640
      std::vector<int> subblossoms;
2641
      _blossom_set->split(blossom, std::back_inserter(subblossoms));
2642

	
2643
      Value offset = (*_blossom_data)[blossom].offset;
2644
      int b = _blossom_set->find(_graph.source(pred));
2645
      int d = _blossom_set->find(_graph.source(next));
2646

	
2647
      int ib = -1, id = -1;
2648
      for (int i = 0; i < int(subblossoms.size()); ++i) {
2649
        if (subblossoms[i] == b) ib = i;
2650
        if (subblossoms[i] == d) id = i;
2651

	
2652
        (*_blossom_data)[subblossoms[i]].offset = offset;
2653
        if (!_blossom_set->trivial(subblossoms[i])) {
2654
          (*_blossom_data)[subblossoms[i]].pot -= 2 * offset;
2655
        }
2656
        if (_blossom_set->classPrio(subblossoms[i]) !=
2657
            std::numeric_limits<Value>::max()) {
2658
          _delta2->push(subblossoms[i],
2659
                        _blossom_set->classPrio(subblossoms[i]) -
2660
                        (*_blossom_data)[subblossoms[i]].offset);
2661
        }
2662
      }
2663

	
2664
      if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) {
2665
        for (int i = (id + 1) % subblossoms.size();
2666
             i != ib; i = (i + 2) % subblossoms.size()) {
2667
          int sb = subblossoms[i];
2668
          int tb = subblossoms[(i + 1) % subblossoms.size()];
2669
          (*_blossom_data)[sb].next =
2670
            _graph.oppositeArc((*_blossom_data)[tb].next);
2671
        }
2672

	
2673
        for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
2674
          int sb = subblossoms[i];
2675
          int tb = subblossoms[(i + 1) % subblossoms.size()];
2676
          int ub = subblossoms[(i + 2) % subblossoms.size()];
2677

	
2678
          (*_blossom_data)[sb].status = ODD;
2679
          matchedToOdd(sb);
2680
          _tree_set->insert(sb, tree);
2681
          (*_blossom_data)[sb].pred = pred;
2682
          (*_blossom_data)[sb].next =
2683
                           _graph.oppositeArc((*_blossom_data)[tb].next);
2684

	
2685
          pred = (*_blossom_data)[ub].next;
2686

	
2687
          (*_blossom_data)[tb].status = EVEN;
2688
          matchedToEven(tb, tree);
2689
          _tree_set->insert(tb, tree);
2690
          (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next;
2691
        }
2692

	
2693
        (*_blossom_data)[subblossoms[id]].status = ODD;
2694
        matchedToOdd(subblossoms[id]);
2695
        _tree_set->insert(subblossoms[id], tree);
2696
        (*_blossom_data)[subblossoms[id]].next = next;
2697
        (*_blossom_data)[subblossoms[id]].pred = pred;
2698

	
2699
      } else {
2700

	
2701
        for (int i = (ib + 1) % subblossoms.size();
2702
             i != id; i = (i + 2) % subblossoms.size()) {
2703
          int sb = subblossoms[i];
2704
          int tb = subblossoms[(i + 1) % subblossoms.size()];
2705
          (*_blossom_data)[sb].next =
2706
            _graph.oppositeArc((*_blossom_data)[tb].next);
2707
        }
2708

	
2709
        for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) {
2710
          int sb = subblossoms[i];
2711
          int tb = subblossoms[(i + 1) % subblossoms.size()];
2712
          int ub = subblossoms[(i + 2) % subblossoms.size()];
2713

	
2714
          (*_blossom_data)[sb].status = ODD;
2715
          matchedToOdd(sb);
2716
          _tree_set->insert(sb, tree);
2717
          (*_blossom_data)[sb].next = next;
2718
          (*_blossom_data)[sb].pred =
2719
            _graph.oppositeArc((*_blossom_data)[tb].next);
2720

	
2721
          (*_blossom_data)[tb].status = EVEN;
2722
          matchedToEven(tb, tree);
2723
          _tree_set->insert(tb, tree);
2724
          (*_blossom_data)[tb].pred =
2725
            (*_blossom_data)[tb].next =
2726
            _graph.oppositeArc((*_blossom_data)[ub].next);
2727
          next = (*_blossom_data)[ub].next;
2728
        }
2729

