0
2
4
63
11
1 |
/* -*- C++ -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2008 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_BINOM_HEAP_H |
|
20 |
#define LEMON_BINOM_HEAP_H |
|
21 |
|
|
22 |
///\file |
|
23 |
///\ingroup auxdat |
|
24 |
///\brief Binomial Heap implementation. |
|
25 |
|
|
26 |
#include <vector> |
|
27 |
#include <functional> |
|
28 |
#include <lemon/math.h> |
|
29 |
#include <lemon/counter.h> |
|
30 |
|
|
31 |
namespace lemon { |
|
32 |
|
|
33 |
/// \ingroup auxdat |
|
34 |
/// |
|
35 |
///\brief Binomial Heap. |
|
36 |
/// |
|
37 |
///This class implements the \e Binomial \e heap data structure. A \e heap |
|
38 |
///is a data structure for storing items with specified values called \e |
|
39 |
///priorities in such a way that finding the item with minimum priority is |
|
40 |
///efficient. \c Compare specifies the ordering of the priorities. In a heap |
|
41 |
///one can change the priority of an item, add or erase an item, etc. |
|
42 |
/// |
|
43 |
///The methods \ref increase and \ref erase are not efficient in a Binomial |
|
44 |
///heap. In case of many calls to these operations, it is better to use a |
|
45 |
///\ref BinHeap "binary heap". |
|
46 |
/// |
|
47 |
///\param _Prio Type of the priority of the items. |
|
48 |
///\param _ItemIntMap A read and writable Item int map, used internally |
|
49 |
///to handle the cross references. |
|
50 |
///\param _Compare A class for the ordering of the priorities. The |
|
51 |
///default is \c std::less<_Prio>. |
|
52 |
/// |
|
53 |
///\sa BinHeap |
|
54 |
///\sa Dijkstra |
|
55 |
///\author Dorian Batha |
|
56 |
|
|
57 |
#ifdef DOXYGEN |
|
58 |
template <typename _Prio, |
|
59 |
typename _ItemIntMap, |
|
60 |
typename _Compare> |
|
61 |
#else |
|
62 |
template <typename _Prio, |
|
63 |
typename _ItemIntMap, |
|
64 |
typename _Compare = std::less<_Prio> > |
|
65 |
#endif |
|
66 |
class BinomHeap { |
|
67 |
public: |
|
68 |
typedef _ItemIntMap ItemIntMap; |
|
69 |
typedef _Prio Prio; |
|
70 |
typedef typename ItemIntMap::Key Item; |
|
71 |
typedef std::pair<Item,Prio> Pair; |
|
72 |
typedef _Compare Compare; |
|
73 |
|
|
74 |
private: |
|
75 |
class store; |
|
76 |
|
|
77 |
std::vector<store> container; |
|
78 |
int minimum, head; |
|
79 |
ItemIntMap &iimap; |
|
80 |
Compare comp; |
|
81 |
int num_items; |
|
82 |
|
|
83 |
public: |
|
84 |
///Status of the nodes |
|
85 |
enum State { |
|
86 |
///The node is in the heap |
|
87 |
IN_HEAP = 0, |
|
88 |
///The node has never been in the heap |
|
89 |
PRE_HEAP = -1, |
|
90 |
///The node was in the heap but it got out of it |
|
91 |
POST_HEAP = -2 |
|
92 |
}; |
|
93 |
|
|
94 |
/// \brief The constructor |
|
95 |
/// |
|
96 |
/// \c _iimap should be given to the constructor, since it is |
|
97 |
/// used internally to handle the cross references. |
|
98 |
explicit BinomHeap(ItemIntMap &_iimap) |
|
99 |
: minimum(0), head(-1), iimap(_iimap), num_items() {} |
|
100 |
|
|
101 |
/// \brief The constructor |
|
102 |
/// |
|
103 |
/// \c _iimap should be given to the constructor, since it is used |
|
104 |
/// internally to handle the cross references. \c _comp is an |
|
105 |
/// object for ordering of the priorities. |
|
106 |
BinomHeap(ItemIntMap &_iimap, const Compare &_comp) |
|
107 |
: minimum(0), head(-1), iimap(_iimap), comp(_comp), num_items() {} |
|
108 |
|
|
109 |
/// \brief The number of items stored in the heap. |
|
110 |
/// |
|
111 |
/// Returns the number of items stored in the heap. |
|
112 |
int size() const { return num_items; } |
|
113 |
|
|
114 |
/// \brief Checks if the heap stores no items. |
|
115 |
/// |
|
116 |
/// Returns \c true if and only if the heap stores no items. |
|
117 |
bool empty() const { return num_items==0; } |
|
118 |
|
|
119 |
/// \brief Make empty this heap. |
|
120 |
/// |
|
121 |
/// Make empty this heap. It does not change the cross reference |
|
122 |
/// map. If you want to reuse a heap what is not surely empty you |
|
123 |
/// should first clear the heap and after that you should set the |
|
124 |
/// cross reference map for each item to \c PRE_HEAP. |
|
125 |
void clear() { |
|
126 |
container.clear(); minimum=0; num_items=0; head=-1; |
|
127 |
} |
|
128 |
|
|
129 |
/// \brief \c item gets to the heap with priority \c value independently |
|
130 |
/// if \c item was already there. |
|
131 |
/// |
|
132 |
/// This method calls \ref push(\c item, \c value) if \c item is not |
|
133 |
/// stored in the heap and it calls \ref decrease(\c item, \c value) or |
|
134 |
/// \ref increase(\c item, \c value) otherwise. |
|
135 |
void set (const Item& item, const Prio& value) { |
|
136 |
int i=iimap[item]; |
|
137 |
if ( i >= 0 && container[i].in ) { |
|
138 |
if ( comp(value, container[i].prio) ) decrease(item, value); |
|
139 |
if ( comp(container[i].prio, value) ) increase(item, value); |
|
140 |
} else push(item, value); |
|
141 |
} |
|
142 |
|
|
143 |
/// \brief Adds \c item to the heap with priority \c value. |
|
144 |
/// |
|
145 |
/// Adds \c item to the heap with priority \c value. |
|
146 |
/// \pre \c item must not be stored in the heap. |
|
147 |
void push (const Item& item, const Prio& value) { |
|
148 |
int i=iimap[item]; |
|
149 |
if ( i<0 ) { |
|
150 |
int s=container.size(); |
|
151 |
iimap.set( item,s ); |
|
152 |
store st; |
|
153 |
st.name=item; |
|
154 |
container.push_back(st); |
|
155 |
i=s; |
|
156 |
} |
|
157 |
else { |
|
158 |
container[i].parent=container[i].right_neighbor=container[i].child=-1; |
|
159 |
container[i].degree=0; |
|
160 |
container[i].in=true; |
|
161 |
} |
|
162 |
container[i].prio=value; |
|
163 |
|
|
164 |
if( 0==num_items ) { head=i; minimum=i; } |
|
165 |
else { merge(i); } |
|
166 |
|
|
167 |
minimum = find_min(); |
|
168 |
|
|
169 |
++num_items; |
|
170 |
} |
|
171 |
|
|
172 |
/// \brief Returns the item with minimum priority relative to \c Compare. |
|
173 |
/// |
|
174 |
/// This method returns the item with minimum priority relative to \c |
|
175 |
/// Compare. |
|
176 |
/// \pre The heap must be nonempty. |
|
177 |
Item top() const { return container[minimum].name; } |
|
178 |
|
|
179 |
/// \brief Returns the minimum priority relative to \c Compare. |
|
180 |
/// |
|
181 |
/// It returns the minimum priority relative to \c Compare. |
|
182 |
/// \pre The heap must be nonempty. |
|
183 |
const Prio& prio() const { return container[minimum].prio; } |
|
184 |
|
|
185 |
/// \brief Returns the priority of \c item. |
|
186 |
/// |
|
187 |
/// It returns the priority of \c item. |
|
188 |
/// \pre \c item must be in the heap. |
|
189 |
const Prio& operator[](const Item& item) const { |
|
190 |
return container[iimap[item]].prio; |
|
191 |
} |
|
192 |
|
|
193 |
/// \brief Deletes the item with minimum priority relative to \c Compare. |
|
194 |
/// |
|
195 |
/// This method deletes the item with minimum priority relative to \c |
|
196 |
/// Compare from the heap. |
|
197 |
/// \pre The heap must be non-empty. |
|
198 |
void pop() { |
|
199 |
container[minimum].in=false; |
|
200 |
|
|
201 |
int head_child=-1; |
|
202 |
if ( container[minimum].child!=-1 ) { |
|
203 |
int child=container[minimum].child; |
|
204 |
int neighb; |
|
205 |
int prev=-1; |
|
206 |
while( child!=-1 ) { |
|
207 |
neighb=container[child].right_neighbor; |
|
208 |
container[child].parent=-1; |
|
209 |
container[child].right_neighbor=prev; |
|
210 |
head_child=child; |
|
211 |
prev=child; |
|
212 |
child=neighb; |
|
213 |
} |
|
214 |
} |
|
215 |
|
|
216 |
// The first case is that there are only one root. |
|
217 |
if ( -1==container[head].right_neighbor ) { |
|
218 |
head=head_child; |
|
219 |
} |
|
220 |
// The case where there are more roots. |
|
221 |
else { |
|
222 |
if( head!=minimum ) { unlace(minimum); } |
|
223 |
else { head=container[head].right_neighbor; } |
|
224 |
|
|
