758:b31e13 »
718:703ebf »
713:4ac304 »
709:0747f3 »
701:d1a922 »
696:c9b9da »
693:7bda78 »
691:9e54e3 »
686:7439dc »
718:703ebf »
713:4ac304 »
709:0747f3 »
701:d1a922 »
696:c9b9da »
693:7bda78 »
691:9e54e3 »
686:7439dc »
0
4
0
... | ... |
@@ -34,38 +34,38 @@ |
34 | 34 |
///\brief A Binary Heap implementation. |
35 | 35 |
/// |
36 | 36 |
///This class implements the \e binary \e heap data structure. |
37 | 37 |
/// |
38 | 38 |
///A \e heap is a data structure for storing items with specified values |
39 | 39 |
///called \e priorities in such a way that finding the item with minimum |
40 |
///priority is efficient. \c |
|
40 |
///priority is efficient. \c CMP specifies the ordering of the priorities. |
|
41 | 41 |
///In a heap one can change the priority of an item, add or erase an |
42 | 42 |
///item, etc. |
43 | 43 |
/// |
44 | 44 |
///\tparam PR Type of the priority of the items. |
45 | 45 |
///\tparam IM A read and writable item map with int values, used internally |
46 | 46 |
///to handle the cross references. |
47 |
///\tparam |
|
47 |
///\tparam CMP A functor class for the ordering of the priorities. |
|
48 | 48 |
///The default is \c std::less<PR>. |
49 | 49 |
/// |
50 | 50 |
///\sa FibHeap |
51 | 51 |
///\sa Dijkstra |
52 |
template <typename PR, typename IM, typename |
|
52 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
53 | 53 |
class BinHeap { |
54 | 54 |
|
55 | 55 |
public: |
56 | 56 |
///\e |
57 | 57 |
typedef IM ItemIntMap; |
58 | 58 |
///\e |
59 | 59 |
typedef PR Prio; |
60 | 60 |
///\e |
61 | 61 |
typedef typename ItemIntMap::Key Item; |
62 | 62 |
///\e |
63 | 63 |
typedef std::pair<Item,Prio> Pair; |
64 | 64 |
///\e |
65 |
typedef |
|
65 |
typedef CMP Compare; |
|
66 | 66 |
|
67 | 67 |
/// \brief Type to represent the items states. |
68 | 68 |
/// |
69 | 69 |
/// Each Item element have a state associated to it. It may be "in heap", |
70 | 70 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
71 | 71 |
/// heap's point of view, but may be useful to the user. |
... | ... |
@@ -28,13 +28,13 @@ |
28 | 28 |
#include <functional> |
29 | 29 |
|
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 | 32 |
namespace _bucket_heap_bits { |
33 | 33 |
|
34 |
template <bool |
|
34 |
template <bool MIN> |
|
35 | 35 |
struct DirectionTraits { |
36 | 36 |
static bool less(int left, int right) { |
37 | 37 |
return left < right; |
38 | 38 |
} |
39 | 39 |
static void increase(int& value) { |
40 | 40 |
++value; |
... | ... |
@@ -62,117 +62,118 @@ |
62 | 62 |
/// priorities in such a way that finding the item with minimum priority is |
63 | 63 |
/// efficient. The bucket heap is very simple implementation, it can store |
64 | 64 |
/// only integer priorities and it stores for each priority in the |
65 | 65 |
/// \f$ [0..C) \f$ range a list of items. So it should be used only when |
66 | 66 |
/// the priorities are small. It is not intended to use as dijkstra heap. |
67 | 67 |
/// |
68 |
/// \param |
|
68 |
/// \param IM A read and write Item int map, used internally |
|
69 | 69 |
/// to handle the cross references. |
70 |
/// \param minimize If the given parameter is true then the heap gives back |
|
71 |
/// the lowest priority. |
|
72 |
|
|
70 |
/// \param MIN If the given parameter is false then instead of the |
|
71 |
/// minimum value the maximum can be retrivied with the top() and |
|
72 |
/// prio() member functions. |
|
73 |
template <typename IM, bool MIN = true> |
|
73 | 74 |
class BucketHeap { |
74 | 75 |
|
75 | 76 |
public: |
76 | 77 |
/// \e |
77 |
typedef typename |
|
78 |
typedef typename IM::Key Item; |
|
78 | 79 |
/// \e |
79 | 80 |
typedef int Prio; |
80 | 81 |
/// \e |
81 | 82 |
typedef std::pair<Item, Prio> Pair; |
82 | 83 |
/// \e |
83 |
typedef |
|
84 |
typedef IM ItemIntMap; |
|
84 | 85 |
|
85 | 86 |
private: |
86 | 87 |
|
87 |
typedef _bucket_heap_bits::DirectionTraits< |
|
88 |
typedef _bucket_heap_bits::DirectionTraits<MIN> Direction; |
|
88 | 89 |
|
89 | 90 |
public: |
90 | 91 |
|
91 | 92 |
/// \brief Type to represent the items states. |
92 | 93 |
/// |
93 | 94 |
/// Each Item element have a state associated to it. It may be "in heap", |
94 | 95 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
95 | 96 |
/// heap's point of view, but may be useful to the user. |
96 | 97 |
/// |
97 |
/// The ItemIntMap \e should be initialized in such way that it maps |
|
98 |
/// PRE_HEAP (-1) to any element to be put in the heap... |
|
98 |
