0
1
1
| 1 |
/* -*- C++ -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2008 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_COST_SCALING_H |
|
| 20 |
#define LEMON_COST_SCALING_H |
|
| 21 |
|
|
| 22 |
/// \ingroup min_cost_flow_algs |
|
| 23 |
/// \file |
|
| 24 |
/// \brief Cost scaling algorithm for finding a minimum cost flow. |
|
| 25 |
|
|
| 26 |
#include <vector> |
|
| 27 |
#include <deque> |
|
| 28 |
#include <limits> |
|
| 29 |
|
|
| 30 |
#include <lemon/core.h> |
|
| 31 |
#include <lemon/maps.h> |
|
| 32 |
#include <lemon/math.h> |
|
| 33 |
#include <lemon/adaptors.h> |
|
| 34 |
#include <lemon/circulation.h> |
|
| 35 |
#include <lemon/bellman_ford.h> |
|
| 36 |
|
|
| 37 |
namespace lemon {
|
|
| 38 |
|
|
| 39 |
/// \addtogroup min_cost_flow_algs |
|
| 40 |
/// @{
|
|
| 41 |
|
|
| 42 |
/// \brief Implementation of the cost scaling algorithm for finding a |
|
| 43 |
/// minimum cost flow. |
|
| 44 |
/// |
|
| 45 |
/// \ref CostScaling implements the cost scaling algorithm performing |
|
| 46 |
/// augment/push and relabel operations for finding a minimum cost |
|
| 47 |
/// flow. |
|
| 48 |
/// |
|
| 49 |
/// \tparam Digraph The digraph type the algorithm runs on. |
|
| 50 |
/// \tparam LowerMap The type of the lower bound map. |
|
| 51 |
/// \tparam CapacityMap The type of the capacity (upper bound) map. |
|
| 52 |
/// \tparam CostMap The type of the cost (length) map. |
|
| 53 |
/// \tparam SupplyMap The type of the supply map. |
|
| 54 |
/// |
|
| 55 |
/// \warning |
|
| 56 |
/// - Arc capacities and costs should be \e non-negative \e integers. |
|
| 57 |
/// - Supply values should be \e signed \e integers. |
|
| 58 |
/// - The value types of the maps should be convertible to each other. |
|
| 59 |
/// - \c CostMap::Value must be signed type. |
|
| 60 |
/// |
|
| 61 |
/// \note Arc costs are multiplied with the number of nodes during |
|
| 62 |
/// the algorithm so overflow problems may arise more easily than with |
|
| 63 |
/// other minimum cost flow algorithms. |
|
| 64 |
/// If it is available, <tt>long long int</tt> type is used instead of |
|
| 65 |
/// <tt>long int</tt> in the inside computations. |
|
| 66 |
/// |
|
| 67 |
/// \author Peter Kovacs |
|
| 68 |
template < typename Digraph, |
|
| 69 |
typename LowerMap = typename Digraph::template ArcMap<int>, |
|
| 70 |
typename CapacityMap = typename Digraph::template ArcMap<int>, |
|
| 71 |
typename CostMap = typename Digraph::template ArcMap<int>, |
|
| 72 |
typename SupplyMap = typename Digraph::template NodeMap<int> > |
|
| 73 |
class CostScaling |
|
| 74 |
{
|
|
| 75 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
|
| 76 |
|
|
| 77 |
typedef typename CapacityMap::Value Capacity; |
|
| 78 |
typedef typename CostMap::Value Cost; |
|
| 79 |
typedef typename SupplyMap::Value Supply; |
|
| 80 |
typedef typename Digraph::template ArcMap<Capacity> CapacityArcMap; |
|
| 81 |
typedef typename Digraph::template NodeMap<Supply> SupplyNodeMap; |
|
| 82 |
|
|
| 83 |
typedef ResidualDigraph< const Digraph, |
|
| 84 |
CapacityArcMap, CapacityArcMap > ResDigraph; |
|
| 85 |
typedef typename ResDigraph::Arc ResArc; |
|
| 86 |
|
|
| 87 |
#if defined __GNUC__ && !defined __STRICT_ANSI__ |
|
| 88 |
typedef long long int LCost; |
|
| 89 |
#else |
|
| 90 |
typedef long int LCost; |
|
| 91 |
#endif |
|
| 92 |
typedef typename Digraph::template ArcMap<LCost> LargeCostMap; |
|
| 93 |
|
|
| 94 |
public: |
|
| 95 |
|
|
| 96 |
/// The type of the flow map. |
|
| 97 |
typedef typename Digraph::template ArcMap<Capacity> FlowMap; |
|
| 98 |
/// The type of the potential map. |
|
| 99 |
typedef typename Digraph::template NodeMap<LCost> PotentialMap; |
|
| 100 |
|
|
| 101 |
private: |
|
| 102 |
|
|
| 103 |
/// \brief Map adaptor class for handling residual arc costs. |
|
| 104 |
/// |
|
| 105 |
/// Map adaptor class for handling residual arc costs. |
|
| 106 |
template <typename Map> |
|
| 107 |
class ResidualCostMap : public MapBase<ResArc, typename Map::Value> |
|
| 108 |
{
|
|
| 109 |
private: |
|
| 110 |
|
|
| 111 |
const Map &_cost_map; |
|
| 112 |
|
|
| 113 |