225 |
merge(head_child); |
|
226 |
} |
|
227 |
minimum=find_min(); |
|
228 |
--num_items; |
|
229 |
} |
|
230 |
|
|
231 |
/// \brief Deletes \c item from the heap. |
|
232 |
/// |
|
233 |
/// This method deletes \c item from the heap, if \c item was already |
|
234 |
/// stored in the heap. It is quite inefficient in Binomial heaps. |
|
235 |
void erase (const Item& item) { |
|
236 |
int i=iimap[item]; |
|
237 |
if ( i >= 0 && container[i].in ) { |
|
238 |
decrease( item, container[minimum].prio-1 ); |
|
239 |
pop(); |
|
240 |
} |
|
241 |
} |
|
242 |
|
|
243 |
/// \brief Decreases the priority of \c item to \c value. |
|
244 |
/// |
|
245 |
/// This method decreases the priority of \c item to \c value. |
|
246 |
/// \pre \c item must be stored in the heap with priority at least \c |
|
247 |
/// value relative to \c Compare. |
|
248 |
void decrease (Item item, const Prio& value) { |
|
249 |
int i=iimap[item]; |
|
250 |
|
|
251 |
if( comp( value,container[i].prio ) ) { |
|
252 |
container[i].prio=value; |
|
253 |
|
|
254 |
int p_loc=container[i].parent, loc=i; |
|
255 |
int parent, child, neighb; |
|
256 |
|
|
257 |
while( -1!=p_loc && comp(container[loc].prio,container[p_loc].prio) ) { |
|
258 |
|
|
259 |
// parent set for other loc_child |
|
260 |
child=container[loc].child; |
|
261 |
while( -1!=child ) { |
|
262 |
container[child].parent=p_loc; |
|
263 |
child=container[child].right_neighbor; |
|
264 |
} |
|
265 |
|
|
266 |
// parent set for other p_loc_child |
|
267 |
child=container[p_loc].child; |
|
268 |
while( -1!=child ) { |
|
269 |
container[child].parent=loc; |
|
270 |
child=container[child].right_neighbor; |
|
271 |
} |
|
272 |
|
|
273 |
child=container[p_loc].child; |
|
274 |
container[p_loc].child=container[loc].child; |
|
275 |
if( child==loc ) |
|
276 |
child=p_loc; |
|
277 |
container[loc].child=child; |
|
278 |
|
|
279 |
// left_neighb set for p_loc |
|
280 |
if( container[loc].child!=p_loc ) { |
|
281 |
while( container[child].right_neighbor!=loc ) |
|
282 |
child=container[child].right_neighbor; |
|
283 |
container[child].right_neighbor=p_loc; |
|
284 |
} |
|
285 |
|
|
286 |
// left_neighb set for loc |
|
287 |
parent=container[p_loc].parent; |
|
288 |
if( -1!=parent ) child=container[parent].child; |
|
289 |
else child=head; |
|
290 |
|
|
291 |
if( child!=p_loc ) { |
|
292 |
while( container[child].right_neighbor!=p_loc ) |
|
293 |
child=container[child].right_neighbor; |
|
294 |
container[child].right_neighbor=loc; |
|
295 |
} |
|
296 |
|
|
297 |
neighb=container[p_loc].right_neighbor; |
|
298 |
container[p_loc].right_neighbor=container[loc].right_neighbor; |
|
299 |
container[loc].right_neighbor=neighb; |
|
300 |
|
|
301 |
container[p_loc].parent=loc; |
|
302 |
container[loc].parent=parent; |
|
303 |
|
|
304 |
if( -1!=parent && container[parent].child==p_loc ) |
|
305 |
container[parent].child=loc; |
|
306 |
|
|
307 |
/*if new parent will be the first root*/ |
|
308 |
if( head==p_loc ) |
|
309 |
head=loc; |
|
310 |
|
|
311 |
p_loc=container[loc].parent; |
|
312 |
} |
|
313 |
} |
|
314 |
if( comp(value,container[minimum].prio) ) { |
|
315 |
minimum=i; |
|
316 |
} |
|
317 |
} |
|
318 |
|
|
319 |
/// \brief Increases the priority of \c item to \c value. |
|
320 |
/// |
|
321 |
/// This method sets the priority of \c item to \c value. Though |
|
322 |
/// there is no precondition on the priority of \c item, this |
|
323 |
/// method should be used only if it is indeed necessary to increase |
|
324 |
/// (relative to \c Compare) the priority of \c item, because this |
|
325 |
/// method is inefficient. |
|
326 |
void increase (Item item, const Prio& value) { |
|
327 |
erase(item); |
|
328 |
push(item, value); |
|
329 |
} |
|
330 |
|
|
331 |
|
|
332 |
/// \brief Returns if \c item is in, has already been in, or has never |
|
333 |
/// been in the heap. |
|
334 |
/// |
|
335 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
336 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
337 |
/// otherwise. In the latter case it is possible that \c item will |
|
338 |
/// get back to the heap again. |
|
339 |
State state(const Item &item) const { |
|
340 |
int i=iimap[item]; |
|
341 |
if( i>=0 ) { |
|
342 |
if ( container[i].in ) i=0; |
|
343 |
else i=-2; |
|
344 |
} |
|
345 |
return State(i); |
|
346 |
} |
|
347 |
|
|
348 |
/// \brief Sets the state of the \c item in the heap. |
|
349 |
/// |
|
350 |
/// Sets the state of the \c item in the heap. It can be used to |
|
351 |
/// manually clear the heap when it is important to achive the |
|
352 |
/// better time complexity. |
|
353 |
/// \param i The item. |
|
354 |
/// \param st The state. It should not be \c IN_HEAP. |
|
355 |
void state(const Item& i, State st) { |
|
356 |
switch (st) { |
|
357 |
case POST_HEAP: |
|
358 |
case PRE_HEAP: |
|
359 |
if (state(i) == IN_HEAP) { |
|
360 |
erase(i); |
|
361 |
} |
|
362 |
iimap[i] = st; |
|
363 |
break; |
|
364 |
case IN_HEAP: |
|
365 |
break; |
|
366 |
} |
|
367 |
} |
|
368 |
|
|
369 |
private: |
|
370 |
int find_min() { |
|
371 |
int min_loc=-1, min_val; |
|
372 |
int x=head; |
|
373 |
if( x!=-1 ) { |
|
374 |
min_val=container[x].prio; |
|
375 |
min_loc=x; |
|
376 |
x=container[x].right_neighbor; |
|
377 |
|
|
378 |
while( x!=-1 ) { |
|
379 |
if( comp( container[x].prio,min_val ) ) { |
|
380 |
min_val=container[x].prio; |
|
381 |
min_loc=x; |
|
382 |
} |
|
383 |
x=container[x].right_neighbor; |
|
384 |
} |
|
385 |
} |
|
386 |
return min_loc; |
|
387 |
} |
|
388 |
|
|
389 |
void merge(int a) { |
|
390 |
interleave(a); |
|
391 |
|
|
392 |
int x=head; |
|
393 |
if( -1!=x ) { |
|
394 |
int x_prev=-1, x_next=container[x].right_neighbor; |
|
395 |
while( -1!=x_next ) { |
|
396 |
if( container[x].degree!=container[x_next].degree || ( -1!=container[x_next].right_neighbor && container[container[x_next].right_neighbor].degree==container[x].degree ) ) { |
|
397 |
x_prev=x; |
|
398 |
x=x_next; |
|
399 |
} |
|
400 |
else { |
|
401 |
if( comp(container[x].prio,container[x_next].prio) ) { |
|
402 |
container[x].right_neighbor=container[x_next].right_neighbor; |
|
403 |
fuse(x_next,x); |
|
404 |
} |
|
405 |
else { |
|
406 |
if( -1==x_prev ) { head=x_next; } |
|
407 |
else { |
|
408 |
container[x_prev].right_neighbor=x_next; |
|
409 |
} |
|
410 |
fuse(x,x_next); |
|
411 |
x=x_next; |
|
412 |
} |
|
413 |
} |
|
414 |
x_next=container[x].right_neighbor; |
|
415 |
} |
|
416 |
} |
|
417 |
} |
|
418 |
|
|
419 |
void interleave(int a) { |
|
420 |
int other=-1, head_other=-1; |
|
421 |
|
|
422 |
while( -1!=a || -1!=head ) { |
|
423 |
if( -1==a ) { |
|
424 |
if( -1==head_other ) { |
|
425 |
head_other=head; |
|
426 |
} |
|
427 |
else { |
|
428 |
container[other].right_neighbor=head; |
|
429 |
} |
|
430 |
head=-1; |
|
431 |
} |
|
432 |
else if( -1==head ) { |
|
433 |
if( -1==head_other ) { |
|
434 |
head_other=a; |
|
435 |
} |
|
436 |
else { |
|
437 |
container[other].right_neighbor=a; |
|
438 |
} |
|
439 |
a=-1; |
|
440 |
} |
|
441 |
else { |
|
442 |
if( container[a].degree<container[head].degree ) { |
|
443 |
if( -1==head_other ) { |
|
444 |
head_other=a; |
|
445 |
} |
|
446 |
else { |
|
447 |
container[other].right_neighbor=a; |
|
448 |
} |
|
449 |
other=a; |
|
450 |
a=container[a].right_neighbor; |
|
451 |
} |
|
452 |
else { |
|
453 |
if( -1==head_other ) { |
|
454 |
head_other=head; |
|
455 |
} |
|
456 |
else { |
|
457 |
container[other].right_neighbor=head; |
|
458 |
} |
|
459 |
other=head; |
|
460 |
head=container[head].right_neighbor; |
|
461 |
} |
|
462 |
} |
|
463 |
} |
|
464 |
head=head_other; |
|
465 |
} |
|
466 |
|
|
467 |
// Lacing a under b |
|
468 |
void fuse(int a, int b) { |
|
469 |
container[a].parent=b; |
|
470 |
container[a].right_neighbor=container[b].child; |
|
471 |
container[b].child=a; |
|
472 |
|
|
473 |
++container[b].degree; |
|
474 |
} |