	
2730
        (*_blossom_data)[subblossoms[ib]].status = ODD;
2731
        matchedToOdd(subblossoms[ib]);
2732
        _tree_set->insert(subblossoms[ib], tree);
2733
        (*_blossom_data)[subblossoms[ib]].next = next;
2734
        (*_blossom_data)[subblossoms[ib]].pred = pred;
2735
      }
2736
      _tree_set->erase(blossom);
2737
    }
2738

	
2739
    void extractBlossom(int blossom, const Node& base, const Arc& matching) {
2740
      if (_blossom_set->trivial(blossom)) {
2741
        int bi = (*_node_index)[base];
2742
        Value pot = (*_node_data)[bi].pot;
2743

	
2744
        _matching->set(base, matching);
2745
        _blossom_node_list.push_back(base);
2746
        _node_potential->set(base, pot);
2747
      } else {
2748

	
2749
        Value pot = (*_blossom_data)[blossom].pot;
2750
        int bn = _blossom_node_list.size();
2751

	
2752
        std::vector<int> subblossoms;
2753
        _blossom_set->split(blossom, std::back_inserter(subblossoms));
2754
        int b = _blossom_set->find(base);
2755
        int ib = -1;
2756
        for (int i = 0; i < int(subblossoms.size()); ++i) {
2757
          if (subblossoms[i] == b) { ib = i; break; }
2758
        }
2759

	
2760
        for (int i = 1; i < int(subblossoms.size()); i += 2) {
2761
          int sb = subblossoms[(ib + i) % subblossoms.size()];
2762
          int tb = subblossoms[(ib + i + 1) % subblossoms.size()];
2763

	
2764
          Arc m = (*_blossom_data)[tb].next;
2765
          extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m));
2766
          extractBlossom(tb, _graph.source(m), m);
2767
        }
2768
        extractBlossom(subblossoms[ib], base, matching);
2769

	
2770
        int en = _blossom_node_list.size();
2771

	
2772
        _blossom_potential.push_back(BlossomVariable(bn, en, pot));
2773
      }
2774
    }
2775

	
2776
    void extractMatching() {
2777
      std::vector<int> blossoms;
2778
      for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
2779
        blossoms.push_back(c);
2780
      }
2781

	
2782
      for (int i = 0; i < int(blossoms.size()); ++i) {
2783

	
2784
        Value offset = (*_blossom_data)[blossoms[i]].offset;
2785
        (*_blossom_data)[blossoms[i]].pot += 2 * offset;
2786
        for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]);
2787
             n != INVALID; ++n) {
2788
          (*_node_data)[(*_node_index)[n]].pot -= offset;
2789
        }
2790

	
2791
        Arc matching = (*_blossom_data)[blossoms[i]].next;
2792
        Node base = _graph.source(matching);
2793
        extractBlossom(blossoms[i], base, matching);
2794
      }
2795
    }
2796

	
2797
  public:
2798

	
2799
    /// \brief Constructor
2800
    ///
2801
    /// Constructor.
2802
    MaxWeightedPerfectMatching(const Graph& graph, const WeightMap& weight)
2803
      : _graph(graph), _weight(weight), _matching(0),
2804
        _node_potential(0), _blossom_potential(), _blossom_node_list(),
2805
        _node_num(0), _blossom_num(0),
2806

	
2807
        _blossom_index(0), _blossom_set(0), _blossom_data(0),
2808
        _node_index(0), _node_heap_index(0), _node_data(0),
2809
        _tree_set_index(0), _tree_set(0),
2810

	
2811
        _delta2_index(0), _delta2(0),
2812
        _delta3_index(0), _delta3(0),
2813
        _delta4_index(0), _delta4(0),
2814

	
2815
        _delta_sum() {}
2816

	
2817
    ~MaxWeightedPerfectMatching() {
2818
      destroyStructures();
2819
    }
2820

	
2821
    /// \name Execution control
2822
    /// The simplest way to execute the algorithm is to use the member
2823
    /// \c run() member function.
2824

	
2825
    ///@{
2826

	
2827
    /// \brief Initialize the algorithm
2828
    ///
2829
    /// Initialize the algorithm
2830
    void init() {
2831
      createStructures();
2832

	
2833
      for (ArcIt e(_graph); e != INVALID; ++e) {
2834
        _node_heap_index->set(e, BinHeap<Value, ArcIntMap>::PRE_HEAP);
2835
      }
2836
      for (EdgeIt e(_graph); e != INVALID; ++e) {
2837
        _delta3_index->set(e, _delta3->PRE_HEAP);
2838
      }
2839
      for (int i = 0; i < _blossom_num; ++i) {
2840
        _delta2_index->set(i, _delta2->PRE_HEAP);
2841
        _delta4_index->set(i, _delta4->PRE_HEAP);
2842
      }
2843