public: |
|
| 114 |
|
|
| 115 |
///\e |
|
| 116 |
ResidualCostMap(const Map &cost_map) : |
|
| 117 |
_cost_map(cost_map) {}
|
|
| 118 |
|
|
| 119 |
///\e |
|
| 120 |
inline typename Map::Value operator[](const ResArc &e) const {
|
|
| 121 |
return ResDigraph::forward(e) ? _cost_map[e] : -_cost_map[e]; |
|
| 122 |
} |
|
| 123 |
|
|
| 124 |
}; //class ResidualCostMap |
|
| 125 |
|
|
| 126 |
/// \brief Map adaptor class for handling reduced arc costs. |
|
| 127 |
/// |
|
| 128 |
/// Map adaptor class for handling reduced arc costs. |
|
| 129 |
class ReducedCostMap : public MapBase<Arc, LCost> |
|
| 130 |
{
|
|
| 131 |
private: |
|
| 132 |
|
|
| 133 |
const Digraph &_gr; |
|
| 134 |
const LargeCostMap &_cost_map; |
|
| 135 |
const PotentialMap &_pot_map; |
|
| 136 |
|
|
| 137 |
public: |
|
| 138 |
|
|
| 139 |
///\e |
|
| 140 |
ReducedCostMap( const Digraph &gr, |
|
| 141 |
const LargeCostMap &cost_map, |
|
| 142 |
const PotentialMap &pot_map ) : |
|
| 143 |
_gr(gr), _cost_map(cost_map), _pot_map(pot_map) {}
|
|
| 144 |
|
|
| 145 |
///\e |
|
| 146 |
inline LCost operator[](const Arc &e) const {
|
|
| 147 |
return _cost_map[e] + _pot_map[_gr.source(e)] |
|
| 148 |
- _pot_map[_gr.target(e)]; |
|
| 149 |
} |
|
| 150 |
|
|
| 151 |
}; //class ReducedCostMap |
|
| 152 |
|
|
| 153 |
private: |
|
| 154 |
|
|
| 155 |
// The digraph the algorithm runs on |
|
| 156 |
const Digraph &_graph; |
|
| 157 |
// The original lower bound map |
|
| 158 |
const LowerMap *_lower; |
|
| 159 |
// The modified capacity map |
|
| 160 |
CapacityArcMap _capacity; |
|
| 161 |
// The original cost map |
|
| 162 |
const CostMap &_orig_cost; |
|
| 163 |
// The scaled cost map |
|
| 164 |
LargeCostMap _cost; |
|
| 165 |
// The modified supply map |
|
| 166 |
SupplyNodeMap _supply; |
|
| 167 |
bool _valid_supply; |
|
| 168 |
|
|
| 169 |
// Arc map of the current flow |
|
| 170 |
FlowMap *_flow; |
|
| 171 |
bool _local_flow; |
|
| 172 |
// Node map of the current potentials |
|
| 173 |
PotentialMap *_potential; |
|
| 174 |
bool _local_potential; |
|
| 175 |
|
|
| 176 |
// The residual cost map |
|
| 177 |
ResidualCostMap<LargeCostMap> _res_cost; |
|
| 178 |
// The residual digraph |
|
| 179 |
ResDigraph *_res_graph; |
|
| 180 |
// The reduced cost map |
|
| 181 |
ReducedCostMap *_red_cost; |
|
| 182 |
// The excess map |
|
| 183 |
SupplyNodeMap _excess; |
|
| 184 |
// The epsilon parameter used for cost scaling |
|
| 185 |
LCost _epsilon; |
|
| 186 |
// The scaling factor |
|
| 187 |
int _alpha; |
|
| 188 |
|
|
| 189 |
public: |
|
| 190 |
|
|
| 191 |
/// \brief General constructor (with lower bounds). |
|
| 192 |
/// |
|
| 193 |
/// General constructor (with lower bounds). |
|
| 194 |
/// |
|
| 195 |
/// \param digraph The digraph the algorithm runs on. |
|
| 196 |
/// \param lower The lower bounds of the arcs. |
|
| 197 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
| 198 |
/// \param cost The cost (length) values of the arcs. |
|
| 199 |
/// \param supply The supply values of the nodes (signed). |
|
| 200 |
CostScaling( const Digraph &digraph, |
|
| 201 |
const LowerMap &lower, |
|
| 202 |
const CapacityMap &capacity, |
|
| 203 |
const CostMap &cost, |
|
| 204 |
const SupplyMap &supply ) : |
|
| 205 |
_graph(digraph), _lower(&lower), _capacity(digraph), _orig_cost(cost), |
|
| 206 |
_cost(digraph), _supply(digraph), _flow(NULL), _local_flow(false), |
|
| 207 |
_potential(NULL), _local_potential(false), _res_cost(_cost), |
|
| 208 |
_res_graph(NULL), _red_cost(NULL), _excess(digraph, 0) |
|
| 209 |
{
|
|
| 210 |
// Check the sum of supply values |
|
| 211 |
Supply sum = 0; |
|
| 212 |
for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n]; |
|
| 213 |
_valid_supply = sum == 0; |
|
| 214 |
|
|
| 215 |
for (ArcIt e(_graph); e != INVALID; ++e) _capacity[e] = capacity[e]; |
|
| 216 |
for (NodeIt n(_graph); n != INVALID; ++n) _supply[n] = supply[n]; |
|
| 217 |
|
|
| 218 |
// Remove non-zero lower bounds |
|
| 219 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
| 220 |
if (lower[e] != 0) {
|
|
| 221 |
_capacity[e] -= lower[e]; |
|
| 222 |
