gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Fix several doxygen warings
0 4 0
default
4 files changed with 238 insertions and 238 deletions:
↑ Collapse diff ↑
Ignore white space 6 line context
... ...
@@ -4,150 +4,150 @@
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BFS_H
20 20
#define LEMON_BFS_H
21 21

	
22 22
///\ingroup search
23 23
///\file
24 24
///\brief BFS algorithm.
25 25

	
26 26
#include <lemon/list_graph.h>
27 27
#include <lemon/bits/path_dump.h>
28 28
#include <lemon/core.h>
29 29
#include <lemon/error.h>
30 30
#include <lemon/maps.h>
31 31
#include <lemon/path.h>
32 32

	
33 33
namespace lemon {
34 34

	
35 35
  ///Default traits class of Bfs class.
36 36

	
37 37
  ///Default traits class of Bfs class.
38 38
  ///\tparam GR Digraph type.
39 39
  template<class GR>
40 40
  struct BfsDefaultTraits
41 41
  {
42 42
    ///The type of the digraph the algorithm runs on.
43 43
    typedef GR Digraph;
44 44

	
45 45
    ///\brief The type of the map that stores the predecessor
46 46
    ///arcs of the shortest paths.
47 47
    ///
48 48
    ///The type of the map that stores the predecessor
49 49
    ///arcs of the shortest paths.
50 50
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
51 51
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
52
    ///Instantiates a \ref PredMap.
52
    ///Instantiates a PredMap.
53 53

	
54
    ///This function instantiates a \ref PredMap.
54
    ///This function instantiates a PredMap.
55 55
    ///\param g is the digraph, to which we would like to define the
56
    ///\ref PredMap.
56
    ///PredMap.
57 57
    static PredMap *createPredMap(const Digraph &g)
58 58
    {
59 59
      return new PredMap(g);
60 60
    }
61 61

	
62 62
    ///The type of the map that indicates which nodes are processed.
63 63

	
64 64
    ///The type of the map that indicates which nodes are processed.
65 65
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
66 66
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
67
    ///Instantiates a \ref ProcessedMap.
67
    ///Instantiates a ProcessedMap.
68 68

	
69
    ///This function instantiates a \ref ProcessedMap.
69
    ///This function instantiates a ProcessedMap.
70 70
    ///\param g is the digraph, to which
71
    ///we would like to define the \ref ProcessedMap
71
    ///we would like to define the ProcessedMap
72 72
#ifdef DOXYGEN
73 73
    static ProcessedMap *createProcessedMap(const Digraph &g)
74 74
#else
75 75
    static ProcessedMap *createProcessedMap(const Digraph &)
76 76
#endif
77 77
    {
78 78
      return new ProcessedMap();
79 79
    }
80 80

	
81 81
    ///The type of the map that indicates which nodes are reached.
82 82

	
83 83
    ///The type of the map that indicates which nodes are reached.
84 84
    ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
85 85
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
86
    ///Instantiates a \ref ReachedMap.
86
    ///Instantiates a ReachedMap.
87 87

	
88
    ///This function instantiates a \ref ReachedMap.
88
    ///This function instantiates a ReachedMap.
89 89
    ///\param g is the digraph, to which
90
    ///we would like to define the \ref ReachedMap.
90
    ///we would like to define the ReachedMap.
91 91
    static ReachedMap *createReachedMap(const Digraph &g)
92 92
    {
93 93
      return new ReachedMap(g);
94 94
    }
95 95

	
96 96
    ///The type of the map that stores the distances of the nodes.
97 97

	
98 98
    ///The type of the map that stores the distances of the nodes.
99 99
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
100 100
    typedef typename Digraph::template NodeMap<int> DistMap;
101
    ///Instantiates a \ref DistMap.
101
    ///Instantiates a DistMap.
102 102

	
103
    ///This function instantiates a \ref DistMap.
103
    ///This function instantiates a DistMap.
104 104
    ///\param g is the digraph, to which we would like to define the
105
    ///\ref DistMap.
105
    ///DistMap.
106 106
    static DistMap *createDistMap(const Digraph &g)
107 107
    {
108 108
      return new DistMap(g);
109 109
    }
110 110
  };
111 111

	
112 112
  ///%BFS algorithm class.
113 113

	
114 114
  ///\ingroup search
115 115
  ///This class provides an efficient implementation of the %BFS algorithm.
116 116
  ///
117 117
  ///There is also a \ref bfs() "function-type interface" for the BFS
118 118
  ///algorithm, which is convenient in the simplier cases and it can be
119 119
  ///used easier.
120 120
  ///
121 121
  ///\tparam GR The type of the digraph the algorithm runs on.
122 122
  ///The default value is \ref ListDigraph. The value of GR is not used
123 123
  ///directly by \ref Bfs, it is only passed to \ref BfsDefaultTraits.
124 124
  ///\tparam TR Traits class to set various data types used by the algorithm.
125 125
  ///The default traits class is
126 126
  ///\ref BfsDefaultTraits "BfsDefaultTraits<GR>".
127 127
  ///See \ref BfsDefaultTraits for the documentation of
128 128
  ///a Bfs traits class.
129 129
#ifdef DOXYGEN
130 130
  template <typename GR,
131 131
            typename TR>
132 132
#else
133 133
  template <typename GR=ListDigraph,
134 134
            typename TR=BfsDefaultTraits<GR> >
135 135
#endif
136 136
  class Bfs {
137 137
  public:
138 138

	
139 139
    ///The type of the digraph the algorithm runs on.
140 140
    typedef typename TR::Digraph Digraph;
141 141

	
142 142
    ///\brief The type of the map that stores the predecessor arcs of the
143 143
    ///shortest paths.
144 144
    typedef typename TR::PredMap PredMap;
145 145
    ///The type of the map that stores the distances of the nodes.
146 146
    typedef typename TR::DistMap DistMap;
147 147
    ///The type of the map that indicates which nodes are reached.
148 148
    typedef typename TR::ReachedMap ReachedMap;
149 149
    ///The type of the map that indicates which nodes are processed.
150 150
    typedef typename TR::ProcessedMap ProcessedMap;
151 151
    ///The type of the paths.
152 152
    typedef PredMapPath<Digraph, PredMap> Path;
153 153

	
... ...
@@ -182,175 +182,175 @@
182 182

	
183 183
    std::vector<typename Digraph::Node> _queue;
184 184
    int _queue_head,_queue_tail,_queue_next_dist;
185 185
    int _curr_dist;
186 186

	
187 187
    //Creates the maps if necessary.
188 188
    void create_maps()
189 189
    {
190 190
      if(!_pred) {
191 191
        local_pred = true;
192 192
        _pred = Traits::createPredMap(*G);
193 193
      }
194 194
      if(!_dist) {
195 195
        local_dist = true;
196 196
        _dist = Traits::createDistMap(*G);
197 197
      }
198 198
      if(!_reached) {
199 199
        local_reached = true;
200 200
        _reached = Traits::createReachedMap(*G);
201 201
      }
202 202
      if(!_processed) {
203 203
        local_processed = true;
204 204
        _processed = Traits::createProcessedMap(*G);
205 205
      }
206 206
    }
207 207

	
208 208
  protected:
209 209

	
210 210
    Bfs() {}
211 211

	
212 212
  public:
213 213

	
214 214
    typedef Bfs Create;
215 215

	
216 216
    ///\name Named template parameters
217 217

	
218 218
    ///@{
219 219

	
220 220
    template <class T>
221 221
    struct SetPredMapTraits : public Traits {
222 222
      typedef T PredMap;
223 223
      static PredMap *createPredMap(const Digraph &)
224 224
      {
225 225
        LEMON_ASSERT(false, "PredMap is not initialized");
226 226
        return 0; // ignore warnings
227 227
      }
228 228
    };
229 229
    ///\brief \ref named-templ-param "Named parameter" for setting
230
    ///\ref PredMap type.
230
    ///PredMap type.
231 231
    ///
232 232
    ///\ref named-templ-param "Named parameter" for setting
233
    ///\ref PredMap type.
233
    ///PredMap type.
234 234
    template <class T>
235 235
    struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > {
236 236
      typedef Bfs< Digraph, SetPredMapTraits<T> > Create;
237 237
    };
238 238

	
239 239
    template <class T>
240 240
    struct SetDistMapTraits : public Traits {
241 241
      typedef T DistMap;
242 242
      static DistMap *createDistMap(const Digraph &)
243 243
      {
244 244
        LEMON_ASSERT(false, "DistMap is not initialized");
245 245
        return 0; // ignore warnings
246 246
      }
247 247
    };
248 248
    ///\brief \ref named-templ-param "Named parameter" for setting
249
    ///\ref DistMap type.
249
    ///DistMap type.
250 250
    ///
251 251
    ///\ref named-templ-param "Named parameter" for setting
252
    ///\ref DistMap type.
252
    ///DistMap type.
253 253
    template <class T>
254 254
    struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > {
255 255
      typedef Bfs< Digraph, SetDistMapTraits<T> > Create;
256 256
    };
257 257

	
258 258
    template <class T>
259 259
    struct SetReachedMapTraits : public Traits {
260 260
      typedef T ReachedMap;
261 261
      static ReachedMap *createReachedMap(const Digraph &)
262 262
      {
263 263
        LEMON_ASSERT(false, "ReachedMap is not initialized");
264 264
        return 0; // ignore warnings
265 265
      }
266 266
    };
267 267
    ///\brief \ref named-templ-param "Named parameter" for setting
268
    ///\ref ReachedMap type.
268
    ///ReachedMap type.
269 269
    ///
270 270
    ///\ref named-templ-param "Named parameter" for setting
271
    ///\ref ReachedMap type.
271
    ///ReachedMap type.
272 272
    template <class T>
273 273
    struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > {
274 274
      typedef Bfs< Digraph, SetReachedMapTraits<T> > Create;
275 275
    };
276 276

	
277 277
    template <class T>
278 278
    struct SetProcessedMapTraits : public Traits {
279 279
      typedef T ProcessedMap;
280 280
      static ProcessedMap *createProcessedMap(const Digraph &)
281 281
      {
282 282
        LEMON_ASSERT(false, "ProcessedMap is not initialized");
283 283
        return 0; // ignore warnings
284 284
      }
285 285
    };
286 286
    ///\brief \ref named-templ-param "Named parameter" for setting
287
    ///\ref ProcessedMap type.
287
    ///ProcessedMap type.
288 288
    ///
289 289
    ///\ref named-templ-param "Named parameter" for setting
290
    ///\ref ProcessedMap type.
290
    ///ProcessedMap type.
291 291
    template <class T>
292 292
    struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > {
293 293
      typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create;
294 294
    };
295 295

	
296 296
    struct SetStandardProcessedMapTraits : public Traits {
297 297
      typedef typename Digraph::template NodeMap<bool> ProcessedMap;
298 298
      static ProcessedMap *createProcessedMap(const Digraph &g)
299 299
      {
300 300
        return new ProcessedMap(g);
301 301
        return 0; // ignore warnings
302 302
      }
303 303
    };
304 304
    ///\brief \ref named-templ-param "Named parameter" for setting
305
    ///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
305
    ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
306 306
    ///
307 307
    ///\ref named-templ-param "Named parameter" for setting
308
    ///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
308
    ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
309 309
    ///If you don't set it explicitly, it will be automatically allocated.
310 310
    struct SetStandardProcessedMap :
311 311
      public Bfs< Digraph, SetStandardProcessedMapTraits > {
312 312
      typedef Bfs< Digraph, SetStandardProcessedMapTraits > Create;
313 313
    };
314 314

	
315 315
    ///@}
316 316

	
317 317
  public:
318 318

	
319 319
    ///Constructor.
320 320

	
321 321
    ///Constructor.
322 322
    ///\param g The digraph the algorithm runs on.
323 323
    Bfs(const Digraph &g) :
324 324
      G(&g),
325 325
      _pred(NULL), local_pred(false),
326 326
      _dist(NULL), local_dist(false),
327 327
      _reached(NULL), local_reached(false),
328 328
      _processed(NULL), local_processed(false)
329 329
    { }
330 330

	
331 331
    ///Destructor.
332 332
    ~Bfs()
333 333
    {
334 334
      if(local_pred) delete _pred;
335 335
      if(local_dist) delete _dist;
336 336
      if(local_reached) delete _reached;
337 337
      if(local_processed) delete _processed;
338 338
    }
339 339

	
340 340
    ///Sets the map that stores the predecessor arcs.
341 341

	
342 342
    ///Sets the map that stores the predecessor arcs.
343 343
    ///If you don't use this function before calling \ref run(),
344 344
    ///it will allocate one. The destructor deallocates this
345 345
    ///automatically allocated map, of course.
346 346
    ///\return <tt> (*this) </tt>
347 347
    Bfs &predMap(PredMap &m)
348 348
    {
349 349
      if(local_pred) {
350 350
        delete _pred;
351 351
        local_pred=false;
352 352
      }
353 353
      _pred = &m;
354 354
      return *this;
355 355
    }
356 356

	
... ...
@@ -790,164 +790,164 @@
790 790

	
791 791
    ///\brief Returns a const reference to the node map that stores the
792 792
    /// distances of the nodes.
793 793
    ///
794 794
    ///Returns a const reference to the node map that stores the distances
795 795
    ///of the nodes calculated by the algorithm.
796 796
    ///
797 797
    ///\pre Either \ref run() or \ref init()
798 798
    ///must be called before using this function.
799 799
    const DistMap &distMap() const { return *_dist;}
800 800

	
801 801
    ///\brief Returns a const reference to the node map that stores the
802 802
    ///predecessor arcs.
803 803
    ///
804 804
    ///Returns a const reference to the node map that stores the predecessor
805 805
    ///arcs, which form the shortest path tree.
806 806
    ///
807 807
    ///\pre Either \ref run() or \ref init()
808 808
    ///must be called before using this function.
809 809
    const PredMap &predMap() const { return *_pred;}
810 810

	
811 811
    ///Checks if a node is reachable from the root(s).
812 812

	
813 813
    ///Returns \c true if \c v is reachable from the root(s).
814 814
    ///\pre Either \ref run() or \ref start()
815 815
    ///must be called before using this function.
816 816
    bool reached(Node v) const { return (*_reached)[v]; }
817 817

	
818 818
    ///@}
819 819
  };
820 820

	
821 821
  ///Default traits class of bfs() function.
822 822

	
823 823
  ///Default traits class of bfs() function.
824 824
  ///\tparam GR Digraph type.
825 825
  template<class GR>
826 826
  struct BfsWizardDefaultTraits
827 827
  {
828 828
    ///The type of the digraph the algorithm runs on.
829 829
    typedef GR Digraph;
830 830

	
831 831
    ///\brief The type of the map that stores the predecessor
832 832
    ///arcs of the shortest paths.
833 833
    ///
834 834
    ///The type of the map that stores the predecessor
835 835
    ///arcs of the shortest paths.
836 836
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
837 837
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
838
    ///Instantiates a \ref PredMap.
838
    ///Instantiates a PredMap.
839 839

	
840
    ///This function instantiates a \ref PredMap.
840
    ///This function instantiates a PredMap.
841 841
    ///\param g is the digraph, to which we would like to define the
842
    ///\ref PredMap.
842
    ///PredMap.
843 843
    static PredMap *createPredMap(const Digraph &g)
844 844
    {
845 845
      return new PredMap(g);
846 846
    }
847 847

	
848 848
    ///The type of the map that indicates which nodes are processed.
849 849

	
850 850
    ///The type of the map that indicates which nodes are processed.
851 851
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
852 852
    ///By default it is a NullMap.
853 853
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
854
    ///Instantiates a \ref ProcessedMap.
854
    ///Instantiates a ProcessedMap.
855 855

	
856
    ///This function instantiates a \ref ProcessedMap.
856
    ///This function instantiates a ProcessedMap.
857 857
    ///\param g is the digraph, to which
858
    ///we would like to define the \ref ProcessedMap.
858
    ///we would like to define the ProcessedMap.
859 859
#ifdef DOXYGEN
860 860
    static ProcessedMap *createProcessedMap(const Digraph &g)
861 861
#else
862 862
    static ProcessedMap *createProcessedMap(const Digraph &)
863 863
#endif
864 864
    {
865 865
      return new ProcessedMap();
866 866
    }
867 867

	
868 868
    ///The type of the map that indicates which nodes are reached.
869 869

	
870 870
    ///The type of the map that indicates which nodes are reached.
871 871
    ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
872 872
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
873
    ///Instantiates a \ref ReachedMap.
873
    ///Instantiates a ReachedMap.
874 874

	
875
    ///This function instantiates a \ref ReachedMap.
875
    ///This function instantiates a ReachedMap.
876 876
    ///\param g is the digraph, to which
877
    ///we would like to define the \ref ReachedMap.
877
    ///we would like to define the ReachedMap.
878 878
    static ReachedMap *createReachedMap(const Digraph &g)
879 879
    {
880 880
      return new ReachedMap(g);
881 881
    }
882 882

	
883 883
    ///The type of the map that stores the distances of the nodes.
884 884

	
885 885
    ///The type of the map that stores the distances of the nodes.
886 886
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
887 887
    typedef typename Digraph::template NodeMap<int> DistMap;
888
    ///Instantiates a \ref DistMap.
888
    ///Instantiates a DistMap.
889 889

	
890
    ///This function instantiates a \ref DistMap.
890
    ///This function instantiates a DistMap.
891 891
    ///\param g is the digraph, to which we would like to define
892
    ///the \ref DistMap
892
    ///the DistMap
893 893
    static DistMap *createDistMap(const Digraph &g)
894 894
    {
895 895
      return new DistMap(g);
896 896
    }
897 897

	
898 898
    ///The type of the shortest paths.
899 899

	
900 900
    ///The type of the shortest paths.
901 901
    ///It must meet the \ref concepts::Path "Path" concept.
902 902
    typedef lemon::Path<Digraph> Path;
903 903
  };
904 904

	
905
  /// Default traits class used by \ref BfsWizard
905
  /// Default traits class used by BfsWizard
906 906

	
907 907
  /// To make it easier to use Bfs algorithm
908 908
  /// we have created a wizard class.
909 909
  /// This \ref BfsWizard class needs default traits,
910 910
  /// as well as the \ref Bfs class.
911 911
  /// The \ref BfsWizardBase is a class to be the default traits of the
912 912
  /// \ref BfsWizard class.
913 913
  template<class GR>
914 914
  class BfsWizardBase : public BfsWizardDefaultTraits<GR>
915 915
  {
916 916

	
917 917
    typedef BfsWizardDefaultTraits<GR> Base;
918 918
  protected:
919 919
    //The type of the nodes in the digraph.
920 920
    typedef typename Base::Digraph::Node Node;
921 921

	
922 922
    //Pointer to the digraph the algorithm runs on.
923 923
    void *_g;
924 924
    //Pointer to the map of reached nodes.
925 925
    void *_reached;
926 926
    //Pointer to the map of processed nodes.
927 927
    void *_processed;
928 928
    //Pointer to the map of predecessors arcs.
929 929
    void *_pred;
930 930
    //Pointer to the map of distances.
931 931
    void *_dist;
932 932
    //Pointer to the shortest path to the target node.
933 933
    void *_path;
934 934
    //Pointer to the distance of the target node.
935 935
    int *_di;
936 936

	
937 937
    public:
938 938
    /// Constructor.
939 939

	
940 940
    /// This constructor does not require parameters, therefore it initiates
941 941
    /// all of the attributes to \c 0.
942 942
    BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),
943 943
                      _dist(0), _path(0), _di(0) {}
944 944

	
945 945
    /// Constructor.
946 946

	
947 947
    /// This constructor requires one parameter,
948 948
    /// others are initiated to \c 0.
949 949
    /// \param g The digraph the algorithm runs on.
950 950
    BfsWizardBase(const GR &g) :
951 951
      _g(reinterpret_cast<void*>(const_cast<GR*>(&g))),
952 952
      _reached(0), _processed(0), _pred(0), _dist(0),  _path(0), _di(0) {}
953 953

	
... ...
@@ -1023,154 +1023,154 @@
1023 1023
      if (s!=INVALID)
1024 1024
        alg.run(s);
1025 1025
      else
1026 1026
        alg.run();
1027 1027
    }
1028 1028

	
1029 1029
    ///Finds the shortest path between \c s and \c t.
1030 1030

	
1031 1031
    ///This method runs BFS algorithm from node \c s
1032 1032
    ///in order to compute the shortest path to node \c t
1033 1033
    ///(it stops searching when \c t is processed).
1034 1034
    ///
1035 1035
    ///\return \c true if \c t is reachable form \c s.
1036 1036
    bool run(Node s, Node t)
1037 1037
    {
1038 1038
      Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
1039 1039
      if (Base::_pred)
1040 1040
        alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
1041 1041
      if (Base::_dist)
1042 1042
        alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
1043 1043
      if (Base::_reached)
1044 1044
        alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
1045 1045
      if (Base::_processed)
1046 1046
        alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
1047 1047
      alg.run(s,t);
1048 1048
      if (Base::_path)
1049 1049
        *reinterpret_cast<Path*>(Base::_path) = alg.path(t);
1050 1050
      if (Base::_di)
1051 1051
        *Base::_di = alg.dist(t);
1052 1052
      return alg.reached(t);
1053 1053
    }
1054 1054

	
1055 1055
    ///Runs BFS algorithm to visit all nodes in the digraph.
1056 1056

	
1057 1057
    ///This method runs BFS algorithm in order to compute
1058 1058
    ///the shortest path to each node.
1059 1059
    void run()
1060 1060
    {
1061 1061
      run(INVALID);
1062 1062
    }
1063 1063