/// The item-int map must be initialized in such way that it assigns |
|
99 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
99 | 100 |
enum State { |
100 |
IN_HEAP = 0, |
|
101 |
PRE_HEAP = -1, |
|
102 |
|
|
101 |
IN_HEAP = 0, ///< = 0. |
|
102 |
PRE_HEAP = -1, ///< = -1. |
|
103 |
POST_HEAP = -2 ///< = -2. |
|
103 | 104 |
}; |
104 | 105 |
|
105 | 106 |
public: |
106 | 107 |
/// \brief The constructor. |
107 | 108 |
/// |
108 | 109 |
/// The constructor. |
109 |
/// \param |
|
110 |
/// \param map should be given to the constructor, since it is used |
|
110 | 111 |
/// internally to handle the cross references. The value of the map |
111 | 112 |
/// should be PRE_HEAP (-1) for each element. |
112 |
explicit BucketHeap(ItemIntMap & |
|
113 |
explicit BucketHeap(ItemIntMap &map) : _iim(map), _minimum(0) {} |
|
113 | 114 |
|
114 | 115 |
/// The number of items stored in the heap. |
115 | 116 |
/// |
116 | 117 |
/// \brief Returns the number of items stored in the heap. |
117 |
int size() const { return |
|
118 |
int size() const { return _data.size(); } |
|
118 | 119 |
|
119 | 120 |
/// \brief Checks if the heap stores no items. |
120 | 121 |
/// |
121 | 122 |
/// Returns \c true if and only if the heap stores no items. |
122 |
bool empty() const { return |
|
123 |
bool empty() const { return _data.empty(); } |
|
123 | 124 |
|
124 | 125 |
/// \brief Make empty this heap. |
125 | 126 |
/// |
126 | 127 |
/// Make empty this heap. It does not change the cross reference |
127 | 128 |
/// map. If you want to reuse a heap what is not surely empty you |
128 | 129 |
/// should first clear the heap and after that you should set the |
129 | 130 |
/// cross reference map for each item to \c PRE_HEAP. |
130 | 131 |
void clear() { |
131 |
|
|
132 |
_data.clear(); _first.clear(); _minimum = 0; |
|
132 | 133 |
} |
133 | 134 |
|
134 | 135 |
private: |
135 | 136 |
|
136 | 137 |
void relocate_last(int idx) { |
137 |
if (idx + 1 < int(data.size())) { |
|
138 |
data[idx] = data.back(); |
|
139 |
if (data[idx].prev != -1) { |
|
140 |
data[data[idx].prev].next = idx; |
|
138 |
if (idx + 1 < int(_data.size())) { |
|
139 |
_data[idx] = _data.back(); |
|
140 |
if (_data[idx].prev != -1) { |
|
141 |
_data[_data[idx].prev].next = idx; |
|
141 | 142 |
} else { |
142 |
|
|
143 |
_first[_data[idx].value] = idx; |
|
143 | 144 |
} |
144 |
if (data[idx].next != -1) { |
|
145 |
data[data[idx].next].prev = idx; |
|
145 |
if (_data[idx].next != -1) { |
|
146 |
_data[_data[idx].next].prev = idx; |
|
146 | 147 |
} |
147 |
|
|
148 |
_iim[_data[idx].item] = idx; |
|
148 | 149 |
} |
149 |
|
|
150 |
_data.pop_back(); |
|
150 | 151 |
} |
151 | 152 |
|
152 | 153 |
void unlace(int idx) { |
153 |
if (data[idx].prev != -1) { |
|
154 |
data[data[idx].prev].next = data[idx].next; |
|
154 |
if (_data[idx].prev != -1) { |
|
155 |
_data[_data[idx].prev].next = _data[idx].next; |
|
155 | 156 |
} else { |
156 |
|
|
157 |
_first[_data[idx].value] = _data[idx].next; |
|
157 | 158 |
} |
158 |
if (data[idx].next != -1) { |
|
159 |
data[data[idx].next].prev = data[idx].prev; |
|
159 |
if (_data[idx].next != -1) { |
|
160 |
_data[_data[idx].next].prev = _data[idx].prev; |
|
160 | 161 |
} |
161 | 162 |
} |
162 | 163 |
|
163 | 164 |
void lace(int idx) { |
164 |
if (int(first.size()) <= data[idx].value) { |
|
165 |
first.resize(data[idx].value + 1, -1); |
|
165 |
if (int(_first.size()) <= _data[idx].value) { |
|
166 |
_first.resize(_data[idx].value + 1, -1); |
|
166 | 167 |
} |
167 |
data[idx].next = first[data[idx].value]; |
|
168 |
if (data[idx].next != -1) { |
|
169 |
|
|
168 |
_data[idx].next = _first[_data[idx].value]; |
|
169 |
if (_data[idx].next != -1) { |
|
170 |
_data[_data[idx].next].prev = idx; |
|
170 | 171 |
} |
171 |
first[data[idx].value] = idx; |
|
172 |
data[idx].prev = -1; |
|
172 |
_first[_data[idx].value] = idx; |
|
173 |
_data[idx].prev = -1; |
|
173 | 174 |
} |
174 | 175 |
|
175 | 176 |
public: |
176 | 177 |
/// \brief Insert a pair of item and priority into the heap. |
177 | 178 |
/// |
178 | 179 |
/// Adds \c p.first to the heap with priority \c p.second. |
... | ... |
@@ -184,92 +185,92 @@ |
184 | 185 |
/// \brief Insert an item into the heap with the given priority. |
185 | 186 |
/// |
186 | 187 |
/// Adds \c i to the heap with priority \c p. |
187 | 188 |
/// \param i The item to insert. |
188 | 189 |
/// \param p The priority of the item. |
189 | 190 |
void push(const Item &i, const Prio &p) { |