_supply[_graph.source(e)] -= lower[e]; |
|
| 223 |
_supply[_graph.target(e)] += lower[e]; |
|
| 224 |
} |
|
| 225 |
} |
|
| 226 |
} |
|
| 227 |
/* |
|
| 228 |
/// \brief General constructor (without lower bounds). |
|
| 229 |
/// |
|
| 230 |
/// General constructor (without lower bounds). |
|
| 231 |
/// |
|
| 232 |
/// \param digraph The digraph the algorithm runs on. |
|
| 233 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
| 234 |
/// \param cost The cost (length) values of the arcs. |
|
| 235 |
/// \param supply The supply values of the nodes (signed). |
|
| 236 |
CostScaling( const Digraph &digraph, |
|
| 237 |
const CapacityMap &capacity, |
|
| 238 |
const CostMap &cost, |
|
| 239 |
const SupplyMap &supply ) : |
|
| 240 |
_graph(digraph), _lower(NULL), _capacity(capacity), _orig_cost(cost), |
|
| 241 |
_cost(digraph), _supply(supply), _flow(NULL), _local_flow(false), |
|
| 242 |
_potential(NULL), _local_potential(false), _res_cost(_cost), |
|
| 243 |
_res_graph(NULL), _red_cost(NULL), _excess(digraph, 0) |
|
| 244 |
{
|
|
| 245 |
// Check the sum of supply values |
|
| 246 |
Supply sum = 0; |
|
| 247 |
for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n]; |
|
| 248 |
_valid_supply = sum == 0; |
|
| 249 |
} |
|
| 250 |
|
|
| 251 |
/// \brief Simple constructor (with lower bounds). |
|
| 252 |
/// |
|
| 253 |
/// Simple constructor (with lower bounds). |
|
| 254 |
/// |
|
| 255 |
/// \param digraph The digraph the algorithm runs on. |
|
| 256 |
/// \param lower The lower bounds of the arcs. |
|
| 257 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
| 258 |
/// \param cost The cost (length) values of the arcs. |
|
| 259 |
/// \param s The source node. |
|
| 260 |
/// \param t The target node. |
|
| 261 |
/// \param flow_value The required amount of flow from node \c s |
|
| 262 |
/// to node \c t (i.e. the supply of \c s and the demand of \c t). |
|
| 263 |
CostScaling( const Digraph &digraph, |
|
| 264 |
const LowerMap &lower, |
|
| 265 |
const CapacityMap &capacity, |
|
| 266 |
const CostMap &cost, |
|
| 267 |
Node s, Node t, |
|
| 268 |
Supply flow_value ) : |
|
| 269 |
_graph(digraph), _lower(&lower), _capacity(capacity), _orig_cost(cost), |
|
| 270 |
_cost(digraph), _supply(digraph, 0), _flow(NULL), _local_flow(false), |
|
| 271 |
_potential(NULL), _local_potential(false), _res_cost(_cost), |
|
| 272 |
_res_graph(NULL), _red_cost(NULL), _excess(digraph, 0) |
|
| 273 |
{
|
|
| 274 |
// Remove non-zero lower bounds |
|
| 275 |
_supply[s] = flow_value; |
|
| 276 |
_supply[t] = -flow_value; |
|
| 277 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
| 278 |
if (lower[e] != 0) {
|
|
| 279 |
_capacity[e] -= lower[e]; |
|
| 280 |
_supply[_graph.source(e)] -= lower[e]; |
|
| 281 |
_supply[_graph.target(e)] += lower[e]; |
|
| 282 |
} |
|
| 283 |
} |
|
| 284 |
_valid_supply = true; |
|
| 285 |
} |
|
| 286 |
|
|
| 287 |
/// \brief Simple constructor (without lower bounds). |
|
| 288 |
/// |
|
| 289 |
/// Simple constructor (without lower bounds). |
|
| 290 |
/// |
|
| 291 |
/// \param digraph The digraph the algorithm runs on. |
|
| 292 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
| 293 |
/// \param cost The cost (length) values of the arcs. |
|
| 294 |
/// \param s The source node. |
|
| 295 |
/// \param t The target node. |
|
| 296 |
/// \param flow_value The required amount of flow from node \c s |
|
| 297 |
/// to node \c t (i.e. the supply of \c s and the demand of \c t). |
|
| 298 |
CostScaling( const Digraph &digraph, |
|
| 299 |
const CapacityMap &capacity, |
|
| 300 |
const CostMap &cost, |
|
| 301 |
Node s, Node t, |
|
| 302 |
Supply flow_value ) : |
|
| 303 |
_graph(digraph), _lower(NULL), _capacity(capacity), _orig_cost(cost), |
|
| 304 |
_cost(digraph), _supply(digraph, 0), _flow(NULL), _local_flow(false), |
|
| 305 |
_potential(NULL), _local_potential(false), _res_cost(_cost), |
|
| 306 |
_res_graph(NULL), _red_cost(NULL), _excess(digraph, 0) |
|
| 307 |
{
|
|
| 308 |
_supply[s] = flow_value; |
|
| 309 |
_supply[t] = -flow_value; |
|
| 310 |
_valid_supply = true; |
|
| 311 |
} |
|
| 312 |