	
1064 1064
    template<class T>
1065 1065
    struct SetPredMapBase : public Base {
1066 1066
      typedef T PredMap;
1067 1067
      static PredMap *createPredMap(const Digraph &) { return 0; };
1068 1068
      SetPredMapBase(const TR &b) : TR(b) {}
1069 1069
    };
1070 1070
    ///\brief \ref named-func-param "Named parameter"
1071
    ///for setting \ref PredMap object.
1071
    ///for setting PredMap object.
1072 1072
    ///
1073 1073
    ///\ref named-func-param "Named parameter"
1074
    ///for setting \ref PredMap object.
1074
    ///for setting PredMap object.
1075 1075
    template<class T>
1076 1076
    BfsWizard<SetPredMapBase<T> > predMap(const T &t)
1077 1077
    {
1078 1078
      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
1079 1079
      return BfsWizard<SetPredMapBase<T> >(*this);
1080 1080
    }
1081 1081

	
1082 1082
    template<class T>
1083 1083
    struct SetReachedMapBase : public Base {
1084 1084
      typedef T ReachedMap;
1085 1085
      static ReachedMap *createReachedMap(const Digraph &) { return 0; };
1086 1086
      SetReachedMapBase(const TR &b) : TR(b) {}
1087 1087
    };
1088 1088
    ///\brief \ref named-func-param "Named parameter"
1089
    ///for setting \ref ReachedMap object.
1089
    ///for setting ReachedMap object.
1090 1090
    ///
1091 1091
    /// \ref named-func-param "Named parameter"
1092
    ///for setting \ref ReachedMap object.
1092
    ///for setting ReachedMap object.
1093 1093
    template<class T>
1094 1094
    BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t)
1095 1095
    {
1096 1096
      Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t));
1097 1097
      return BfsWizard<SetReachedMapBase<T> >(*this);
1098 1098
    }
1099 1099

	
1100 1100
    template<class T>
1101 1101
    struct SetDistMapBase : public Base {
1102 1102
      typedef T DistMap;
1103 1103
      static DistMap *createDistMap(const Digraph &) { return 0; };
1104 1104
      SetDistMapBase(const TR &b) : TR(b) {}
1105 1105
    };
1106 1106
    ///\brief \ref named-func-param "Named parameter"
1107
    ///for setting \ref DistMap object.
1107
    ///for setting DistMap object.
1108 1108
    ///
1109 1109
    /// \ref named-func-param "Named parameter"
1110
    ///for setting \ref DistMap object.
1110
    ///for setting DistMap object.
1111 1111
    template<class T>
1112 1112
    BfsWizard<SetDistMapBase<T> > distMap(const T &t)
1113 1113
    {
1114 1114
      Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
1115 1115
      return BfsWizard<SetDistMapBase<T> >(*this);
1116 1116
    }
1117 1117

	
1118 1118
    template<class T>
1119 1119
    struct SetProcessedMapBase : public Base {
1120 1120
      typedef T ProcessedMap;
1121 1121
      static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
1122 1122
      SetProcessedMapBase(const TR &b) : TR(b) {}
1123 1123
    };
1124 1124
    ///\brief \ref named-func-param "Named parameter"
1125
    ///for setting \ref ProcessedMap object.
1125
    ///for setting ProcessedMap object.
1126 1126
    ///
1127 1127
    /// \ref named-func-param "Named parameter"
1128
    ///for setting \ref ProcessedMap object.
1128
    ///for setting ProcessedMap object.
1129 1129
    template<class T>
1130 1130
    BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t)
1131 1131
    {
1132 1132
      Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));
1133 1133
      return BfsWizard<SetProcessedMapBase<T> >(*this);
1134 1134
    }
1135 1135

	
1136 1136
    template<class T>
1137 1137
    struct SetPathBase : public Base {
1138 1138
      typedef T Path;
1139 1139
      SetPathBase(const TR &b) : TR(b) {}
1140 1140
    };
1141 1141
    ///\brief \ref named-func-param "Named parameter"
1142 1142
    ///for getting the shortest path to the target node.
1143 1143
    ///
1144 1144
    ///\ref named-func-param "Named parameter"
1145 1145
    ///for getting the shortest path to the target node.
1146 1146
    template<class T>
1147 1147
    BfsWizard<SetPathBase<T> > path(const T &t)
1148 1148
    {
1149 1149
      Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
1150 1150
      return BfsWizard<SetPathBase<T> >(*this);
1151 1151
    }
1152 1152

	
1153 1153
    ///\brief \ref named-func-param "Named parameter"
1154 1154
    ///for getting the distance of the target node.
1155 1155
    ///
1156 1156
    ///\ref named-func-param "Named parameter"
1157 1157
    ///for getting the distance of the target node.
1158 1158
    BfsWizard dist(const int &d)
1159 1159
    {
1160 1160
      Base::_di=const_cast<int*>(&d);
1161 1161
      return *this;
1162 1162
    }
1163 1163

	
1164 1164
  };
1165 1165

	
1166 1166
  ///Function-type interface for BFS algorithm.
1167 1167

	
1168 1168
  /// \ingroup search
1169 1169
  ///Function-type interface for BFS algorithm.
1170 1170
  ///
1171 1171
  ///This function also has several \ref named-func-param "named parameters",
1172 1172
  ///they are declared as the members of class \ref BfsWizard.
1173 1173
  ///The following examples show how to use these parameters.
1174 1174
  ///\code
1175 1175
  ///  // Compute shortest path from node s to each node
1176 1176
  ///  bfs(g).predMap(preds).distMap(dists).run(s);
... ...
@@ -1222,101 +1222,101 @@
1222 1222
    /// This function is called when an arc is examined but its target node is
1223 1223
    /// already discovered.
1224 1224
    void examine(const Arc& arc) {}
1225 1225
  };
1226 1226
#else
1227 1227
  template <typename _Digraph>
1228 1228
  struct BfsVisitor {
1229 1229
    typedef _Digraph Digraph;
1230 1230
    typedef typename Digraph::Arc Arc;
1231 1231
    typedef typename Digraph::Node Node;
1232 1232
    void start(const Node&) {}
1233 1233
    void reach(const Node&) {}
1234 1234
    void process(const Node&) {}
1235 1235
    void discover(const Arc&) {}
1236 1236
    void examine(const Arc&) {}
1237 1237

	
1238 1238
    template <typename _Visitor>
1239 1239
    struct Constraints {
1240 1240
      void constraints() {
1241 1241
        Arc arc;
1242 1242
        Node node;
1243 1243
        visitor.start(node);
1244 1244
        visitor.reach(node);
1245 1245
        visitor.process(node);
1246 1246
        visitor.discover(arc);
1247 1247
        visitor.examine(arc);
1248 1248
      }
1249 1249
      _Visitor& visitor;
1250 1250
    };
1251 1251
  };
1252 1252
#endif
1253 1253

	
1254 1254
  /// \brief Default traits class of BfsVisit class.
1255 1255
  ///
1256 1256
  /// Default traits class of BfsVisit class.
1257 1257
  /// \tparam _Digraph The type of the digraph the algorithm runs on.
1258 1258
  template<class _Digraph>
1259 1259
  struct BfsVisitDefaultTraits {
1260 1260

	
1261 1261
    /// \brief The type of the digraph the algorithm runs on.
1262 1262
    typedef _Digraph Digraph;
1263 1263

	
1264 1264
    /// \brief The type of the map that indicates which nodes are reached.
1265 1265
    ///
1266 1266
    /// The type of the map that indicates which nodes are reached.
1267 1267
    /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
1268 1268
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
1269 1269

	
1270
    /// \brief Instantiates a \ref ReachedMap.
1270
    /// \brief Instantiates a ReachedMap.
1271 1271
    ///
1272
    /// This function instantiates a \ref ReachedMap.
1272
    /// This function instantiates a ReachedMap.
1273 1273
    /// \param digraph is the digraph, to which
1274
    /// we would like to define the \ref ReachedMap.
1274
    /// we would like to define the ReachedMap.
1275 1275
    static ReachedMap *createReachedMap(const Digraph &digraph) {
1276 1276
      return new ReachedMap(digraph);
1277 1277
    }
1278 1278

	
1279 1279
  };
1280 1280

	
1281 1281
  /// \ingroup search
1282 1282
  ///
1283 1283
  /// \brief %BFS algorithm class with visitor interface.
1284 1284
  ///
1285 1285
  /// This class provides an efficient implementation of the %BFS algorithm
1286 1286
  /// with visitor interface.
1287 1287
  ///
1288 1288
  /// The %BfsVisit class provides an alternative interface to the Bfs
1289 1289
  /// class. It works with callback mechanism, the BfsVisit object calls
1290 1290
  /// the member functions of the \c Visitor class on every BFS event.
1291 1291
  ///
1292 1292
  /// This interface of the BFS algorithm should be used in special cases
1293 1293
  /// when extra actions have to be performed in connection with certain
1294 1294
  /// events of the BFS algorithm. Otherwise consider to use Bfs or bfs()
1295 1295
  /// instead.
1296 1296
  ///
1297 1297
  /// \tparam _Digraph The type of the digraph the algorithm runs on.
1298 1298
  /// The default value is
1299 1299
  /// \ref ListDigraph. The value of _Digraph is not used directly by
1300 1300
  /// \ref BfsVisit, it is only passed to \ref BfsVisitDefaultTraits.
1301 1301
  /// \tparam _Visitor The Visitor type that is used by the algorithm.
1302 1302
  /// \ref BfsVisitor "BfsVisitor<_Digraph>" is an empty visitor, which
1303 1303
  /// does not observe the BFS events. If you want to observe the BFS
1304 1304
  /// events, you should implement your own visitor class.
1305 1305
  /// \tparam _Traits Traits class to set various data types used by the
1306 1306
  /// algorithm. The default traits class is
1307 1307
  /// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<_Digraph>".
1308 1308
  /// See \ref BfsVisitDefaultTraits for the documentation of
1309 1309
  /// a BFS visit traits class.
1310 1310
#ifdef DOXYGEN
1311 1311
  template <typename _Digraph, typename _Visitor, typename _Traits>
1312 1312
#else
1313 1313
  template <typename _Digraph = ListDigraph,
1314 1314
            typename _Visitor = BfsVisitor<_Digraph>,
1315 1315
            typename _Traits = BfsVisitDefaultTraits<_Digraph> >
1316 1316
#endif
1317 1317
  class BfsVisit {
1318 1318
  public:
1319 1319

	
1320 1320
    ///The traits class.
1321 1321
    typedef _Traits Traits;
1322 1322

	
Ignore white space 6 line context
... ...
@@ -5,150 +5,150 @@
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_DFS_H
20 20
#define LEMON_DFS_H
21 21

	
22 22
///\ingroup search
23 23
///\file
24 24
///\brief DFS algorithm.
25 25

	
26 26
#include <lemon/list_graph.h>
27 27
#include <lemon/bits/path_dump.h>
28 28
#include <lemon/core.h>
29 29
#include <lemon/error.h>
30 30
#include <lemon/assert.h>
31 31
#include <lemon/maps.h>
32 32
#include <lemon/path.h>
33 33

	
34 34
namespace lemon {
35 35

	
36 36
  ///Default traits class of Dfs class.
37 37

	
38 38
  ///Default traits class of Dfs class.
39 39
  ///\tparam GR Digraph type.
40 40
  template<class GR>
41 41
  struct DfsDefaultTraits
42 42
  {
43 43
    ///The type of the digraph the algorithm runs on.
44 44
    typedef GR Digraph;
45 45

	
46 46
    ///\brief The type of the map that stores the predecessor
47 47
    ///arcs of the %DFS paths.
48 48
    ///
49 49
    ///The type of the map that stores the predecessor
50 50
    ///arcs of the %DFS paths.
51 51
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
52 52
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
53
    ///Instantiates a \ref PredMap.
53
    ///Instantiates a PredMap.
54 54

	
55
    ///This function instantiates a \ref PredMap.
55
    ///This function instantiates a PredMap.
56 56
    ///\param g is the digraph, to which we would like to define the
57
    ///\ref PredMap.
57
    ///PredMap.
58 58
    static PredMap *createPredMap(const Digraph &g)
59 59
    {
60 60
      return new PredMap(g);
61 61
    }
62 62

	
63 63
    ///The type of the map that indicates which nodes are processed.
64 64

	
65 65
    ///The type of the map that indicates which nodes are processed.
66 66
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
67 67
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
68
    ///Instantiates a \ref ProcessedMap.
68
    ///Instantiates a ProcessedMap.
69 69

	
70
    ///This function instantiates a \ref ProcessedMap.
70
    ///This function instantiates a ProcessedMap.
71 71
    ///\param g is the digraph, to which
72
    ///we would like to define the \ref ProcessedMap
72
    ///we would like to define the ProcessedMap
73 73
#ifdef DOXYGEN
74 74
    static ProcessedMap *createProcessedMap(const Digraph &g)
75 75
#else
76 76
    static ProcessedMap *createProcessedMap(const Digraph &)
77 77
#endif
78 78
    {
79 79
      return new ProcessedMap();
80 80
    }
81 81

	
82 82
    ///The type of the map that indicates which nodes are reached.
83 83

	
84 84
    ///The type of the map that indicates which nodes are reached.
85 85
    ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
86 86
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
87
    ///Instantiates a \ref ReachedMap.
87
    ///Instantiates a ReachedMap.
88 88

	
89
    ///This function instantiates a \ref ReachedMap.
89
    ///This function instantiates a ReachedMap.
90 90
    ///\param g is the digraph, to which
91
    ///we would like to define the \ref ReachedMap.
91
    ///we would like to define the ReachedMap.
92 92
    static ReachedMap *createReachedMap(const Digraph &g)
93 93
    {
94 94
      return new ReachedMap(g);
95 95
    }
96 96

	
97 97
    ///The type of the map that stores the distances of the nodes.
98 98

	
99 99
    ///The type of the map that stores the distances of the nodes.
100 100
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
101 101
    typedef typename Digraph::template NodeMap<int> DistMap;
102
    ///Instantiates a \ref DistMap.
102
    ///Instantiates a DistMap.
103 103

	
104
    ///This function instantiates a \ref DistMap.
104
    ///This function instantiates a DistMap.
105 105
    ///\param g is the digraph, to which we would like to define the
106
    ///\ref DistMap.
106
    ///DistMap.
107 107
    static DistMap *createDistMap(const Digraph &g)
108 108
    {
109 109
      return new DistMap(g);
110 110
    }
111 111
  };
112 112

	
113 113
  ///%DFS algorithm class.
114 114

	
115 115
  ///\ingroup search
116 116
  ///This class provides an efficient implementation of the %DFS algorithm.
117 117
  ///
118 118
  ///There is also a \ref dfs() "function-type interface" for the DFS
119 119
  ///algorithm, which is convenient in the simplier cases and it can be
120 120
  ///used easier.
121 121
  ///
122 122
  ///\tparam GR The type of the digraph the algorithm runs on.
123 123
  ///The default value is \ref ListDigraph. The value of GR is not used
124 124
  ///directly by \ref Dfs, it is only passed to \ref DfsDefaultTraits.
125 125
  ///\tparam TR Traits class to set various data types used by the algorithm.
126 126
  ///The default traits class is
127 127
  ///\ref DfsDefaultTraits "DfsDefaultTraits<GR>".
128 128
  ///See \ref DfsDefaultTraits for the documentation of
129 129
  ///a Dfs traits class.
130 130
#ifdef DOXYGEN
131 131
  template <typename GR,
132 132
            typename TR>
133 133
#else
134 134
  template <typename GR=ListDigraph,
135 135
            typename TR=DfsDefaultTraits<GR> >
136 136
#endif
137 137
  class Dfs {
138 138
  public:
139 139

	
140 140
    ///The type of the digraph the algorithm runs on.
141 141
    typedef typename TR::Digraph Digraph;
142 142

	
143 143
    ///\brief The type of the map that stores the predecessor arcs of the
144 144
    ///DFS paths.
145 145
    typedef typename TR::PredMap PredMap;
146 146
    ///The type of the map that stores the distances of the nodes.
147 147
    typedef typename TR::DistMap DistMap;
148 148
    ///The type of the map that indicates which nodes are reached.
149 149
    typedef typename TR::ReachedMap ReachedMap;
150 150
    ///The type of the map that indicates which nodes are processed.
151 151
    typedef typename TR::ProcessedMap ProcessedMap;
152 152
    ///The type of the paths.
153 153
    typedef PredMapPath<Digraph, PredMap> Path;
154 154

	
... ...
@@ -182,174 +182,174 @@
182 182
    bool local_processed;
183 183

	
184 184
    std::vector<typename Digraph::OutArcIt> _stack;
185 185
    int _stack_head;
186 186

	
187 187
    //Creates the maps if necessary.
188 188
    void create_maps()
189 189
    {
190 190
      if(!_pred) {
191 191
        local_pred = true;
192 192
        _pred = Traits::createPredMap(*G);
193 193
      }
194 194
      if(!_dist) {
195 195
        local_dist = true;
196 196
        _dist = Traits::createDistMap(*G);
197 197
      }
198 198
      if(!_reached) {
199 199
        local_reached = true;
200 200
        _reached = Traits::createReachedMap(*G);
201 201
      }
202 202
      if(!_processed) {
203 203
        local_processed = true;
204 204
        _processed = Traits::createProcessedMap(*G);
205 205
      }
206 206
    }
207 207

	
208 208
  protected:
209 209

	
210 210
    Dfs() {}
211 211

	
212 212
  public:
213 213

	
214 214
    typedef Dfs Create;
215 215

	
216 216
    ///\name Named template parameters
217 217

	
218 218
    ///@{
219 219

	
220 220
    template <class T>
221 221
    struct SetPredMapTraits : public Traits {
222 222
      typedef T PredMap;
223 223
      static PredMap *createPredMap(const Digraph &)
224 224
      {
225 225
        LEMON_ASSERT(false, "PredMap is not initialized");
226 226
        return 0; // ignore warnings
227 227
      }
228 228
    };
229 229
    ///\brief \ref named-templ-param "Named parameter" for setting
230
    ///\ref PredMap type.
230
    ///PredMap type.
231 231
    ///
232 232
    ///\ref named-templ-param "Named parameter" for setting
233
    ///\ref PredMap type.
233
    ///PredMap type.
234 234
    template <class T>
235 235
    struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > {
236 236
      typedef Dfs<Digraph, SetPredMapTraits<T> > Create;
237 237
    };
238 238

	
239 239
    template <class T>
240 240
    struct SetDistMapTraits : public Traits {
241 241
      typedef T DistMap;
242 242
      static DistMap *createDistMap(const Digraph &)
243 243
      {
244 244
        LEMON_ASSERT(false, "DistMap is not initialized");
245 245
        return 0; // ignore warnings
246 246
      }
247 247
    };
248 248
    ///\brief \ref named-templ-param "Named parameter" for setting
249
    ///\ref DistMap type.
249
    ///DistMap type.
250 250
    ///
251 251
    ///\ref named-templ-param "Named parameter" for setting
252
    ///\ref DistMap type.
252
    ///DistMap type.
253 253
    template <class T>
254 254
    struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > {
255 255
      typedef Dfs<Digraph, SetDistMapTraits<T> > Create;
256 256
    };
257 257

	
258 258
    template <class T>
259 259
    struct SetReachedMapTraits : public Traits {
260 260
      typedef T ReachedMap;
261 261
      static ReachedMap *createReachedMap(const Digraph &)
262 262
      {
263 263
        LEMON_ASSERT(false, "ReachedMap is not initialized");
264 264
        return 0; // ignore warnings
265 265
      }
266 266
    };
267 267
    ///\brief \ref named-templ-param "Named parameter" for setting
268
    ///\ref ReachedMap type.
268
    ///ReachedMap type.
269 269
    ///
270 270
    ///\ref named-templ-param "Named parameter" for setting
271
    ///\ref ReachedMap type.
271
    ///ReachedMap type.
272 272
    template <class T>
273 273
    struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > {
274 274
      typedef Dfs< Digraph, SetReachedMapTraits<T> > Create;
275 275
    };
276 276

	
277 277
    template <class T>
278 278
    struct SetProcessedMapTraits : public Traits {
279 279
      typedef T ProcessedMap;
280 280
      static ProcessedMap *createProcessedMap(const Digraph &)
281 281
      {
282 282
        LEMON_ASSERT(false, "ProcessedMap is not initialized");
283 283
        return 0; // ignore warnings
284 284
      }
285 285
    };
286 286
    ///\brief \ref named-templ-param "Named parameter" for setting
287
    ///\ref ProcessedMap type.
287
    ///ProcessedMap type.
288 288
    ///
289 289
    ///\ref named-templ-param "Named parameter" for setting
290
    ///\ref ProcessedMap type.
290
    ///ProcessedMap type.
291 291
    template <class T>
292 292
    struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > {
293 293
      typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create;
294 294
    };
295 295

	
296 296
    struct SetStandardProcessedMapTraits : public Traits {
297 297
      typedef typename Digraph::template NodeMap<bool> ProcessedMap;
298 298
      static ProcessedMap *createProcessedMap(const Digraph &g)
299 299
      {
300 300
        return new ProcessedMap(g);
301 301
      }
302 302
    };
303 303
    ///\brief \ref named-templ-param "Named parameter" for setting
304
    ///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
304
    ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
305 305
    ///
306 306
    ///\ref named-templ-param "Named parameter" for setting
307
    ///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
307
    ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
308 308
    ///If you don't set it explicitly, it will be automatically allocated.
309 309
    struct SetStandardProcessedMap :
310 310
      public Dfs< Digraph, SetStandardProcessedMapTraits > {
311 311
      typedef Dfs< Digraph, SetStandardProcessedMapTraits > Create;
312 312
    };
313 313