	
2844
      int index = 0;
2845
      for (NodeIt n(_graph); n != INVALID; ++n) {
2846
        Value max = - std::numeric_limits<Value>::max();
2847
        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
2848
          if (_graph.target(e) == n) continue;
2849
          if ((dualScale * _weight[e]) / 2 > max) {
2850
            max = (dualScale * _weight[e]) / 2;
2851
          }
2852
        }
2853
        _node_index->set(n, index);
2854
        (*_node_data)[index].pot = max;
2855
        int blossom =
2856
          _blossom_set->insert(n, std::numeric_limits<Value>::max());
2857

	
2858
        _tree_set->insert(blossom);
2859

	
2860
        (*_blossom_data)[blossom].status = EVEN;
2861
        (*_blossom_data)[blossom].pred = INVALID;
2862
        (*_blossom_data)[blossom].next = INVALID;
2863
        (*_blossom_data)[blossom].pot = 0;
2864
        (*_blossom_data)[blossom].offset = 0;
2865
        ++index;
2866
      }
2867
      for (EdgeIt e(_graph); e != INVALID; ++e) {
2868
        int si = (*_node_index)[_graph.u(e)];
2869
        int ti = (*_node_index)[_graph.v(e)];
2870
        if (_graph.u(e) != _graph.v(e)) {
2871
          _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
2872
                            dualScale * _weight[e]) / 2);
2873
        }
2874
      }
2875
    }
2876

	
2877
    /// \brief Starts the algorithm
2878
    ///
2879
    /// Starts the algorithm
2880
    bool start() {
2881
      enum OpType {
2882
        D2, D3, D4
2883
      };
2884

	
2885
      int unmatched = _node_num;
2886
      while (unmatched > 0) {
2887
        Value d2 = !_delta2->empty() ?
2888
          _delta2->prio() : std::numeric_limits<Value>::max();
2889

	
2890
        Value d3 = !_delta3->empty() ?
2891
          _delta3->prio() : std::numeric_limits<Value>::max();
2892

	
2893
        Value d4 = !_delta4->empty() ?
2894
          _delta4->prio() : std::numeric_limits<Value>::max();
2895

	
2896
        _delta_sum = d2; OpType ot = D2;
2897
        if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
2898
        if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
2899

	
2900
        if (_delta_sum == std::numeric_limits<Value>::max()) {
2901
          return false;
2902
        }
2903

	
2904
        switch (ot) {
2905
        case D2:
2906
          {
2907
            int blossom = _delta2->top();
2908
            Node n = _blossom_set->classTop(blossom);
2909
            Arc e = (*_node_data)[(*_node_index)[n]].heap.top();
2910
            extendOnArc(e);
2911
          }
2912
          break;
2913
        case D3:
2914
          {
2915
            Edge e = _delta3->top();
2916

	
2917
            int left_blossom = _blossom_set->find(_graph.u(e));
2918
            int right_blossom = _blossom_set->find(_graph.v(e));
2919

	
2920
            if (left_blossom == right_blossom) {
2921
              _delta3->pop();
2922
            } else {
2923
              int left_tree = _tree_set->find(left_blossom);
2924
              int right_tree = _tree_set->find(right_blossom);
2925

	
2926
              if (left_tree == right_tree) {
2927
                shrinkOnArc(e, left_tree);
2928
              } else {
2929
                augmentOnArc(e);
2930
                unmatched -= 2;
2931
              }
2932
            }
2933
          } break;
2934
        case D4:
2935
          splitBlossom(_delta4->top());
2936
          break;
2937
        }
2938
      }
2939
      extractMatching();
2940
      return true;
2941
    }
2942

	
2943
    /// \brief Runs %MaxWeightedPerfectMatching algorithm.
2944
    ///
2945
    /// This method runs the %MaxWeightedPerfectMatching algorithm.
2946
    ///
2947
    /// \note mwm.run() is just a shortcut of the following code.
2948
    /// \code
2949
    ///   mwm.init();
2950
    ///   mwm.start();
2951
    /// \endcode
2952
    bool run() {
2953
      init();
2954
      return start();
2955
    }
2956