190 |
int idx = data.size(); |
|
191 |
index[i] = idx; |
|
192 |
|
|
191 |
int idx = _data.size(); |
|
192 |
_iim[i] = idx; |
|
193 |
_data.push_back(BucketItem(i, p)); |
|
193 | 194 |
lace(idx); |
194 |
if (Direction::less(p, minimal)) { |
|
195 |
minimal = p; |
|
195 |
if (Direction::less(p, _minimum)) { |
|
196 |
_minimum = p; |
|
196 | 197 |
} |
197 | 198 |
} |
198 | 199 |
|
199 | 200 |
/// \brief Returns the item with minimum priority. |
200 | 201 |
/// |
201 | 202 |
/// This method returns the item with minimum priority. |
202 | 203 |
/// \pre The heap must be nonempty. |
203 | 204 |
Item top() const { |
204 |
while (first[minimal] == -1) { |
|
205 |
Direction::increase(minimal); |
|
205 |
while (_first[_minimum] == -1) { |
|
206 |
Direction::increase(_minimum); |
|
206 | 207 |
} |
207 |
return |
|
208 |
return _data[_first[_minimum]].item; |
|
208 | 209 |
} |
209 | 210 |
|
210 | 211 |
/// \brief Returns the minimum priority. |
211 | 212 |
/// |
212 | 213 |
/// It returns the minimum priority. |
213 | 214 |
/// \pre The heap must be nonempty. |
214 | 215 |
Prio prio() const { |
215 |
while (first[minimal] == -1) { |
|
216 |
Direction::increase(minimal); |
|
216 |
while (_first[_minimum] == -1) { |
|
217 |
Direction::increase(_minimum); |
|
217 | 218 |
} |
218 |
return |
|
219 |
return _minimum; |
|
219 | 220 |
} |
220 | 221 |
|
221 | 222 |
/// \brief Deletes the item with minimum priority. |
222 | 223 |
/// |
223 | 224 |
/// This method deletes the item with minimum priority from the heap. |
224 | 225 |
/// \pre The heap must be non-empty. |
225 | 226 |
void pop() { |
226 |
while (first[minimal] == -1) { |
|
227 |
Direction::increase(minimal); |
|
227 |
while (_first[_minimum] == -1) { |
|
228 |
Direction::increase(_minimum); |
|
228 | 229 |
} |
229 |
int idx = first[minimal]; |
|
230 |
index[data[idx].item] = -2; |
|
230 |
int idx = _first[_minimum]; |
|
231 |
_iim[_data[idx].item] = -2; |
|
231 | 232 |
unlace(idx); |
232 | 233 |
relocate_last(idx); |
233 | 234 |
} |
234 | 235 |
|
235 | 236 |
/// \brief Deletes \c i from the heap. |
236 | 237 |
/// |
237 | 238 |
/// This method deletes item \c i from the heap, if \c i was |
238 | 239 |
/// already stored in the heap. |
239 | 240 |
/// \param i The item to erase. |
240 | 241 |
void erase(const Item &i) { |
241 |
int idx = index[i]; |
|
242 |
index[data[idx].item] = -2; |
|
242 |
int idx = _iim[i]; |
|
243 |
_iim[_data[idx].item] = -2; |
|
243 | 244 |
unlace(idx); |
244 | 245 |
relocate_last(idx); |
245 | 246 |
} |
246 | 247 |
|
247 | 248 |
|
248 | 249 |
/// \brief Returns the priority of \c i. |
249 | 250 |
/// |
250 | 251 |
/// This function returns the priority of item \c i. |
251 | 252 |
/// \pre \c i must be in the heap. |
252 | 253 |
/// \param i The item. |
253 | 254 |
Prio operator[](const Item &i) const { |
254 |
int idx = index[i]; |
|
255 |
return data[idx].value; |
|
255 |
int idx = _iim[i]; |
|
256 |
return _data[idx].value; |
|
256 | 257 |
} |
257 | 258 |
|
258 | 259 |
/// \brief \c i gets to the heap with priority \c p independently |
259 | 260 |
/// if \c i was already there. |
260 | 261 |
/// |
261 | 262 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
262 | 263 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
263 | 264 |
/// \param i The item. |
264 | 265 |
/// \param p The priority. |
265 | 266 |
void set(const Item &i, const Prio &p) { |
266 |
int idx = |
|
267 |
int idx = _iim[i]; |
|
267 | 268 |
if (idx < 0) { |
268 | 269 |
push(i, p); |
269 |
} else if (Direction::less(p, |
|
270 |
} else if (Direction::less(p, _data[idx].value)) { |
|
270 | 271 |
decrease(i, p); |
271 | 272 |
} else { |
272 | 273 |
increase(i, p); |
273 | 274 |
} |
274 | 275 |
} |
275 | 276 |
|
... | ... |
@@ -278,45 +279,45 @@ |
278 | 279 |
/// This method decreases the priority of item \c i to \c p. |
279 | 280 |
/// \pre \c i must be stored in the heap with priority at least \c |
280 | 281 |
/// p relative to \c Compare. |
281 | 282 |
/// \param i The item. |
282 | 283 |
/// \param p The priority. |
283 | 284 |
void decrease(const Item &i, const Prio &p) { |
284 |
int idx = |
|
285 |
int idx = _iim[i]; |
|
285 | 286 |
unlace(idx); |
286 |
data[idx].value = p; |
|
287 |
if (Direction::less(p, minimal)) { |
|
288 |
|
|
287 |
_data[idx].value = p; |
|
288 |
if (Direction::less(p, _minimum)) { |
|
289 |
_minimum = p; |
|
289 | 290 |
} |
290 | 291 |
lace(idx); |
291 | 292 |
} |
292 | 293 |
|
293 | 294 |