*/ |
|
| 313 |
/// Destructor. |
|
| 314 |
~CostScaling() {
|
|
| 315 |
if (_local_flow) delete _flow; |
|
| 316 |
if (_local_potential) delete _potential; |
|
| 317 |
delete _res_graph; |
|
| 318 |
delete _red_cost; |
|
| 319 |
} |
|
| 320 |
|
|
| 321 |
/// \brief Set the flow map. |
|
| 322 |
/// |
|
| 323 |
/// Set the flow map. |
|
| 324 |
/// |
|
| 325 |
/// \return \c (*this) |
|
| 326 |
CostScaling& flowMap(FlowMap &map) {
|
|
| 327 |
if (_local_flow) {
|
|
| 328 |
delete _flow; |
|
| 329 |
_local_flow = false; |
|
| 330 |
} |
|
| 331 |
_flow = ↦ |
|
| 332 |
return *this; |
|
| 333 |
} |
|
| 334 |
|
|
| 335 |
/// \brief Set the potential map. |
|
| 336 |
/// |
|
| 337 |
/// Set the potential map. |
|
| 338 |
/// |
|
| 339 |
/// \return \c (*this) |
|
| 340 |
CostScaling& potentialMap(PotentialMap &map) {
|
|
| 341 |
if (_local_potential) {
|
|
| 342 |
delete _potential; |
|
| 343 |
_local_potential = false; |
|
| 344 |
} |
|
| 345 |
_potential = ↦ |
|
| 346 |
return *this; |
|
| 347 |
} |
|
| 348 |
|
|
| 349 |
/// \name Execution control |
|
| 350 |
|
|
| 351 |
/// @{
|
|
| 352 |
|
|
| 353 |
/// \brief Run the algorithm. |
|
| 354 |
/// |
|
| 355 |
/// Run the algorithm. |
|
| 356 |
/// |
|
| 357 |
/// \param partial_augment By default the algorithm performs |
|
| 358 |
/// partial augment and relabel operations in the cost scaling |
|
| 359 |
/// phases. Set this parameter to \c false for using local push and |
|
| 360 |
/// relabel operations instead. |
|
| 361 |
/// |
|
| 362 |
/// \return \c true if a feasible flow can be found. |
|
| 363 |
bool run(bool partial_augment = true) {
|
|
| 364 |
if (partial_augment) {
|
|
| 365 |
return init() && startPartialAugment(); |
|
| 366 |
} else {
|
|
| 367 |
return init() && startPushRelabel(); |
|
| 368 |
} |
|
| 369 |
} |
|
| 370 |
|
|
| 371 |
/// @} |
|
| 372 |
|
|
| 373 |
/// \name Query Functions |
|
| 374 |
/// The result of the algorithm can be obtained using these |
|
| 375 |
/// functions.\n |
|
| 376 |
/// \ref lemon::CostScaling::run() "run()" must be called before |
|
| 377 |
/// using them. |
|
| 378 |
|
|
| 379 |
/// @{
|
|
| 380 |
|
|
| 381 |
/// \brief Return a const reference to the arc map storing the |
|
| 382 |
/// found flow. |
|
| 383 |
/// |
|
| 384 |
/// Return a const reference to the arc map storing the found flow. |
|
| 385 |
/// |
|
| 386 |
/// \pre \ref run() must be called before using this function. |
|
| 387 |
const FlowMap& flowMap() const {
|
|
| 388 |
return *_flow; |
|
| 389 |
} |
|
| 390 |
|
|
| 391 |
/// \brief Return a const reference to the node map storing the |
|
| 392 |
/// found potentials (the dual solution). |
|
| 393 |
/// |
|
| 394 |
/// Return a const reference to the node map storing the found |
|
| 395 |
/// potentials (the dual solution). |
|
| 396 |
/// |
|
| 397 |
/// \pre \ref run() must be called before using this function. |
|
| 398 |
const PotentialMap& potentialMap() const {
|
|
| 399 |
return *_potential; |
|
| 400 |
} |
|
| 401 |
|
|
| 402 |
/// \brief Return the flow on the given arc. |
|
| 403 |
/// |
|
| 404 |
/// Return the flow on the given arc. |
|
| 405 |
/// |
|
| 406 |
/// \pre \ref run() must be called before using this function. |
|
| 407 |
Capacity flow(const Arc& arc) const {
|
|
| 408 |
return (*_flow)[arc]; |
|
| 409 |
} |
|
| 410 |
|
|
| 411 |
/// \brief Return the potential of the given node. |
|
| 412 |
/// |
|
| 413 |
/// Return the potential of the given node. |
|
| 414 |
/// |
|
| 415 |
/// \pre \ref run() must be called before using this function. |
|
| 416 |
Cost potential(const Node& node) const {
|
|
| 417 |
return (*_potential)[node]; |
|
| 418 |
} |
|
| 419 |
|
|
| 420 |
/// \brief Return the total cost of the found flow. |
|
| 421 |
/// |
|
| 422 |
/// Return the total cost of the found flow. The complexity of the |
|
| 423 |
/// function is \f$ O(e) \f$. |
|
| 424 |
/// |
|
| 425 |
/// \pre \ref run() must be called before using this function. |
|
| 426 |
Cost totalCost() const {
|
|
| 427 |
Cost c = 0; |
|
| 428 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
| 429 |