	
314 314
    ///@}
315 315

	
316 316
  public:
317 317

	
318 318
    ///Constructor.
319 319

	
320 320
    ///Constructor.
321 321
    ///\param g The digraph the algorithm runs on.
322 322
    Dfs(const Digraph &g) :
323 323
      G(&g),
324 324
      _pred(NULL), local_pred(false),
325 325
      _dist(NULL), local_dist(false),
326 326
      _reached(NULL), local_reached(false),
327 327
      _processed(NULL), local_processed(false)
328 328
    { }
329 329

	
330 330
    ///Destructor.
331 331
    ~Dfs()
332 332
    {
333 333
      if(local_pred) delete _pred;
334 334
      if(local_dist) delete _dist;
335 335
      if(local_reached) delete _reached;
336 336
      if(local_processed) delete _processed;
337 337
    }
338 338

	
339 339
    ///Sets the map that stores the predecessor arcs.
340 340

	
341 341
    ///Sets the map that stores the predecessor arcs.
342 342
    ///If you don't use this function before calling \ref run(),
343 343
    ///it will allocate one. The destructor deallocates this
344 344
    ///automatically allocated map, of course.
345 345
    ///\return <tt> (*this) </tt>
346 346
    Dfs &predMap(PredMap &m)
347 347
    {
348 348
      if(local_pred) {
349 349
        delete _pred;
350 350
        local_pred=false;
351 351
      }
352 352
      _pred = &m;
353 353
      return *this;
354 354
    }
355 355

	
... ...
@@ -723,151 +723,151 @@
723 723

	
724 724
    ///\brief Returns a const reference to the node map that stores the
725 725
    ///distances of the nodes.
726 726
    ///
727 727
    ///Returns a const reference to the node map that stores the
728 728
    ///distances of the nodes calculated by the algorithm.
729 729
    ///
730 730
    ///\pre Either \ref run() or \ref init()
731 731
    ///must be called before using this function.
732 732
    const DistMap &distMap() const { return *_dist;}
733 733

	
734 734
    ///\brief Returns a const reference to the node map that stores the
735 735
    ///predecessor arcs.
736 736
    ///
737 737
    ///Returns a const reference to the node map that stores the predecessor
738 738
    ///arcs, which form the DFS tree.
739 739
    ///
740 740
    ///\pre Either \ref run() or \ref init()
741 741
    ///must be called before using this function.
742 742
    const PredMap &predMap() const { return *_pred;}
743 743

	
744 744
    ///Checks if a node is reachable from the root(s).
745 745

	
746 746
    ///Returns \c true if \c v is reachable from the root(s).
747 747
    ///\pre Either \ref run() or \ref start()
748 748
    ///must be called before using this function.
749 749
    bool reached(Node v) const { return (*_reached)[v]; }
750 750

	
751 751
    ///@}
752 752
  };
753 753

	
754 754
  ///Default traits class of dfs() function.
755 755

	
756 756
  ///Default traits class of dfs() function.
757 757
  ///\tparam GR Digraph type.
758 758
  template<class GR>
759 759
  struct DfsWizardDefaultTraits
760 760
  {
761 761
    ///The type of the digraph the algorithm runs on.
762 762
    typedef GR Digraph;
763 763

	
764 764
    ///\brief The type of the map that stores the predecessor
765 765
    ///arcs of the %DFS paths.
766 766
    ///
767 767
    ///The type of the map that stores the predecessor
768 768
    ///arcs of the %DFS paths.
769 769
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
770 770
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
771
    ///Instantiates a \ref PredMap.
771
    ///Instantiates a PredMap.
772 772

	
773
    ///This function instantiates a \ref PredMap.
773
    ///This function instantiates a PredMap.
774 774
    ///\param g is the digraph, to which we would like to define the
775
    ///\ref PredMap.
775
    ///PredMap.
776 776
    static PredMap *createPredMap(const Digraph &g)
777 777
    {
778 778
      return new PredMap(g);
779 779
    }
780 780

	
781 781
    ///The type of the map that indicates which nodes are processed.
782 782

	
783 783
    ///The type of the map that indicates which nodes are processed.
784 784
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
785 785
    ///By default it is a NullMap.
786 786
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
787
    ///Instantiates a \ref ProcessedMap.
787
    ///Instantiates a ProcessedMap.
788 788

	
789
    ///This function instantiates a \ref ProcessedMap.
789
    ///This function instantiates a ProcessedMap.
790 790
    ///\param g is the digraph, to which
791
    ///we would like to define the \ref ProcessedMap.
791
    ///we would like to define the ProcessedMap.
792 792
#ifdef DOXYGEN
793 793
    static ProcessedMap *createProcessedMap(const Digraph &g)
794 794
#else
795 795
    static ProcessedMap *createProcessedMap(const Digraph &)
796 796
#endif
797 797
    {
798 798
      return new ProcessedMap();
799 799
    }
800 800

	
801 801
    ///The type of the map that indicates which nodes are reached.
802 802

	
803 803
    ///The type of the map that indicates which nodes are reached.
804 804
    ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
805 805
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
806
    ///Instantiates a \ref ReachedMap.
806
    ///Instantiates a ReachedMap.
807 807

	
808
    ///This function instantiates a \ref ReachedMap.
808
    ///This function instantiates a ReachedMap.
809 809
    ///\param g is the digraph, to which
810
    ///we would like to define the \ref ReachedMap.
810
    ///we would like to define the ReachedMap.
811 811
    static ReachedMap *createReachedMap(const Digraph &g)
812 812
    {
813 813
      return new ReachedMap(g);
814 814
    }
815 815

	
816 816
    ///The type of the map that stores the distances of the nodes.
817 817

	
818 818
    ///The type of the map that stores the distances of the nodes.
819 819
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
820 820
    typedef typename Digraph::template NodeMap<int> DistMap;
821
    ///Instantiates a \ref DistMap.
821
    ///Instantiates a DistMap.
822 822

	
823
    ///This function instantiates a \ref DistMap.
823
    ///This function instantiates a DistMap.
824 824
    ///\param g is the digraph, to which we would like to define
825
    ///the \ref DistMap
825
    ///the DistMap
826 826
    static DistMap *createDistMap(const Digraph &g)
827 827
    {
828 828
      return new DistMap(g);
829 829
    }
830 830

	
831 831
    ///The type of the DFS paths.
832 832

	
833 833
    ///The type of the DFS paths.
834 834
    ///It must meet the \ref concepts::Path "Path" concept.
835 835
    typedef lemon::Path<Digraph> Path;
836 836
  };
837 837

	
838 838
  /// Default traits class used by \ref DfsWizard
839 839

	
840 840
  /// To make it easier to use Dfs algorithm
841 841
  /// we have created a wizard class.
842 842
  /// This \ref DfsWizard class needs default traits,
843 843
  /// as well as the \ref Dfs class.
844 844
  /// The \ref DfsWizardBase is a class to be the default traits of the
845 845
  /// \ref DfsWizard class.
846 846
  template<class GR>
847 847
  class DfsWizardBase : public DfsWizardDefaultTraits<GR>
848 848
  {
849 849

	
850 850
    typedef DfsWizardDefaultTraits<GR> Base;
851 851
  protected:
852 852
    //The type of the nodes in the digraph.
853 853
    typedef typename Base::Digraph::Node Node;
854 854

	
855 855
    //Pointer to the digraph the algorithm runs on.
856 856
    void *_g;
857 857
    //Pointer to the map of reached nodes.
858 858
    void *_reached;
859 859
    //Pointer to the map of processed nodes.
860 860
    void *_processed;
861 861
    //Pointer to the map of predecessors arcs.
862 862
    void *_pred;
863 863
    //Pointer to the map of distances.
864 864
    void *_dist;
865 865
    //Pointer to the DFS path to the target node.
866 866
    void *_path;
867 867
    //Pointer to the distance of the target node.
868 868
    int *_di;
869 869

	
870 870
    public:
871 871
    /// Constructor.
872 872

	
873 873
    /// This constructor does not require parameters, therefore it initiates
... ...
@@ -956,154 +956,154 @@
956 956
      if (s!=INVALID)
957 957
        alg.run(s);
958 958
      else
959 959
        alg.run();
960 960
    }
961 961

	
962 962
    ///Finds the DFS path between \c s and \c t.
963 963

	
964 964
    ///This method runs DFS algorithm from node \c s
965 965
    ///in order to compute the DFS path to node \c t
966 966
    ///(it stops searching when \c t is processed).
967 967
    ///
968 968
    ///\return \c true if \c t is reachable form \c s.
969 969
    bool run(Node s, Node t)
970 970
    {
971 971
      Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
972 972
      if (Base::_pred)
973 973
        alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
974 974
      if (Base::_dist)
975 975
        alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
976 976
      if (Base::_reached)
977 977
        alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
978 978
      if (Base::_processed)
979 979
        alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
980 980
      alg.run(s,t);
981 981
      if (Base::_path)
982 982
        *reinterpret_cast<Path*>(Base::_path) = alg.path(t);
983 983
      if (Base::_di)
984 984
        *Base::_di = alg.dist(t);
985 985
      return alg.reached(t);
986 986
      }
987 987

	
988 988
    ///Runs DFS algorithm to visit all nodes in the digraph.
989 989

	
990 990
    ///This method runs DFS algorithm in order to compute
991 991
    ///the DFS path to each node.
992 992
    void run()
993 993
    {
994 994
      run(INVALID);
995 995
    }
996 996

	
997 997
    template<class T>
998 998
    struct SetPredMapBase : public Base {
999 999
      typedef T PredMap;
1000 1000
      static PredMap *createPredMap(const Digraph &) { return 0; };
1001 1001
      SetPredMapBase(const TR &b) : TR(b) {}
1002 1002
    };
1003 1003
    ///\brief \ref named-func-param "Named parameter"
1004
    ///for setting \ref PredMap object.
1004
    ///for setting PredMap object.
1005 1005
    ///
1006 1006
    ///\ref named-func-param "Named parameter"
1007
    ///for setting \ref PredMap object.
1007
    ///for setting PredMap object.
1008 1008
    template<class T>
1009 1009
    DfsWizard<SetPredMapBase<T> > predMap(const T &t)
1010 1010
    {
1011 1011
      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
1012 1012
      return DfsWizard<SetPredMapBase<T> >(*this);
1013 1013
    }
1014 1014

	
1015 1015
    template<class T>
1016 1016
    struct SetReachedMapBase : public Base {
1017 1017
      typedef T ReachedMap;
1018 1018
      static ReachedMap *createReachedMap(const Digraph &) { return 0; };
1019 1019
      SetReachedMapBase(const TR &b) : TR(b) {}
1020 1020
    };
1021 1021
    ///\brief \ref named-func-param "Named parameter"
1022
    ///for setting \ref ReachedMap object.
1022
    ///for setting ReachedMap object.
1023 1023
    ///
1024 1024
    /// \ref named-func-param "Named parameter"
1025
    ///for setting \ref ReachedMap object.
1025
    ///for setting ReachedMap object.
1026 1026
    template<class T>
1027 1027
    DfsWizard<SetReachedMapBase<T> > reachedMap(const T &t)
1028 1028
    {
1029 1029
      Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t));
1030 1030
      return DfsWizard<SetReachedMapBase<T> >(*this);
1031 1031
    }
1032 1032

	
1033 1033
    template<class T>
1034 1034
    struct SetDistMapBase : public Base {
1035 1035
      typedef T DistMap;
1036 1036
      static DistMap *createDistMap(const Digraph &) { return 0; };
1037 1037
      SetDistMapBase(const TR &b) : TR(b) {}
1038 1038
    };
1039 1039
    ///\brief \ref named-func-param "Named parameter"
1040
    ///for setting \ref DistMap object.
1040
    ///for setting DistMap object.
1041 1041
    ///
1042 1042
    /// \ref named-func-param "Named parameter"
1043
    ///for setting \ref DistMap object.
1043
    ///for setting DistMap object.
1044 1044
    template<class T>
1045 1045
    DfsWizard<SetDistMapBase<T> > distMap(const T &t)
1046 1046
    {
1047 1047
      Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
1048 1048
      return DfsWizard<SetDistMapBase<T> >(*this);
1049 1049
    }
1050 1050

	
1051 1051
    template<class T>
1052 1052
    struct SetProcessedMapBase : public Base {
1053 1053
      typedef T ProcessedMap;
1054 1054
      static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
1055 1055
      SetProcessedMapBase(const TR &b) : TR(b) {}
1056 1056
    };
1057 1057
    ///\brief \ref named-func-param "Named parameter"
1058
    ///for setting \ref ProcessedMap object.
1058
    ///for setting ProcessedMap object.
1059 1059
    ///
1060 1060
    /// \ref named-func-param "Named parameter"
1061
    ///for setting \ref ProcessedMap object.
1061
    ///for setting ProcessedMap object.
1062 1062
    template<class T>
1063 1063
    DfsWizard<SetProcessedMapBase<T> > processedMap(const T &t)
1064 1064
    {
1065 1065
      Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));
1066 1066
      return DfsWizard<SetProcessedMapBase<T> >(*this);
1067 1067
    }
1068 1068

	
1069 1069
    template<class T>
1070 1070
    struct SetPathBase : public Base {
1071 1071
      typedef T Path;
1072 1072
      SetPathBase(const TR &b) : TR(b) {}
1073 1073
    };
1074 1074
    ///\brief \ref named-func-param "Named parameter"
1075 1075
    ///for getting the DFS path to the target node.
1076 1076
    ///
1077 1077
    ///\ref named-func-param "Named parameter"
1078 1078
    ///for getting the DFS path to the target node.
1079 1079
    template<class T>
1080 1080
    DfsWizard<SetPathBase<T> > path(const T &t)
1081 1081
    {
1082 1082
      Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
1083 1083
      return DfsWizard<SetPathBase<T> >(*this);
1084 1084
    }
1085 1085

	
1086 1086
    ///\brief \ref named-func-param "Named parameter"
1087 1087
    ///for getting the distance of the target node.
1088 1088
    ///
1089 1089
    ///\ref named-func-param "Named parameter"
1090 1090
    ///for getting the distance of the target node.
1091 1091
    DfsWizard dist(const int &d)
1092 1092
    {
1093 1093
      Base::_di=const_cast<int*>(&d);
1094 1094
      return *this;
1095 1095
    }
1096 1096

	
1097 1097
  };
1098 1098

	
1099 1099
  ///Function-type interface for DFS algorithm.
1100 1100

	
1101 1101
  ///\ingroup search
1102 1102
  ///Function-type interface for DFS algorithm.
1103 1103
  ///
1104 1104
  ///This function also has several \ref named-func-param "named parameters",
1105 1105
  ///they are declared as the members of class \ref DfsWizard.
1106 1106
  ///The following examples show how to use these parameters.
1107 1107
  ///\code
1108 1108
  ///  // Compute the DFS tree
1109 1109
  ///  dfs(g).predMap(preds).distMap(dists).run(s);
... ...
@@ -1168,101 +1168,101 @@
1168 1168
#else
1169 1169
  template <typename _Digraph>
1170 1170
  struct DfsVisitor {
1171 1171
    typedef _Digraph Digraph;
1172 1172
    typedef typename Digraph::Arc Arc;
1173 1173
    typedef typename Digraph::Node Node;
1174 1174
    void start(const Node&) {}
1175 1175
    void stop(const Node&) {}
1176 1176
    void reach(const Node&) {}
1177 1177
    void discover(const Arc&) {}
1178 1178
    void examine(const Arc&) {}
1179 1179
    void leave(const Node&) {}
1180 1180
    void backtrack(const Arc&) {}
1181 1181

	
1182 1182
    template <typename _Visitor>
1183 1183
    struct Constraints {
1184 1184
      void constraints() {
1185 1185
        Arc arc;
1186 1186
        Node node;
1187 1187
        visitor.start(node);
1188 1188
        visitor.stop(arc);
1189 1189
        visitor.reach(node);
1190 1190
        visitor.discover(arc);
1191 1191
        visitor.examine(arc);
1192 1192
        visitor.leave(node);
1193 1193
        visitor.backtrack(arc);
1194 1194
      }
1195 1195
      _Visitor& visitor;
1196 1196
    };
1197 1197
  };
1198 1198
#endif
1199 1199

	
1200 1200
  /// \brief Default traits class of DfsVisit class.
1201 1201
  ///
1202 1202
  /// Default traits class of DfsVisit class.
1203 1203
  /// \tparam _Digraph The type of the digraph the algorithm runs on.
1204 1204
  template<class _Digraph>
1205 1205
  struct DfsVisitDefaultTraits {
1206 1206

	
1207 1207
    /// \brief The type of the digraph the algorithm runs on.
1208 1208
    typedef _Digraph Digraph;
1209 1209

	
1210 1210
    /// \brief The type of the map that indicates which nodes are reached.
1211 1211
    ///
1212 1212
    /// The type of the map that indicates which nodes are reached.
1213 1213
    /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
1214 1214
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
1215 1215

	
1216
    /// \brief Instantiates a \ref ReachedMap.
1216
    /// \brief Instantiates a ReachedMap.
1217 1217
    ///
1218
    /// This function instantiates a \ref ReachedMap.
1218
    /// This function instantiates a ReachedMap.
1219 1219
    /// \param digraph is the digraph, to which
1220
    /// we would like to define the \ref ReachedMap.
1220
    /// we would like to define the ReachedMap.
1221 1221
    static ReachedMap *createReachedMap(const Digraph &digraph) {
1222 1222
      return new ReachedMap(digraph);
1223 1223
    }
1224 1224

	
1225 1225
  };
1226 1226

	
1227 1227
  /// \ingroup search
1228 1228
  ///
1229 1229
  /// \brief %DFS algorithm class with visitor interface.
1230 1230
  ///
1231 1231
  /// This class provides an efficient implementation of the %DFS algorithm
1232 1232
  /// with visitor interface.
1233 1233
  ///
1234 1234
  /// The %DfsVisit class provides an alternative interface to the Dfs
1235 1235
  /// class. It works with callback mechanism, the DfsVisit object calls
1236 1236
  /// the member functions of the \c Visitor class on every DFS event.
1237 1237
  ///
1238 1238
  /// This interface of the DFS algorithm should be used in special cases
1239 1239
  /// when extra actions have to be performed in connection with certain
1240 1240
  /// events of the DFS algorithm. Otherwise consider to use Dfs or dfs()
1241 1241
  /// instead.
1242 1242
  ///
1243 1243
  /// \tparam _Digraph The type of the digraph the algorithm runs on.
1244 1244
  /// The default value is
1245 1245
  /// \ref ListDigraph. The value of _Digraph is not used directly by
1246 1246
  /// \ref DfsVisit, it is only passed to \ref DfsVisitDefaultTraits.
1247 1247
  /// \tparam _Visitor The Visitor type that is used by the algorithm.
1248 1248
  /// \ref DfsVisitor "DfsVisitor<_Digraph>" is an empty visitor, which
1249 1249
  /// does not observe the DFS events. If you want to observe the DFS
1250 1250
  /// events, you should implement your own visitor class.
1251 1251
  /// \tparam _Traits Traits class to set various data types used by the
1252 1252
  /// algorithm. The default traits class is
1253 1253
  /// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<_Digraph>".
1254 1254
  /// See \ref DfsVisitDefaultTraits for the documentation of
1255 1255
  /// a DFS visit traits class.
1256 1256
#ifdef DOXYGEN
1257 1257
  template <typename _Digraph, typename _Visitor, typename _Traits>
1258 1258
#else
1259 1259
  template <typename _Digraph = ListDigraph,
1260 1260
            typename _Visitor = DfsVisitor<_Digraph>,
1261 1261
            typename _Traits = DfsVisitDefaultTraits<_Digraph> >
1262 1262
#endif
1263 1263
  class DfsVisit {
1264 1264
  public:
1265 1265

	
1266 1266
    ///The traits class.
1267 1267
    typedef _Traits Traits;
1268 1268

	
Ignore white space 6 line context
... ...
@@ -94,136 +94,136 @@
94 94
    ///It must meet the \ref concepts::ReadMap "ReadMap" concept.
95 95
    typedef LM LengthMap;
96 96
    ///The type of the length of the arcs.
97 97
    typedef typename LM::Value Value;
98 98

	
99 99
    /// Operation traits for Dijkstra algorithm.
100 100

	
101 101
    /// This class defines the operations that are used in the algorithm.
102 102
    /// \see DijkstraDefaultOperationTraits
103 103
    typedef DijkstraDefaultOperationTraits<Value> OperationTraits;
104 104

	
105 105
    /// The cross reference type used by the heap.
106 106

	
107 107
    /// The cross reference type used by the heap.
108 108
    /// Usually it is \c Digraph::NodeMap<int>.
109 109
    typedef typename Digraph::template NodeMap<int> HeapCrossRef;
110 110
    ///Instantiates a \ref HeapCrossRef.
111 111

	
112 112
    ///This function instantiates a \ref HeapCrossRef.
113 113
    /// \param g is the digraph, to which we would like to define the
114 114
    /// \ref HeapCrossRef.
115 115
    static HeapCrossRef *createHeapCrossRef(const Digraph &g)
116 116
    {
117 117
      return new HeapCrossRef(g);
118 118
    }
119 119

	
120 120
    ///The heap type used by the Dijkstra algorithm.
121 121

	
122 122
    ///The heap type used by the Dijkstra algorithm.
123 123
    ///
124 124
    ///\sa BinHeap
125 125
    ///\sa Dijkstra
126 126
    typedef BinHeap<typename LM::Value, HeapCrossRef, std::less<Value> > Heap;
127 127
    ///Instantiates a \ref Heap.
128 128

	
129 129
    ///This function instantiates a \ref Heap.
130 130
    static Heap *createHeap(HeapCrossRef& r)
131 131
    {
132 132
      return new Heap(r);
133 133
    }
134 134