|
475 |
|
|
476 |
// It is invoked only if a has siblings. |
|
477 |
void unlace(int a) { |
|
478 |
int neighb=container[a].right_neighbor; |
|
479 |
int other=head; |
|
480 |
|
|
481 |
while( container[other].right_neighbor!=a ) |
|
482 |
other=container[other].right_neighbor; |
|
483 |
container[other].right_neighbor=neighb; |
|
484 |
} |
|
485 |
|
|
486 |
private: |
|
487 |
|
|
488 |
class store { |
|
489 |
friend class BinomHeap; |
|
490 |
|
|
491 |
Item name; |
|
492 |
int parent; |
|
493 |
int right_neighbor; |
|
494 |
int child; |
|
495 |
int degree; |
|
496 |
bool in; |
|
497 |
Prio prio; |
|
498 |
|
|
499 |
store() : parent(-1), right_neighbor(-1), child(-1), degree(0), in(true) {} |
|
500 |
}; |
|
501 |
}; |
|
502 |
|
|
503 |
} //namespace lemon |
|
504 |
|
|
505 |
#endif //LEMON_BINOM_HEAP_H |
|
506 |
1 |
/* -*- C++ -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2008 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_FOURARY_HEAP_H |
|
20 |
#define LEMON_FOURARY_HEAP_H |
|
21 |
|
|
22 |
///\ingroup auxdat |
|
23 |
///\file |
|
24 |
///\brief 4ary Heap implementation. |
|
25 |
|
|
26 |
#include <iostream> |
|
27 |
#include <vector> |
|
28 |
#include <utility> |
|
29 |
#include <functional> |
|
30 |
|
|
31 |
namespace lemon { |
|
32 |
|
|
33 |
///\ingroup auxdat |
|
34 |
/// |
|
35 |
///\brief A 4ary Heap implementation. |
|
36 |
/// |
|
37 |
///This class implements the \e 4ary \e heap data structure. A \e heap |
|
38 |
///is a data structure for storing items with specified values called \e |
|
39 |
///priorities in such a way that finding the item with minimum priority is |
|
40 |
///efficient. \c Compare specifies the ordering of the priorities. In a heap |
|
41 |
///one can change the priority of an item, add or erase an item, etc. |
|
42 |
/// |
|
43 |
///\param _Prio Type of the priority of the items. |
|
44 |
///\param _ItemIntMap A read and writable Item int map, used internally |
|
45 |
///to handle the cross references. |
|
46 |
///\param _Compare A class for the ordering of the priorities. The |
|
47 |
///default is \c std::less<_Prio>. |
|
48 |
/// |
|
49 |
///\sa FibHeap |
|
50 |
///\sa Dijkstra |
|
51 |
///\author Dorian Batha |
|
52 |
|
|
53 |
template <typename _Prio, typename _ItemIntMap, |
|
54 |
typename _Compare = std::less<_Prio> > |
|
55 |
|
|
56 |
class FouraryHeap { |
|
57 |
|
|
58 |
public: |
|
59 |
///\e |
|
60 |
typedef _ItemIntMap ItemIntMap; |
|
61 |
///\e |
|
62 |
typedef _Prio Prio; |
|
63 |
///\e |
|
64 |
typedef typename ItemIntMap::Key Item; |
|
65 |
///\e |
|
66 |
typedef std::pair<Item,Prio> Pair; |
|
67 |
///\e |
|
68 |
typedef _Compare Compare; |
|
69 |
|
|
70 |
/// \brief Type to represent the items states. |
|
71 |
/// |
|
72 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
73 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
74 |
/// heap's point of view, but may be useful to the user. |
|
75 |
/// |
|
76 |
/// The ItemIntMap \e should be initialized in such way that it maps |
|
77 |
/// PRE_HEAP (-1) to any element to be put in the heap... |
|
78 |
enum State { |
|
79 |
IN_HEAP = 0, |
|
80 |
PRE_HEAP = -1, |
|
81 |
POST_HEAP = -2 |
|
82 |
}; |
|
83 |
|
|
84 |
private: |
|
85 |
std::vector<Pair> data; |
|
86 |
Compare comp; |
|
87 |
ItemIntMap &iim; |
|
88 |
|
|
89 |
public: |
|
90 |
/// \brief The constructor. |
|
91 |
/// |
|
92 |
/// The constructor. |
|
93 |
/// \param _iim should be given to the constructor, since it is used |
|
94 |
/// internally to handle the cross references. The value of the map |
|
95 |
/// should be PRE_HEAP (-1) for each element. |
|
96 |
explicit FouraryHeap(ItemIntMap &_iim) : iim(_iim) {} |
|
97 |
|
|
98 |
/// \brief The constructor. |
|
99 |
/// |
|
100 |
/// The constructor. |
|
101 |
/// \param _iim should be given to the constructor, since it is used |
|
102 |
/// internally to handle the cross references. The value of the map |
|
103 |
/// should be PRE_HEAP (-1) for each element. |
|
104 |
/// |
|
105 |
/// \param _comp The comparator function object. |
|
106 |
FouraryHeap(ItemIntMap &_iim, const Compare &_comp) |
|
107 |
: iim(_iim), comp(_comp) {} |
|
108 |
|
|
109 |
/// The number of items stored in the heap. |
|
110 |
/// |
|
111 |
/// \brief Returns the number of items stored in the heap. |
|
112 |
int size() const { return data.size(); } |
|
113 |
|
|
114 |
/// \brief Checks if the heap stores no items. |
|
115 |
/// |
|
116 |
/// Returns \c true if and only if the heap stores no items. |
|
117 |
bool empty() const { return data.empty(); } |
|
118 |
|
|
119 |
/// \brief Make empty this heap. |
|
120 |
/// |
|
121 |
/// Make empty this heap. It does not change the cross reference map. |
|
122 |
/// If you want to reuse what is not surely empty you should first clear |
|
123 |
/// the heap and after that you should set the cross reference map for |
|
124 |
/// each item to \c PRE_HEAP. |
|
125 |
void clear() { data.clear(); } |
|
126 |
|
|
127 |
private: |
|
128 |
static int parent(int i) { return (i-1)/4; } |
|
129 |
static int firstChild(int i) { return 4*i+1; } |
|
130 |
|
|
131 |
bool less(const Pair &p1, const Pair &p2) const { |
|
132 |
return comp(p1.second, p2.second); |
|
133 |
} |
|
134 |
|
|
135 |
int find_min(const int child, const int length) { |
|
136 |
int min=child; |
|
137 |
if( child+3<length ) { |
|
138 |
if( less(data[child+3], data[min]) ) |
|
139 |
min=child+3; |
|
140 |
if( less(data[child+2], data[min]) ) |
|
141 |
min=child+2; |
|
142 |
if( less(data[child+1], data[min]) ) |
|
143 |
min=child+1; |
|
144 |
} |
|
145 |
else if( child+2<length ) { |
|
146 |
if( less(data[child+2], data[min]) ) |
|
147 |
min=child+2; |
|
148 |
if( less(data[child+1], data[min]) ) |
|
149 |
min=child+1; |
|
150 |
} |
|
151 |
else if( child+1<length ) { |
|
152 |
if( less(data[child+1], data[min]) ) |
|
153 |
min=child+1; |
|
154 |
} |
|
155 |
return min; |
|
156 |
} |
|
157 |
|
|
158 |
void bubble_up(int hole, Pair p) { |
|
159 |
int par = parent(hole); |
|
160 |
while( hole>0 && less(p,data[par]) ) { |
|
161 |
move(data[par],hole); |
|
162 |
hole = par; |
|
163 |
par = parent(hole); |
|
164 |
} |
|
165 |
move(p, hole); |
|
166 |
} |
|
167 |
|
|
168 |
void bubble_down(int hole, Pair p, int length) { |
|
169 |
int child = firstChild(hole); |
|
170 |
while( child<length && length>1 ) { |
|
171 |
child = find_min(child,length); |
|
172 |
if( !less(data[child], p) ) |
|
173 |
goto ok; |
|
174 |
move(data[child], hole); |
|
175 |
hole = child; |
|
176 |
child = firstChild(hole); |
|
177 |
} |
|
178 |
ok: |
|
179 |
move(p, hole); |
|
180 |
} |
|
181 |
|
|
182 |
void move(const Pair &p, int i) { |
|
183 |
data[i] = p; |
|
184 |
iim.set(p.first, i); |
|
185 |
} |
|
186 |
|
|
187 |
public: |
|
188 |
|
|
189 |
/// \brief Insert a pair of item and priority into the heap. |
|
190 |
/// |
|
191 |
/// Adds \c p.first to the heap with priority \c p.second. |
|
192 |
/// \param p The pair to insert. |
|
193 |
void push(const Pair &p) { |
|
194 |
int n = data.size(); |
|
195 |
data.resize(n+1); |
|
196 |
bubble_up(n, p); |
|
197 |
} |
|
198 |
|
|
199 |
/// \brief Insert an item into the heap with the given heap. |
|
200 |
/// |
|
201 |
/// Adds \c i to the heap with priority \c p. |
|
202 |
/// \param i The item to insert. |
|
203 |
/// \param p The priority of the item. |
|
204 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); } |
|
205 |
|
|
206 |
/// \brief Returns the item with minimum priority relative to \c Compare. |
|
207 |
/// |
|
208 |
/// This method returns the item with minimum priority relative to \c |
|
209 |
/// Compare. |
|
210 |
/// \pre The heap must be nonempty. |
|
211 |
Item top() const { return data[0].first; } |
|
212 |
|
|
213 |
/// \brief Returns the minimum priority relative to \c Compare. |
|
214 |
/// |
|
215 |