/// \brief Increases the priority of \c i to \c p. |
294 | 295 |
/// |
295 | 296 |
/// This method sets the priority of item \c i to \c p. |
296 | 297 |
/// \pre \c i must be stored in the heap with priority at most \c |
297 | 298 |
/// p relative to \c Compare. |
298 | 299 |
/// \param i The item. |
299 | 300 |
/// \param p The priority. |
300 | 301 |
void increase(const Item &i, const Prio &p) { |
301 |
int idx = |
|
302 |
int idx = _iim[i]; |
|
302 | 303 |
unlace(idx); |
303 |
|
|
304 |
_data[idx].value = p; |
|
304 | 305 |
lace(idx); |
305 | 306 |
} |
306 | 307 |
|
307 | 308 |
/// \brief Returns if \c item is in, has already been in, or has |
308 | 309 |
/// never been in the heap. |
309 | 310 |
/// |
310 | 311 |
/// This method returns PRE_HEAP if \c item has never been in the |
311 | 312 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
312 | 313 |
/// otherwise. In the latter case it is possible that \c item will |
313 | 314 |
/// get back to the heap again. |
314 | 315 |
/// \param i The item. |
315 | 316 |
State state(const Item &i) const { |
316 |
int idx = |
|
317 |
int idx = _iim[i]; |
|
317 | 318 |
if (idx >= 0) idx = 0; |
318 | 319 |
return State(idx); |
319 | 320 |
} |
320 | 321 |
|
321 | 322 |
/// \brief Sets the state of the \c item in the heap. |
322 | 323 |
/// |
... | ... |
@@ -329,13 +330,13 @@ |
329 | 330 |
switch (st) { |
330 | 331 |
case POST_HEAP: |
331 | 332 |
case PRE_HEAP: |
332 | 333 |
if (state(i) == IN_HEAP) { |
333 | 334 |
erase(i); |
334 | 335 |
} |
335 |
|
|
336 |
_iim[i] = st; |
|
336 | 337 |
break; |
337 | 338 |
case IN_HEAP: |
338 | 339 |
break; |
339 | 340 |
} |
340 | 341 |
} |
341 | 342 |
|
... | ... |
@@ -348,16 +349,16 @@ |
348 | 349 |
Item item; |
349 | 350 |
int value; |
350 | 351 |
|
351 | 352 |
int prev, next; |
352 | 353 |
}; |
353 | 354 |
|
354 |
ItemIntMap& index; |
|
355 |
std::vector<int> first; |
|
356 |
std::vector<BucketItem> data; |
|
357 |
mutable int minimal; |
|
355 |
ItemIntMap& _iim; |
|
356 |
std::vector<int> _first; |
|
357 |
std::vector<BucketItem> _data; |
|
358 |
mutable int _minimum; |
|
358 | 359 |
|
359 | 360 |
}; // class BucketHeap |
360 | 361 |
|
361 | 362 |
/// \ingroup auxdat |
362 | 363 |
/// |
363 | 364 |
/// \brief A Simplified Bucket Heap implementation. |
... | ... |
@@ -367,76 +368,77 @@ |
367 | 368 |
/// and simplier data structure than the BucketHeap. The main |
368 | 369 |
/// difference is that the BucketHeap stores for every key a double |
369 | 370 |
/// linked list while this class stores just simple lists. In the |
370 | 371 |
/// other way it does not support erasing each elements just the |
371 | 372 |
/// minimal and it does not supports key increasing, decreasing. |
372 | 373 |
/// |
373 |
/// \param |
|
374 |
/// \param IM A read and write Item int map, used internally |
|
374 | 375 |
/// to handle the cross references. |
375 |
/// \param minimize If the given parameter is true then the heap gives back |
|
376 |
/// the lowest priority. |
|
376 |
/// \param MIN If the given parameter is false then instead of the |
|
377 |
/// minimum value the maximum can be retrivied with the top() and |
|
378 |
/// prio() member functions. |
|
377 | 379 |
/// |
378 | 380 |
/// \sa BucketHeap |
379 |
template <typename |
|
381 |
template <typename IM, bool MIN = true > |
|
380 | 382 |
class SimpleBucketHeap { |
381 | 383 |
|
382 | 384 |
public: |
383 |
typedef typename |
|
385 |
typedef typename IM::Key Item; |
|
384 | 386 |
typedef int Prio; |
385 | 387 |
typedef std::pair<Item, Prio> Pair; |
386 |
typedef |
|
388 |
typedef IM ItemIntMap; |
|
387 | 389 |
|
388 | 390 |
private: |
389 | 391 |
|
390 |
typedef _bucket_heap_bits::DirectionTraits< |
|
392 |
typedef _bucket_heap_bits::DirectionTraits<MIN> Direction; |
|
391 | 393 |
|
392 | 394 |
public: |
393 | 395 |
|
394 | 396 |
/// \brief Type to represent the items states. |
395 | 397 |
/// |
396 | 398 |
/// Each Item element have a state associated to it. It may be "in heap", |
397 | 399 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
398 | 400 |
/// heap's point of view, but may be useful to the user. |
399 | 401 |
/// |
400 |
/// The ItemIntMap \e should be initialized in such way that it maps |
|
401 |
/// PRE_HEAP (-1) to any element to be put in the heap... |
|
402 |
/// The item-int map must be initialized in such way that it assigns |
|
403 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
402 | 404 |
enum State { |