	
135 135
    ///\brief The type of the map that stores the predecessor
136 136
    ///arcs of the shortest paths.
137 137
    ///
138 138
    ///The type of the map that stores the predecessor
139 139
    ///arcs of the shortest paths.
140 140
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
141 141
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
142
    ///Instantiates a \ref PredMap.
142
    ///Instantiates a PredMap.
143 143

	
144
    ///This function instantiates a \ref PredMap.
144
    ///This function instantiates a PredMap.
145 145
    ///\param g is the digraph, to which we would like to define the
146
    ///\ref PredMap.
146
    ///PredMap.
147 147
    static PredMap *createPredMap(const Digraph &g)
148 148
    {
149 149
      return new PredMap(g);
150 150
    }
151 151

	
152 152
    ///The type of the map that indicates which nodes are processed.
153 153

	
154 154
    ///The type of the map that indicates which nodes are processed.
155 155
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
156 156
    ///By default it is a NullMap.
157 157
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
158
    ///Instantiates a \ref ProcessedMap.
158
    ///Instantiates a ProcessedMap.
159 159

	
160
    ///This function instantiates a \ref ProcessedMap.
160
    ///This function instantiates a ProcessedMap.
161 161
    ///\param g is the digraph, to which
162
    ///we would like to define the \ref ProcessedMap
162
    ///we would like to define the ProcessedMap
163 163
#ifdef DOXYGEN
164 164
    static ProcessedMap *createProcessedMap(const Digraph &g)
165 165
#else
166 166
    static ProcessedMap *createProcessedMap(const Digraph &)
167 167
#endif
168 168
    {
169 169
      return new ProcessedMap();
170 170
    }
171 171

	
172 172
    ///The type of the map that stores the distances of the nodes.
173 173

	
174 174
    ///The type of the map that stores the distances of the nodes.
175 175
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
176 176
    typedef typename Digraph::template NodeMap<typename LM::Value> DistMap;
177
    ///Instantiates a \ref DistMap.
177
    ///Instantiates a DistMap.
178 178

	
179
    ///This function instantiates a \ref DistMap.
179
    ///This function instantiates a DistMap.
180 180
    ///\param g is the digraph, to which we would like to define
181
    ///the \ref DistMap
181
    ///the DistMap
182 182
    static DistMap *createDistMap(const Digraph &g)
183 183
    {
184 184
      return new DistMap(g);
185 185
    }
186 186
  };
187 187

	
188 188
  ///%Dijkstra algorithm class.
189 189

	
190 190
  /// \ingroup shortest_path
191 191
  ///This class provides an efficient implementation of the %Dijkstra algorithm.
192 192
  ///
193 193
  ///The arc lengths are passed to the algorithm using a
194 194
  ///\ref concepts::ReadMap "ReadMap",
195 195
  ///so it is easy to change it to any kind of length.
196 196
  ///The type of the length is determined by the
197 197
  ///\ref concepts::ReadMap::Value "Value" of the length map.
198 198
  ///It is also possible to change the underlying priority heap.
199 199
  ///
200 200
  ///There is also a \ref dijkstra() "function-type interface" for the
201 201
  ///%Dijkstra algorithm, which is convenient in the simplier cases and
202 202
  ///it can be used easier.
203 203
  ///
204 204
  ///\tparam GR The type of the digraph the algorithm runs on.
205 205
  ///The default value is \ref ListDigraph.
206 206
  ///The value of GR is not used directly by \ref Dijkstra, it is only
207 207
  ///passed to \ref DijkstraDefaultTraits.
208 208
  ///\tparam LM A readable arc map that determines the lengths of the
209 209
  ///arcs. It is read once for each arc, so the map may involve in
210 210
  ///relatively time consuming process to compute the arc lengths if
211 211
  ///it is necessary. The default map type is \ref
212 212
  ///concepts::Digraph::ArcMap "Digraph::ArcMap<int>".
213 213
  ///The value of LM is not used directly by \ref Dijkstra, it is only
214 214
  ///passed to \ref DijkstraDefaultTraits.
215 215
  ///\tparam TR Traits class to set various data types used by the algorithm.
216 216
  ///The default traits class is \ref DijkstraDefaultTraits
217 217
  ///"DijkstraDefaultTraits<GR,LM>". See \ref DijkstraDefaultTraits
218 218
  ///for the documentation of a Dijkstra traits class.
219 219
#ifdef DOXYGEN
220 220
  template <typename GR, typename LM, typename TR>
221 221
#else
222 222
  template <typename GR=ListDigraph,
223 223
            typename LM=typename GR::template ArcMap<int>,
224 224
            typename TR=DijkstraDefaultTraits<GR,LM> >
225 225
#endif
226 226
  class Dijkstra {
227 227
  public:
228 228

	
229 229
    ///The type of the digraph the algorithm runs on.
... ...
@@ -282,158 +282,158 @@
282 282
    //Pointer to the heap.
283 283
    Heap *_heap;
284 284
    //Indicates if _heap is locally allocated (true) or not.
285 285
    bool local_heap;
286 286

	
287 287
    //Creates the maps if necessary.
288 288
    void create_maps()
289 289
    {
290 290
      if(!_pred) {
291 291
        local_pred = true;
292 292
        _pred = Traits::createPredMap(*G);
293 293
      }
294 294
      if(!_dist) {
295 295
        local_dist = true;
296 296
        _dist = Traits::createDistMap(*G);
297 297
      }
298 298
      if(!_processed) {
299 299
        local_processed = true;
300 300
        _processed = Traits::createProcessedMap(*G);
301 301
      }
302 302
      if (!_heap_cross_ref) {
303 303
        local_heap_cross_ref = true;
304 304
        _heap_cross_ref = Traits::createHeapCrossRef(*G);
305 305
      }
306 306
      if (!_heap) {
307 307
        local_heap = true;
308 308
        _heap = Traits::createHeap(*_heap_cross_ref);
309 309
      }
310 310
    }
311 311

	
312 312
  public:
313 313

	
314 314
    typedef Dijkstra Create;
315 315

	
316 316
    ///\name Named template parameters
317 317

	
318 318
    ///@{
319 319

	
320 320
    template <class T>
321 321
    struct SetPredMapTraits : public Traits {
322 322
      typedef T PredMap;
323 323
      static PredMap *createPredMap(const Digraph &)
324 324
      {
325 325
        LEMON_ASSERT(false, "PredMap is not initialized");
326 326
        return 0; // ignore warnings
327 327
      }
328 328
    };
329 329
    ///\brief \ref named-templ-param "Named parameter" for setting
330
    ///\ref PredMap type.
330
    ///PredMap type.
331 331
    ///
332 332
    ///\ref named-templ-param "Named parameter" for setting
333
    ///\ref PredMap type.
333
    ///PredMap type.
334 334
    template <class T>
335 335
    struct SetPredMap
336 336
      : public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > {
337 337
      typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create;
338 338
    };
339 339

	
340 340
    template <class T>
341 341
    struct SetDistMapTraits : public Traits {
342 342
      typedef T DistMap;
343 343
      static DistMap *createDistMap(const Digraph &)
344 344
      {
345 345
        LEMON_ASSERT(false, "DistMap is not initialized");
346 346
        return 0; // ignore warnings
347 347
      }
348 348
    };
349 349
    ///\brief \ref named-templ-param "Named parameter" for setting
350
    ///\ref DistMap type.
350
    ///DistMap type.
351 351
    ///
352 352
    ///\ref named-templ-param "Named parameter" for setting
353
    ///\ref DistMap type.
353
    ///DistMap type.
354 354
    template <class T>
355 355
    struct SetDistMap
356 356
      : public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > {
357 357
      typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create;
358 358
    };
359 359

	
360 360
    template <class T>
361 361
    struct SetProcessedMapTraits : public Traits {
362 362
      typedef T ProcessedMap;
363 363
      static ProcessedMap *createProcessedMap(const Digraph &)
364 364
      {
365 365
        LEMON_ASSERT(false, "ProcessedMap is not initialized");
366 366
        return 0; // ignore warnings
367 367
      }
368 368
    };
369 369
    ///\brief \ref named-templ-param "Named parameter" for setting
370
    ///\ref ProcessedMap type.
370
    ///ProcessedMap type.
371 371
    ///
372 372
    ///\ref named-templ-param "Named parameter" for setting
373
    ///\ref ProcessedMap type.
373
    ///ProcessedMap type.
374 374
    template <class T>
375 375
    struct SetProcessedMap
376 376
      : public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > {
377 377
      typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create;
378 378
    };
379 379

	
380 380
    struct SetStandardProcessedMapTraits : public Traits {
381 381
      typedef typename Digraph::template NodeMap<bool> ProcessedMap;
382 382
      static ProcessedMap *createProcessedMap(const Digraph &g)
383 383
      {
384 384
        return new ProcessedMap(g);
385 385
      }
386 386
    };
387 387
    ///\brief \ref named-templ-param "Named parameter" for setting
388
    ///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
388
    ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
389 389
    ///
390 390
    ///\ref named-templ-param "Named parameter" for setting
391
    ///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
391
    ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
392 392
    ///If you don't set it explicitly, it will be automatically allocated.
393 393
    struct SetStandardProcessedMap
394 394
      : public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > {
395 395
      typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits >
396 396
      Create;
397 397
    };
398 398

	
399 399
    template <class H, class CR>
400 400
    struct SetHeapTraits : public Traits {
401 401
      typedef CR HeapCrossRef;
402 402
      typedef H Heap;
403 403
      static HeapCrossRef *createHeapCrossRef(const Digraph &) {
404 404
        LEMON_ASSERT(false, "HeapCrossRef is not initialized");
405 405
        return 0; // ignore warnings
406 406
      }
407 407
      static Heap *createHeap(HeapCrossRef &)
408 408
      {
409 409
        LEMON_ASSERT(false, "Heap is not initialized");
410 410
        return 0; // ignore warnings
411 411
      }
412 412
    };
413 413
    ///\brief \ref named-templ-param "Named parameter" for setting
414 414
    ///heap and cross reference type
415 415
    ///
416 416
    ///\ref named-templ-param "Named parameter" for setting heap and cross
417 417
    ///reference type.
418 418
    template <class H, class CR = typename Digraph::template NodeMap<int> >
419 419
    struct SetHeap
420 420
      : public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > {
421 421
      typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create;
422 422
    };
423 423

	
424 424
    template <class H, class CR>
425 425
    struct SetStandardHeapTraits : public Traits {
426 426
      typedef CR HeapCrossRef;
427 427
      typedef H Heap;
428 428
      static HeapCrossRef *createHeapCrossRef(const Digraph &G) {
429 429
        return new HeapCrossRef(G);
430 430
      }
431 431
      static Heap *createHeap(HeapCrossRef &R)
432 432
      {
433 433
        return new Heap(R);
434 434
      }
435 435
    };
436 436
    ///\brief \ref named-templ-param "Named parameter" for setting
437 437
    ///heap and cross reference type with automatic allocation
438 438
    ///
439 439
    ///\ref named-templ-param "Named parameter" for setting heap and cross
... ...
@@ -941,136 +941,136 @@
941 941
    typedef typename LM::Value Value;
942 942

	
943 943
    /// Operation traits for Dijkstra algorithm.
944 944

	
945 945
    /// This class defines the operations that are used in the algorithm.
946 946
    /// \see DijkstraDefaultOperationTraits
947 947
    typedef DijkstraDefaultOperationTraits<Value> OperationTraits;
948 948

	
949 949
    /// The cross reference type used by the heap.
950 950

	
951 951
    /// The cross reference type used by the heap.
952 952
    /// Usually it is \c Digraph::NodeMap<int>.
953 953
    typedef typename Digraph::template NodeMap<int> HeapCrossRef;
954 954
    ///Instantiates a \ref HeapCrossRef.
955 955

	
956 956
    ///This function instantiates a \ref HeapCrossRef.
957 957
    /// \param g is the digraph, to which we would like to define the
958 958
    /// HeapCrossRef.
959 959
    static HeapCrossRef *createHeapCrossRef(const Digraph &g)
960 960
    {
961 961
      return new HeapCrossRef(g);
962 962
    }
963 963

	
964 964
    ///The heap type used by the Dijkstra algorithm.
965 965

	
966 966
    ///The heap type used by the Dijkstra algorithm.
967 967
    ///
968 968
    ///\sa BinHeap
969 969
    ///\sa Dijkstra
970 970
    typedef BinHeap<Value, typename Digraph::template NodeMap<int>,
971 971
                    std::less<Value> > Heap;
972 972

	
973 973
    ///Instantiates a \ref Heap.
974 974

	
975 975
    ///This function instantiates a \ref Heap.
976 976
    /// \param r is the HeapCrossRef which is used.
977 977
    static Heap *createHeap(HeapCrossRef& r)
978 978
    {
979 979
      return new Heap(r);
980 980
    }
981 981

	
982 982
    ///\brief The type of the map that stores the predecessor
983 983
    ///arcs of the shortest paths.
984 984
    ///
985 985
    ///The type of the map that stores the predecessor
986 986
    ///arcs of the shortest paths.
987 987
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
988 988
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
989
    ///Instantiates a \ref PredMap.
989
    ///Instantiates a PredMap.
990 990

	
991
    ///This function instantiates a \ref PredMap.
991
    ///This function instantiates a PredMap.
992 992
    ///\param g is the digraph, to which we would like to define the
993
    ///\ref PredMap.
993
    ///PredMap.
994 994
    static PredMap *createPredMap(const Digraph &g)
995 995
    {
996 996
      return new PredMap(g);
997 997
    }
998 998

	
999 999
    ///The type of the map that indicates which nodes are processed.
1000 1000

	
1001 1001
    ///The type of the map that indicates which nodes are processed.
1002 1002
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
1003 1003
    ///By default it is a NullMap.
1004 1004
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
1005
    ///Instantiates a \ref ProcessedMap.
1005
    ///Instantiates a ProcessedMap.
1006 1006

	
1007
    ///This function instantiates a \ref ProcessedMap.
1007
    ///This function instantiates a ProcessedMap.
1008 1008
    ///\param g is the digraph, to which
1009
    ///we would like to define the \ref ProcessedMap.
1009
    ///we would like to define the ProcessedMap.
1010 1010
#ifdef DOXYGEN
1011 1011
    static ProcessedMap *createProcessedMap(const Digraph &g)
1012 1012
#else
1013 1013
    static ProcessedMap *createProcessedMap(const Digraph &)
1014 1014
#endif
1015 1015
    {
1016 1016
      return new ProcessedMap();
1017 1017
    }
1018 1018

	
1019 1019
    ///The type of the map that stores the distances of the nodes.
1020 1020

	
1021 1021
    ///The type of the map that stores the distances of the nodes.
1022 1022
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
1023 1023
    typedef typename Digraph::template NodeMap<typename LM::Value> DistMap;
1024
    ///Instantiates a \ref DistMap.
1024
    ///Instantiates a DistMap.
1025 1025

	
1026
    ///This function instantiates a \ref DistMap.
1026
    ///This function instantiates a DistMap.
1027 1027
    ///\param g is the digraph, to which we would like to define
1028
    ///the \ref DistMap
1028
    ///the DistMap
1029 1029
    static DistMap *createDistMap(const Digraph &g)
1030 1030
    {
1031 1031
      return new DistMap(g);
1032 1032
    }
1033 1033

	
1034 1034
    ///The type of the shortest paths.
1035 1035

	
1036 1036
    ///The type of the shortest paths.
1037 1037
    ///It must meet the \ref concepts::Path "Path" concept.
1038 1038
    typedef lemon::Path<Digraph> Path;
1039 1039
  };
1040 1040

	
1041 1041
  /// Default traits class used by \ref DijkstraWizard
1042 1042

	
1043 1043
  /// To make it easier to use Dijkstra algorithm
1044 1044
  /// we have created a wizard class.
1045 1045
  /// This \ref DijkstraWizard class needs default traits,
1046 1046
  /// as well as the \ref Dijkstra class.
1047 1047
  /// The \ref DijkstraWizardBase is a class to be the default traits of the
1048 1048
  /// \ref DijkstraWizard class.
1049 1049
  template<class GR,class LM>
1050 1050
  class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM>
1051 1051
  {
1052 1052
    typedef DijkstraWizardDefaultTraits<GR,LM> Base;
1053 1053
  protected:
1054 1054
    //The type of the nodes in the digraph.
1055 1055
    typedef typename Base::Digraph::Node Node;
1056 1056

	
1057 1057
    //Pointer to the digraph the algorithm runs on.
1058 1058
    void *_g;
1059 1059
    //Pointer to the length map.
1060 1060
    void *_length;
1061 1061
    //Pointer to the map of processed nodes.
1062 1062
    void *_processed;
1063 1063
    //Pointer to the map of predecessors arcs.
1064 1064
    void *_pred;
1065 1065
    //Pointer to the map of distances.
1066 1066
    void *_dist;
1067 1067
    //Pointer to the shortest path to the target node.
1068 1068
    void *_path;
1069 1069
    //Pointer to the distance of the target node.
1070 1070
    void *_di;
1071 1071

	
1072 1072
  public:
1073 1073
    /// Constructor.
1074 1074

	
1075 1075
    /// This constructor does not require parameters, therefore it initiates
1076 1076
    /// all of the attributes to \c 0.
... ...
@@ -1153,136 +1153,136 @@
1153 1153
    ///in order to compute the shortest path to each node.
1154 1154
    void run(Node s)
1155 1155
    {
1156 1156
      Dijkstra<Digraph,LengthMap,TR>
1157 1157
        dijk(*reinterpret_cast<const Digraph*>(Base::_g),
1158 1158
             *reinterpret_cast<const LengthMap*>(Base::_length));
1159 1159
      if (Base::_pred)
1160 1160
        dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
1161 1161
      if (Base::_dist)
1162 1162
        dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
1163 1163
      if (Base::_processed)
1164 1164
        dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
1165 1165
      dijk.run(s);
1166 1166
    }
1167 1167

	
1168 1168
    ///Finds the shortest path between \c s and \c t.
1169 1169

	
1170 1170
    ///This method runs the %Dijkstra algorithm from node \c s
1171 1171
    ///in order to compute the shortest path to node \c t
1172 1172
    ///(it stops searching when \c t is processed).
1173 1173
    ///
1174 1174
    ///\return \c true if \c t is reachable form \c s.
1175 1175
    bool run(Node s, Node t)
1176 1176
    {
1177 1177
      Dijkstra<Digraph,LengthMap,TR>
1178 1178
        dijk(*reinterpret_cast<const Digraph*>(Base::_g),
1179 1179
             *reinterpret_cast<const LengthMap*>(Base::_length));
1180 1180
      if (Base::_pred)
1181 1181
        dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
1182 1182
      if (Base::_dist)
1183 1183
        dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
1184 1184
      if (Base::_processed)
1185 1185
        dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
1186 1186
      dijk.run(s,t);
1187 1187
      if (Base::_path)
1188 1188
        *reinterpret_cast<Path*>(Base::_path) = dijk.path(t);
1189 1189
      if (Base::_di)
1190 1190
        *reinterpret_cast<Value*>(Base::_di) = dijk.dist(t);
1191 1191
      return dijk.reached(t);
1192 1192
    }
1193 1193

	
1194 1194
    template<class T>
1195 1195
    struct SetPredMapBase : public Base {
1196 1196
      typedef T PredMap;
1197 1197
      static PredMap *createPredMap(const Digraph &) { return 0; };
1198 1198
      SetPredMapBase(const TR &b) : TR(b) {}
1199 1199
    };
1200 1200
    ///\brief \ref named-func-param "Named parameter"
1201
    ///for setting \ref PredMap object.
1201
    ///for setting PredMap object.
1202 1202
    ///
1203 1203
    ///\ref named-func-param "Named parameter"
1204
    ///for setting \ref PredMap object.
1204
    ///for setting PredMap object.
1205 1205
    template<class T>
1206 1206
    DijkstraWizard<SetPredMapBase<T> > predMap(const T &t)
1207 1207
    {
1208 1208
      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
1209 1209
      return DijkstraWizard<SetPredMapBase<T> >(*this);
1210 1210
    }
1211 1211

	
1212 1212
    template<class T>
1213 1213
    struct SetDistMapBase : public Base {
1214 1214
      typedef T DistMap;
1215 1215
      static DistMap *createDistMap(const Digraph &) { return 0; };
1216 1216
      SetDistMapBase(const TR &b) : TR(b) {}
1217 1217
    };
1218 1218
    ///\brief \ref named-func-param "Named parameter"
1219
    ///for setting \ref DistMap object.
1219
    ///for setting DistMap object.
1220 1220
    ///
1221 1221
    ///\ref named-func-param "Named parameter"
1222
    ///for setting \ref DistMap object.
1222
    ///for setting DistMap object.
1223 1223
    template<class T>
1224 1224
    DijkstraWizard<SetDistMapBase<T> > distMap(const T &t)
1225 1225
    {
1226 1226
      Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
1227 1227
      return DijkstraWizard<SetDistMapBase<T> >(*this);
1228 1228
    }
1229 1229

	
1230 1230
    template<class T>
1231 1231
    struct SetProcessedMapBase : public Base {
1232 1232
      typedef T ProcessedMap;
1233 1233
      static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
1234 1234
      SetProcessedMapBase(const TR &b) : TR(b) {}
1235 1235
    };
1236 1236
    ///\brief \ref named-func-param "Named parameter"
1237
    ///for setting \ref ProcessedMap object.
1237
    ///for setting ProcessedMap object.
1238 1238
    ///
1239 1239
    /// \ref named-func-param "Named parameter"
1240
    ///for setting \ref ProcessedMap object.
1240
    ///for setting ProcessedMap object.
1241 1241
    template<class T>
1242 1242
    DijkstraWizard<SetProcessedMapBase<T> > processedMap(const T &t)
1243 1243
    {
1244 1244
      Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));
1245 1245
      return DijkstraWizard<SetProcessedMapBase<T> >(*this);
1246 1246
    }
1247 1247