c += (*_flow)[e] * _orig_cost[e]; |
|
| 430 |
return c; |
|
| 431 |
} |
|
| 432 |
|
|
| 433 |
/// @} |
|
| 434 |
|
|
| 435 |
private: |
|
| 436 |
|
|
| 437 |
/// Initialize the algorithm. |
|
| 438 |
bool init() {
|
|
| 439 |
if (!_valid_supply) return false; |
|
| 440 |
// The scaling factor |
|
| 441 |
_alpha = 8; |
|
| 442 |
|
|
| 443 |
// Initialize flow and potential maps |
|
| 444 |
if (!_flow) {
|
|
| 445 |
_flow = new FlowMap(_graph); |
|
| 446 |
_local_flow = true; |
|
| 447 |
} |
|
| 448 |
if (!_potential) {
|
|
| 449 |
_potential = new PotentialMap(_graph); |
|
| 450 |
_local_potential = true; |
|
| 451 |
} |
|
| 452 |
|
|
| 453 |
_red_cost = new ReducedCostMap(_graph, _cost, *_potential); |
|
| 454 |
_res_graph = new ResDigraph(_graph, _capacity, *_flow); |
|
| 455 |
|
|
| 456 |
// Initialize the scaled cost map and the epsilon parameter |
|
| 457 |
Cost max_cost = 0; |
|
| 458 |
int node_num = countNodes(_graph); |
|
| 459 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
| 460 |
_cost[e] = LCost(_orig_cost[e]) * node_num * _alpha; |
|
| 461 |
if (_orig_cost[e] > max_cost) max_cost = _orig_cost[e]; |
|
| 462 |
} |
|
| 463 |
_epsilon = max_cost * node_num; |
|
| 464 |
|
|
| 465 |
// Find a feasible flow using Circulation |
|
| 466 |
Circulation< Digraph, ConstMap<Arc, Capacity>, CapacityArcMap, |
|
| 467 |
SupplyMap > |
|
| 468 |
circulation( _graph, constMap<Arc>(Capacity(0)), _capacity, |
|
| 469 |
_supply ); |
|
| 470 |
return circulation.flowMap(*_flow).run(); |
|
| 471 |
} |
|
| 472 |
|
|
| 473 |
/// Execute the algorithm performing partial augmentation and |
|
| 474 |
/// relabel operations. |
|
| 475 |
bool startPartialAugment() {
|
|
| 476 |
// Paramters for heuristics |
|
| 477 |
// const int BF_HEURISTIC_EPSILON_BOUND = 1000; |
|
| 478 |
// const int BF_HEURISTIC_BOUND_FACTOR = 3; |
|
| 479 |
// Maximum augment path length |
|
| 480 |
const int MAX_PATH_LENGTH = 4; |
|
| 481 |
|
|
| 482 |
// Variables |
|
| 483 |
typename Digraph::template NodeMap<Arc> pred_arc(_graph); |
|
| 484 |
typename Digraph::template NodeMap<bool> forward(_graph); |
|
| 485 |
typename Digraph::template NodeMap<OutArcIt> next_out(_graph); |
|
| 486 |
typename Digraph::template NodeMap<InArcIt> next_in(_graph); |
|
| 487 |
typename Digraph::template NodeMap<bool> next_dir(_graph); |
|
| 488 |
std::deque<Node> active_nodes; |
|
| 489 |
std::vector<Node> path_nodes; |
|
| 490 |
|
|
| 491 |
// int node_num = countNodes(_graph); |
|
| 492 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
|
| 493 |
1 : _epsilon / _alpha ) |
|
| 494 |
{
|
|
| 495 |
/* |
|
| 496 |
// "Early Termination" heuristic: use Bellman-Ford algorithm |
|
| 497 |
// to check if the current flow is optimal |
|
| 498 |
if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) {
|
|
| 499 |
typedef ShiftMap< ResidualCostMap<LargeCostMap> > ShiftCostMap; |
|
| 500 |
ShiftCostMap shift_cost(_res_cost, 1); |
|
| 501 |
BellmanFord<ResDigraph, ShiftCostMap> bf(*_res_graph, shift_cost); |
|
| 502 |
bf.init(0); |
|
| 503 |
bool done = false; |
|
| 504 |
int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(node_num)); |
|
| 505 |
for (int i = 0; i < K && !done; ++i) |
|
| 506 |
done = bf.processNextWeakRound(); |
|
| 507 |
if (done) break; |
|
| 508 |
} |
|
| 509 |
*/ |
|
| 510 |
// Saturate arcs not satisfying the optimality condition |
|
| 511 |
Capacity delta; |
|
| 512 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
| 513 |
if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) {
|
|
| 514 |
delta = _capacity[e] - (*_flow)[e]; |
|
| 515 |
_excess[_graph.source(e)] -= delta; |
|
| 516 |
_excess[_graph.target(e)] += delta; |
|
| 517 |
(*_flow)[e] = _capacity[e]; |
|
| 518 |
} |
|
| 519 |
if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) {
|
|
| 520 |
_excess[_graph.target(e)] -= (*_flow)[e]; |
|
| 521 |
_excess[_graph.source(e)] += (*_flow)[e]; |
|
| 522 |
(*_flow)[e] = 0; |
|
| 523 |
} |
|
| 524 |
} |
|
| 525 |
|
|
| 526 |
// Find active nodes (i.e. nodes with positive excess) |
|
| 527 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 528 |