403 |
IN_HEAP = 0, |
|
404 |
PRE_HEAP = -1, |
|
405 |
|
|
405 |
IN_HEAP = 0, ///< = 0. |
|
406 |
PRE_HEAP = -1, ///< = -1. |
|
407 |
POST_HEAP = -2 ///< = -2. |
|
406 | 408 |
}; |
407 | 409 |
|
408 | 410 |
public: |
409 | 411 |
|
410 | 412 |
/// \brief The constructor. |
411 | 413 |
/// |
412 | 414 |
/// The constructor. |
413 |
/// \param |
|
415 |
/// \param map should be given to the constructor, since it is used |
|
414 | 416 |
/// internally to handle the cross references. The value of the map |
415 | 417 |
/// should be PRE_HEAP (-1) for each element. |
416 |
explicit SimpleBucketHeap(ItemIntMap &_index) |
|
417 |
: index(_index), free(-1), num(0), minimal(0) {} |
|
418 |
explicit SimpleBucketHeap(ItemIntMap &map) |
|
419 |
: _iim(map), _free(-1), _num(0), _minimum(0) {} |
|
418 | 420 |
|
419 | 421 |
/// \brief Returns the number of items stored in the heap. |
420 | 422 |
/// |
421 | 423 |
/// The number of items stored in the heap. |
422 |
int size() const { return |
|
424 |
int size() const { return _num; } |
|
423 | 425 |
|
424 | 426 |
/// \brief Checks if the heap stores no items. |
425 | 427 |
/// |
426 | 428 |
/// Returns \c true if and only if the heap stores no items. |
427 |
bool empty() const { return |
|
429 |
bool empty() const { return _num == 0; } |
|
428 | 430 |
|
429 | 431 |
/// \brief Make empty this heap. |
430 | 432 |
/// |
431 | 433 |
/// Make empty this heap. It does not change the cross reference |
432 | 434 |
/// map. If you want to reuse a heap what is not surely empty you |
433 | 435 |
/// should first clear the heap and after that you should set the |
434 | 436 |
/// cross reference map for each item to \c PRE_HEAP. |
435 | 437 |
void clear() { |
436 |
|
|
438 |
_data.clear(); _first.clear(); _free = -1; _num = 0; _minimum = 0; |
|
437 | 439 |
} |
438 | 440 |
|
439 | 441 |
/// \brief Insert a pair of item and priority into the heap. |
440 | 442 |
/// |
441 | 443 |
/// Adds \c p.first to the heap with priority \c p.second. |
442 | 444 |
/// \param p The pair to insert. |
... | ... |
@@ -448,84 +450,84 @@ |
448 | 450 |
/// |
449 | 451 |
/// Adds \c i to the heap with priority \c p. |
450 | 452 |
/// \param i The item to insert. |
451 | 453 |
/// \param p The priority of the item. |
452 | 454 |
void push(const Item &i, const Prio &p) { |
453 | 455 |
int idx; |
454 |
if (free == -1) { |
|
455 |
idx = data.size(); |
|
456 |
|
|
456 |
if (_free == -1) { |
|
457 |
idx = _data.size(); |
|
458 |
_data.push_back(BucketItem(i)); |
|
457 | 459 |
} else { |
458 |
idx = free; |
|
459 |
free = data[idx].next; |
|
460 |
|
|
460 |
idx = _free; |
|
461 |
_free = _data[idx].next; |
|
462 |
_data[idx].item = i; |
|
461 | 463 |
} |
462 |
index[i] = idx; |
|
463 |
if (p >= int(first.size())) first.resize(p + 1, -1); |
|
464 |
data[idx].next = first[p]; |
|
465 |
first[p] = idx; |
|
466 |
if (Direction::less(p, minimal)) { |
|
467 |
minimal = p; |
|
464 |
_iim[i] = idx; |
|
465 |
if (p >= int(_first.size())) _first.resize(p + 1, -1); |
|
466 |
_data[idx].next = _first[p]; |
|
467 |
_first[p] = idx; |
|
468 |
if (Direction::less(p, _minimum)) { |
|
469 |
_minimum = p; |
|
468 | 470 |
} |
469 |
++ |
|
471 |
++_num; |
|
470 | 472 |
} |
471 | 473 |
|
472 | 474 |
/// \brief Returns the item with minimum priority. |
473 | 475 |
/// |
474 | 476 |
/// This method returns the item with minimum priority. |
475 | 477 |
/// \pre The heap must be nonempty. |
476 | 478 |
Item top() const { |
477 |
while (first[minimal] == -1) { |
|
478 |
Direction::increase(minimal); |
|
479 |
while (_first[_minimum] == -1) { |
|
480 |
Direction::increase(_minimum); |
|
479 | 481 |
} |
480 |
return |
|
482 |
return _data[_first[_minimum]].item; |
|
481 | 483 |
} |
482 | 484 |
|
483 | 485 |
/// \brief Returns the minimum priority. |
484 | 486 |
/// |
485 | 487 |
/// It returns the minimum priority. |
486 | 488 |
/// \pre The heap must be nonempty. |
487 | 489 |
Prio prio() const { |
488 |
while (first[minimal] == -1) { |
|
489 |
Direction::increase(minimal); |
|
490 |
while (_first[_minimum] == -1) { |
|
491 |
Direction::increase(_minimum); |
|
490 | 492 |
} |
491 |
return |
|
493 |
return _minimum; |
|
492 | 494 |
} |
493 | 495 |
|
494 | 496 |
/// \brief Deletes the item with minimum priority. |
495 | 497 |
/// |
496 | 498 |
/// This method deletes the item with minimum priority from the heap. |
497 | 499 |
/// \pre The heap must be non-empty. |
498 | 500 |
void pop() { |
499 |