	
1248 1248
    template<class T>
1249 1249
    struct SetPathBase : public Base {
1250 1250
      typedef T Path;
1251 1251
      SetPathBase(const TR &b) : TR(b) {}
1252 1252
    };
1253 1253
    ///\brief \ref named-func-param "Named parameter"
1254 1254
    ///for getting the shortest path to the target node.
1255 1255
    ///
1256 1256
    ///\ref named-func-param "Named parameter"
1257 1257
    ///for getting the shortest path to the target node.
1258 1258
    template<class T>
1259 1259
    DijkstraWizard<SetPathBase<T> > path(const T &t)
1260 1260
    {
1261 1261
      Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
1262 1262
      return DijkstraWizard<SetPathBase<T> >(*this);
1263 1263
    }
1264 1264

	
1265 1265
    ///\brief \ref named-func-param "Named parameter"
1266 1266
    ///for getting the distance of the target node.
1267 1267
    ///
1268 1268
    ///\ref named-func-param "Named parameter"
1269 1269
    ///for getting the distance of the target node.
1270 1270
    DijkstraWizard dist(const Value &d)
1271 1271
    {
1272 1272
      Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d));
1273 1273
      return *this;
1274 1274
    }
1275 1275

	
1276 1276
  };
1277 1277

	
1278 1278
  ///Function-type interface for Dijkstra algorithm.
1279 1279

	
1280 1280
  /// \ingroup shortest_path
1281 1281
  ///Function-type interface for Dijkstra algorithm.
1282 1282
  ///
1283 1283
  ///This function also has several \ref named-func-param "named parameters",
1284 1284
  ///they are declared as the members of class \ref DijkstraWizard.
1285 1285
  ///The following examples show how to use these parameters.
1286 1286
  ///\code
1287 1287
  ///  // Compute shortest path from node s to each node
1288 1288
  ///  dijkstra(g,length).predMap(preds).distMap(dists).run(s);
Ignore white space 96 line context
... ...
@@ -28,1791 +28,1791 @@
28 28
///\file
29 29
///\ingroup maps
30 30
///\brief Miscellaneous property maps
31 31

	
32 32
#include <map>
33 33

	
34 34
namespace lemon {
35 35

	
36 36
  /// \addtogroup maps
37 37
  /// @{
38 38

	
39 39
  /// Base class of maps.
40 40

	
41 41
  /// Base class of maps. It provides the necessary type definitions
42 42
  /// required by the map %concepts.
43 43
  template<typename K, typename V>
44 44
  class MapBase {
45 45
  public:
46 46
    /// \biref The key type of the map.
47 47
    typedef K Key;
48 48
    /// \brief The value type of the map.
49 49
    /// (The type of objects associated with the keys).
50 50
    typedef V Value;
51 51
  };
52 52

	
53 53

	
54 54
  /// Null map. (a.k.a. DoNothingMap)
55 55

	
56 56
  /// This map can be used if you have to provide a map only for
57 57
  /// its type definitions, or if you have to provide a writable map,
58 58
  /// but data written to it is not required (i.e. it will be sent to
59 59
  /// <tt>/dev/null</tt>).
60 60
  /// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
61 61
  ///
62 62
  /// \sa ConstMap
63 63
  template<typename K, typename V>
64 64
  class NullMap : public MapBase<K, V> {
65 65
  public:
66 66
    typedef MapBase<K, V> Parent;
67 67
    typedef typename Parent::Key Key;
68 68
    typedef typename Parent::Value Value;
69 69

	
70 70
    /// Gives back a default constructed element.
71 71
    Value operator[](const Key&) const { return Value(); }
72 72
    /// Absorbs the value.
73 73
    void set(const Key&, const Value&) {}
74 74
  };
75 75

	
76
  /// Returns a \ref NullMap class
77

	
78
  /// This function just returns a \ref NullMap class.
76
  /// Returns a \c NullMap class
77

	
78
  /// This function just returns a \c NullMap class.
79 79
  /// \relates NullMap
80 80
  template <typename K, typename V>
81 81
  NullMap<K, V> nullMap() {
82 82
    return NullMap<K, V>();
83 83
  }
84 84

	
85 85

	
86 86
  /// Constant map.
87 87

	
88 88
  /// This \ref concepts::ReadMap "readable map" assigns a specified
89 89
  /// value to each key.
90 90
  ///
91
  /// In other aspects it is equivalent to \ref NullMap.
91
  /// In other aspects it is equivalent to \c NullMap.
92 92
  /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
93 93
  /// concept, but it absorbs the data written to it.
94 94
  ///
95 95
  /// The simplest way of using this map is through the constMap()
96 96
  /// function.
97 97
  ///
98 98
  /// \sa NullMap
99 99
  /// \sa IdentityMap
100 100
  template<typename K, typename V>
101 101
  class ConstMap : public MapBase<K, V> {
102 102
  private:
103 103
    V _value;
104 104
  public:
105 105
    typedef MapBase<K, V> Parent;
106 106
    typedef typename Parent::Key Key;
107 107
    typedef typename Parent::Value Value;
108 108

	
109 109
    /// Default constructor
110 110

	
111 111
    /// Default constructor.
112 112
    /// The value of the map will be default constructed.
113 113
    ConstMap() {}
114 114

	
115 115
    /// Constructor with specified initial value
116 116

	
117 117
    /// Constructor with specified initial value.
118 118
    /// \param v The initial value of the map.
119 119
    ConstMap(const Value &v) : _value(v) {}
120 120

	
121 121
    /// Gives back the specified value.
122 122
    Value operator[](const Key&) const { return _value; }
123 123

	
124 124
    /// Absorbs the value.
125 125
    void set(const Key&, const Value&) {}
126 126

	
127 127
    /// Sets the value that is assigned to each key.
128 128
    void setAll(const Value &v) {
129 129
      _value = v;
130 130
    }
131 131

	
132 132
    template<typename V1>
133 133
    ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
134 134
  };
135 135

	
136
  /// Returns a \ref ConstMap class
137

	
138
  /// This function just returns a \ref ConstMap class.
136
  /// Returns a \c ConstMap class
137

	
138
  /// This function just returns a \c ConstMap class.
139 139
  /// \relates ConstMap
140 140
  template<typename K, typename V>
141 141
  inline ConstMap<K, V> constMap(const V &v) {
142 142
    return ConstMap<K, V>(v);
143 143
  }
144 144

	
145 145
  template<typename K, typename V>
146 146
  inline ConstMap<K, V> constMap() {
147 147
    return ConstMap<K, V>();
148 148
  }
149 149

	
150 150

	
151 151
  template<typename T, T v>
152 152
  struct Const {};
153 153

	
154 154
  /// Constant map with inlined constant value.
155 155

	
156 156
  /// This \ref concepts::ReadMap "readable map" assigns a specified
157 157
  /// value to each key.
158 158
  ///
159
  /// In other aspects it is equivalent to \ref NullMap.
159
  /// In other aspects it is equivalent to \c NullMap.
160 160
  /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
161 161
  /// concept, but it absorbs the data written to it.
162 162
  ///
163 163
  /// The simplest way of using this map is through the constMap()
164 164
  /// function.
165 165
  ///
166 166
  /// \sa NullMap
167 167
  /// \sa IdentityMap
168 168
  template<typename K, typename V, V v>
169 169
  class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
170 170
  public:
171 171
    typedef MapBase<K, V> Parent;
172 172
    typedef typename Parent::Key Key;
173 173
    typedef typename Parent::Value Value;
174 174

	
175 175
    /// Constructor.
176 176
    ConstMap() {}
177 177

	
178 178
    /// Gives back the specified value.
179 179
    Value operator[](const Key&) const { return v; }
180 180

	
181 181
    /// Absorbs the value.
182 182
    void set(const Key&, const Value&) {}
183 183
  };
184 184

	
185
  /// Returns a \ref ConstMap class with inlined constant value
186

	
187
  /// This function just returns a \ref ConstMap class with inlined
185
  /// Returns a \c ConstMap class with inlined constant value
186

	
187
  /// This function just returns a \c ConstMap class with inlined
188 188
  /// constant value.
189 189
  /// \relates ConstMap
190 190
  template<typename K, typename V, V v>
191 191
  inline ConstMap<K, Const<V, v> > constMap() {
192 192
    return ConstMap<K, Const<V, v> >();
193 193
  }
194 194

	
195 195

	
196 196
  /// Identity map.
197 197

	
198 198
  /// This \ref concepts::ReadMap "read-only map" gives back the given
199 199
  /// key as value without any modification.
200 200
  ///
201 201
  /// \sa ConstMap
202 202
  template <typename T>
203 203
  class IdentityMap : public MapBase<T, T> {
204 204
  public:
205 205
    typedef MapBase<T, T> Parent;
206 206
    typedef typename Parent::Key Key;
207 207
    typedef typename Parent::Value Value;
208 208

	
209 209
    /// Gives back the given value without any modification.
210 210
    Value operator[](const Key &k) const {
211 211
      return k;
212 212
    }
213 213
  };
214 214

	
215
  /// Returns an \ref IdentityMap class
216

	
217
  /// This function just returns an \ref IdentityMap class.
215
  /// Returns an \c IdentityMap class
216

	
217
  /// This function just returns an \c IdentityMap class.
218 218
  /// \relates IdentityMap
219 219
  template<typename T>
220 220
  inline IdentityMap<T> identityMap() {
221 221
    return IdentityMap<T>();
222 222
  }
223 223

	
224 224

	
225 225
  /// \brief Map for storing values for integer keys from the range
226 226
  /// <tt>[0..size-1]</tt>.
227 227
  ///
228 228
  /// This map is essentially a wrapper for \c std::vector. It assigns
229 229
  /// values to integer keys from the range <tt>[0..size-1]</tt>.
230 230
  /// It can be used with some data structures, for example
231
  /// \ref UnionFind, \ref BinHeap, when the used items are small
231
  /// \c UnionFind, \c BinHeap, when the used items are small
232 232
  /// integers. This map conforms the \ref concepts::ReferenceMap
233 233
  /// "ReferenceMap" concept.
234 234
  ///
235 235
  /// The simplest way of using this map is through the rangeMap()
236 236
  /// function.
237 237
  template <typename V>
238 238
  class RangeMap : public MapBase<int, V> {
239 239
    template <typename V1>
240 240
    friend class RangeMap;
241 241
  private:
242 242

	
243 243
    typedef std::vector<V> Vector;
244 244
    Vector _vector;
245 245

	
246 246
  public:
247 247

	
248 248
    typedef MapBase<int, V> Parent;
249 249
    /// Key type
250 250
    typedef typename Parent::Key Key;
251 251
    /// Value type
252 252
    typedef typename Parent::Value Value;
253 253
    /// Reference type
254 254
    typedef typename Vector::reference Reference;
255 255
    /// Const reference type
256 256
    typedef typename Vector::const_reference ConstReference;
257 257

	
258 258
    typedef True ReferenceMapTag;
259 259

	
260 260
  public:
261 261

	
262 262
    /// Constructor with specified default value.
263 263
    RangeMap(int size = 0, const Value &value = Value())
264 264
      : _vector(size, value) {}
265 265

	
266 266
    /// Constructs the map from an appropriate \c std::vector.
267 267
    template <typename V1>
268 268
    RangeMap(const std::vector<V1>& vector)
269 269
      : _vector(vector.begin(), vector.end()) {}
270 270

	
271
    /// Constructs the map from another \ref RangeMap.
271
    /// Constructs the map from another \c RangeMap.
272 272
    template <typename V1>
273 273
    RangeMap(const RangeMap<V1> &c)
274 274
      : _vector(c._vector.begin(), c._vector.end()) {}
275 275

	
276 276
    /// Returns the size of the map.
277 277
    int size() {
278 278
      return _vector.size();
279 279
    }
280 280

	
281 281
    /// Resizes the map.
282 282

	
283 283
    /// Resizes the underlying \c std::vector container, so changes the
284 284
    /// keyset of the map.
285 285
    /// \param size The new size of the map. The new keyset will be the
286 286
    /// range <tt>[0..size-1]</tt>.
287 287
    /// \param value The default value to assign to the new keys.
288 288
    void resize(int size, const Value &value = Value()) {
289 289
      _vector.resize(size, value);
290 290
    }
291 291

	
292 292
  private:
293 293

	
294 294
    RangeMap& operator=(const RangeMap&);
295 295

	
296 296
  public:
297 297

	
298 298
    ///\e
299 299
    Reference operator[](const Key &k) {
300 300
      return _vector[k];
301 301
    }
302 302

	
303 303
    ///\e
304 304
    ConstReference operator[](const Key &k) const {
305 305
      return _vector[k];
306 306
    }
307 307

	
308 308
    ///\e
309 309
    void set(const Key &k, const Value &v) {
310 310
      _vector[k] = v;
311 311
    }
312 312
  };
313 313

	
314
  /// Returns a \ref RangeMap class
315

	
316
  /// This function just returns a \ref RangeMap class.
314
  /// Returns a \c RangeMap class
315

	
316
  /// This function just returns a \c RangeMap class.
317 317
  /// \relates RangeMap
318 318
  template<typename V>
319 319
  inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
320 320
    return RangeMap<V>(size, value);
321 321
  }
322 322

	
323
  /// \brief Returns a \ref RangeMap class created from an appropriate
323
  /// \brief Returns a \c RangeMap class created from an appropriate
324 324
  /// \c std::vector
325 325

	
326
  /// This function just returns a \ref RangeMap class created from an
326
  /// This function just returns a \c RangeMap class created from an
327 327
  /// appropriate \c std::vector.
328 328
  /// \relates RangeMap
329 329
  template<typename V>
330 330
  inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
331 331
    return RangeMap<V>(vector);
332 332
  }
333 333

	
334 334

	
335 335
  /// Map type based on \c std::map
336 336

	
337 337
  /// This map is essentially a wrapper for \c std::map with addition
338 338
  /// that you can specify a default value for the keys that are not
339 339
  /// stored actually. This value can be different from the default
340 340
  /// contructed value (i.e. \c %Value()).
341 341
  /// This type conforms the \ref concepts::ReferenceMap "ReferenceMap"
342 342
  /// concept.
343 343
  ///
344 344
  /// This map is useful if a default value should be assigned to most of
345 345
  /// the keys and different values should be assigned only to a few
346 346
  /// keys (i.e. the map is "sparse").
347 347
  /// The name of this type also refers to this important usage.
348 348
  ///
349 349
  /// Apart form that this map can be used in many other cases since it
350 350
  /// is based on \c std::map, which is a general associative container.
351 351
  /// However keep in mind that it is usually not as efficient as other
352 352
  /// maps.
353 353
  ///
354 354
  /// The simplest way of using this map is through the sparseMap()
355 355
  /// function.
356 356
  template <typename K, typename V, typename Compare = std::less<K> >
357 357
  class SparseMap : public MapBase<K, V> {
358 358
    template <typename K1, typename V1, typename C1>
359 359
    friend class SparseMap;
360 360
  public:
361 361

	
362 362
    typedef MapBase<K, V> Parent;
363 363
    /// Key type
364 364
    typedef typename Parent::Key Key;
365 365
    /// Value type
366 366
    typedef typename Parent::Value Value;
367 367
    /// Reference type
368 368
    typedef Value& Reference;
369 369
    /// Const reference type
370 370
    typedef const Value& ConstReference;
371 371

	
372 372
    typedef True ReferenceMapTag;
373 373

	
374 374
  private:
375 375

	
376 376
    typedef std::map<K, V, Compare> Map;
377 377
    Map _map;
378 378
    Value _value;
379 379

	
380 380
  public:
381 381

	
382 382
    /// \brief Constructor with specified default value.
383 383
    SparseMap(const Value &value = Value()) : _value(value) {}
384 384
    /// \brief Constructs the map from an appropriate \c std::map, and
385 385
    /// explicitly specifies a default value.
386 386
    template <typename V1, typename Comp1>
387 387
    SparseMap(const std::map<Key, V1, Comp1> &map,
388 388
              const Value &value = Value())
389 389
      : _map(map.begin(), map.end()), _value(value) {}
390 390

	
391
    /// \brief Constructs the map from another \ref SparseMap.
391
    /// \brief Constructs the map from another \c SparseMap.
392 392
    template<typename V1, typename Comp1>
393 393
    SparseMap(const SparseMap<Key, V1, Comp1> &c)
394 394
      : _map(c._map.begin(), c._map.end()), _value(c._value) {}
395 395

	
396 396
  private:
397 397

	
398 398
    SparseMap& operator=(const SparseMap&);
399 399

	
400 400
  public:
401 401

	
402 402
    ///\e
403 403
    Reference operator[](const Key &k) {
404 404
      typename Map::iterator it = _map.lower_bound(k);
405 405
      if (it != _map.end() && !_map.key_comp()(k, it->first))
406 406
        return it->second;
407 407
      else
408 408
        return _map.insert(it, std::make_pair(k, _value))->second;
409 409
    }
410 410

	
411 411
    ///\e
412 412
    ConstReference operator[](const Key &k) const {
413 413
      typename Map::const_iterator it = _map.find(k);
414 414
      if (it != _map.end())
415 415
        return it->second;
416 416
      else
417 417
        return _value;
418 418
    }
419 419

	
420 420
    ///\e
421 421
    void set(const Key &k, const Value &v) {
422 422
      typename Map::iterator it = _map.lower_bound(k);
423 423
      if (it != _map.end() && !_map.key_comp()(k, it->first))
424 424
        it->second = v;
425 425
      else
426 426
        _map.insert(it, std::make_pair(k, v));
427 427
    }
428 428

	
429 429
    ///\e
430 430
    void setAll(const Value &v) {
431 431
      _value = v;
432 432
      _map.clear();
433 433
    }
434 434
  };
435 435

	
436
  /// Returns a \ref SparseMap class
437

	
438
  /// This function just returns a \ref SparseMap class with specified
436
  /// Returns a \c SparseMap class
437

	
438
  /// This function just returns a \c SparseMap class with specified
439 439
  /// default value.
440 440
  /// \relates SparseMap
441 441
  template<typename K, typename V, typename Compare>
442 442
  inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
443 443
    return SparseMap<K, V, Compare>(value);
444 444
  }
445 445

	
446 446
  template<typename K, typename V>
447 447
  inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
448 448
    return SparseMap<K, V, std::less<K> >(value);
449 449
  }
450 450

	
451
  /// \brief Returns a \ref SparseMap class created from an appropriate
451
  /// \brief Returns a \c SparseMap class created from an appropriate
452 452
  /// \c std::map
453 453

	
454
  /// This function just returns a \ref SparseMap class created from an
454
  /// This function just returns a \c SparseMap class created from an
455 455
  /// appropriate \c std::map.
456 456
  /// \relates SparseMap
457 457
  template<typename K, typename V, typename Compare>
458 458
  inline SparseMap<K, V, Compare>
459 459
    sparseMap(const std::map<K, V, Compare> &map, const V& value = V())
460 460
  {
461 461
    return SparseMap<K, V, Compare>(map, value);
462 462
  }
463 463

	
464 464
  /// @}
465 465

	
466 466
  /// \addtogroup map_adaptors
467 467
  /// @{
468 468

	
469 469
  /// Composition of two maps
470 470

	
471 471
  /// This \ref concepts::ReadMap "read-only map" returns the
472 472
  /// composition of two given maps. That is to say, if \c m1 is of
473 473
  /// type \c M1 and \c m2 is of \c M2, then for
474 474
  /// \code
475 475
  ///   ComposeMap<M1, M2> cm(m1,m2);
476 476
  /// \endcode
477 477
  /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
478 478
  ///
479 479
  /// The \c Key type of the map is inherited from \c M2 and the
480 480
  /// \c Value type is from \c M1.
481 481
  /// \c M2::Value must be convertible to \c M1::Key.
482 482
  ///
483 483
  /// The simplest way of using this map is through the composeMap()
484 484
  /// function.
485 485
  ///
486 486
  /// \sa CombineMap
487 487
  template <typename M1, typename M2>
488 488
  class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
489 489
    const M1 &_m1;
490 490
    const M2 &_m2;
491 491
  public:
492 492
    typedef MapBase<typename M2::Key, typename M1::Value> Parent;
493 493
    typedef typename Parent::Key Key;
494 494
    typedef typename Parent::Value Value;
495 495

	
496 496
    /// Constructor
497 497
    ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
498 498

	
499 499
    /// \e
500 500
    typename MapTraits<M1>::ConstReturnValue
501 501
    operator[](const Key &k) const { return _m1[_m2[k]]; }
502 502
  };
503 503

	
504
  /// Returns a \ref ComposeMap class
505

	
506
  /// This function just returns a \ref ComposeMap class.
504
  /// Returns a \c ComposeMap class
505

	
506
  /// This function just returns a \c ComposeMap class.
507 507
  ///
508 508
  /// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is
509 509
  /// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt>
510 510
  /// will be equal to <tt>m1[m2[x]]</tt>.
511 511
  ///
512 512
  /// \relates ComposeMap
513 513
  template <typename M1, typename M2>
514 514
  inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
515 515
    return ComposeMap<M1, M2>(m1, m2);
516 516
  }
517 517