if (_excess[n] > 0) active_nodes.push_back(n); |
|
| 529 |
} |
|
| 530 |
|
|
| 531 |
// Initialize the next arc maps |
|
| 532 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 533 |
next_out[n] = OutArcIt(_graph, n); |
|
| 534 |
next_in[n] = InArcIt(_graph, n); |
|
| 535 |
next_dir[n] = true; |
|
| 536 |
} |
|
| 537 |
|
|
| 538 |
// Perform partial augment and relabel operations |
|
| 539 |
while (active_nodes.size() > 0) {
|
|
| 540 |
// Select an active node (FIFO selection) |
|
| 541 |
if (_excess[active_nodes[0]] <= 0) {
|
|
| 542 |
active_nodes.pop_front(); |
|
| 543 |
continue; |
|
| 544 |
} |
|
| 545 |
Node start = active_nodes[0]; |
|
| 546 |
path_nodes.clear(); |
|
| 547 |
path_nodes.push_back(start); |
|
| 548 |
|
|
| 549 |
// Find an augmenting path from the start node |
|
| 550 |
Node u, tip = start; |
|
| 551 |
LCost min_red_cost; |
|
| 552 |
while ( _excess[tip] >= 0 && |
|
| 553 |
int(path_nodes.size()) <= MAX_PATH_LENGTH ) |
|
| 554 |
{
|
|
| 555 |
if (next_dir[tip]) {
|
|
| 556 |
for (OutArcIt e = next_out[tip]; e != INVALID; ++e) {
|
|
| 557 |
if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) {
|
|
| 558 |
u = _graph.target(e); |
|
| 559 |
pred_arc[u] = e; |
|
| 560 |
forward[u] = true; |
|
| 561 |
next_out[tip] = e; |
|
| 562 |
tip = u; |
|
| 563 |
path_nodes.push_back(tip); |
|
| 564 |
goto next_step; |
|
| 565 |
} |
|
| 566 |
} |
|
| 567 |
next_dir[tip] = false; |
|
| 568 |
} |
|
| 569 |
for (InArcIt e = next_in[tip]; e != INVALID; ++e) {
|
|
| 570 |
if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) {
|
|
| 571 |
u = _graph.source(e); |
|
| 572 |
pred_arc[u] = e; |
|
| 573 |
forward[u] = false; |
|
| 574 |
next_in[tip] = e; |
|
| 575 |
tip = u; |
|
| 576 |
path_nodes.push_back(tip); |
|
| 577 |
goto next_step; |
|
| 578 |
} |
|
| 579 |
} |
|
| 580 |
|
|
| 581 |
// Relabel tip node |
|
| 582 |
min_red_cost = std::numeric_limits<LCost>::max() / 2; |
|
| 583 |
for (OutArcIt oe(_graph, tip); oe != INVALID; ++oe) {
|
|
| 584 |
if ( _capacity[oe] - (*_flow)[oe] > 0 && |
|
| 585 |
(*_red_cost)[oe] < min_red_cost ) |
|
| 586 |
min_red_cost = (*_red_cost)[oe]; |
|
| 587 |
} |
|
| 588 |
for (InArcIt ie(_graph, tip); ie != INVALID; ++ie) {
|
|
| 589 |
if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < min_red_cost) |
|
| 590 |
min_red_cost = -(*_red_cost)[ie]; |
|
| 591 |
} |
|
| 592 |
(*_potential)[tip] -= min_red_cost + _epsilon; |
|
| 593 |
|
|
| 594 |
// Reset the next arc maps |
|
| 595 |
next_out[tip] = OutArcIt(_graph, tip); |
|
| 596 |
next_in[tip] = InArcIt(_graph, tip); |
|
| 597 |
next_dir[tip] = true; |
|
| 598 |
|
|
| 599 |
// Step back |
|
| 600 |
if (tip != start) {
|
|
| 601 |
path_nodes.pop_back(); |
|
| 602 |
tip = path_nodes[path_nodes.size()-1]; |
|
| 603 |
} |
|
| 604 |
|
|
| 605 |
next_step: |
|
| 606 |
continue; |
|
| 607 |
} |
|
| 608 |
|
|
| 609 |
// Augment along the found path (as much flow as possible) |
|
| 610 |
Capacity delta; |
|
| 611 |
for (int i = 1; i < int(path_nodes.size()); ++i) {
|
|
| 612 |
u = path_nodes[i]; |
|
| 613 |
delta = forward[u] ? |
|
| 614 |
_capacity[pred_arc[u]] - (*_flow)[pred_arc[u]] : |
|
| 615 |
(*_flow)[pred_arc[u]]; |
|
| 616 |
delta = std::min(delta, _excess[path_nodes[i-1]]); |
|
| 617 |
(*_flow)[pred_arc[u]] += forward[u] ? delta : -delta; |
|
| 618 |
_excess[path_nodes[i-1]] -= delta; |
|
| 619 |
_excess[u] += delta; |
|
| 620 |
if (_excess[u] > 0 && _excess[u] <= delta) active_nodes.push_back(u); |
|
| 621 |
} |
|
| 622 |
} |
|
| 623 |
} |
|
| 624 |
|
|
| 625 |
// Compute node potentials for the original costs |
|
| 626 |
ResidualCostMap<CostMap> res_cost(_orig_cost); |
|
| 627 |
BellmanFord< ResDigraph, ResidualCostMap<CostMap> > |
|
| 628 |
bf(*_res_graph, res_cost); |
|
| 629 |
bf.init(0); bf.start(); |
|
| 630 |
for (NodeIt n(_graph); n != INVALID; ++n) |
|
| 631 |
(*_potential)[n] = bf.dist(n); |
|
| 632 |
|
|
| 633 |
// Handle non-zero lower bounds |
|
| 634 |
if (_lower) {
|
|
| 635 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
| 636 |
(*_flow)[e] += (*_lower)[e]; |
|
| 637 |
} |
|
| 638 |
return true; |
|
| 639 |