/// It returns the minimum priority relative to \c Compare. |
|
216 |
/// \pre The heap must be nonempty. |
|
217 |
Prio prio() const { return data[0].second; } |
|
218 |
|
|
219 |
/// \brief Deletes the item with minimum priority relative to \c Compare. |
|
220 |
/// |
|
221 |
/// This method deletes the item with minimum priority relative to \c |
|
222 |
/// Compare from the heap. |
|
223 |
/// \pre The heap must be non-empty. |
|
224 |
void pop() { |
|
225 |
int n = data.size()-1; |
|
226 |
iim.set(data[0].first, POST_HEAP); |
|
227 |
if (n>0) bubble_down(0, data[n], n); |
|
228 |
data.pop_back(); |
|
229 |
} |
|
230 |
|
|
231 |
/// \brief Deletes \c i from the heap. |
|
232 |
/// |
|
233 |
/// This method deletes item \c i from the heap. |
|
234 |
/// \param i The item to erase. |
|
235 |
/// \pre The item should be in the heap. |
|
236 |
void erase(const Item &i) { |
|
237 |
int h = iim[i]; |
|
238 |
int n = data.size()-1; |
|
239 |
iim.set(data[h].first, POST_HEAP); |
|
240 |
if( h<n ) { |
|
241 |
if( less(data[parent(h)], data[n]) ) |
|
242 |
bubble_down(h, data[n], n); |
|
243 |
else |
|
244 |
bubble_up(h, data[n]); |
|
245 |
} |
|
246 |
data.pop_back(); |
|
247 |
} |
|
248 |
|
|
249 |
/// \brief Returns the priority of \c i. |
|
250 |
/// |
|
251 |
/// This function returns the priority of item \c i. |
|
252 |
/// \pre \c i must be in the heap. |
|
253 |
/// \param i The item. |
|
254 |
Prio operator[](const Item &i) const { |
|
255 |
int idx = iim[i]; |
|
256 |
return data[idx].second; |
|
257 |
} |
|
258 |
|
|
259 |
/// \brief \c i gets to the heap with priority \c p independently |
|
260 |
/// if \c i was already there. |
|
261 |
/// |
|
262 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
|
263 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
|
264 |
/// \param i The item. |
|
265 |
/// \param p The priority. |
|
266 |
void set(const Item &i, const Prio &p) { |
|
267 |
int idx = iim[i]; |
|
268 |
if( idx < 0 ) |
|
269 |
push(i,p); |
|
270 |
else if( comp(p, data[idx].second) ) |
|
271 |
bubble_up(idx, Pair(i,p)); |
|
272 |
else |
|
273 |
bubble_down(idx, Pair(i,p), data.size()); |
|
274 |
} |
|
275 |
|
|
276 |
/// \brief Decreases the priority of \c i to \c p. |
|
277 |
/// |
|
278 |
/// This method decreases the priority of item \c i to \c p. |
|
279 |
/// \pre \c i must be stored in the heap with priority at least \c |
|
280 |
/// p relative to \c Compare. |
|
281 |
/// \param i The item. |
|
282 |
/// \param p The priority. |
|
283 |
void decrease(const Item &i, const Prio &p) { |
|
284 |
int idx = iim[i]; |
|
285 |
bubble_up(idx, Pair(i,p)); |
|
286 |
} |
|
287 |
|
|
288 |
/// \brief Increases the priority of \c i to \c p. |
|
289 |
/// |
|
290 |
/// This method sets the priority of item \c i to \c p. |
|
291 |
/// \pre \c i must be stored in the heap with priority at most \c |
|
292 |
/// p relative to \c Compare. |
|
293 |
/// \param i The item. |
|
294 |
/// \param p The priority. |
|
295 |
void increase(const Item &i, const Prio &p) { |
|
296 |
int idx = iim[i]; |
|
297 |
bubble_down(idx, Pair(i,p), data.size()); |
|
298 |
} |
|
299 |
|
|
300 |
/// \brief Returns if \c item is in, has already been in, or has |
|
301 |
/// never been in the heap. |
|
302 |
/// |
|
303 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
304 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
305 |
/// otherwise. In the latter case it is possible that \c item will |
|
306 |
/// get back to the heap again. |
|
307 |
/// \param i The item. |
|
308 |
State state(const Item &i) const { |
|
309 |
int s = iim[i]; |
|
310 |
if (s>=0) s=0; |
|
311 |
return State(s); |
|
312 |
} |
|
313 |
|
|
314 |
/// \brief Sets the state of the \c item in the heap. |
|
315 |
/// |
|
316 |
/// Sets the state of the \c item in the heap. It can be used to |
|
317 |
/// manually clear the heap when it is important to achive the |
|
318 |
/// better time complexity. |
|
319 |
/// \param i The item. |
|
320 |
/// \param st The state. It should not be \c IN_HEAP. |
|
321 |
void state(const Item& i, State st) { |
|
322 |
switch (st) { |
|
323 |
case POST_HEAP: |
|
324 |
case PRE_HEAP: |
|
325 |
if (state(i) == IN_HEAP) erase(i); |
|
326 |
iim[i] = st; |
|
327 |
break; |
|
328 |
case IN_HEAP: |
|
329 |
break; |
|
330 |
} |
|
331 |
} |
|
332 |
|
|
333 |
/// \brief Replaces an item in the heap. |
|
334 |
/// |
|
335 |
/// The \c i item is replaced with \c j item. The \c i item should |
|
336 |
/// be in the heap, while the \c j should be out of the heap. The |
|
337 |
/// \c i item will out of the heap and \c j will be in the heap |
|
338 |
/// with the same prioriority as prevoiusly the \c i item. |
|
339 |
void replace(const Item& i, const Item& j) { |
|
340 |
int idx = iim[i]; |
|
341 |
iim.set(i, iim[j]); |
|
342 |
iim.set(j, idx); |
|
343 |
data[idx].first = j; |
|
344 |
} |
|
345 |
|
|
346 |
}; // class FouraryHeap |
|
347 |
|
|
348 |
} // namespace lemon |
|
349 |
|
|
350 |
#endif // LEMON_FOURARY_HEAP_H |
1 |
/* -*- C++ -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2008 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_KARY_HEAP_H |
|
20 |
#define LEMON_KARY_HEAP_H |
|
21 |
|
|
22 |
///\ingroup auxdat |
|
23 |
///\file |
|
24 |
///\brief Kary Heap implementation. |
|
25 |
|
|
26 |
#include <iostream> |
|
27 |
#include <vector> |
|
28 |
#include <utility> |
|
29 |
#include <functional> |
|
30 |
|
|
31 |
namespace lemon { |
|
32 |
|
|
33 |
///\ingroup auxdat |
|
34 |
/// |
|
35 |
///\brief A Kary Heap implementation. |
|
36 |
/// |
|
37 |
///This class implements the \e Kary \e heap data structure. A \e heap |
|
38 |
///is a data structure for storing items with specified values called \e |
|
39 |
///priorities in such a way that finding the item with minimum priority is |
|
40 |
///efficient. \c Compare specifies the ordering of the priorities. In a heap |
|
41 |
///one can change the priority of an item, add or erase an item, etc. |
|
42 |
/// |
|
43 |
///\param _Prio Type of the priority of the items. |
|
44 |
///\param _ItemIntMap A read and writable Item int map, used internally |
|
45 |
///to handle the cross references. |
|
46 |
///\param _Compare A class for the ordering of the priorities. The |
|
47 |
///default is \c std::less<_Prio>. |
|
48 |
/// |
|
49 |
///\sa FibHeap |
|
50 |
///\sa Dijkstra |
|
51 |
///\author Dorian Batha |
|
52 |
|
|
53 |
template <typename _Prio, typename _ItemIntMap, |
|
54 |
typename _Compare = std::less<_Prio> > |
|
55 |
|
|
56 |
class KaryHeap { |
|
57 |
|
|
58 |
public: |
|
59 |
///\e |
|
60 |
typedef _ItemIntMap ItemIntMap; |
|
61 |
///\e |
|
62 |
typedef _Prio Prio; |
|
63 |
///\e |
|
64 |
typedef typename ItemIntMap::Key Item; |
|
65 |
///\e |
|
66 |
typedef std::pair<Item,Prio> Pair; |
|
67 |
///\e |
|
68 |
typedef _Compare Compare; |
|
69 |
///\e |
|
70 |
|
|
71 |
/// \brief Type to represent the items states. |
|
72 |
/// |
|
73 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
74 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
75 |
/// heap's point of view, but may be useful to the user. |
|
76 |
/// |
|
77 |
/// The ItemIntMap \e should be initialized in such way that it maps |
|
78 |
/// PRE_HEAP (-1) to any element to be put in the heap... |
|
79 |
enum State { |
|
80 |
IN_HEAP = 0, |
|
81 |
PRE_HEAP = -1, |
|
82 |
POST_HEAP = -2 |
|
83 |
}; |
|
84 |
|
|
85 |
private: |
|
86 |
std::vector<Pair> data; |
|
87 |
Compare comp; |
|
88 |
ItemIntMap &iim; |
|
89 |
int K; |
|
90 |
|
|
91 |
public: |
|
92 |
/// \brief The constructor. |
|
93 |
/// |
|
94 |
/// The constructor. |
|
95 |
/// \param _iim should be given to the constructor, since it is used |
|
96 |
/// internally to handle the cross references. The value of the map |
|
97 |
/// should be PRE_HEAP (-1) for each element. |
|
98 |