	
518 518

	
519 519
  /// Combination of two maps using an STL (binary) functor.
520 520

	
521 521
  /// This \ref concepts::ReadMap "read-only map" takes two maps and a
522 522
  /// binary functor and returns the combination of the two given maps
523 523
  /// using the functor.
524 524
  /// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2
525 525
  /// and \c f is of \c F, then for
526 526
  /// \code
527 527
  ///   CombineMap<M1,M2,F,V> cm(m1,m2,f);
528 528
  /// \endcode
529 529
  /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>.
530 530
  ///
531 531
  /// The \c Key type of the map is inherited from \c M1 (\c M1::Key
532 532
  /// must be convertible to \c M2::Key) and the \c Value type is \c V.
533 533
  /// \c M2::Value and \c M1::Value must be convertible to the
534 534
  /// corresponding input parameter of \c F and the return type of \c F
535 535
  /// must be convertible to \c V.
536 536
  ///
537 537
  /// The simplest way of using this map is through the combineMap()
538 538
  /// function.
539 539
  ///
540 540
  /// \sa ComposeMap
541 541
  template<typename M1, typename M2, typename F,
542 542
           typename V = typename F::result_type>
543 543
  class CombineMap : public MapBase<typename M1::Key, V> {
544 544
    const M1 &_m1;
545 545
    const M2 &_m2;
546 546
    F _f;
547 547
  public:
548 548
    typedef MapBase<typename M1::Key, V> Parent;
549 549
    typedef typename Parent::Key Key;
550 550
    typedef typename Parent::Value Value;
551 551

	
552 552
    /// Constructor
553 553
    CombineMap(const M1 &m1, const M2 &m2, const F &f = F())
554 554
      : _m1(m1), _m2(m2), _f(f) {}
555 555
    /// \e
556 556
    Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
557 557
  };
558 558

	
559
  /// Returns a \ref CombineMap class
560

	
561
  /// This function just returns a \ref CombineMap class.
559
  /// Returns a \c CombineMap class
560

	
561
  /// This function just returns a \c CombineMap class.
562 562
  ///
563 563
  /// For example, if \c m1 and \c m2 are both maps with \c double
564 564
  /// values, then
565 565
  /// \code
566 566
  ///   combineMap(m1,m2,std::plus<double>())
567 567
  /// \endcode
568 568
  /// is equivalent to
569 569
  /// \code
570 570
  ///   addMap(m1,m2)
571 571
  /// \endcode
572 572
  ///
573 573
  /// This function is specialized for adaptable binary function
574 574
  /// classes and C++ functions.
575 575
  ///
576 576
  /// \relates CombineMap
577 577
  template<typename M1, typename M2, typename F, typename V>
578 578
  inline CombineMap<M1, M2, F, V>
579 579
  combineMap(const M1 &m1, const M2 &m2, const F &f) {
580 580
    return CombineMap<M1, M2, F, V>(m1,m2,f);
581 581
  }
582 582

	
583 583
  template<typename M1, typename M2, typename F>
584 584
  inline CombineMap<M1, M2, F, typename F::result_type>
585 585
  combineMap(const M1 &m1, const M2 &m2, const F &f) {
586 586
    return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
587 587
  }
588 588

	
589 589
  template<typename M1, typename M2, typename K1, typename K2, typename V>
590 590
  inline CombineMap<M1, M2, V (*)(K1, K2), V>
591 591
  combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
592 592
    return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
593 593
  }
594 594

	
595 595

	
596 596
  /// Converts an STL style (unary) functor to a map
597 597

	
598 598
  /// This \ref concepts::ReadMap "read-only map" returns the value
599 599
  /// of a given functor. Actually, it just wraps the functor and
600 600
  /// provides the \c Key and \c Value typedefs.
601 601
  ///
602 602
  /// Template parameters \c K and \c V will become its \c Key and
603 603
  /// \c Value. In most cases they have to be given explicitly because
604 604
  /// a functor typically does not provide \c argument_type and
605 605
  /// \c result_type typedefs.
606 606
  /// Parameter \c F is the type of the used functor.
607 607
  ///
608 608
  /// The simplest way of using this map is through the functorToMap()
609 609
  /// function.
610 610
  ///
611 611
  /// \sa MapToFunctor
612 612
  template<typename F,
613 613
           typename K = typename F::argument_type,
614 614
           typename V = typename F::result_type>
615 615
  class FunctorToMap : public MapBase<K, V> {
616 616
    F _f;
617 617
  public:
618 618
    typedef MapBase<K, V> Parent;
619 619
    typedef typename Parent::Key Key;
620 620
    typedef typename Parent::Value Value;
621 621

	
622 622
    /// Constructor
623 623
    FunctorToMap(const F &f = F()) : _f(f) {}
624 624
    /// \e
625 625
    Value operator[](const Key &k) const { return _f(k); }
626 626
  };
627 627

	
628
  /// Returns a \ref FunctorToMap class
629

	
630
  /// This function just returns a \ref FunctorToMap class.
628
  /// Returns a \c FunctorToMap class
629

	
630
  /// This function just returns a \c FunctorToMap class.
631 631
  ///
632 632
  /// This function is specialized for adaptable binary function
633 633
  /// classes and C++ functions.
634 634
  ///
635 635
  /// \relates FunctorToMap
636 636
  template<typename K, typename V, typename F>
637 637
  inline FunctorToMap<F, K, V> functorToMap(const F &f) {
638 638
    return FunctorToMap<F, K, V>(f);
639 639
  }
640 640

	
641 641
  template <typename F>
642 642
  inline FunctorToMap<F, typename F::argument_type, typename F::result_type>
643 643
    functorToMap(const F &f)
644 644
  {
645 645
    return FunctorToMap<F, typename F::argument_type,
646 646
      typename F::result_type>(f);
647 647
  }
648 648

	
649 649
  template <typename K, typename V>
650 650
  inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
651 651
    return FunctorToMap<V (*)(K), K, V>(f);
652 652
  }
653 653

	
654 654

	
655 655
  /// Converts a map to an STL style (unary) functor
656 656

	
657 657
  /// This class converts a map to an STL style (unary) functor.
658 658
  /// That is it provides an <tt>operator()</tt> to read its values.
659 659
  ///
660 660
  /// For the sake of convenience it also works as a usual
661 661
  /// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt>
662 662
  /// and the \c Key and \c Value typedefs also exist.
663 663
  ///
664 664
  /// The simplest way of using this map is through the mapToFunctor()
665 665
  /// function.
666 666
  ///
667 667
  ///\sa FunctorToMap
668 668
  template <typename M>
669 669
  class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
670 670
    const M &_m;
671 671
  public:
672 672
    typedef MapBase<typename M::Key, typename M::Value> Parent;
673 673
    typedef typename Parent::Key Key;
674 674
    typedef typename Parent::Value Value;
675 675

	
676 676
    typedef typename Parent::Key argument_type;
677 677
    typedef typename Parent::Value result_type;
678 678

	
679 679
    /// Constructor
680 680
    MapToFunctor(const M &m) : _m(m) {}
681 681
    /// \e
682 682
    Value operator()(const Key &k) const { return _m[k]; }
683 683
    /// \e
684 684
    Value operator[](const Key &k) const { return _m[k]; }
685 685
  };
686 686

	
687
  /// Returns a \ref MapToFunctor class
688

	
689
  /// This function just returns a \ref MapToFunctor class.
687
  /// Returns a \c MapToFunctor class
688

	
689
  /// This function just returns a \c MapToFunctor class.
690 690
  /// \relates MapToFunctor
691 691
  template<typename M>
692 692
  inline MapToFunctor<M> mapToFunctor(const M &m) {
693 693
    return MapToFunctor<M>(m);
694 694
  }
695 695

	
696 696

	
697 697
  /// \brief Map adaptor to convert the \c Value type of a map to
698 698
  /// another type using the default conversion.
699 699

	
700 700
  /// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap
701 701
  /// "readable map" to another type using the default conversion.
702 702
  /// The \c Key type of it is inherited from \c M and the \c Value
703 703
  /// type is \c V.
704 704
  /// This type conforms the \ref concepts::ReadMap "ReadMap" concept.
705 705
  ///
706 706
  /// The simplest way of using this map is through the convertMap()
707 707
  /// function.
708 708
  template <typename M, typename V>
709 709
  class ConvertMap : public MapBase<typename M::Key, V> {
710 710
    const M &_m;
711 711
  public:
712 712
    typedef MapBase<typename M::Key, V> Parent;
713 713
    typedef typename Parent::Key Key;
714 714
    typedef typename Parent::Value Value;
715 715

	
716 716
    /// Constructor
717 717

	
718 718
    /// Constructor.
719 719
    /// \param m The underlying map.
720 720
    ConvertMap(const M &m) : _m(m) {}
721 721

	
722 722
    /// \e
723 723
    Value operator[](const Key &k) const { return _m[k]; }
724 724
  };
725 725

	
726
  /// Returns a \ref ConvertMap class
727

	
728
  /// This function just returns a \ref ConvertMap class.
726
  /// Returns a \c ConvertMap class
727

	
728
  /// This function just returns a \c ConvertMap class.
729 729
  /// \relates ConvertMap
730 730
  template<typename V, typename M>
731 731
  inline ConvertMap<M, V> convertMap(const M &map) {
732 732
    return ConvertMap<M, V>(map);
733 733
  }
734 734

	
735 735

	
736 736
  /// Applies all map setting operations to two maps
737 737

	
738 738
  /// This map has two \ref concepts::WriteMap "writable map" parameters
739 739
  /// and each write request will be passed to both of them.
740 740
  /// If \c M1 is also \ref concepts::ReadMap "readable", then the read
741 741
  /// operations will return the corresponding values of \c M1.
742 742
  ///
743 743
  /// The \c Key and \c Value types are inherited from \c M1.
744 744
  /// The \c Key and \c Value of \c M2 must be convertible from those
745 745
  /// of \c M1.
746 746
  ///
747 747
  /// The simplest way of using this map is through the forkMap()
748 748
  /// function.
749 749
  template<typename  M1, typename M2>
750 750
  class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
751 751
    M1 &_m1;
752 752
    M2 &_m2;
753 753
  public:
754 754
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
755 755
    typedef typename Parent::Key Key;
756 756
    typedef typename Parent::Value Value;
757 757

	
758 758
    /// Constructor
759 759
    ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
760 760
    /// Returns the value associated with the given key in the first map.
761 761
    Value operator[](const Key &k) const { return _m1[k]; }
762 762
    /// Sets the value associated with the given key in both maps.
763 763
    void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
764 764
  };
765 765

	
766
  /// Returns a \ref ForkMap class
767

	
768
  /// This function just returns a \ref ForkMap class.
766
  /// Returns a \c ForkMap class
767

	
768
  /// This function just returns a \c ForkMap class.
769 769
  /// \relates ForkMap
770 770
  template <typename M1, typename M2>
771 771
  inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
772 772
    return ForkMap<M1,M2>(m1,m2);
773 773
  }
774 774

	
775 775

	
776 776
  /// Sum of two maps
777 777

	
778 778
  /// This \ref concepts::ReadMap "read-only map" returns the sum
779 779
  /// of the values of the two given maps.
780 780
  /// Its \c Key and \c Value types are inherited from \c M1.
781 781
  /// The \c Key and \c Value of \c M2 must be convertible to those of
782 782
  /// \c M1.
783 783
  ///
784 784
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
785 785
  /// \code
786 786
  ///   AddMap<M1,M2> am(m1,m2);
787 787
  /// \endcode
788 788
  /// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>.
789 789
  ///
790 790
  /// The simplest way of using this map is through the addMap()
791 791
  /// function.
792 792
  ///
793 793
  /// \sa SubMap, MulMap, DivMap
794 794
  /// \sa ShiftMap, ShiftWriteMap
795 795
  template<typename M1, typename M2>
796 796
  class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
797 797
    const M1 &_m1;
798 798
    const M2 &_m2;
799 799
  public:
800 800
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
801 801
    typedef typename Parent::Key Key;
802 802
    typedef typename Parent::Value Value;
803 803

	
804 804
    /// Constructor
805 805
    AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
806 806
    /// \e
807 807
    Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
808 808
  };
809 809

	
810
  /// Returns an \ref AddMap class
811

	
812
  /// This function just returns an \ref AddMap class.
810
  /// Returns an \c AddMap class
811

	
812
  /// This function just returns an \c AddMap class.
813 813
  ///
814 814
  /// For example, if \c m1 and \c m2 are both maps with \c double
815 815
  /// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to
816 816
  /// <tt>m1[x]+m2[x]</tt>.
817 817
  ///
818 818
  /// \relates AddMap
819 819
  template<typename M1, typename M2>
820 820
  inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) {
821 821
    return AddMap<M1, M2>(m1,m2);
822 822
  }
823 823

	
824 824

	
825 825
  /// Difference of two maps
826 826

	
827 827
  /// This \ref concepts::ReadMap "read-only map" returns the difference
828 828
  /// of the values of the two given maps.
829 829
  /// Its \c Key and \c Value types are inherited from \c M1.
830 830
  /// The \c Key and \c Value of \c M2 must be convertible to those of
831 831
  /// \c M1.
832 832
  ///
833 833
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
834 834
  /// \code
835 835
  ///   SubMap<M1,M2> sm(m1,m2);
836 836
  /// \endcode
837 837
  /// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>.
838 838
  ///
839 839
  /// The simplest way of using this map is through the subMap()
840 840
  /// function.
841 841
  ///
842 842
  /// \sa AddMap, MulMap, DivMap
843 843
  template<typename M1, typename M2>
844 844
  class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
845 845
    const M1 &_m1;
846 846
    const M2 &_m2;
847 847
  public:
848 848
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
849 849
    typedef typename Parent::Key Key;
850 850
    typedef typename Parent::Value Value;
851 851

	
852 852
    /// Constructor
853 853
    SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
854 854
    /// \e
855 855
    Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
856 856
  };
857 857

	
858
  /// Returns a \ref SubMap class
859

	
860
  /// This function just returns a \ref SubMap class.
858
  /// Returns a \c SubMap class
859

	
860
  /// This function just returns a \c SubMap class.
861 861
  ///
862 862
  /// For example, if \c m1 and \c m2 are both maps with \c double
863 863
  /// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to
864 864
  /// <tt>m1[x]-m2[x]</tt>.
865 865
  ///
866 866
  /// \relates SubMap
867 867
  template<typename M1, typename M2>
868 868
  inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
869 869
    return SubMap<M1, M2>(m1,m2);
870 870
  }
871 871

	
872 872

	
873 873
  /// Product of two maps
874 874

	
875 875
  /// This \ref concepts::ReadMap "read-only map" returns the product
876 876
  /// of the values of the two given maps.
877 877
  /// Its \c Key and \c Value types are inherited from \c M1.
878 878
  /// The \c Key and \c Value of \c M2 must be convertible to those of
879 879
  /// \c M1.
880 880
  ///
881 881
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
882 882
  /// \code
883 883
  ///   MulMap<M1,M2> mm(m1,m2);
884 884
  /// \endcode
885 885
  /// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>.
886 886
  ///
887 887
  /// The simplest way of using this map is through the mulMap()
888 888
  /// function.
889 889
  ///
890 890
  /// \sa AddMap, SubMap, DivMap
891 891
  /// \sa ScaleMap, ScaleWriteMap
892 892
  template<typename M1, typename M2>
893 893
  class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
894 894
    const M1 &_m1;
895 895
    const M2 &_m2;
896 896
  public:
897 897
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
898 898
    typedef typename Parent::Key Key;
899 899
    typedef typename Parent::Value Value;
900 900

	
901 901
    /// Constructor
902 902
    MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
903 903
    /// \e
904 904
    Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
905 905
  };
906 906

	
907
  /// Returns a \ref MulMap class
908

	
909
  /// This function just returns a \ref MulMap class.
907
  /// Returns a \c MulMap class
908

	
909
  /// This function just returns a \c MulMap class.
910 910
  ///
911 911
  /// For example, if \c m1 and \c m2 are both maps with \c double
912 912
  /// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to
913 913
  /// <tt>m1[x]*m2[x]</tt>.
914 914
  ///
915 915
  /// \relates MulMap
916 916
  template<typename M1, typename M2>
917 917
  inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
918 918
    return MulMap<M1, M2>(m1,m2);
919 919
  }
920 920

	
921 921

	
922 922
  /// Quotient of two maps
923 923

	
924 924
  /// This \ref concepts::ReadMap "read-only map" returns the quotient
925 925
  /// of the values of the two given maps.
926 926
  /// Its \c Key and \c Value types are inherited from \c M1.
927 927
  /// The \c Key and \c Value of \c M2 must be convertible to those of
928 928
  /// \c M1.
929 929
  ///
930 930
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
931 931
  /// \code
932 932
  ///   DivMap<M1,M2> dm(m1,m2);
933 933
  /// \endcode
934 934
  /// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>.
935 935
  ///
936 936
  /// The simplest way of using this map is through the divMap()
937 937
  /// function.
938 938
  ///
939 939
  /// \sa AddMap, SubMap, MulMap
940 940
  template<typename M1, typename M2>
941 941
  class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
942 942
    const M1 &_m1;
943 943
    const M2 &_m2;
944 944
  public:
945 945
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
946 946
    typedef typename Parent::Key Key;
947 947
    typedef typename Parent::Value Value;
948 948

	
949 949
    /// Constructor
950 950
    DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
951 951
    /// \e
952 952
    Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
953 953
  };
954 954

	
955
  /// Returns a \ref DivMap class
956

	
957
  /// This function just returns a \ref DivMap class.
955
  /// Returns a \c DivMap class
956

	
957
  /// This function just returns a \c DivMap class.
958 958
  ///
959 959
  /// For example, if \c m1 and \c m2 are both maps with \c double
960 960
  /// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to
961 961
  /// <tt>m1[x]/m2[x]</tt>.
962 962
  ///
963 963
  /// \relates DivMap
964 964
  template<typename M1, typename M2>
965 965
  inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
966 966
    return DivMap<M1, M2>(m1,m2);
967 967
  }
968 968

	
969 969

	
970 970
  /// Shifts a map with a constant.
971 971

	
972 972
  /// This \ref concepts::ReadMap "read-only map" returns the sum of
973 973
  /// the given map and a constant value (i.e. it shifts the map with
974 974
  /// the constant). Its \c Key and \c Value are inherited from \c M.
975 975
  ///
976 976
  /// Actually,
977 977
  /// \code
978 978
  ///   ShiftMap<M> sh(m,v);
979 979
  /// \endcode
980 980
  /// is equivalent to
981 981
  /// \code
982 982
  ///   ConstMap<M::Key, M::Value> cm(v);
983 983
  ///   AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm);
984 984
  /// \endcode
985 985
  ///
986 986
  /// The simplest way of using this map is through the shiftMap()
987 987
  /// function.
988 988
  ///
989 989
  /// \sa ShiftWriteMap
990 990
  template<typename M, typename C = typename M::Value>
991 991
  class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
992 992
    const M &_m;
993 993
    C _v;
994 994
  public:
995 995
    typedef MapBase<typename M::Key, typename M::Value> Parent;
996 996
    typedef typename Parent::Key Key;
997 997
    typedef typename Parent::Value Value;
998 998

	
999 999
    /// Constructor
1000 1000

	
1001 1001
    /// Constructor.
1002 1002
    /// \param m The undelying map.
1003 1003
    /// \param v The constant value.
1004 1004
    ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
1005 1005
    /// \e
1006 1006
    Value operator[](const Key &k) const { return _m[k]+_v; }
1007 1007
  };
1008 1008

	
1009 1009
  /// Shifts a map with a constant (read-write version).
1010 1010

	
1011 1011
  /// This \ref concepts::ReadWriteMap "read-write map" returns the sum
1012 1012
  /// of the given map and a constant value (i.e. it shifts the map with
1013 1013
  /// the constant). Its \c Key and \c Value are inherited from \c M.
1014 1014
  /// It makes also possible to write the map.
1015 1015
  ///
1016 1016
  /// The simplest way of using this map is through the shiftWriteMap()
1017 1017
  /// function.
1018 1018
  ///
1019 1019
  /// \sa ShiftMap
1020 1020
  template<typename M, typename C = typename M::Value>
1021 1021
  class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
1022 1022
    M &_m;
1023 1023
    C _v;
1024 1024
  public:
1025 1025
    typedef MapBase<typename M::Key, typename M::Value> Parent;
1026 1026
    typedef typename Parent::Key Key;
1027 1027
    typedef typename Parent::Value Value;
1028 1028

	
1029 1029
    /// Constructor
1030 1030

	
1031 1031
    /// Constructor.
1032 1032
    /// \param m The undelying map.
1033 1033
    /// \param v The constant value.
1034 1034
    ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
1035 1035
    /// \e
1036 1036
    Value operator[](const Key &k) const { return _m[k]+_v; }
1037 1037
    /// \e
1038 1038
    void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
1039 1039
  };
1040 1040

	
1041
  /// Returns a \ref ShiftMap class
1042

	
1043
  /// This function just returns a \ref ShiftMap class.
1041
  /// Returns a \c ShiftMap class
1042

	
1043
  /// This function just returns a \c ShiftMap class.
1044 1044
  ///
1045 1045
  /// For example, if \c m is a map with \c double values and \c v is
1046 1046
  /// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to
1047 1047
  /// <tt>m[x]+v</tt>.
1048 1048
  ///
1049 1049
  /// \relates ShiftMap
1050 1050
  template<typename M, typename C>
1051 1051
  inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
1052 1052
    return ShiftMap<M, C>(m,v);
1053 1053
  }
1054 1054

	
1055
  /// Returns a \ref ShiftWriteMap class
1056

	
1057
  /// This function just returns a \ref ShiftWriteMap class.
1055
  /// Returns a \c ShiftWriteMap class
1056