} |
|
| 640 |
|
|
| 641 |
/// Execute the algorithm performing push and relabel operations. |
|
| 642 |
bool startPushRelabel() {
|
|
| 643 |
// Paramters for heuristics |
|
| 644 |
// const int BF_HEURISTIC_EPSILON_BOUND = 1000; |
|
| 645 |
// const int BF_HEURISTIC_BOUND_FACTOR = 3; |
|
| 646 |
|
|
| 647 |
typename Digraph::template NodeMap<bool> hyper(_graph, false); |
|
| 648 |
typename Digraph::template NodeMap<Arc> pred_arc(_graph); |
|
| 649 |
typename Digraph::template NodeMap<bool> forward(_graph); |
|
| 650 |
typename Digraph::template NodeMap<OutArcIt> next_out(_graph); |
|
| 651 |
typename Digraph::template NodeMap<InArcIt> next_in(_graph); |
|
| 652 |
typename Digraph::template NodeMap<bool> next_dir(_graph); |
|
| 653 |
std::deque<Node> active_nodes; |
|
| 654 |
|
|
| 655 |
// int node_num = countNodes(_graph); |
|
| 656 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
|
| 657 |
1 : _epsilon / _alpha ) |
|
| 658 |
{
|
|
| 659 |
/* |
|
| 660 |
// "Early Termination" heuristic: use Bellman-Ford algorithm |
|
| 661 |
// to check if the current flow is optimal |
|
| 662 |
if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) {
|
|
| 663 |
typedef ShiftMap< ResidualCostMap<LargeCostMap> > ShiftCostMap; |
|
| 664 |
ShiftCostMap shift_cost(_res_cost, 1); |
|
| 665 |
BellmanFord<ResDigraph, ShiftCostMap> bf(*_res_graph, shift_cost); |
|
| 666 |
bf.init(0); |
|
| 667 |
bool done = false; |
|
| 668 |
int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(node_num)); |
|
| 669 |
for (int i = 0; i < K && !done; ++i) |
|
| 670 |
done = bf.processNextWeakRound(); |
|
| 671 |
if (done) break; |
|
| 672 |
} |
|
| 673 |
*/ |
|
| 674 |
|
|
| 675 |
// Saturate arcs not satisfying the optimality condition |
|
| 676 |
Capacity delta; |
|
| 677 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
|
| 678 |
if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) {
|
|
| 679 |
delta = _capacity[e] - (*_flow)[e]; |
|
| 680 |
_excess[_graph.source(e)] -= delta; |
|
| 681 |
_excess[_graph.target(e)] += delta; |
|
| 682 |
(*_flow)[e] = _capacity[e]; |
|
| 683 |
} |
|
| 684 |
if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) {
|
|
| 685 |
_excess[_graph.target(e)] -= (*_flow)[e]; |
|
| 686 |
_excess[_graph.source(e)] += (*_flow)[e]; |
|
| 687 |
(*_flow)[e] = 0; |
|
| 688 |
} |
|
| 689 |
} |
|
| 690 |
|
|
| 691 |
// Find active nodes (i.e. nodes with positive excess) |
|
| 692 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 693 |
if (_excess[n] > 0) active_nodes.push_back(n); |
|
| 694 |
} |
|
| 695 |
|
|
| 696 |
// Initialize the next arc maps |
|
| 697 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 698 |
next_out[n] = OutArcIt(_graph, n); |
|
| 699 |
next_in[n] = InArcIt(_graph, n); |
|
| 700 |
next_dir[n] = true; |
|
| 701 |
} |
|
| 702 |
|
|
| 703 |
// Perform push and relabel operations |
|
| 704 |
while (active_nodes.size() > 0) {
|
|
| 705 |
// Select an active node (FIFO selection) |
|
| 706 |
Node n = active_nodes[0], t; |
|
| 707 |
bool relabel_enabled = true; |
|
| 708 |
|
|
| 709 |
// Perform push operations if there are admissible arcs |
|
| 710 |
if (_excess[n] > 0 && next_dir[n]) {
|
|
| 711 |
OutArcIt e = next_out[n]; |
|
| 712 |
for ( ; e != INVALID; ++e) {
|
|
| 713 |
if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) {
|
|
| 714 |
delta = std::min(_capacity[e] - (*_flow)[e], _excess[n]); |
|
| 715 |
t = _graph.target(e); |
|
| 716 |
|
|
| 717 |
// Push-look-ahead heuristic |
|
| 718 |
Capacity ahead = -_excess[t]; |
|
| 719 |
for (OutArcIt oe(_graph, t); oe != INVALID; ++oe) {
|
|
| 720 |
if (_capacity[oe] - (*_flow)[oe] > 0 && (*_red_cost)[oe] < 0) |
|
| 721 |
ahead += _capacity[oe] - (*_flow)[oe]; |
|
| 722 |
} |
|
| 723 |
for (InArcIt ie(_graph, t); ie != INVALID; ++ie) {
|
|
| 724 |
if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < 0) |
|
| 725 |
ahead += (*_flow)[ie]; |
|
| 726 |
} |
|
| 727 |
if (ahead < 0) ahead = 0; |
|
| 728 |
|
|
| 729 |
// Push flow along the arc |
|
| 730 |
if (ahead < delta) {
|
|
| 731 |
(*_flow)[e] += ahead; |
|
| 732 |
_excess[n] -= ahead; |