	
2957
    /// @}
2958

	
2959
    /// \name Primal solution
2960
    /// Functions for get the primal solution, ie. the matching.
2961

	
2962
    /// @{
2963

	
2964
    /// \brief Returns the matching value.
2965
    ///
2966
    /// Returns the matching value.
2967
    Value matchingValue() const {
2968
      Value sum = 0;
2969
      for (NodeIt n(_graph); n != INVALID; ++n) {
2970
        if ((*_matching)[n] != INVALID) {
2971
          sum += _weight[(*_matching)[n]];
2972
        }
2973
      }
2974
      return sum /= 2;
2975
    }
2976

	
2977
    /// \brief Returns true when the arc is in the matching.
2978
    ///
2979
    /// Returns true when the arc is in the matching.
2980
    bool matching(const Edge& arc) const {
2981
      return (*_matching)[_graph.u(arc)] == _graph.direct(arc, true);
2982
    }
2983

	
2984
    /// \brief Returns the incident matching arc.
2985
    ///
2986
    /// Returns the incident matching arc from given node.
2987
    Arc matching(const Node& node) const {
2988
      return (*_matching)[node];
2989
    }
2990

	
2991
    /// \brief Returns the mate of the node.
2992
    ///
2993
    /// Returns the adjancent node in a mathcing arc.
2994
    Node mate(const Node& node) const {
2995
      return _graph.target((*_matching)[node]);
2996
    }
2997

	
2998
    /// @}
2999

	
3000
    /// \name Dual solution
3001
    /// Functions for get the dual solution.
3002

	
3003
    /// @{
3004

	
3005
    /// \brief Returns the value of the dual solution.
3006
    ///
3007
    /// Returns the value of the dual solution. It should be equal to
3008
    /// the primal value scaled by \ref dualScale "dual scale".
3009
    Value dualValue() const {
3010
      Value sum = 0;
3011
      for (NodeIt n(_graph); n != INVALID; ++n) {
3012
        sum += nodeValue(n);
3013
      }
3014
      for (int i = 0; i < blossomNum(); ++i) {
3015
        sum += blossomValue(i) * (blossomSize(i) / 2);
3016
      }
3017
      return sum;
3018
    }
3019

	
3020
    /// \brief Returns the value of the node.
3021
    ///
3022
    /// Returns the the value of the node.
3023
    Value nodeValue(const Node& n) const {
3024
      return (*_node_potential)[n];
3025
    }
3026

	
3027
    /// \brief Returns the number of the blossoms in the basis.
3028
    ///
3029
    /// Returns the number of the blossoms in the basis.
3030
    /// \see BlossomIt
3031
    int blossomNum() const {
3032
      return _blossom_potential.size();
3033
    }
3034

	
3035

	
3036
    /// \brief Returns the number of the nodes in the blossom.
3037
    ///
3038
    /// Returns the number of the nodes in the blossom.
3039
    int blossomSize(int k) const {
3040
      return _blossom_potential[k].end - _blossom_potential[k].begin;
3041
    }
3042

	
3043
    /// \brief Returns the value of the blossom.
3044
    ///
3045
    /// Returns the the value of the blossom.
3046
    /// \see BlossomIt
3047
    Value blossomValue(int k) const {
3048
      return _blossom_potential[k].value;
3049
    }
3050

	
3051
    /// \brief Lemon iterator for get the items of the blossom.
3052
    ///
3053
    /// Lemon iterator for get the nodes of the blossom. This class
3054
    /// provides a common style lemon iterator which gives back a
3055
    /// subset of the nodes.
3056
    class BlossomIt {
3057
    public:
3058

	
3059
      /// \brief Constructor.
3060
      ///
3061
      /// Constructor for get the nodes of the variable.
3062
      BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable)
3063
        : _algorithm(&algorithm)
3064
      {
3065
        _index = _algorithm->_blossom_potential[variable].begin;
3066
        _last = _algorithm->_blossom_potential[variable].end;
3067
      }
3068

	
3069
      /// \brief Invalid constructor.
3070
      ///
3071
      /// Invalid constructor.
3072
      BlossomIt(Invalid) : _index(-1) {}
3073

	
3074
      /// \brief Conversion to node.
3075
      ///
3076
      /// Conversion to node.
3077
      operator Node() const {
3078
        return _algorithm ? _algorithm->_blossom_node_list[_index] : INVALID;
3079
      }
3080