while (first[minimal] == -1) { |
|
500 |
Direction::increase(minimal); |
|
501 |
while (_first[_minimum] == -1) { |
|
502 |
Direction::increase(_minimum); |
|
501 | 503 |
} |
502 |
int idx = first[minimal]; |
|
503 |
index[data[idx].item] = -2; |
|
504 |
first[minimal] = data[idx].next; |
|
505 |
data[idx].next = free; |
|
506 |
free = idx; |
|
507 |
--num; |
|
504 |
int idx = _first[_minimum]; |
|
505 |
_iim[_data[idx].item] = -2; |
|
506 |
_first[_minimum] = _data[idx].next; |
|
507 |
_data[idx].next = _free; |
|
508 |
_free = idx; |
|
509 |
--_num; |
|
508 | 510 |
} |
509 | 511 |
|
510 | 512 |
/// \brief Returns the priority of \c i. |
511 | 513 |
/// |
512 | 514 |
/// This function returns the priority of item \c i. |
513 | 515 |
/// \warning This operator is not a constant time function |
514 | 516 |
/// because it scans the whole data structure to find the proper |
515 | 517 |
/// value. |
516 | 518 |
/// \pre \c i must be in the heap. |
517 | 519 |
/// \param i The item. |
518 | 520 |
Prio operator[](const Item &i) const { |
519 |
for (int k = 0; k < first.size(); ++k) { |
|
520 |
int idx = first[k]; |
|
521 |
for (int k = 0; k < _first.size(); ++k) { |
|
522 |
int idx = _first[k]; |
|
521 | 523 |
while (idx != -1) { |
522 |
if ( |
|
524 |
if (_data[idx].item == i) { |
|
523 | 525 |
return k; |
524 | 526 |
} |
525 |
idx = |
|
527 |
idx = _data[idx].next; |
|
526 | 528 |
} |
527 | 529 |
} |
528 | 530 |
return -1; |
529 | 531 |
} |
530 | 532 |
|
531 | 533 |
/// \brief Returns if \c item is in, has already been in, or has |
... | ... |
@@ -534,13 +536,13 @@ |
534 | 536 |
/// This method returns PRE_HEAP if \c item has never been in the |
535 | 537 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
536 | 538 |
/// otherwise. In the latter case it is possible that \c item will |
537 | 539 |
/// get back to the heap again. |
538 | 540 |
/// \param i The item. |
539 | 541 |
State state(const Item &i) const { |
540 |
int idx = |
|
542 |
int idx = _iim[i]; |
|
541 | 543 |
if (idx >= 0) idx = 0; |
542 | 544 |
return State(idx); |
543 | 545 |
} |
544 | 546 |
|
545 | 547 |
private: |
546 | 548 |
|
... | ... |
@@ -549,17 +551,17 @@ |
549 | 551 |
: item(_item) {} |
550 | 552 |
|
551 | 553 |
Item item; |
552 | 554 |
int next; |
553 | 555 |
}; |
554 | 556 |
|
555 |
ItemIntMap& index; |
|
556 |
std::vector<int> first; |
|
557 |
std::vector<BucketItem> data; |
|
558 |
int free, num; |
|
559 |
|
|
557 |
ItemIntMap& _iim; |
|
558 |
std::vector<int> _first; |
|
559 |
std::vector<BucketItem> _data; |
|
560 |
int _free, _num; |
|
561 |
mutable int _minimum; |
|
560 | 562 |
|
561 | 563 |
}; // class SimpleBucketHeap |
562 | 564 |
|
563 | 565 |
} |
564 | 566 |
|
565 | 567 |
#endif |
... | ... |
@@ -33,242 +33,243 @@ |
33 | 33 |
/// |
34 | 34 |
///\brief Fibonacci Heap. |
35 | 35 |
/// |
36 | 36 |
///This class implements the \e Fibonacci \e heap data structure. A \e heap |
37 | 37 |
///is a data structure for storing items with specified values called \e |
38 | 38 |
///priorities in such a way that finding the item with minimum priority is |
39 |
///efficient. \c |
|
39 |
///efficient. \c CMP specifies the ordering of the priorities. In a heap |
|
40 | 40 |
///one can change the priority of an item, add or erase an item, etc. |
41 | 41 |
/// |
42 | 42 |
///The methods \ref increase and \ref erase are not efficient in a Fibonacci |
43 | 43 |
///heap. In case of many calls to these operations, it is better to use a |
44 | 44 |
///\ref BinHeap "binary heap". |
45 | 45 |
/// |
46 |
///\param _Prio Type of the priority of the items. |
|
47 |
///\param _ItemIntMap A read and writable Item int map, used internally |
|
46 |
///\param PRIO Type of the priority of the items. |
|
47 |
///\param IM A read and writable Item int map, used internally |
|
48 | 48 |
///to handle the cross references. |
49 |
///\param _Compare A class for the ordering of the priorities. The |
|
50 |
///default is \c std::less<_Prio>. |
|
49 |
///\param CMP A class for the ordering of the priorities. The |
|
50 |
///default is \c std::less<PRIO>. |
|
51 | 51 |
/// |
52 | 52 |
///\sa BinHeap |
53 | 53 |
///\sa Dijkstra |
54 | 54 |
#ifdef DOXYGEN |
55 |
template <typename _Prio, |
|
56 |
typename _ItemIntMap, |
|
57 |
|
|
55 |
template <typename PRIO, typename IM, typename CMP> |
|
58 | 56 |
#else |
59 |
template <typename _Prio, |
|
60 |
typename _ItemIntMap, |
|
61 |
|
|
57 |