|
| 733 |
_excess[t] += ahead; |
|
| 734 |
active_nodes.push_front(t); |
|
| 735 |
hyper[t] = true; |
|
| 736 |
relabel_enabled = false; |
|
| 737 |
break; |
|
| 738 |
} else {
|
|
| 739 |
(*_flow)[e] += delta; |
|
| 740 |
_excess[n] -= delta; |
|
| 741 |
_excess[t] += delta; |
|
| 742 |
if (_excess[t] > 0 && _excess[t] <= delta) |
|
| 743 |
active_nodes.push_back(t); |
|
| 744 |
} |
|
| 745 |
|
|
| 746 |
if (_excess[n] == 0) break; |
|
| 747 |
} |
|
| 748 |
} |
|
| 749 |
if (e != INVALID) {
|
|
| 750 |
next_out[n] = e; |
|
| 751 |
} else {
|
|
| 752 |
next_dir[n] = false; |
|
| 753 |
} |
|
| 754 |
} |
|
| 755 |
|
|
| 756 |
if (_excess[n] > 0 && !next_dir[n]) {
|
|
| 757 |
InArcIt e = next_in[n]; |
|
| 758 |
for ( ; e != INVALID; ++e) {
|
|
| 759 |
if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) {
|
|
| 760 |
delta = std::min((*_flow)[e], _excess[n]); |
|
| 761 |
t = _graph.source(e); |
|
| 762 |
|
|
| 763 |
// Push-look-ahead heuristic |
|
| 764 |
Capacity ahead = -_excess[t]; |
|
| 765 |
for (OutArcIt oe(_graph, t); oe != INVALID; ++oe) {
|
|
| 766 |
if (_capacity[oe] - (*_flow)[oe] > 0 && (*_red_cost)[oe] < 0) |
|
| 767 |
ahead += _capacity[oe] - (*_flow)[oe]; |
|
| 768 |
} |
|
| 769 |
for (InArcIt ie(_graph, t); ie != INVALID; ++ie) {
|
|
| 770 |
if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < 0) |
|
| 771 |
ahead += (*_flow)[ie]; |
|
| 772 |
} |
|
| 773 |
if (ahead < 0) ahead = 0; |
|
| 774 |
|
|
| 775 |
// Push flow along the arc |
|
| 776 |
if (ahead < delta) {
|
|
| 777 |
(*_flow)[e] -= ahead; |
|
| 778 |
_excess[n] -= ahead; |
|
| 779 |
_excess[t] += ahead; |
|
| 780 |
active_nodes.push_front(t); |
|
| 781 |
hyper[t] = true; |
|
| 782 |
relabel_enabled = false; |
|
| 783 |
break; |
|
| 784 |
} else {
|
|
| 785 |
(*_flow)[e] -= delta; |
|
| 786 |
_excess[n] -= delta; |
|
| 787 |
_excess[t] += delta; |
|
| 788 |
if (_excess[t] > 0 && _excess[t] <= delta) |
|
| 789 |
active_nodes.push_back(t); |
|
| 790 |
} |
|
| 791 |
|
|
| 792 |
if (_excess[n] == 0) break; |
|
| 793 |
} |
|
| 794 |
} |
|
| 795 |
next_in[n] = e; |
|
| 796 |
} |
|
| 797 |
|
|
| 798 |
// Relabel the node if it is still active (or hyper) |
|
| 799 |
if (relabel_enabled && (_excess[n] > 0 || hyper[n])) {
|
|
| 800 |
LCost min_red_cost = std::numeric_limits<LCost>::max() / 2; |
|
| 801 |
for (OutArcIt oe(_graph, n); oe != INVALID; ++oe) {
|
|
| 802 |
if ( _capacity[oe] - (*_flow)[oe] > 0 && |
|
| 803 |
(*_red_cost)[oe] < min_red_cost ) |
|
| 804 |
min_red_cost = (*_red_cost)[oe]; |
|
| 805 |
} |
|
| 806 |
for (InArcIt ie(_graph, n); ie != INVALID; ++ie) {
|
|
| 807 |
if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < min_red_cost) |
|
| 808 |
min_red_cost = -(*_red_cost)[ie]; |
|
| 809 |
} |
|
| 810 |
(*_potential)[n] -= min_red_cost + _epsilon; |
|
| 811 |
hyper[n] = false; |
|
| 812 |
|
|
| 813 |
// Reset the next arc maps |
|
| 814 |
next_out[n] = OutArcIt(_graph, n); |
|
| 815 |
next_in[n] = InArcIt(_graph, n); |
|
| 816 |
next_dir[n] = true; |
|
| 817 |
} |
|
| 818 |
|
|
| 819 |
// Remove nodes that are not active nor hyper |
|
| 820 |
while ( active_nodes.size() > 0 && |
|
| 821 |
_excess[active_nodes[0]] <= 0 && |
|
| 822 |
!hyper[active_nodes[0]] ) {
|
|
| 823 |
active_nodes.pop_front(); |
|
| 824 |
} |
|
| 825 |
} |
|
| 826 |
} |
|
| 827 |
|
|
| 828 |
// Compute node potentials for the original costs |
|
| 829 |
ResidualCostMap<CostMap> res_cost(_orig_cost); |
|
| 830 |
BellmanFord< ResDigraph, ResidualCostMap<CostMap> > |
|
| 831 |
bf(*_res_graph, res_cost); |
|
| 832 |
bf.init(0); bf.start(); |
|
| 833 |
for (NodeIt n(_graph); n != INVALID; ++n) |
|
| 834 |
(*_potential)[n] = bf.dist(n); |
|
| 835 |
|
|
| 836 |
// Handle non-zero lower bounds |
|
| 837 |
if (_lower) {
|
|
| 838 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
| 839 |
(*_flow)[e] += (*_lower)[e]; |
|
| 840 |
} |
|
| 841 |
return true; |
|
| 842 |
} |
|
| 843 |
|
|
| 844 |
}; //class CostScaling |
|
| 845 |
|
|
| 846 |
///@} |
|
| 847 |
|
|
| 848 |
} //namespace lemon |
|
| 849 |
|
|
| 850 |
#endif //LEMON_COST_SCALING_H |
0 comments (0 inline)