	
3081
      /// \brief Increment operator.
3082
      ///
3083
      /// Increment operator.
3084
      BlossomIt& operator++() {
3085
        ++_index;
3086
        if (_index == _last) {
3087
          _index = -1;
3088
        }
3089
        return *this;
3090
      }
3091

	
3092
      bool operator==(const BlossomIt& it) const {
3093
        return _index == it._index;
3094
      }
3095
      bool operator!=(const BlossomIt& it) const {
3096
        return _index != it._index;
3097
      }
3098

	
3099
    private:
3100
      const MaxWeightedPerfectMatching* _algorithm;
3101
      int _last;
3102
      int _index;
3103
    };
3104

	
3105
    /// @}
3106

	
3107
  };
3108

	
3109

	
3110
} //END OF NAMESPACE LEMON
3111

	
3112
#endif //LEMON_MAX_MATCHING_H
Ignore white space 6 line context
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library.
4
 *
5
 * Copyright (C) 2003-2008
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#include <iostream>
20
#include <vector>
21
#include <queue>
22
#include <lemon/math.h>
23
#include <cstdlib>
24

	
25
#include "test_tools.h"
26
#include <lemon/list_graph.h>
27
#include <lemon/max_matching.h>
28

	
29
using namespace std;
30
using namespace lemon;
31

	
32
int main() {
33

	
34
  typedef ListGraph Graph;
35

	
36
  GRAPH_TYPEDEFS(Graph);
37

	
38
  Graph g;
39
  g.clear();
40

	
41
  std::vector<Graph::Node> nodes;
42
  for (int i=0; i<13; ++i)
43
      nodes.push_back(g.addNode());
44

	
45
  g.addEdge(nodes[0], nodes[0]);
46
  g.addEdge(nodes[6], nodes[10]);
47
  g.addEdge(nodes[5], nodes[10]);
48
  g.addEdge(nodes[4], nodes[10]);
49
  g.addEdge(nodes[3], nodes[11]);
50
  g.addEdge(nodes[1], nodes[6]);
51
  g.addEdge(nodes[4], nodes[7]);
52
  g.addEdge(nodes[1], nodes[8]);
53
  g.addEdge(nodes[0], nodes[8]);
54
  g.addEdge(nodes[3], nodes[12]);
55
  g.addEdge(nodes[6], nodes[9]);
56
  g.addEdge(nodes[9], nodes[11]);
57
  g.addEdge(nodes[2], nodes[10]);
58
  g.addEdge(nodes[10], nodes[8]);
59
  g.addEdge(nodes[5], nodes[8]);
60
  g.addEdge(nodes[6], nodes[3]);
61
  g.addEdge(nodes[0], nodes[5]);
62
  g.addEdge(nodes[6], nodes[12]);
63

	
64
  MaxMatching<Graph> max_matching(g);
65
  max_matching.init();
66
  max_matching.startDense();
67

	
68
  int s=0;
69
  Graph::NodeMap<Node> mate(g,INVALID);
70
  max_matching.mateMap(mate);
71
  for(NodeIt v(g); v!=INVALID; ++v) {
72
    if ( mate[v]!=INVALID ) ++s;
73
  }
74
  int size=int(s/2);  //size will be used as the size of a maxmatching
75

	
76
  for(NodeIt v(g); v!=INVALID; ++v) {
77
    max_matching.mate(v);
78
  }
79

	
80
  check ( size == max_matching.size(), "mate() returns a different size matching than max_matching.size()" );
81

	
82
  Graph::NodeMap<MaxMatching<Graph>::DecompType> pos0(g);
83
  max_matching.decomposition(pos0);
84

	
85
  max_matching.init();
86
  max_matching.startSparse();
87
  s=0;
88
  max_matching.mateMap(mate);
89
  for(NodeIt v(g); v!=INVALID; ++v) {
90
    if ( mate[v]!=INVALID ) ++s;
91
  }
92
  check ( int(s/2) == size, "The size does not equal!" );
93

	
94
  Graph::NodeMap<MaxMatching<Graph>::DecompType> pos1(g);
95
  max_matching.decomposition(pos1);
96

	
97
  max_matching.run();
98
  s=0;
99
  max_matching.mateMap(mate);
100
  for(NodeIt v(g); v!=INVALID; ++v) {
101
    if ( mate[v]!=INVALID ) ++s;
102
  }
103
  check ( int(s/2) == size, "The size does not equal!" );
104