template <typename PRIO, typename IM, typename CMP = std::less<PRIO> > |
|
62 | 58 |
#endif |
63 | 59 |
class FibHeap { |
64 | 60 |
public: |
65 | 61 |
///\e |
66 |
typedef |
|
62 |
typedef IM ItemIntMap; |
|
67 | 63 |
///\e |
68 |
typedef |
|
64 |
typedef PRIO Prio; |
|
69 | 65 |
///\e |
70 | 66 |
typedef typename ItemIntMap::Key Item; |
71 | 67 |
///\e |
72 | 68 |
typedef std::pair<Item,Prio> Pair; |
73 | 69 |
///\e |
74 |
typedef |
|
70 |
typedef CMP Compare; |
|
75 | 71 |
|
76 | 72 |
private: |
77 |
class |
|
73 |
class Store; |
|
78 | 74 |
|
79 |
std::vector<store> container; |
|
80 |
int minimum; |
|
81 |
ItemIntMap &iimap; |
|
82 |
Compare comp; |
|
83 |
|
|
75 |
std::vector<Store> _data; |
|
76 |
int _minimum; |
|
77 |
ItemIntMap &_iim; |
|
78 |
Compare _comp; |
|
79 |
int _num; |
|
84 | 80 |
|
85 | 81 |
public: |
86 |
|
|
82 |
|
|
83 |
/// \brief Type to represent the items states. |
|
84 |
/// |
|
85 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
86 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
87 |
/// heap's point of view, but may be useful to the user. |
|
88 |
/// |
|
89 |
/// The item-int map must be initialized in such way that it assigns |
|
90 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
87 | 91 |
enum State { |
88 |
///The node is in the heap |
|
89 |
IN_HEAP = 0, |
|
90 |
///The node has never been in the heap |
|
91 |
PRE_HEAP = -1, |
|
92 |
///The node was in the heap but it got out of it |
|
93 |
POST_HEAP = -2 |
|
92 |
IN_HEAP = 0, ///< = 0. |
|
93 |
PRE_HEAP = -1, ///< = -1. |
|
94 |
POST_HEAP = -2 ///< = -2. |
|
94 | 95 |
}; |
95 | 96 |
|
96 | 97 |
/// \brief The constructor |
97 | 98 |
/// |
98 |
/// \c |
|
99 |
/// \c map should be given to the constructor, since it is |
|
99 | 100 |
/// used internally to handle the cross references. |
100 |
explicit FibHeap(ItemIntMap &_iimap) |
|
101 |
: minimum(0), iimap(_iimap), num_items() {} |
|
101 |
explicit FibHeap(ItemIntMap &map) |
|
102 |
: _minimum(0), _iim(map), _num() {} |
|
102 | 103 |
|
103 | 104 |
/// \brief The constructor |
104 | 105 |
/// |
105 |
/// \c _iimap should be given to the constructor, since it is used |
|
106 |
/// internally to handle the cross references. \c _comp is an |
|
106 |
/// \c map should be given to the constructor, since it is used |
|
107 |
/// internally to handle the cross references. \c comp is an |
|
107 | 108 |
/// object for ordering of the priorities. |
108 |
FibHeap(ItemIntMap &_iimap, const Compare &_comp) |
|
109 |
: minimum(0), iimap(_iimap), comp(_comp), num_items() {} |
|
109 |
FibHeap(ItemIntMap &map, const Compare &comp) |
|
110 |
: _minimum(0), _iim(map), _comp(comp), _num() {} |
|
110 | 111 |
|
111 | 112 |
/// \brief The number of items stored in the heap. |
112 | 113 |
/// |
113 | 114 |
/// Returns the number of items stored in the heap. |
114 |
int size() const { return |
|
115 |
int size() const { return _num; } |
|
115 | 116 |
|
116 | 117 |
/// \brief Checks if the heap stores no items. |
117 | 118 |
/// |
118 | 119 |
/// Returns \c true if and only if the heap stores no items. |
119 |
bool empty() const { return |
|
120 |
bool empty() const { return _num==0; } |
|
120 | 121 |
|
121 | 122 |
/// \brief Make empty this heap. |
122 | 123 |
/// |
123 | 124 |
/// Make empty this heap. It does not change the cross reference |
124 | 125 |
/// map. If you want to reuse a heap what is not surely empty you |
125 | 126 |
/// should first clear the heap and after that you should set the |
126 | 127 |
/// cross reference map for each item to \c PRE_HEAP. |
127 | 128 |
void clear() { |
128 |
|
|
129 |
_data.clear(); _minimum = 0; _num = 0; |
|
129 | 130 |
} |
130 | 131 |
|
131 | 132 |
/// \brief \c item gets to the heap with priority \c value independently |
132 | 133 |
/// if \c item was already there. |
133 | 134 |
/// |
134 | 135 |
/// This method calls \ref push(\c item, \c value) if \c item is not |
135 | 136 |
/// stored in the heap and it calls \ref decrease(\c item, \c value) or |
136 | 137 |
/// \ref increase(\c item, \c value) otherwise. |
137 | 138 |
void set (const Item& item, const Prio& value) { |
138 |
int i=iimap[item]; |
|
139 |
if ( i >= 0 && container[i].in ) { |
|
140 |
if ( comp(value, container[i].prio) ) decrease(item, value); |
|
141 |
if ( comp(container[i].prio, value) ) increase(item, value); |
|
139 |
int i=_iim[item]; |
|
140 |
if ( i >= 0 && _data[i].in ) { |
|
141 |
if ( _comp(value, _data[i].prio) ) decrease(item, value); |