explicit KaryHeap(ItemIntMap &_iim, const int &_K=32) : iim(_iim), K(_K) {} |
|
99 |
|
|
100 |
/// \brief The constructor. |
|
101 |
/// |
|
102 |
/// The constructor. |
|
103 |
/// \param _iim should be given to the constructor, since it is used |
|
104 |
/// internally to handle the cross references. The value of the map |
|
105 |
/// should be PRE_HEAP (-1) for each element. |
|
106 |
/// |
|
107 |
/// \param _comp The comparator function object. |
|
108 |
KaryHeap(ItemIntMap &_iim, const Compare &_comp, const int &_K=32) |
|
109 |
: iim(_iim), comp(_comp), K(_K) {} |
|
110 |
|
|
111 |
|
|
112 |
/// The number of items stored in the heap. |
|
113 |
/// |
|
114 |
/// \brief Returns the number of items stored in the heap. |
|
115 |
int size() const { return data.size(); } |
|
116 |
|
|
117 |
/// \brief Checks if the heap stores no items. |
|
118 |
/// |
|
119 |
/// Returns \c true if and only if the heap stores no items. |
|
120 |
bool empty() const { return data.empty(); } |
|
121 |
|
|
122 |
/// \brief Make empty this heap. |
|
123 |
/// |
|
124 |
/// Make empty this heap. It does not change the cross reference map. |
|
125 |
/// If you want to reuse what is not surely empty you should first clear |
|
126 |
/// the heap and after that you should set the cross reference map for |
|
127 |
/// each item to \c PRE_HEAP. |
|
128 |
void clear() { data.clear(); } |
|
129 |
|
|
130 |
private: |
|
131 |
int parent(int i) { return (i-1)/K; } |
|
132 |
int first_child(int i) { return K*i+1; } |
|
133 |
|
|
134 |
bool less(const Pair &p1, const Pair &p2) const { |
|
135 |
return comp(p1.second, p2.second); |
|
136 |
} |
|
137 |
|
|
138 |
int find_min(const int child, const int length) { |
|
139 |
int min=child, i=1; |
|
140 |
while( i<K && child+i<length ) { |
|
141 |
if( less(data[child+i], data[min]) ) |
|
142 |
min=child+i; |
|
143 |
++i; |
|
144 |
} |
|
145 |
return min; |
|
146 |
} |
|
147 |
|
|
148 |
void bubble_up(int hole, Pair p) { |
|
149 |
int par = parent(hole); |
|
150 |
while( hole>0 && less(p,data[par]) ) { |
|
151 |
move(data[par],hole); |
|
152 |
hole = par; |
|
153 |
par = parent(hole); |
|
154 |
} |
|
155 |
move(p, hole); |
|
156 |
} |
|
157 |
|
|
158 |
void bubble_down(int hole, Pair p, int length) { |
|
159 |
if( length>1 ) { |
|
160 |
int child = first_child(hole); |
|
161 |
while( child<length ) { |
|
162 |
child = find_min(child, length); |
|
163 |
if( !less(data[child], p) ) |
|
164 |
goto ok; |
|
165 |
move(data[child], hole); |
|
166 |
hole = child; |
|
167 |
child = first_child(hole); |
|
168 |
} |
|
169 |
} |
|
170 |
ok: |
|
171 |
move(p, hole); |
|
172 |
} |
|
173 |
|
|
174 |
void move(const Pair &p, int i) { |
|
175 |
data[i] = p; |
|
176 |
iim.set(p.first, i); |
|
177 |
} |
|
178 |
|
|
179 |
public: |
|
180 |
/// \brief Insert a pair of item and priority into the heap. |
|
181 |
/// |
|
182 |
/// Adds \c p.first to the heap with priority \c p.second. |
|
183 |
/// \param p The pair to insert. |
|
184 |
void push(const Pair &p) { |
|
185 |
int n = data.size(); |
|
186 |
data.resize(n+1); |
|
187 |
bubble_up(n, p); |
|
188 |
} |
|
189 |
|
|
190 |
/// \brief Insert an item into the heap with the given heap. |
|
191 |
/// |
|
192 |
/// Adds \c i to the heap with priority \c p. |
|
193 |
/// \param i The item to insert. |
|
194 |
/// \param p The priority of the item. |
|
195 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); } |
|
196 |
|
|
197 |
/// \brief Returns the item with minimum priority relative to \c Compare. |
|
198 |
/// |
|
199 |
/// This method returns the item with minimum priority relative to \c |
|
200 |
/// Compare. |
|
201 |
/// \pre The heap must be nonempty. |
|
202 |
Item top() const { return data[0].first; } |
|
203 |
|
|
204 |
/// \brief Returns the minimum priority relative to \c Compare. |
|
205 |
/// |
|
206 |
/// It returns the minimum priority relative to \c Compare. |
|
207 |
/// \pre The heap must be nonempty. |
|
208 |
Prio prio() const { return data[0].second; } |
|
209 |
|
|
210 |
/// \brief Deletes the item with minimum priority relative to \c Compare. |
|
211 |
/// |
|
212 |
/// This method deletes the item with minimum priority relative to \c |
|
213 |
/// Compare from the heap. |
|
214 |
/// \pre The heap must be non-empty. |
|
215 |
void pop() { |
|
216 |
int n = data.size()-1; |
|
217 |
iim.set(data[0].first, POST_HEAP); |
|
218 |
if (n>0) bubble_down(0, data[n], n); |
|
219 |
data.pop_back(); |
|
220 |
} |
|
221 |
|
|
222 |
/// \brief Deletes \c i from the heap. |
|
223 |
/// |
|
224 |
/// This method deletes item \c i from the heap. |
|
225 |
/// \param i The item to erase. |
|
226 |
/// \pre The item should be in the heap. |
|
227 |
void erase(const Item &i) { |
|
228 |
int h = iim[i]; |
|
229 |
int n = data.size()-1; |
|
230 |
iim.set(data[h].first, POST_HEAP); |
|
231 |
if( h<n ) { |
|
232 |
if( less(data[parent(h)], data[n]) ) |
|
233 |
bubble_down(h, data[n], n); |
|
234 |
else |
|
235 |
bubble_up(h, data[n]); |
|
236 |
} |
|
237 |
data.pop_back(); |
|
238 |
} |
|
239 |
|
|
240 |
|
|
241 |
/// \brief Returns the priority of \c i. |
|
242 |
/// |
|
243 |
/// This function returns the priority of item \c i. |
|
244 |
/// \pre \c i must be in the heap. |
|
245 |
/// \param i The item. |
|
246 |
Prio operator[](const Item &i) const { |
|
247 |
int idx = iim[i]; |
|
248 |
return data[idx].second; |
|
249 |
} |
|
250 |
|
|
251 |
/// \brief \c i gets to the heap with priority \c p independently |
|
252 |
/// if \c i was already there. |
|
253 |
/// |
|
254 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
|
255 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
|
256 |
/// \param i The item. |
|
257 |
/// \param p The priority. |
|
258 |
void set(const Item &i, const Prio &p) { |
|
259 |
int idx = iim[i]; |
|
260 |
if( idx<0 ) |
|
261 |
push(i,p); |
|
262 |
else if( comp(p, data[idx].second) ) |
|
263 |
bubble_up(idx, Pair(i,p)); |
|
264 |
else |
|
265 |
bubble_down(idx, Pair(i,p), data.size()); |
|
266 |
} |
|
267 |
|
|
268 |
/// \brief Decreases the priority of \c i to \c p. |
|
269 |
/// |
|
270 |
/// This method decreases the priority of item \c i to \c p. |
|
271 |
/// \pre \c i must be stored in the heap with priority at least \c |
|
272 |
/// p relative to \c Compare. |
|
273 |
/// \param i The item. |
|
274 |
/// \param p The priority. |
|
275 |
void decrease(const Item &i, const Prio &p) { |
|
276 |
int idx = iim[i]; |
|
277 |
bubble_up(idx, Pair(i,p)); |
|
278 |
} |
|
279 |
|
|
280 |
/// \brief Increases the priority of \c i to \c p. |
|
281 |
/// |
|
282 |
/// This method sets the priority of item \c i to \c p. |
|
283 |
/// \pre \c i must be stored in the heap with priority at most \c |
|
284 |
/// p relative to \c Compare. |
|
285 |
/// \param i The item. |
|
286 |
/// \param p The priority. |
|
287 |
void increase(const Item &i, const Prio &p) { |
|
288 |
int idx = iim[i]; |
|
289 |
bubble_down(idx, Pair(i,p), data.size()); |
|
290 |
} |
|
291 |
|
|
292 |
/// \brief Returns if \c item is in, has already been in, or has |
|
293 |
/// never been in the heap. |
|
294 |
/// |
|
295 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
296 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
297 |
/// otherwise. In the latter case it is possible that \c item will |
|
298 |
/// get back to the heap again. |
|
299 |
/// \param i The item. |
|
300 |
State state(const Item &i) const { |
|
301 |
int s = iim[i]; |
|
302 |
if (s>=0) s=0; |
|
303 |
return State(s); |
|
304 |
} |
|
305 |
|
|
306 |
/// \brief Sets the state of the \c item in the heap. |
|
307 |
/// |
|
308 |
/// Sets the state of the \c item in the heap. It can be used to |
|
309 |
/// manually clear the heap when it is important to achive the |
|
310 |
/// better time complexity. |
|
311 |
/// \param i The item. |
|
312 |