	
105
  Graph::NodeMap<MaxMatching<Graph>::DecompType> pos2(g);
106
  max_matching.decomposition(pos2);
107

	
108
  max_matching.run();
109
  s=0;
110
  max_matching.mateMap(mate);
111
  for(NodeIt v(g); v!=INVALID; ++v) {
112
    if ( mate[v]!=INVALID ) ++s;
113
  }
114
  check ( int(s/2) == size, "The size does not equal!" );
115

	
116
  Graph::NodeMap<MaxMatching<Graph>::DecompType> pos(g);
117
  max_matching.decomposition(pos);
118

	
119
  bool ismatching=true;
120
  for(NodeIt v(g); v!=INVALID; ++v) {
121
    if ( mate[v]!=INVALID ) {
122
      Node u=mate[v];
123
      if (mate[u]!=v) ismatching=false;
124
    }
125
  }
126
  check ( ismatching, "It is not a matching!" );
127

	
128
  bool coincide=true;
129
  for(NodeIt v(g); v!=INVALID; ++v) {
130
   if ( pos0[v] != pos1[v] || pos1[v]!=pos2[v] || pos2[v]!=pos[v] ) {
131
     coincide=false;
132
    }
133
  }
134
  check ( coincide, "The decompositions do not coincide! " );
135

	
136
  bool noarc=true;
137
  for(EdgeIt e(g); e!=INVALID; ++e) {
138
   if ( (pos[g.v(e)]==max_matching.C &&
139
         pos[g.u(e)]==max_matching.D) ||
140
         (pos[g.v(e)]==max_matching.D &&
141
          pos[g.u(e)]==max_matching.C) )
142
      noarc=false;
143
  }
144
  check ( noarc, "There are arcs between D and C!" );
145

	
146
  bool oddcomp=true;
147
  Graph::NodeMap<bool> todo(g,true);
148
  int num_comp=0;
149
  for(NodeIt v(g); v!=INVALID; ++v) {
150
   if ( pos[v]==max_matching.D && todo[v] ) {
151
      int comp_size=1;
152
      ++num_comp;
153
      std::queue<Node> Q;
154
      Q.push(v);
155
      todo.set(v,false);
156
      while (!Q.empty()) {
157
        Node w=Q.front();
158
        Q.pop();
159
        for(IncEdgeIt e(g,w); e!=INVALID; ++e) {
160
          Node u=g.runningNode(e);
161
          if ( pos[u]==max_matching.D && todo[u] ) {
162
            ++comp_size;
163
            Q.push(u);
164
            todo.set(u,false);
165
          }
166
        }
167
      }
168
      if ( !(comp_size % 2) ) oddcomp=false;
169
    }
170
  }
171
  check ( oddcomp, "A component of g[D] is not odd." );
172

	
173
  int barrier=0;
174
  for(NodeIt v(g); v!=INVALID; ++v) {
175
    if ( pos[v]==max_matching.A ) ++barrier;
176
  }
177
  int expected_size=int( countNodes(g)-num_comp+barrier)/2;
178
  check ( size==expected_size, "The size of the matching is wrong." );
179

	
180
  return 0;
181
}
Ignore white space 6 line context
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library.
4
 *
5
 * Copyright (C) 2003-2008
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#include <iostream>
20
#include <sstream>
21
#include <vector>
22
#include <queue>
23
#include <lemon/math.h>
24
#include <cstdlib>
25

	
26
#include "test_tools.h"
27
#include <lemon/smart_graph.h>
28
#include <lemon/max_matching.h>
29
#include <lemon/lgf_reader.h>
30

	
31
using namespace std;
32
using namespace lemon;
33

	
34
GRAPH_TYPEDEFS(SmartGraph);
35

	
36
const int lgfn = 3;
37
const std::string lgf[lgfn] = {
38
  "@nodes\n"
39
  "label\n"
40
  "0\n"
41
  "1\n"
42
  "2\n"
43
  "3\n"
44
  "4\n"
45
  "5\n"
46
  "6\n"
47
  "7\n"
48
  "@edges\n"
49
  "label        weight\n"
50
  "7    4       0       984\n"
51
  "0    7       1       73\n"
52
  "7    1       2       204\n"
53
  "2    3       3       583\n"
54
  "2    7       4       565\n"
55
  "2    1       5       582\n"
56
  "0    4       6       551\n"
57
  "2    5       7       385\n"
58
  "1    5       8       561\n"
59
  "5    3       9       484\n"
60
  "7    5       10      904\n"
61
  "3    6       11      47\n"
62
  "7    6       12      888\n"
63
  "3    0       13      747\n"
64
  "6    1       14      310\n",
65