	
1057
  /// This function just returns a \c ShiftWriteMap class.
1058 1058
  ///
1059 1059
  /// For example, if \c m is a map with \c double values and \c v is
1060 1060
  /// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to
1061 1061
  /// <tt>m[x]+v</tt>.
1062 1062
  /// Moreover it makes also possible to write the map.
1063 1063
  ///
1064 1064
  /// \relates ShiftWriteMap
1065 1065
  template<typename M, typename C>
1066 1066
  inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
1067 1067
    return ShiftWriteMap<M, C>(m,v);
1068 1068
  }
1069 1069

	
1070 1070

	
1071 1071
  /// Scales a map with a constant.
1072 1072

	
1073 1073
  /// This \ref concepts::ReadMap "read-only map" returns the value of
1074 1074
  /// the given map multiplied from the left side with a constant value.
1075 1075
  /// Its \c Key and \c Value are inherited from \c M.
1076 1076
  ///
1077 1077
  /// Actually,
1078 1078
  /// \code
1079 1079
  ///   ScaleMap<M> sc(m,v);
1080 1080
  /// \endcode
1081 1081
  /// is equivalent to
1082 1082
  /// \code
1083 1083
  ///   ConstMap<M::Key, M::Value> cm(v);
1084 1084
  ///   MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m);
1085 1085
  /// \endcode
1086 1086
  ///
1087 1087
  /// The simplest way of using this map is through the scaleMap()
1088 1088
  /// function.
1089 1089
  ///
1090 1090
  /// \sa ScaleWriteMap
1091 1091
  template<typename M, typename C = typename M::Value>
1092 1092
  class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
1093 1093
    const M &_m;
1094 1094
    C _v;
1095 1095
  public:
1096 1096
    typedef MapBase<typename M::Key, typename M::Value> Parent;
1097 1097
    typedef typename Parent::Key Key;
1098 1098
    typedef typename Parent::Value Value;
1099 1099

	
1100 1100
    /// Constructor
1101 1101

	
1102 1102
    /// Constructor.
1103 1103
    /// \param m The undelying map.
1104 1104
    /// \param v The constant value.
1105 1105
    ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
1106 1106
    /// \e
1107 1107
    Value operator[](const Key &k) const { return _v*_m[k]; }
1108 1108
  };
1109 1109

	
1110 1110
  /// Scales a map with a constant (read-write version).
1111 1111

	
1112 1112
  /// This \ref concepts::ReadWriteMap "read-write map" returns the value of
1113 1113
  /// the given map multiplied from the left side with a constant value.
1114 1114
  /// Its \c Key and \c Value are inherited from \c M.
1115 1115
  /// It can also be used as write map if the \c / operator is defined
1116 1116
  /// between \c Value and \c C and the given multiplier is not zero.
1117 1117
  ///
1118 1118
  /// The simplest way of using this map is through the scaleWriteMap()
1119 1119
  /// function.
1120 1120
  ///
1121 1121
  /// \sa ScaleMap
1122 1122
  template<typename M, typename C = typename M::Value>
1123 1123
  class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
1124 1124
    M &_m;
1125 1125
    C _v;
1126 1126
  public:
1127 1127
    typedef MapBase<typename M::Key, typename M::Value> Parent;
1128 1128
    typedef typename Parent::Key Key;
1129 1129
    typedef typename Parent::Value Value;
1130 1130

	
1131 1131
    /// Constructor
1132 1132

	
1133 1133
    /// Constructor.
1134 1134
    /// \param m The undelying map.
1135 1135
    /// \param v The constant value.
1136 1136
    ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
1137 1137
    /// \e
1138 1138
    Value operator[](const Key &k) const { return _v*_m[k]; }
1139 1139
    /// \e
1140 1140
    void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
1141 1141
  };
1142 1142

	
1143
  /// Returns a \ref ScaleMap class
1144

	
1145
  /// This function just returns a \ref ScaleMap class.
1143
  /// Returns a \c ScaleMap class
1144

	
1145
  /// This function just returns a \c ScaleMap class.
1146 1146
  ///
1147 1147
  /// For example, if \c m is a map with \c double values and \c v is
1148 1148
  /// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to
1149 1149
  /// <tt>v*m[x]</tt>.
1150 1150
  ///
1151 1151
  /// \relates ScaleMap
1152 1152
  template<typename M, typename C>
1153 1153
  inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
1154 1154
    return ScaleMap<M, C>(m,v);
1155 1155
  }
1156 1156

	
1157
  /// Returns a \ref ScaleWriteMap class
1158

	
1159
  /// This function just returns a \ref ScaleWriteMap class.
1157
  /// Returns a \c ScaleWriteMap class
1158

	
1159
  /// This function just returns a \c ScaleWriteMap class.
1160 1160
  ///
1161 1161
  /// For example, if \c m is a map with \c double values and \c v is
1162 1162
  /// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to
1163 1163
  /// <tt>v*m[x]</tt>.
1164 1164
  /// Moreover it makes also possible to write the map.
1165 1165
  ///
1166 1166
  /// \relates ScaleWriteMap
1167 1167
  template<typename M, typename C>
1168 1168
  inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
1169 1169
    return ScaleWriteMap<M, C>(m,v);
1170 1170
  }
1171 1171

	
1172 1172

	
1173 1173
  /// Negative of a map
1174 1174

	
1175 1175
  /// This \ref concepts::ReadMap "read-only map" returns the negative
1176 1176
  /// of the values of the given map (using the unary \c - operator).
1177 1177
  /// Its \c Key and \c Value are inherited from \c M.
1178 1178
  ///
1179 1179
  /// If M::Value is \c int, \c double etc., then
1180 1180
  /// \code
1181 1181
  ///   NegMap<M> neg(m);
1182 1182
  /// \endcode
1183 1183
  /// is equivalent to
1184 1184
  /// \code
1185 1185
  ///   ScaleMap<M> neg(m,-1);
1186 1186
  /// \endcode
1187 1187
  ///
1188 1188
  /// The simplest way of using this map is through the negMap()
1189 1189
  /// function.
1190 1190
  ///
1191 1191
  /// \sa NegWriteMap
1192 1192
  template<typename M>
1193 1193
  class NegMap : public MapBase<typename M::Key, typename M::Value> {
1194 1194
    const M& _m;
1195 1195
  public:
1196 1196
    typedef MapBase<typename M::Key, typename M::Value> Parent;
1197 1197
    typedef typename Parent::Key Key;
1198 1198
    typedef typename Parent::Value Value;
1199 1199

	
1200 1200
    /// Constructor
1201 1201
    NegMap(const M &m) : _m(m) {}
1202 1202
    /// \e
1203 1203
    Value operator[](const Key &k) const { return -_m[k]; }
1204 1204
  };
1205 1205

	
1206 1206
  /// Negative of a map (read-write version)
1207 1207

	
1208 1208
  /// This \ref concepts::ReadWriteMap "read-write map" returns the
1209 1209
  /// negative of the values of the given map (using the unary \c -
1210 1210
  /// operator).
1211 1211
  /// Its \c Key and \c Value are inherited from \c M.
1212 1212
  /// It makes also possible to write the map.
1213 1213
  ///
1214 1214
  /// If M::Value is \c int, \c double etc., then
1215 1215
  /// \code
1216 1216
  ///   NegWriteMap<M> neg(m);
1217 1217
  /// \endcode
1218 1218
  /// is equivalent to
1219 1219
  /// \code
1220 1220
  ///   ScaleWriteMap<M> neg(m,-1);
1221 1221
  /// \endcode
1222 1222
  ///
1223 1223
  /// The simplest way of using this map is through the negWriteMap()
1224 1224
  /// function.
1225 1225
  ///
1226 1226
  /// \sa NegMap
1227 1227
  template<typename M>
1228 1228
  class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
1229 1229
    M &_m;
1230 1230
  public:
1231 1231
    typedef MapBase<typename M::Key, typename M::Value> Parent;
1232 1232
    typedef typename Parent::Key Key;
1233 1233
    typedef typename Parent::Value Value;
1234 1234

	
1235 1235
    /// Constructor
1236 1236
    NegWriteMap(M &m) : _m(m) {}
1237 1237
    /// \e
1238 1238
    Value operator[](const Key &k) const { return -_m[k]; }
1239 1239
    /// \e
1240 1240
    void set(const Key &k, const Value &v) { _m.set(k, -v); }
1241 1241
  };
1242 1242

	
1243
  /// Returns a \ref NegMap class
1244

	
1245
  /// This function just returns a \ref NegMap class.
1243
  /// Returns a \c NegMap class
1244

	
1245
  /// This function just returns a \c NegMap class.
1246 1246
  ///
1247 1247
  /// For example, if \c m is a map with \c double values, then
1248 1248
  /// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
1249 1249
  ///
1250 1250
  /// \relates NegMap
1251 1251
  template <typename M>
1252 1252
  inline NegMap<M> negMap(const M &m) {
1253 1253
    return NegMap<M>(m);
1254 1254
  }
1255 1255

	
1256
  /// Returns a \ref NegWriteMap class
1257

	
1258
  /// This function just returns a \ref NegWriteMap class.
1256
  /// Returns a \c NegWriteMap class
1257

	
1258
  /// This function just returns a \c NegWriteMap class.
1259 1259
  ///
1260 1260
  /// For example, if \c m is a map with \c double values, then
1261 1261
  /// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
1262 1262
  /// Moreover it makes also possible to write the map.
1263 1263
  ///
1264 1264
  /// \relates NegWriteMap
1265 1265
  template <typename M>
1266 1266
  inline NegWriteMap<M> negWriteMap(M &m) {
1267 1267
    return NegWriteMap<M>(m);
1268 1268
  }
1269 1269

	
1270 1270

	
1271 1271
  /// Absolute value of a map
1272 1272

	
1273 1273
  /// This \ref concepts::ReadMap "read-only map" returns the absolute
1274 1274
  /// value of the values of the given map.
1275 1275
  /// Its \c Key and \c Value are inherited from \c M.
1276 1276
  /// \c Value must be comparable to \c 0 and the unary \c -
1277 1277
  /// operator must be defined for it, of course.
1278 1278
  ///
1279 1279
  /// The simplest way of using this map is through the absMap()
1280 1280
  /// function.
1281 1281
  template<typename M>
1282 1282
  class AbsMap : public MapBase<typename M::Key, typename M::Value> {
1283 1283
    const M &_m;
1284 1284
  public:
1285 1285
    typedef MapBase<typename M::Key, typename M::Value> Parent;
1286 1286
    typedef typename Parent::Key Key;
1287 1287
    typedef typename Parent::Value Value;
1288 1288

	
1289 1289
    /// Constructor
1290 1290
    AbsMap(const M &m) : _m(m) {}
1291 1291
    /// \e
1292 1292
    Value operator[](const Key &k) const {
1293 1293
      Value tmp = _m[k];
1294 1294
      return tmp >= 0 ? tmp : -tmp;
1295 1295
    }
1296 1296

	
1297 1297
  };
1298 1298

	
1299
  /// Returns an \ref AbsMap class
1300

	
1301
  /// This function just returns an \ref AbsMap class.
1299
  /// Returns an \c AbsMap class
1300

	
1301
  /// This function just returns an \c AbsMap class.
1302 1302
  ///
1303 1303
  /// For example, if \c m is a map with \c double values, then
1304 1304
  /// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if
1305 1305
  /// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is
1306 1306
  /// negative.
1307 1307
  ///
1308 1308
  /// \relates AbsMap
1309 1309
  template<typename M>
1310 1310
  inline AbsMap<M> absMap(const M &m) {
1311 1311
    return AbsMap<M>(m);
1312 1312
  }
1313 1313

	
1314 1314
  /// @}
1315 1315

	
1316 1316
  // Logical maps and map adaptors:
1317 1317

	
1318 1318
  /// \addtogroup maps
1319 1319
  /// @{
1320 1320

	
1321 1321
  /// Constant \c true map.
1322 1322

	
1323 1323
  /// This \ref concepts::ReadMap "read-only map" assigns \c true to
1324 1324
  /// each key.
1325 1325
  ///
1326 1326
  /// Note that
1327 1327
  /// \code
1328 1328
  ///   TrueMap<K> tm;
1329 1329
  /// \endcode
1330 1330
  /// is equivalent to
1331 1331
  /// \code
1332 1332
  ///   ConstMap<K,bool> tm(true);
1333 1333
  /// \endcode
1334 1334
  ///
1335 1335
  /// \sa FalseMap
1336 1336
  /// \sa ConstMap
1337 1337
  template <typename K>
1338 1338
  class TrueMap : public MapBase<K, bool> {
1339 1339
  public:
1340 1340
    typedef MapBase<K, bool> Parent;
1341 1341
    typedef typename Parent::Key Key;
1342 1342
    typedef typename Parent::Value Value;
1343 1343

	
1344 1344
    /// Gives back \c true.
1345 1345
    Value operator[](const Key&) const { return true; }
1346 1346
  };
1347 1347

	
1348
  /// Returns a \ref TrueMap class
1349

	
1350
  /// This function just returns a \ref TrueMap class.
1348
  /// Returns a \c TrueMap class
1349

	
1350
  /// This function just returns a \c TrueMap class.
1351 1351
  /// \relates TrueMap
1352 1352
  template<typename K>
1353 1353
  inline TrueMap<K> trueMap() {
1354 1354
    return TrueMap<K>();
1355 1355
  }
1356 1356

	
1357 1357

	
1358 1358
  /// Constant \c false map.
1359 1359

	
1360 1360
  /// This \ref concepts::ReadMap "read-only map" assigns \c false to
1361 1361
  /// each key.
1362 1362
  ///
1363 1363
  /// Note that
1364 1364
  /// \code
1365 1365
  ///   FalseMap<K> fm;
1366 1366
  /// \endcode
1367 1367
  /// is equivalent to
1368 1368
  /// \code
1369 1369
  ///   ConstMap<K,bool> fm(false);
1370 1370
  /// \endcode
1371 1371
  ///
1372 1372
  /// \sa TrueMap
1373 1373
  /// \sa ConstMap
1374 1374
  template <typename K>
1375 1375
  class FalseMap : public MapBase<K, bool> {
1376 1376
  public:
1377 1377
    typedef MapBase<K, bool> Parent;
1378 1378
    typedef typename Parent::Key Key;
1379 1379
    typedef typename Parent::Value Value;
1380 1380

	
1381 1381
    /// Gives back \c false.
1382 1382
    Value operator[](const Key&) const { return false; }
1383 1383
  };
1384 1384

	
1385
  /// Returns a \ref FalseMap class
1386

	
1387
  /// This function just returns a \ref FalseMap class.
1385
  /// Returns a \c FalseMap class
1386

	
1387
  /// This function just returns a \c FalseMap class.
1388 1388
  /// \relates FalseMap
1389 1389
  template<typename K>
1390 1390
  inline FalseMap<K> falseMap() {
1391 1391
    return FalseMap<K>();
1392 1392
  }
1393 1393

	
1394 1394
  /// @}
1395 1395

	
1396 1396
  /// \addtogroup map_adaptors
1397 1397
  /// @{
1398 1398

	
1399 1399
  /// Logical 'and' of two maps
1400 1400

	
1401 1401
  /// This \ref concepts::ReadMap "read-only map" returns the logical
1402 1402
  /// 'and' of the values of the two given maps.
1403 1403
  /// Its \c Key type is inherited from \c M1 and its \c Value type is
1404 1404
  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1405 1405
  ///
1406 1406
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1407 1407
  /// \code
1408 1408
  ///   AndMap<M1,M2> am(m1,m2);
1409 1409
  /// \endcode
1410 1410
  /// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>.
1411 1411
  ///
1412 1412
  /// The simplest way of using this map is through the andMap()
1413 1413
  /// function.
1414 1414
  ///
1415 1415
  /// \sa OrMap
1416 1416
  /// \sa NotMap, NotWriteMap
1417 1417
  template<typename M1, typename M2>
1418 1418
  class AndMap : public MapBase<typename M1::Key, bool> {
1419 1419
    const M1 &_m1;
1420 1420
    const M2 &_m2;
1421 1421
  public:
1422 1422
    typedef MapBase<typename M1::Key, bool> Parent;
1423 1423
    typedef typename Parent::Key Key;
1424 1424
    typedef typename Parent::Value Value;
1425 1425

	
1426 1426
    /// Constructor
1427 1427
    AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1428 1428
    /// \e
1429 1429
    Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
1430 1430
  };
1431 1431

	
1432
  /// Returns an \ref AndMap class
1433

	
1434
  /// This function just returns an \ref AndMap class.
1432
  /// Returns an \c AndMap class
1433

	
1434
  /// This function just returns an \c AndMap class.
1435 1435
  ///
1436 1436
  /// For example, if \c m1 and \c m2 are both maps with \c bool values,
1437 1437
  /// then <tt>andMap(m1,m2)[x]</tt> will be equal to
1438 1438
  /// <tt>m1[x]&&m2[x]</tt>.
1439 1439
  ///
1440 1440
  /// \relates AndMap
1441 1441
  template<typename M1, typename M2>
1442 1442
  inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) {
1443 1443
    return AndMap<M1, M2>(m1,m2);
1444 1444
  }
1445 1445

	
1446 1446

	
1447 1447
  /// Logical 'or' of two maps
1448 1448

	
1449 1449
  /// This \ref concepts::ReadMap "read-only map" returns the logical
1450 1450
  /// 'or' of the values of the two given maps.
1451 1451
  /// Its \c Key type is inherited from \c M1 and its \c Value type is
1452 1452
  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1453 1453
  ///
1454 1454
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1455 1455
  /// \code
1456 1456
  ///   OrMap<M1,M2> om(m1,m2);
1457 1457
  /// \endcode
1458 1458
  /// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>.
1459 1459
  ///
1460 1460
  /// The simplest way of using this map is through the orMap()
1461 1461
  /// function.
1462 1462
  ///
1463 1463
  /// \sa AndMap
1464 1464
  /// \sa NotMap, NotWriteMap
1465 1465
  template<typename M1, typename M2>
1466 1466
  class OrMap : public MapBase<typename M1::Key, bool> {
1467 1467
    const M1 &_m1;
1468 1468
    const M2 &_m2;
1469 1469
  public:
1470 1470
    typedef MapBase<typename M1::Key, bool> Parent;
1471 1471
    typedef typename Parent::Key Key;
1472 1472
    typedef typename Parent::Value Value;
1473 1473

	
1474 1474
    /// Constructor
1475 1475
    OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1476 1476
    /// \e
1477 1477
    Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
1478 1478
  };
1479 1479

	
1480
  /// Returns an \ref OrMap class
1481

	
1482
  /// This function just returns an \ref OrMap class.
1480
  /// Returns an \c OrMap class
1481

	
1482
  /// This function just returns an \c OrMap class.
1483 1483
  ///
1484 1484
  /// For example, if \c m1 and \c m2 are both maps with \c bool values,
1485 1485
  /// then <tt>orMap(m1,m2)[x]</tt> will be equal to
1486 1486
  /// <tt>m1[x]||m2[x]</tt>.
1487 1487
  ///
1488 1488
  /// \relates OrMap
1489 1489
  template<typename M1, typename M2>
1490 1490
  inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) {
1491 1491
    return OrMap<M1, M2>(m1,m2);
1492 1492
  }
1493 1493

	
1494 1494

	
1495 1495
  /// Logical 'not' of a map
1496 1496

	
1497 1497
  /// This \ref concepts::ReadMap "read-only map" returns the logical
1498 1498
  /// negation of the values of the given map.
1499 1499
  /// Its \c Key is inherited from \c M and its \c Value is \c bool.
1500 1500
  ///
1501 1501
  /// The simplest way of using this map is through the notMap()
1502 1502
  /// function.
1503 1503
  ///
1504 1504
  /// \sa NotWriteMap
1505 1505
  template <typename M>
1506 1506
  class NotMap : public MapBase<typename M::Key, bool> {
1507 1507
    const M &_m;
1508 1508
  public:
1509 1509
    typedef MapBase<typename M::Key, bool> Parent;
1510 1510
    typedef typename Parent::Key Key;
1511 1511
    typedef typename Parent::Value Value;
1512 1512

	
1513 1513
    /// Constructor
1514 1514
    NotMap(const M &m) : _m(m) {}
1515 1515
    /// \e
1516 1516
    Value operator[](const Key &k) const { return !_m[k]; }
1517 1517
  };
1518 1518

	
1519 1519
  /// Logical 'not' of a map (read-write version)
1520 1520

	
1521 1521
  /// This \ref concepts::ReadWriteMap "read-write map" returns the
1522 1522
  /// logical negation of the values of the given map.
1523 1523
  /// Its \c Key is inherited from \c M and its \c Value is \c bool.
1524 1524
  /// It makes also possible to write the map. When a value is set,
1525 1525
  /// the opposite value is set to the original map.
1526 1526
  ///
1527 1527
  /// The simplest way of using this map is through the notWriteMap()
1528 1528
  /// function.
1529 1529
  ///
1530 1530
  /// \sa NotMap
1531 1531
  template <typename M>
1532 1532
  class NotWriteMap : public MapBase<typename M::Key, bool> {
1533 1533
    M &_m;
1534 1534
  public:
1535 1535
    typedef MapBase<typename M::Key, bool> Parent;
1536 1536
    typedef typename Parent::Key Key;
1537 1537
    typedef typename Parent::Value Value;
1538 1538

	
1539 1539
    /// Constructor
1540 1540
    NotWriteMap(M &m) : _m(m) {}
1541 1541
    /// \e
1542 1542
    Value operator[](const Key &k) const { return !_m[k]; }
1543 1543
    /// \e
1544 1544
    void set(const Key &k, bool v) { _m.set(k, !v); }
1545 1545
  };
1546 1546

	
1547
  /// Returns a \ref NotMap class
1548

	
1549
  /// This function just returns a \ref NotMap class.
1547
  /// Returns a \c NotMap class
1548