/// \param st The state. It should not be \c IN_HEAP. |
|
313 |
void state(const Item& i, State st) { |
|
314 |
switch (st) { |
|
315 |
case POST_HEAP: |
|
316 |
case PRE_HEAP: |
|
317 |
if (state(i) == IN_HEAP) erase(i); |
|
318 |
iim[i] = st; |
|
319 |
break; |
|
320 |
case IN_HEAP: |
|
321 |
break; |
|
322 |
} |
|
323 |
} |
|
324 |
|
|
325 |
/// \brief Replaces an item in the heap. |
|
326 |
/// |
|
327 |
/// The \c i item is replaced with \c j item. The \c i item should |
|
328 |
/// be in the heap, while the \c j should be out of the heap. The |
|
329 |
/// \c i item will out of the heap and \c j will be in the heap |
|
330 |
/// with the same prioriority as prevoiusly the \c i item. |
|
331 |
void replace(const Item& i, const Item& j) { |
|
332 |
int idx=iim[i]; |
|
333 |
iim.set(i, iim[j]); |
|
334 |
iim.set(j, idx); |
|
335 |
data[idx].first=j; |
|
336 |
} |
|
337 |
|
|
338 |
}; // class KaryHeap |
|
339 |
|
|
340 |
} // namespace lemon |
|
341 |
|
|
342 |
#endif // LEMON_KARY_HEAP_H |
1 |
/* -*- C++ -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2008 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_PAIRING_HEAP_H |
|
20 |
#define LEMON_PAIRING_HEAP_H |
|
21 |
|
|
22 |
///\file |
|
23 |
///\ingroup auxdat |
|
24 |
///\brief Pairing Heap implementation. |
|
25 |
|
|
26 |
#include <vector> |
|
27 |
#include <functional> |
|
28 |
#include <lemon/math.h> |
|
29 |
|
|
30 |
namespace lemon { |
|
31 |
|
|
32 |
/// \ingroup auxdat |
|
33 |
/// |
|
34 |
///\brief Pairing Heap. |
|
35 |
/// |
|
36 |
///This class implements the \e Pairing \e heap data structure. A \e heap |
|
37 |
///is a data structure for storing items with specified values called \e |
|
38 |
///priorities in such a way that finding the item with minimum priority is |
|
39 |
///efficient. \c Compare specifies the ordering of the priorities. In a heap |
|
40 |
///one can change the priority of an item, add or erase an item, etc. |
|
41 |
/// |
|
42 |
///The methods \ref increase and \ref erase are not efficient in a Pairing |
|
43 |
///heap. In case of many calls to these operations, it is better to use a |
|
44 |
///\ref BinHeap "binary heap". |
|
45 |
/// |
|
46 |
///\param _Prio Type of the priority of the items. |
|
47 |
///\param _ItemIntMap A read and writable Item int map, used internally |
|
48 |
///to handle the cross references. |
|
49 |
///\param _Compare A class for the ordering of the priorities. The |
|
50 |
///default is \c std::less<_Prio>. |
|
51 |
/// |
|
52 |
///\sa BinHeap |
|
53 |
///\sa Dijkstra |
|
54 |
///\author Dorian Batha |
|
55 |
|
|
56 |
#ifdef DOXYGEN |
|
57 |
template <typename _Prio, |
|
58 |
typename _ItemIntMap, |
|
59 |
typename _Compare> |
|
60 |
#else |
|
61 |
template <typename _Prio, |
|
62 |
typename _ItemIntMap, |
|
63 |
typename _Compare = std::less<_Prio> > |
|
64 |
#endif |
|
65 |
class PairingHeap { |
|
66 |
public: |
|
67 |
typedef _ItemIntMap ItemIntMap; |
|
68 |
typedef _Prio Prio; |
|
69 |
typedef typename ItemIntMap::Key Item; |
|
70 |
typedef std::pair<Item,Prio> Pair; |
|
71 |
typedef _Compare Compare; |
|
72 |
|
|
73 |
private: |
|
74 |
class store; |
|
75 |
|
|
76 |
std::vector<store> container; |
|
77 |
int minimum; |
|
78 |
ItemIntMap &iimap; |
|
79 |
Compare comp; |
|
80 |
int num_items; |
|
81 |
|
|
82 |
public: |
|
83 |
///Status of the nodes |
|
84 |
enum State { |
|
85 |
///The node is in the heap |
|
86 |
IN_HEAP = 0, |
|
87 |
///The node has never been in the heap |
|
88 |
PRE_HEAP = -1, |
|
89 |
///The node was in the heap but it got out of it |
|
90 |
POST_HEAP = -2 |
|
91 |
}; |
|
92 |
|
|
93 |
/// \brief The constructor |
|
94 |
/// |
|
95 |
/// \c _iimap should be given to the constructor, since it is |
|
96 |
/// used internally to handle the cross references. |
|
97 |
explicit PairingHeap(ItemIntMap &_iimap) |
|
98 |
: minimum(0), iimap(_iimap), num_items(0) {} |
|
99 |
|
|
100 |
/// \brief The constructor |
|
101 |
/// |
|
102 |
/// \c _iimap should be given to the constructor, since it is used |
|
103 |
/// internally to handle the cross references. \c _comp is an |
|
104 |
/// object for ordering of the priorities. |
|
105 |
PairingHeap(ItemIntMap &_iimap, const Compare &_comp) |
|
106 |
: minimum(0), iimap(_iimap), comp(_comp), num_items(0) {} |
|
107 |
|
|
108 |
/// \brief The number of items stored in the heap. |
|
109 |
/// |
|
110 |
/// Returns the number of items stored in the heap. |
|
111 |
int size() const { return num_items; } |
|
112 |
|
|
113 |
/// \brief Checks if the heap stores no items. |
|
114 |
/// |
|
115 |
/// Returns \c true if and only if the heap stores no items. |
|
116 |
bool empty() const { return num_items==0; } |
|
117 |
|
|
118 |
/// \brief Make empty this heap. |
|
119 |
/// |
|
120 |
/// Make empty this heap. It does not change the cross reference |
|
121 |
/// map. If you want to reuse a heap what is not surely empty you |
|
122 |
/// should first clear the heap and after that you should set the |
|
123 |
/// cross reference map for each item to \c PRE_HEAP. |
|
124 |
void clear() { |
|
125 |
container.clear(); |
|
126 |
minimum = 0; |
|
127 |
num_items = 0; |
|
128 |
} |
|
129 |
|
|
130 |
/// \brief \c item gets to the heap with priority \c value independently |
|
131 |
/// if \c item was already there. |
|
132 |
/// |
|
133 |
/// This method calls \ref push(\c item, \c value) if \c item is not |
|
134 |
/// stored in the heap and it calls \ref decrease(\c item, \c value) or |
|
135 |
/// \ref increase(\c item, \c value) otherwise. |
|
136 |
void set (const Item& item, const Prio& value) { |
|
137 |
int i=iimap[item]; |
|
138 |
if ( i>=0 && container[i].in ) { |
|
139 |
if ( comp(value, container[i].prio) ) decrease(item, value); |
|
140 |
if ( comp(container[i].prio, value) ) increase(item, value); |
|
141 |
} else push(item, value); |
|
142 |
} |
|
143 |
|
|
144 |
/// \brief Adds \c item to the heap with priority \c value. |
|
145 |
/// |
|
146 |
/// Adds \c item to the heap with priority \c value. |
|
147 |
/// \pre \c item must not be stored in the heap. |
|
148 |
void push (const Item& item, const Prio& value) { |
|
149 |
int i=iimap[item]; |
|
150 |
if( i<0 ) { |
|
151 |
int s=container.size(); |
|
152 |
iimap.set(item, s); |
|
153 |
store st; |
|
154 |
st.name=item; |
|
155 |
container.push_back(st); |
|
156 |
i=s; |
|
157 |
} else { |
|
158 |
container[i].parent=container[i].child=-1; |
|
159 |
container[i].left_child=false; |
|
160 |
container[i].degree=0; |
|
161 |
container[i].in=true; |
|
162 |
} |
|
163 |
|
|
164 |
container[i].prio=value; |
|
165 |
|
|
166 |
if ( num_items!=0 ) { |
|
167 |
if ( comp( value, container[minimum].prio) ) { |
|
168 |
fuse(i,minimum); |
|
169 |
minimum=i; |
|
170 |
} |
|
171 |
else fuse(minimum,i); |
|
172 |
} |
|
173 |
else minimum=i; |
|
174 |
|
|
175 |
++num_items; |
|
176 |
} |
|
177 |
|
|
178 |
/// \brief Returns the item with minimum priority relative to \c Compare. |
|
179 |
/// |
|
180 |
/// This method returns the item with minimum priority relative to \c |
|
181 |
/// Compare. |
|
182 |
/// \pre The heap must be nonempty. |
|
183 |
Item top() const { return container[minimum].name; } |
|
184 |
|
|
185 |
/// \brief Returns the minimum priority relative to \c Compare. |
|
186 |
/// |
|
187 |
/// It returns the minimum priority relative to \c Compare. |
|
188 |
/// \pre The heap must be nonempty. |
|
189 |
const Prio& prio() const { return container[minimum].prio; } |
|
190 |
|
|
191 |
/// \brief Returns the priority of \c item. |
|
192 |
/// |
|
193 |
/// It returns the priority of \c item. |
|
194 |
/// \pre \c item must be in the heap. |
|
195 |
const Prio& operator[](const Item& item) const { |
|
196 |
return container[iimap[item]].prio; |
|
197 |
} |
|
198 |
|
|
199 |
/// \brief Deletes the item with minimum priority relative to \c Compare. |