	
66
  "@nodes\n"
67
  "label\n"
68
  "0\n"
69
  "1\n"
70
  "2\n"
71
  "3\n"
72
  "4\n"
73
  "5\n"
74
  "6\n"
75
  "7\n"
76
  "@edges\n"
77
  "label        weight\n"
78
  "2    5       0       710\n"
79
  "0    5       1       241\n"
80
  "2    4       2       856\n"
81
  "2    6       3       762\n"
82
  "4    1       4       747\n"
83
  "6    1       5       962\n"
84
  "4    7       6       723\n"
85
  "1    7       7       661\n"
86
  "2    3       8       376\n"
87
  "1    0       9       416\n"
88
  "6    7       10      391\n",
89

	
90
  "@nodes\n"
91
  "label\n"
92
  "0\n"
93
  "1\n"
94
  "2\n"
95
  "3\n"
96
  "4\n"
97
  "5\n"
98
  "6\n"
99
  "7\n"
100
  "@edges\n"
101
  "label        weight\n"
102
  "6    2       0       553\n"
103
  "0    7       1       653\n"
104
  "6    3       2       22\n"
105
  "4    7       3       846\n"
106
  "7    2       4       981\n"
107
  "7    6       5       250\n"
108
  "5    2       6       539\n"
109
};
110

	
111
void checkMatching(const SmartGraph& graph,
112
                   const SmartGraph::EdgeMap<int>& weight,
113
                   const MaxWeightedMatching<SmartGraph>& mwm) {
114
  for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
115
    if (graph.u(e) == graph.v(e)) continue;
116
    int rw =
117
      mwm.nodeValue(graph.u(e)) + mwm.nodeValue(graph.v(e));
118

	
119
    for (int i = 0; i < mwm.blossomNum(); ++i) {
120
      bool s = false, t = false;
121
      for (MaxWeightedMatching<SmartGraph>::BlossomIt n(mwm, i);
122
           n != INVALID; ++n) {
123
        if (graph.u(e) == n) s = true;
124
        if (graph.v(e) == n) t = true;
125
      }
126
      if (s == true && t == true) {
127
        rw += mwm.blossomValue(i);
128
      }
129
    }
130
    rw -= weight[e] * mwm.dualScale;
131

	
132
    check(rw >= 0, "Negative reduced weight");
133
    check(rw == 0 || !mwm.matching(e),
134
          "Non-zero reduced weight on matching arc");
135
  }
136

	
137
  int pv = 0;
138
  for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
139
    if (mwm.matching(n) != INVALID) {
140
      check(mwm.nodeValue(n) >= 0, "Invalid node value");
141
      pv += weight[mwm.matching(n)];
142
      SmartGraph::Node o = graph.target(mwm.matching(n));
143
      check(mwm.mate(n) == o, "Invalid matching");
144
      check(mwm.matching(n) == graph.oppositeArc(mwm.matching(o)),
145
            "Invalid matching");
146
    } else {
147
      check(mwm.mate(n) == INVALID, "Invalid matching");
148
      check(mwm.nodeValue(n) == 0, "Invalid matching");
149
    }
150
  }
151

	
152
  int dv = 0;
153
  for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
154
    dv += mwm.nodeValue(n);
155
  }
156

	
157
  for (int i = 0; i < mwm.blossomNum(); ++i) {
158
    check(mwm.blossomValue(i) >= 0, "Invalid blossom value");
159
    check(mwm.blossomSize(i) % 2 == 1, "Even blossom size");
160
    dv += mwm.blossomValue(i) * ((mwm.blossomSize(i) - 1) / 2);
161
  }
162

	
163
  check(pv * mwm.dualScale == dv * 2, "Wrong duality");
164

	
165
  return;
166
}
167

	
168
void checkPerfectMatching(const SmartGraph& graph,
169
                          const SmartGraph::EdgeMap<int>& weight,
170
                          const MaxWeightedPerfectMatching<SmartGraph>& mwpm) {
171
  for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
172
    if (graph.u(e) == graph.v(e)) continue;
173
    int rw =
174
      mwpm.nodeValue(graph.u(e)) + mwpm.nodeValue(graph.v(e));
175