	
1549
  /// This function just returns a \c NotMap class.
1550 1550
  ///
1551 1551
  /// For example, if \c m is a map with \c bool values, then
1552 1552
  /// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
1553 1553
  ///
1554 1554
  /// \relates NotMap
1555 1555
  template <typename M>
1556 1556
  inline NotMap<M> notMap(const M &m) {
1557 1557
    return NotMap<M>(m);
1558 1558
  }
1559 1559

	
1560
  /// Returns a \ref NotWriteMap class
1561

	
1562
  /// This function just returns a \ref NotWriteMap class.
1560
  /// Returns a \c NotWriteMap class
1561

	
1562
  /// This function just returns a \c NotWriteMap class.
1563 1563
  ///
1564 1564
  /// For example, if \c m is a map with \c bool values, then
1565 1565
  /// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
1566 1566
  /// Moreover it makes also possible to write the map.
1567 1567
  ///
1568 1568
  /// \relates NotWriteMap
1569 1569
  template <typename M>
1570 1570
  inline NotWriteMap<M> notWriteMap(M &m) {
1571 1571
    return NotWriteMap<M>(m);
1572 1572
  }
1573 1573

	
1574 1574

	
1575 1575
  /// Combination of two maps using the \c == operator
1576 1576

	
1577 1577
  /// This \ref concepts::ReadMap "read-only map" assigns \c true to
1578 1578
  /// the keys for which the corresponding values of the two maps are
1579 1579
  /// equal.
1580 1580
  /// Its \c Key type is inherited from \c M1 and its \c Value type is
1581 1581
  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1582 1582
  ///
1583 1583
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1584 1584
  /// \code
1585 1585
  ///   EqualMap<M1,M2> em(m1,m2);
1586 1586
  /// \endcode
1587 1587
  /// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>.
1588 1588
  ///
1589 1589
  /// The simplest way of using this map is through the equalMap()
1590 1590
  /// function.
1591 1591
  ///
1592 1592
  /// \sa LessMap
1593 1593
  template<typename M1, typename M2>
1594 1594
  class EqualMap : public MapBase<typename M1::Key, bool> {
1595 1595
    const M1 &_m1;
1596 1596
    const M2 &_m2;
1597 1597
  public:
1598 1598
    typedef MapBase<typename M1::Key, bool> Parent;
1599 1599
    typedef typename Parent::Key Key;
1600 1600
    typedef typename Parent::Value Value;
1601 1601

	
1602 1602
    /// Constructor
1603 1603
    EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1604 1604
    /// \e
1605 1605
    Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
1606 1606
  };
1607 1607

	
1608
  /// Returns an \ref EqualMap class
1609

	
1610
  /// This function just returns an \ref EqualMap class.
1608
  /// Returns an \c EqualMap class
1609

	
1610
  /// This function just returns an \c EqualMap class.
1611 1611
  ///
1612 1612
  /// For example, if \c m1 and \c m2 are maps with keys and values of
1613 1613
  /// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to
1614 1614
  /// <tt>m1[x]==m2[x]</tt>.
1615 1615
  ///
1616 1616
  /// \relates EqualMap
1617 1617
  template<typename M1, typename M2>
1618 1618
  inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
1619 1619
    return EqualMap<M1, M2>(m1,m2);
1620 1620
  }
1621 1621

	
1622 1622

	
1623 1623
  /// Combination of two maps using the \c < operator
1624 1624

	
1625 1625
  /// This \ref concepts::ReadMap "read-only map" assigns \c true to
1626 1626
  /// the keys for which the corresponding value of the first map is
1627 1627
  /// less then the value of the second map.
1628 1628
  /// Its \c Key type is inherited from \c M1 and its \c Value type is
1629 1629
  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1630 1630
  ///
1631 1631
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1632 1632
  /// \code
1633 1633
  ///   LessMap<M1,M2> lm(m1,m2);
1634 1634
  /// \endcode
1635 1635
  /// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>.
1636 1636
  ///
1637 1637
  /// The simplest way of using this map is through the lessMap()
1638 1638
  /// function.
1639 1639
  ///
1640 1640
  /// \sa EqualMap
1641 1641
  template<typename M1, typename M2>
1642 1642
  class LessMap : public MapBase<typename M1::Key, bool> {
1643 1643
    const M1 &_m1;
1644 1644
    const M2 &_m2;
1645 1645
  public:
1646 1646
    typedef MapBase<typename M1::Key, bool> Parent;
1647 1647
    typedef typename Parent::Key Key;
1648 1648
    typedef typename Parent::Value Value;
1649 1649

	
1650 1650
    /// Constructor
1651 1651
    LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1652 1652
    /// \e
1653 1653
    Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
1654 1654
  };
1655 1655

	
1656
  /// Returns an \ref LessMap class
1657

	
1658
  /// This function just returns an \ref LessMap class.
1656
  /// Returns an \c LessMap class
1657

	
1658
  /// This function just returns an \c LessMap class.
1659 1659
  ///
1660 1660
  /// For example, if \c m1 and \c m2 are maps with keys and values of
1661 1661
  /// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to
1662 1662
  /// <tt>m1[x]<m2[x]</tt>.
1663 1663
  ///
1664 1664
  /// \relates LessMap
1665 1665
  template<typename M1, typename M2>
1666 1666
  inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
1667 1667
    return LessMap<M1, M2>(m1,m2);
1668 1668
  }
1669 1669

	
1670 1670
  namespace _maps_bits {
1671 1671

	
1672 1672
    template <typename _Iterator, typename Enable = void>
1673 1673
    struct IteratorTraits {
1674 1674
      typedef typename std::iterator_traits<_Iterator>::value_type Value;
1675 1675
    };
1676 1676

	
1677 1677
    template <typename _Iterator>
1678 1678
    struct IteratorTraits<_Iterator,
1679 1679
      typename exists<typename _Iterator::container_type>::type>
1680 1680
    {
1681 1681
      typedef typename _Iterator::container_type::value_type Value;
1682 1682
    };
1683 1683

	
1684 1684
  }
1685 1685

	
1686 1686
  /// \brief Writable bool map for logging each \c true assigned element
1687 1687
  ///
1688 1688
  /// A \ref concepts::WriteMap "writable" bool map for logging
1689 1689
  /// each \c true assigned element, i.e it copies subsequently each
1690 1690
  /// keys set to \c true to the given iterator.
1691 1691
  /// The most important usage of it is storing certain nodes or arcs
1692 1692
  /// that were marked \c true by an algorithm.
1693 1693
  ///
1694 1694
  /// There are several algorithms that provide solutions through bool
1695 1695
  /// maps and most of them assign \c true at most once for each key.
1696 1696
  /// In these cases it is a natural request to store each \c true
1697 1697
  /// assigned elements (in order of the assignment), which can be
1698 1698
  /// easily done with LoggerBoolMap.
1699 1699
  ///
1700 1700
  /// The simplest way of using this map is through the loggerBoolMap()
1701 1701
  /// function.
1702 1702
  ///
1703 1703
  /// \tparam It The type of the iterator.
1704 1704
  /// \tparam Ke The key type of the map. The default value set
1705 1705
  /// according to the iterator type should work in most cases.
1706 1706
  ///
1707 1707
  /// \note The container of the iterator must contain enough space
1708 1708
  /// for the elements or the iterator should be an inserter iterator.
1709 1709
#ifdef DOXYGEN
1710 1710
  template <typename It, typename Ke>
1711 1711
#else
1712 1712
  template <typename It,
1713 1713
            typename Ke=typename _maps_bits::IteratorTraits<It>::Value>
1714 1714
#endif
1715 1715
  class LoggerBoolMap {
1716 1716
  public:
1717 1717
    typedef It Iterator;
1718 1718

	
1719 1719
    typedef Ke Key;
1720 1720
    typedef bool Value;
1721 1721

	
1722 1722
    /// Constructor
1723 1723
    LoggerBoolMap(Iterator it)
1724 1724
      : _begin(it), _end(it) {}
1725 1725

	
1726 1726
    /// Gives back the given iterator set for the first key
1727 1727
    Iterator begin() const {
1728 1728
      return _begin;
1729 1729
    }
1730 1730

	
1731 1731
    /// Gives back the the 'after the last' iterator
1732 1732
    Iterator end() const {
1733 1733
      return _end;
1734 1734
    }
1735 1735

	
1736 1736
    /// The set function of the map
1737 1737
    void set(const Key& key, Value value) {
1738 1738
      if (value) {
1739 1739
        *_end++ = key;
1740 1740
      }
1741 1741
    }
1742 1742

	
1743 1743
  private:
1744 1744
    Iterator _begin;
1745 1745
    Iterator _end;
1746 1746
  };
1747 1747

	
1748
  /// Returns a \ref LoggerBoolMap class
1749

	
1750
  /// This function just returns a \ref LoggerBoolMap class.
1748
  /// Returns a \c LoggerBoolMap class
1749

	
1750
  /// This function just returns a \c LoggerBoolMap class.
1751 1751
  ///
1752 1752
  /// The most important usage of it is storing certain nodes or arcs
1753 1753
  /// that were marked \c true by an algorithm.
1754 1754
  /// For example it makes easier to store the nodes in the processing
1755 1755
  /// order of Dfs algorithm, as the following examples show.
1756 1756
  /// \code
1757 1757
  ///   std::vector<Node> v;
1758 1758
  ///   dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run();
1759 1759
  /// \endcode
1760 1760
  /// \code
1761 1761
  ///   std::vector<Node> v(countNodes(g));
1762 1762
  ///   dfs(g,s).processedMap(loggerBoolMap(v.begin())).run();
1763 1763
  /// \endcode
1764 1764
  ///
1765 1765
  /// \note The container of the iterator must contain enough space
1766 1766
  /// for the elements or the iterator should be an inserter iterator.
1767 1767
  ///
1768 1768
  /// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so
1769 1769
  /// it cannot be used when a readable map is needed, for example as
1770
  /// \c ReachedMap for \ref Bfs, \ref Dfs and \ref Dijkstra algorithms.
1770
  /// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms.
1771 1771
  ///
1772 1772
  /// \relates LoggerBoolMap
1773 1773
  template<typename Iterator>
1774 1774
  inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) {
1775 1775
    return LoggerBoolMap<Iterator>(it);
1776 1776
  }
1777 1777

	
1778 1778
  /// Provides an immutable and unique id for each item in the graph.
1779 1779

	
1780 1780
  /// The IdMap class provides a unique and immutable id for each item of the
1781 1781
  /// same type (e.g. node) in the graph. This id is <ul><li>\b unique:
1782 1782
  /// different items (nodes) get different ids <li>\b immutable: the id of an
1783 1783
  /// item (node) does not change (even if you delete other nodes).  </ul>
1784 1784
  /// Through this map you get access (i.e. can read) the inner id values of
1785 1785
  /// the items stored in the graph. This map can be inverted with its member
1786 1786
  /// class \c InverseMap or with the \c operator() member.
1787 1787
  ///
1788 1788
  template <typename _Graph, typename _Item>
1789 1789
  class IdMap {
1790 1790
  public:
1791 1791
    typedef _Graph Graph;
1792 1792
    typedef int Value;
1793 1793
    typedef _Item Item;
1794 1794
    typedef _Item Key;
1795 1795

	
1796 1796
    /// \brief Constructor.
1797 1797
    ///
1798 1798
    /// Constructor of the map.
1799 1799
    explicit IdMap(const Graph& graph) : _graph(&graph) {}
1800 1800

	
1801 1801
    /// \brief Gives back the \e id of the item.
1802 1802
    ///
1803 1803
    /// Gives back the immutable and unique \e id of the item.
1804 1804
    int operator[](const Item& item) const { return _graph->id(item);}
1805 1805

	
1806 1806
    /// \brief Gives back the item by its id.
1807 1807
    ///
1808 1808
    /// Gives back the item by its id.
1809 1809
    Item operator()(int id) { return _graph->fromId(id, Item()); }
1810 1810

	
1811 1811
  private:
1812 1812
    const Graph* _graph;
1813 1813

	
1814 1814
  public:
1815 1815

	
1816 1816
    /// \brief The class represents the inverse of its owner (IdMap).
1817 1817
    ///
1818 1818
    /// The class represents the inverse of its owner (IdMap).
... ...
@@ -2237,216 +2237,216 @@
2237 2237
      ///
2238 2238
      /// Returns the size of the map.
2239 2239
      unsigned int size() const {
2240 2240
        return _inverted.size();
2241 2241
      }
2242 2242

	
2243 2243
    private:
2244 2244
      const DescriptorMap& _inverted;
2245 2245
    };
2246 2246

	
2247 2247
    /// \brief Gives back the inverse of the map.
2248 2248
    ///
2249 2249
    /// Gives back the inverse of the map.
2250 2250
    const InverseMap inverse() const {
2251 2251
      return InverseMap(*this);
2252 2252
    }
2253 2253
  };
2254 2254

	
2255 2255
  /// \brief Returns the source of the given arc.
2256 2256
  ///
2257 2257
  /// The SourceMap gives back the source Node of the given arc.
2258 2258
  /// \see TargetMap
2259 2259
  template <typename Digraph>
2260 2260
  class SourceMap {
2261 2261
  public:
2262 2262

	
2263 2263
    typedef typename Digraph::Node Value;
2264 2264
    typedef typename Digraph::Arc Key;
2265 2265

	
2266 2266
    /// \brief Constructor
2267 2267
    ///
2268 2268
    /// Constructor
2269 2269
    /// \param _digraph The digraph that the map belongs to.
2270 2270
    explicit SourceMap(const Digraph& digraph) : _digraph(digraph) {}
2271 2271

	
2272 2272
    /// \brief The subscript operator.
2273 2273
    ///
2274 2274
    /// The subscript operator.
2275 2275
    /// \param arc The arc
2276 2276
    /// \return The source of the arc
2277 2277
    Value operator[](const Key& arc) const {
2278 2278
      return _digraph.source(arc);
2279 2279
    }
2280 2280

	
2281 2281
  private:
2282 2282
    const Digraph& _digraph;
2283 2283
  };
2284 2284

	
2285
  /// \brief Returns a \ref SourceMap class.
2285
  /// \brief Returns a \c SourceMap class.
2286 2286
  ///
2287
  /// This function just returns an \ref SourceMap class.
2287
  /// This function just returns an \c SourceMap class.
2288 2288
  /// \relates SourceMap
2289 2289
  template <typename Digraph>
2290 2290
  inline SourceMap<Digraph> sourceMap(const Digraph& digraph) {
2291 2291
    return SourceMap<Digraph>(digraph);
2292 2292
  }
2293 2293

	
2294 2294
  /// \brief Returns the target of the given arc.
2295 2295
  ///
2296 2296
  /// The TargetMap gives back the target Node of the given arc.
2297 2297
  /// \see SourceMap
2298 2298
  template <typename Digraph>
2299 2299
  class TargetMap {
2300 2300
  public:
2301 2301

	
2302 2302
    typedef typename Digraph::Node Value;
2303 2303
    typedef typename Digraph::Arc Key;
2304 2304

	
2305 2305
    /// \brief Constructor
2306 2306
    ///
2307 2307
    /// Constructor
2308 2308
    /// \param _digraph The digraph that the map belongs to.
2309 2309
    explicit TargetMap(const Digraph& digraph) : _digraph(digraph) {}
2310 2310

	
2311 2311
    /// \brief The subscript operator.
2312 2312
    ///
2313 2313
    /// The subscript operator.
2314 2314
    /// \param e The arc
2315 2315
    /// \return The target of the arc
2316 2316
    Value operator[](const Key& e) const {
2317 2317
      return _digraph.target(e);
2318 2318
    }
2319 2319

	
2320 2320
  private:
2321 2321
    const Digraph& _digraph;
2322 2322
  };
2323 2323

	
2324
  /// \brief Returns a \ref TargetMap class.
2324
  /// \brief Returns a \c TargetMap class.
2325 2325
  ///
2326
  /// This function just returns a \ref TargetMap class.
2326
  /// This function just returns a \c TargetMap class.
2327 2327
  /// \relates TargetMap
2328 2328
  template <typename Digraph>
2329 2329
  inline TargetMap<Digraph> targetMap(const Digraph& digraph) {
2330 2330
    return TargetMap<Digraph>(digraph);
2331 2331
  }
2332 2332

	
2333 2333
  /// \brief Returns the "forward" directed arc view of an edge.
2334 2334
  ///
2335 2335
  /// Returns the "forward" directed arc view of an edge.
2336 2336
  /// \see BackwardMap
2337 2337
  template <typename Graph>
2338 2338
  class ForwardMap {
2339 2339
  public:
2340 2340

	
2341 2341
    typedef typename Graph::Arc Value;
2342 2342
    typedef typename Graph::Edge Key;
2343 2343

	
2344 2344
    /// \brief Constructor
2345 2345
    ///
2346 2346
    /// Constructor
2347 2347
    /// \param _graph The graph that the map belongs to.
2348 2348
    explicit ForwardMap(const Graph& graph) : _graph(graph) {}
2349 2349

	
2350 2350
    /// \brief The subscript operator.
2351 2351
    ///
2352 2352
    /// The subscript operator.
2353 2353
    /// \param key An edge
2354 2354
    /// \return The "forward" directed arc view of edge
2355 2355
    Value operator[](const Key& key) const {
2356 2356
      return _graph.direct(key, true);
2357 2357
    }
2358 2358

	
2359 2359
  private:
2360 2360
    const Graph& _graph;
2361 2361
  };
2362 2362

	
2363
  /// \brief Returns a \ref ForwardMap class.
2363
  /// \brief Returns a \c ForwardMap class.
2364 2364
  ///
2365
  /// This function just returns an \ref ForwardMap class.
2365
  /// This function just returns an \c ForwardMap class.
2366 2366
  /// \relates ForwardMap
2367 2367
  template <typename Graph>
2368 2368
  inline ForwardMap<Graph> forwardMap(const Graph& graph) {
2369 2369
    return ForwardMap<Graph>(graph);
2370 2370
  }
2371 2371

	
2372 2372
  /// \brief Returns the "backward" directed arc view of an edge.
2373 2373
  ///
2374 2374
  /// Returns the "backward" directed arc view of an edge.
2375 2375
  /// \see ForwardMap
2376 2376
  template <typename Graph>
2377 2377
  class BackwardMap {
2378 2378
  public:
2379 2379

	
2380 2380
    typedef typename Graph::Arc Value;
2381 2381
    typedef typename Graph::Edge Key;
2382 2382

	
2383 2383
    /// \brief Constructor
2384 2384
    ///
2385 2385
    /// Constructor
2386 2386
    /// \param _graph The graph that the map belongs to.
2387 2387
    explicit BackwardMap(const Graph& graph) : _graph(graph) {}
2388 2388

	
2389 2389
    /// \brief The subscript operator.
2390 2390
    ///
2391 2391
    /// The subscript operator.
2392 2392
    /// \param key An edge
2393 2393
    /// \return The "backward" directed arc view of edge
2394 2394
    Value operator[](const Key& key) const {
2395 2395
      return _graph.direct(key, false);
2396 2396
    }
2397 2397

	
2398 2398
  private:
2399 2399
    const Graph& _graph;
2400 2400
  };
2401 2401

	
2402
  /// \brief Returns a \ref BackwardMap class
2403

	
2404
  /// This function just returns a \ref BackwardMap class.
2402
  /// \brief Returns a \c BackwardMap class
2403

	
2404
  /// This function just returns a \c BackwardMap class.
2405 2405
  /// \relates BackwardMap
2406 2406
  template <typename Graph>
2407 2407
  inline BackwardMap<Graph> backwardMap(const Graph& graph) {
2408 2408
    return BackwardMap<Graph>(graph);
2409 2409
  }
2410 2410

	
2411 2411
  /// \brief Potential difference map
2412 2412
  ///
2413 2413
  /// If there is an potential map on the nodes then we
2414 2414
  /// can get an arc map as we get the substraction of the
2415 2415
  /// values of the target and source.
2416 2416
  template <typename Digraph, typename NodeMap>
2417 2417
  class PotentialDifferenceMap {
2418 2418
  public:
2419 2419
    typedef typename Digraph::Arc Key;
2420 2420
    typedef typename NodeMap::Value Value;
2421 2421

	
2422 2422
    /// \brief Constructor
2423 2423
    ///
2424 2424
    /// Contructor of the map
2425 2425
    explicit PotentialDifferenceMap(const Digraph& digraph,
2426 2426
                                    const NodeMap& potential)
2427 2427
      : _digraph(digraph), _potential(potential) {}
2428 2428

	
2429 2429
    /// \brief Const subscription operator
2430 2430
    ///
2431 2431
    /// Const subscription operator
2432 2432
    Value operator[](const Key& arc) const {
2433 2433
      return _potential[_digraph.target(arc)] -
2434 2434
        _potential[_digraph.source(arc)];
2435 2435
    }
2436 2436

	
2437 2437
  private:
2438 2438
    const Digraph& _digraph;
2439 2439
    const NodeMap& _potential;
2440 2440
  };
2441 2441

	
2442 2442
  /// \brief Returns a PotentialDifferenceMap.
2443 2443
  ///
2444 2444
  /// This function just returns a PotentialDifferenceMap.
2445 2445
  /// \relates PotentialDifferenceMap
2446 2446
  template <typename Digraph, typename NodeMap>
2447 2447
  PotentialDifferenceMap<Digraph, NodeMap>
2448 2448
  potentialDifferenceMap(const Digraph& digraph, const NodeMap& potential) {
2449 2449
    return PotentialDifferenceMap<Digraph, NodeMap>(digraph, potential);
2450 2450
  }
2451 2451

	
2452 2452
  /// \brief Map of the node in-degrees.
0 comments (0 inline)