|
200 |
/// |
|
201 |
/// This method deletes the item with minimum priority relative to \c |
|
202 |
/// Compare from the heap. |
|
203 |
/// \pre The heap must be non-empty. |
|
204 |
void pop() { |
|
205 |
int TreeArray[num_items]; |
|
206 |
int i=0, num_child=0, child_right = 0; |
|
207 |
container[minimum].in=false; |
|
208 |
|
|
209 |
if( -1!=container[minimum].child ) { |
|
210 |
i=container[minimum].child; |
|
211 |
TreeArray[num_child] = i; |
|
212 |
container[i].parent = -1; |
|
213 |
container[minimum].child = -1; |
|
214 |
|
|
215 |
++num_child; |
|
216 |
int ch=-1; |
|
217 |
while( container[i].child!=-1 ) { |
|
218 |
ch=container[i].child; |
|
219 |
if( container[ch].left_child && i==container[ch].parent ) { |
|
220 |
i=ch; |
|
221 |
//break; |
|
222 |
} else { |
|
223 |
if( container[ch].left_child ) { |
|
224 |
child_right=container[ch].parent; |
|
225 |
container[ch].parent = i; |
|
226 |
--container[i].degree; |
|
227 |
} |
|
228 |
else { |
|
229 |
child_right=ch; |
|
230 |
container[i].child=-1; |
|
231 |
container[i].degree=0; |
|
232 |
} |
|
233 |
container[child_right].parent = -1; |
|
234 |
TreeArray[num_child] = child_right; |
|
235 |
i = child_right; |
|
236 |
++num_child; |
|
237 |
} |
|
238 |
} |
|
239 |
|
|
240 |
int other; |
|
241 |
for( i=0; i<num_child-1; i+=2 ) { |
|
242 |
if ( !comp(container[TreeArray[i]].prio, |
|
243 |
container[TreeArray[i+1]].prio) ) { |
|
244 |
other=TreeArray[i]; |
|
245 |
TreeArray[i]=TreeArray[i+1]; |
|
246 |
TreeArray[i+1]=other; |
|
247 |
} |
|
248 |
fuse( TreeArray[i], TreeArray[i+1] ); |
|
249 |
} |
|
250 |
|
|
251 |
i = (0==(num_child % 2)) ? num_child-2 : num_child-1; |
|
252 |
while(i>=2) { |
|
253 |
if ( comp(container[TreeArray[i]].prio, |
|
254 |
container[TreeArray[i-2]].prio) ) { |
|
255 |
other=TreeArray[i]; |
|
256 |
TreeArray[i]=TreeArray[i-2]; |
|
257 |
TreeArray[i-2]=other; |
|
258 |
} |
|
259 |
fuse( TreeArray[i-2], TreeArray[i] ); |
|
260 |
i-=2; |
|
261 |
} |
|
262 |
minimum = TreeArray[0]; |
|
263 |
} |
|
264 |
|
|
265 |
if ( 0==num_child ) { |
|
266 |
minimum = container[minimum].child; |
|
267 |
} |
|
268 |
|
|
269 |
--num_items; |
|
270 |
} |
|
271 |
|
|
272 |
/// \brief Deletes \c item from the heap. |
|
273 |
/// |
|
274 |
/// This method deletes \c item from the heap, if \c item was already |
|
275 |
/// stored in the heap. It is quite inefficient in Pairing heaps. |
|
276 |
void erase (const Item& item) { |
|
277 |
int i=iimap[item]; |
|
278 |
if ( i>=0 && container[i].in ) { |
|
279 |
decrease( item, container[minimum].prio-1 ); |
|
280 |
pop(); |
|
281 |
} |
|
282 |
} |
|
283 |
|
|
284 |
/// \brief Decreases the priority of \c item to \c value. |
|
285 |
/// |
|
286 |
/// This method decreases the priority of \c item to \c value. |
|
287 |
/// \pre \c item must be stored in the heap with priority at least \c |
|
288 |
/// value relative to \c Compare. |
|
289 |
void decrease (Item item, const Prio& value) { |
|
290 |
int i=iimap[item]; |
|
291 |
container[i].prio=value; |
|
292 |
int p=container[i].parent; |
|
293 |
|
|
294 |
if( container[i].left_child && i!=container[p].child ) { |
|
295 |
p=container[p].parent; |
|
296 |
} |
|
297 |
|
|
298 |
if ( p!=-1 && comp(value,container[p].prio) ) { |
|
299 |
cut(i,p); |
|
300 |
if ( comp(container[minimum].prio,value) ) { |
|
301 |
fuse(minimum,i); |
|
302 |
} else { |
|
303 |
fuse(i,minimum); |
|
304 |
minimum=i; |
|
305 |
} |
|
306 |
} |
|
307 |
} |
|
308 |
|
|
309 |
/// \brief Increases the priority of \c item to \c value. |
|
310 |
/// |
|
311 |
/// This method sets the priority of \c item to \c value. Though |
|
312 |
/// there is no precondition on the priority of \c item, this |
|
313 |
/// method should be used only if it is indeed necessary to increase |
|
314 |
/// (relative to \c Compare) the priority of \c item, because this |
|
315 |
/// method is inefficient. |
|
316 |
void increase (Item item, const Prio& value) { |
|
317 |
erase(item); |
|
318 |
push(item,value); |
|
319 |
} |
|
320 |
|
|
321 |
/// \brief Returns if \c item is in, has already been in, or has never |
|
322 |
/// been in the heap. |
|
323 |
/// |
|
324 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
325 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
326 |
/// otherwise. In the latter case it is possible that \c item will |
|
327 |
/// get back to the heap again. |
|
328 |
State state(const Item &item) const { |
|
329 |
int i=iimap[item]; |
|
330 |
if( i>=0 ) { |
|
331 |
if( container[i].in ) i=0; |
|
332 |
else i=-2; |
|
333 |
} |
|
334 |
return State(i); |
|
335 |
} |
|
336 |
|
|
337 |
/// \brief Sets the state of the \c item in the heap. |
|
338 |
/// |
|
339 |
/// Sets the state of the \c item in the heap. It can be used to |
|
340 |
/// manually clear the heap when it is important to achive the |
|
341 |
/// better time complexity. |
|
342 |
/// \param i The item. |
|
343 |
/// \param st The state. It should not be \c IN_HEAP. |
|
344 |
void state(const Item& i, State st) { |
|
345 |
switch (st) { |
|
346 |
case POST_HEAP: |
|
347 |
case PRE_HEAP: |
|
348 |
if (state(i) == IN_HEAP) erase(i); |
|
349 |
iimap[i]=st; |
|
350 |
break; |
|
351 |
case IN_HEAP: |
|
352 |
break; |
|
353 |
} |
|
354 |
} |
|
355 |
|
|
356 |
private: |
|
357 |
|
|
358 |
void cut(int a, int b) { |
|
359 |
int child_a; |
|
360 |
switch (container[a].degree) { |
|
361 |
case 2: |
|
362 |
child_a = container[container[a].child].parent; |
|
363 |
if( container[a].left_child ) { |
|
364 |
container[child_a].left_child=true; |
|
365 |
container[b].child=child_a; |
|
366 |
container[child_a].parent=container[a].parent; |
|
367 |
} |
|
368 |
else { |
|
369 |
container[child_a].left_child=false; |
|
370 |
container[child_a].parent=b; |
|
371 |
if( a!=container[b].child ) |
|
372 |
container[container[b].child].parent=child_a; |
|
373 |
else |
|
374 |
container[b].child=child_a; |
|
375 |
} |
|
376 |
--container[a].degree; |
|
377 |
container[container[a].child].parent=a; |
|
378 |
break; |
|
379 |
|
|
380 |
case 1: |
|
381 |
child_a = container[a].child; |
|
382 |
if( !container[child_a].left_child ) { |
|
383 |
--container[a].degree; |
|
384 |
if( container[a].left_child ) { |
|
385 |
container[child_a].left_child=true; |
|
386 |
container[child_a].parent=container[a].parent; |
|
387 |
container[b].child=child_a; |
|
388 |
} |
|
389 |
else { |
|
390 |
container[child_a].left_child=false; |
|
391 |
container[child_a].parent=b; |
|
392 |
if( a!=container[b].child ) |
|
393 |
container[container[b].child].parent=child_a; |
|
394 |
else |
|
395 |
container[b].child=child_a; |
|
396 |
} |
|
397 |
container[a].child=-1; |
|
398 |
} |
|
399 |
else { |
|
400 |
--container[b].degree; |
|
401 |
if( container[a].left_child ) { |
|
402 |
container[b].child = |
|
403 |
(1==container[b].degree) ? container[a].parent : -1; |
|
404 |
} else { |
|
405 |
if (1==container[b].degree) |
|
406 |
container[container[b].child].parent=b; |
|
407 |
else |
|
408 |
container[b].child=-1; |
|
409 |
} |
|
410 |
} |
|
411 |
break; |
|
412 |
|
|
413 |
case 0: |
|
414 |
--container[b].degree; |
|
415 |
if( container[a].left_child ) { |
|
416 |
container[b].child = |
|
417 |
(0!=container[b].degree) ? container[a].parent : -1; |
|
418 |
} else { |
|
419 |
if( 0!=container[b].degree ) |
|
420 |
container[container[b].child].parent=b; |
|
421 |
else |
|
422 |
container[b].child=-1; |
|
423 |
} |
|
424 |
break; |
|
425 |
} |
|
426 |
container[a].parent=-1; |
|
427 |
container[a].left_child=false; |
|
428 |
} |
|
429 |
|
|
430 |
void fuse(int a, int b) { |
|
431 |
int child_a = container[a].child; |
|
432 |
int child_b = container[b].child; |
|
433 |
container[a].child=b; |
|
434 |
container[b].parent=a; |
|
435 |
container[b].left_child=true; |
|
436 |
|
|
437 |
if( -1!=child_a ) { |