	
176
    for (int i = 0; i < mwpm.blossomNum(); ++i) {
177
      bool s = false, t = false;
178
      for (MaxWeightedPerfectMatching<SmartGraph>::BlossomIt n(mwpm, i);
179
           n != INVALID; ++n) {
180
        if (graph.u(e) == n) s = true;
181
        if (graph.v(e) == n) t = true;
182
      }
183
      if (s == true && t == true) {
184
        rw += mwpm.blossomValue(i);
185
      }
186
    }
187
    rw -= weight[e] * mwpm.dualScale;
188

	
189
    check(rw >= 0, "Negative reduced weight");
190
    check(rw == 0 || !mwpm.matching(e),
191
          "Non-zero reduced weight on matching arc");
192
  }
193

	
194
  int pv = 0;
195
  for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
196
    check(mwpm.matching(n) != INVALID, "Non perfect");
197
    pv += weight[mwpm.matching(n)];
198
    SmartGraph::Node o = graph.target(mwpm.matching(n));
199
    check(mwpm.mate(n) == o, "Invalid matching");
200
    check(mwpm.matching(n) == graph.oppositeArc(mwpm.matching(o)),
201
          "Invalid matching");
202
  }
203

	
204
  int dv = 0;
205
  for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
206
    dv += mwpm.nodeValue(n);
207
  }
208

	
209
  for (int i = 0; i < mwpm.blossomNum(); ++i) {
210
    check(mwpm.blossomValue(i) >= 0, "Invalid blossom value");
211
    check(mwpm.blossomSize(i) % 2 == 1, "Even blossom size");
212
    dv += mwpm.blossomValue(i) * ((mwpm.blossomSize(i) - 1) / 2);
213
  }
214

	
215
  check(pv * mwpm.dualScale == dv * 2, "Wrong duality");
216

	
217
  return;
218
}
219

	
220

	
221
int main() {
222

	
223
  for (int i = 0; i < lgfn; ++i) {
224
    SmartGraph graph;
225
    SmartGraph::EdgeMap<int> weight(graph);
226

	
227
    istringstream lgfs(lgf[i]);
228
    graphReader(graph, lgfs).
229
      edgeMap("weight", weight).run();
230

	
231
    MaxWeightedMatching<SmartGraph> mwm(graph, weight);
232
    mwm.run();
233
    checkMatching(graph, weight, mwm);
234

	
235
    MaxMatching<SmartGraph> mm(graph);
236
    mm.run();
237

	
238
    MaxWeightedPerfectMatching<SmartGraph> mwpm(graph, weight);
239
    bool perfect = mwpm.run();
240

	
241
    check(perfect == (mm.size() * 2 == countNodes(graph)),
242
          "Perfect matching found");
243

	
244
    if (perfect) {
245
      checkPerfectMatching(graph, weight, mwpm);
246
    }
247
  }
248

	
249
  return 0;
250
}
Ignore white space 6 line context
... ...
@@ -35,6 +35,7 @@
35 35
	lemon/list_graph.h \
36 36
	lemon/maps.h \
37 37
	lemon/math.h \
38
	lemon/max_matching.h \
38 39
	lemon/path.h \
39 40
        lemon/random.h \
40 41
	lemon/smart_graph.h \
Ignore white space 6 line context
... ...
@@ -16,6 +16,8 @@
16 16
  heap_test
17 17
  kruskal_test
18 18
  maps_test
19
  max_matching_test
20
  max_weighted_matching_test
19 21
  random_test
20 22
  path_test
21 23
  time_measure_test
Ignore white space 6 line context
... ...
@@ -19,6 +19,8 @@
19 19
	test/heap_test \
20 20
	test/kruskal_test \
21 21
        test/maps_test \
22
	test/max_matching_test \
23
	test/max_weighted_matching_test \
22 24
        test/random_test \
23 25
        test/path_test \
24 26
        test/test_tools_fail \
... ...
@@ -42,6 +44,8 @@
42 44
test_heap_test_SOURCES = test/heap_test.cc
43 45
test_kruskal_test_SOURCES = test/kruskal_test.cc
44 46
test_maps_test_SOURCES = test/maps_test.cc
47
test_max_matching_test_SOURCES = test/max_matching_test.cc
48
test_max_weighted_matching_test_SOURCES = test/max_weighted_matching_test.cc
45 49
test_path_test_SOURCES = test/path_test.cc
46 50
test_random_test_SOURCES = test/random_test.cc
47 51
test_test_tools_fail_SOURCES = test/test_tools_fail.cc
0 comments (0 inline)