|
438 |
container[b].child=child_a; |
|
439 |
container[child_a].parent=b; |
|
440 |
container[child_a].left_child=false; |
|
441 |
++container[b].degree; |
|
442 |
|
|
443 |
if( -1!=child_b ) { |
|
444 |
container[b].child=child_b; |
|
445 |
container[child_b].parent=child_a; |
|
446 |
} |
|
447 |
} |
|
448 |
else { ++container[a].degree; } |
|
449 |
} |
|
450 |
|
|
451 |
class store { |
|
452 |
friend class PairingHeap; |
|
453 |
|
|
454 |
Item name; |
|
455 |
int parent; |
|
456 |
int child; |
|
457 |
bool left_child; |
|
458 |
int degree; |
|
459 |
bool in; |
|
460 |
Prio prio; |
|
461 |
|
|
462 |
store() : parent(-1), child(-1), left_child(false), degree(0), in(true) {} |
|
463 |
}; |
|
464 |
}; |
|
465 |
|
|
466 |
} //namespace lemon |
|
467 |
|
|
468 |
#endif //LEMON_PAIRING_HEAP_H |
|
469 |
... | ... |
@@ -59,6 +59,7 @@ |
59 | 59 |
lemon/assert.h \ |
60 | 60 |
lemon/bfs.h \ |
61 | 61 |
lemon/bin_heap.h \ |
62 |
lemon/binom_heap.h \ |
|
62 | 63 |
lemon/bucket_heap.h \ |
63 | 64 |
lemon/cbc.h \ |
64 | 65 |
lemon/circulation.h \ |
... | ... |
@@ -78,12 +79,14 @@ |
78 | 79 |
lemon/error.h \ |
79 | 80 |
lemon/euler.h \ |
80 | 81 |
lemon/fib_heap.h \ |
82 |
lemon/fourary_heap.h \ |
|
81 | 83 |
lemon/full_graph.h \ |
82 | 84 |
lemon/glpk.h \ |
83 | 85 |
lemon/gomory_hu.h \ |
84 | 86 |
lemon/graph_to_eps.h \ |
85 | 87 |
lemon/grid_graph.h \ |
86 | 88 |
lemon/hypercube_graph.h \ |
89 |
lemon/kary_heap.h \ |
|
87 | 90 |
lemon/kruskal.h \ |
88 | 91 |
lemon/hao_orlin.h \ |
89 | 92 |
lemon/lgf_reader.h \ |
... | ... |
@@ -99,6 +102,7 @@ |
99 | 102 |
lemon/min_cost_arborescence.h \ |
100 | 103 |
lemon/nauty_reader.h \ |
101 | 104 |
lemon/network_simplex.h \ |
105 |
lemon/pairing_heap.h \ |
|
102 | 106 |
lemon/path.h \ |
103 | 107 |
lemon/preflow.h \ |
104 | 108 |
lemon/radix_heap.h \ |
... | ... |
@@ -25,14 +25,17 @@ |
25 | 25 |
#include <lemon/concepts/heap.h> |
26 | 26 |
|
27 | 27 |
#include <lemon/smart_graph.h> |
28 |
|
|
29 | 28 |
#include <lemon/lgf_reader.h> |
30 | 29 |
#include <lemon/dijkstra.h> |
31 | 30 |
#include <lemon/maps.h> |
32 | 31 |
|
33 | 32 |
#include <lemon/bin_heap.h> |
33 |
#include <lemon/fourary_heap.h> |
|
34 |
#include <lemon/kary_heap.h> |
|
34 | 35 |
#include <lemon/fib_heap.h> |
36 |
#include <lemon/pairing_heap.h> |
|
35 | 37 |
#include <lemon/radix_heap.h> |
38 |
#include <lemon/binom_heap.h> |
|
36 | 39 |
#include <lemon/bucket_heap.h> |
37 | 40 |
|
38 | 41 |
#include "test_tools.h" |
... | ... |
@@ -89,18 +92,16 @@ |
89 | 92 |
template <typename Heap> |
90 | 93 |
void heapSortTest() { |
91 | 94 |
RangeMap<int> map(test_len, -1); |
92 |
|
|
93 | 95 |
Heap heap(map); |
94 | 96 |
|
95 | 97 |
std::vector<int> v(test_len); |
96 |
|
|
97 | 98 |
for (int i = 0; i < test_len; ++i) { |
98 | 99 |
v[i] = test_seq[i]; |
99 | 100 |
heap.push(i, v[i]); |
100 | 101 |
} |
101 | 102 |
std::sort(v.begin(), v.end()); |
102 | 103 |
for (int i = 0; i < test_len; ++i) { |
103 |
check(v[i] == heap.prio() |
|
104 |
check(v[i] == heap.prio(), "Wrong order in heap sort."); |
|
104 | 105 |
heap.pop(); |
105 | 106 |
} |
106 | 107 |
} |
... | ... |
@@ -112,7 +113,6 @@ |
112 | 113 |
Heap heap(map); |
113 | 114 |
|
114 | 115 |
std::vector<int> v(test_len); |
115 |
|
|
116 | 116 |
for (int i = 0; i < test_len; ++i) { |
117 | 117 |
v[i] = test_seq[i]; |
118 | 118 |
heap.push(i, v[i]); |
... | ... |
@@ -123,13 +123,11 @@ |
123 | 123 |
} |
124 | 124 |
std::sort(v.begin(), v.end()); |
125 | 125 |
for (int i = 0; i < test_len; ++i) { |
126 |
check(v[i] == heap.prio() |
|
126 |
check(v[i] == heap.prio(), "Wrong order in heap increase test."); |
|
127 | 127 |
heap.pop(); |
128 | 128 |
} |
129 | 129 |
} |
130 | 130 |
|
131 |
|
|
132 |
|
|
133 | 131 |
template <typename Heap> |
134 | 132 |
void dijkstraHeapTest(const Digraph& digraph, const IntArcMap& length, |
135 | 133 |
Node source) { |
... | ... |
@@ -144,7 +142,7 @@ |
144 | 142 |
Node t = digraph.target(a); |
145 | 143 |
if (dijkstra.reached(s)) { |
146 | 144 |
check( dijkstra.dist(t) - dijkstra.dist(s) <= length[a], |
147 |
"Error in |
|
145 |
"Error in shortest path tree."); |
|
148 | 146 |
} |
149 | 147 |
} |
150 | 148 |
|
... | ... |
@@ -153,7 +151,7 @@ |
153 | 151 |
Arc a = dijkstra.predArc(n); |
154 | 152 |
Node s = digraph.source(a); |
155 | 153 |
check( dijkstra.dist(n) - dijkstra.dist(s) == length[a], |
156 |
"Error in |
|
154 |
"Error in shortest path tree."); |
|
157 | 155 |
} |
158 | 156 |
} |
159 | 157 |
|
... | ... |
@@ -175,6 +173,7 @@ |
175 | 173 |
node("source", source). |
176 | 174 |
run(); |
177 | 175 |
|
176 |
// BinHeap |
|
178 | 177 |
{ |
179 | 178 |
typedef BinHeap<Prio, ItemIntMap> IntHeap; |
180 | 179 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
... | ... |
@@ -186,6 +185,31 @@ |
186 | 185 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
187 | 186 |
} |
188 | 187 |
|
188 |
// FouraryHeap |
|
189 |
{ |
|
190 |
typedef FouraryHeap<Prio, ItemIntMap> IntHeap; |
|
191 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
192 |
heapSortTest<IntHeap>(); |
|
193 |
heapIncreaseTest<IntHeap>(); |
|
194 |
|
|
195 |
typedef FouraryHeap<Prio, IntNodeMap > NodeHeap; |
|
196 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
197 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
198 |
} |
|
199 |
|
|
200 |
// KaryHeap |
|
201 |
{ |
|
202 |
typedef KaryHeap<Prio, ItemIntMap> IntHeap; |
|
203 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
204 |
heapSortTest<IntHeap>(); |
|
205 |
heapIncreaseTest<IntHeap>(); |
|
206 |
|
|
207 |
typedef KaryHeap<Prio, IntNodeMap > NodeHeap; |
|
208 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
209 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
210 |
} |
|
211 |
|
|
212 |
// FibHeap |
|
189 | 213 |
{ |
190 | 214 |
typedef FibHeap<Prio, ItemIntMap> IntHeap; |
191 | 215 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
... | ... |
@@ -197,6 +221,19 @@ |
197 | 221 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
198 | 222 |
} |
199 | 223 |
|
224 |
// PairingHeap |
|
225 |
// { |
|
226 |
// typedef PairingHeap<Prio, ItemIntMap> IntHeap; |
|
227 |
// checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
228 |
// heapSortTest<IntHeap>(); |
|
229 |
// heapIncreaseTest<IntHeap>(); |
|
230 |
// |
|
231 |
// typedef PairingHeap<Prio, IntNodeMap > NodeHeap; |
|
232 |
// checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
233 |
// dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
234 |
// } |
|
235 |
|
|
236 |
// RadixHeap |
|
200 | 237 |
{ |
201 | 238 |
typedef RadixHeap<ItemIntMap> IntHeap; |
202 | 239 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
... | ... |
@@ -208,6 +245,19 @@ |
208 | 245 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
209 | 246 |
} |
210 | 247 |
|
248 |
// BinomHeap |
|
249 |
{ |
|
250 |
typedef BinomHeap<Prio, ItemIntMap> IntHeap; |
|
251 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
|
252 |
heapSortTest<IntHeap>(); |
|
253 |
heapIncreaseTest<IntHeap>(); |
|
254 |
|
|
255 |
typedef BinomHeap<Prio, IntNodeMap > NodeHeap; |
|
256 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
|
257 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
|
258 |
} |
|
259 |
|
|
260 |
// BucketHeap, SimpleBucketHeap |
|
211 | 261 |
{ |
212 | 262 |
typedef BucketHeap<ItemIntMap> IntHeap; |
213 | 263 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
... | ... |
@@ -217,8 +267,10 @@ |
217 | 267 |
typedef BucketHeap<IntNodeMap > NodeHeap; |
218 | 268 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
219 | 269 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
270 |
|
|
271 |
typedef SimpleBucketHeap<ItemIntMap> SimpleIntHeap; |
|
272 |
heapSortTest<SimpleIntHeap>(); |
|
220 | 273 |
} |
221 | 274 |
|
222 |
|
|
223 | 275 |
return 0; |
224 | 276 |
} |
0 comments (0 inline)