|
142 |
if ( _comp(_data[i].prio, value) ) increase(item, value); |
|
142 | 143 |
} else push(item, value); |
143 | 144 |
} |
144 | 145 |
|
145 | 146 |
/// \brief Adds \c item to the heap with priority \c value. |
146 | 147 |
/// |
147 | 148 |
/// Adds \c item to the heap with priority \c value. |
148 | 149 |
/// \pre \c item must not be stored in the heap. |
149 | 150 |
void push (const Item& item, const Prio& value) { |
150 |
int i= |
|
151 |
int i=_iim[item]; |
|
151 | 152 |
if ( i < 0 ) { |
152 |
int s=container.size(); |
|
153 |
iimap.set( item, s ); |
|
154 |
|
|
153 |
int s=_data.size(); |
|
154 |
_iim.set( item, s ); |
|
155 |
Store st; |
|
155 | 156 |
st.name=item; |
156 |
|
|
157 |
_data.push_back(st); |
|
157 | 158 |
i=s; |
158 | 159 |
} else { |
159 |
container[i].parent=container[i].child=-1; |
|
160 |
container[i].degree=0; |
|
161 |
container[i].in=true; |
|
162 |
container[i].marked=false; |
|
160 |
_data[i].parent=_data[i].child=-1; |
|
161 |
_data[i].degree=0; |
|
162 |
_data[i].in=true; |
|
163 |
_data[i].marked=false; |
|
163 | 164 |
} |
164 | 165 |
|
165 |
if ( num_items ) { |
|
166 |
container[container[minimum].right_neighbor].left_neighbor=i; |
|
167 |
container[i].right_neighbor=container[minimum].right_neighbor; |
|
168 |
container[minimum].right_neighbor=i; |
|
169 |
container[i].left_neighbor=minimum; |
|
170 |
if ( comp( value, container[minimum].prio) ) minimum=i; |
|
166 |
if ( _num ) { |
|
167 |
_data[_data[_minimum].right_neighbor].left_neighbor=i; |
|
168 |
_data[i].right_neighbor=_data[_minimum].right_neighbor; |
|
169 |
_data[_minimum].right_neighbor=i; |
|
170 |
_data[i].left_neighbor=_minimum; |
|
171 |
if ( _comp( value, _data[_minimum].prio) ) _minimum=i; |
|
171 | 172 |
} else { |
172 |
container[i].right_neighbor=container[i].left_neighbor=i; |
|
173 |
minimum=i; |
|
173 |
_data[i].right_neighbor=_data[i].left_neighbor=i; |
|
174 |
_minimum=i; |
|
174 | 175 |
} |
175 |
container[i].prio=value; |
|
176 |
++num_items; |
|
176 |
_data[i].prio=value; |
|
177 |
++_num; |
|
177 | 178 |
} |
178 | 179 |
|
179 | 180 |
/// \brief Returns the item with minimum priority relative to \c Compare. |
180 | 181 |
/// |
181 | 182 |
/// This method returns the item with minimum priority relative to \c |
182 | 183 |
/// Compare. |
183 | 184 |
/// \pre The heap must be nonempty. |
184 |
Item top() const { return |
|
185 |
Item top() const { return _data[_minimum].name; } |
|
185 | 186 |
|
186 | 187 |
/// \brief Returns the minimum priority relative to \c Compare. |
187 | 188 |
/// |
188 | 189 |
/// It returns the minimum priority relative to \c Compare. |
189 | 190 |
/// \pre The heap must be nonempty. |
190 |
const Prio& prio() const { return |
|
191 |
const Prio& prio() const { return _data[_minimum].prio; } |
|
191 | 192 |
|
192 | 193 |
/// \brief Returns the priority of \c item. |
193 | 194 |
/// |
194 | 195 |
/// It returns the priority of \c item. |
195 | 196 |
/// \pre \c item must be in the heap. |
196 | 197 |
const Prio& operator[](const Item& item) const { |
197 |
return |
|
198 |
return _data[_iim[item]].prio; |
|
198 | 199 |
} |
199 | 200 |
|
200 | 201 |
/// \brief Deletes the item with minimum priority relative to \c Compare. |
201 | 202 |
/// |
202 | 203 |
/// This method deletes the item with minimum priority relative to \c |
203 | 204 |
/// Compare from the heap. |
204 | 205 |
/// \pre The heap must be non-empty. |
205 | 206 |
void pop() { |
206 | 207 |
/*The first case is that there are only one root.*/ |
207 |
if ( container[minimum].left_neighbor==minimum ) { |
|
208 |
container[minimum].in=false; |
|
209 |
if ( container[minimum].degree!=0 ) { |
|
210 |
makeroot(container[minimum].child); |
|
211 |
|
|
208 |
if ( _data[_minimum].left_neighbor==_minimum ) { |
|
209 |
_data[_minimum].in=false; |
|
210 |
if ( _data[_minimum].degree!=0 ) { |
|
211 |
makeroot(_data[_minimum].child); |
|
212 |
_minimum=_data[_minimum].child; |
|
212 | 213 |
balance(); |
213 | 214 |
} |
214 | 215 |
} else { |
215 |
int right=container[minimum].right_neighbor; |
|
216 |
unlace(minimum); |
|
217 |
container[minimum].in=false; |
|
218 |
if ( container[minimum].degree > 0 ) { |
|
219 |
int left=container[minimum].left_neighbor; |
|
220 |
int child=container[minimum].child; |
|
221 |
|
|
216 |
int right=_data[_minimum].right_neighbor; |
|
217 |
unlace(_minimum); |
|
218 |
_data[_minimum].in=false; |
|
219 |
if ( _data[_minimum].degree > 0 ) { |
|
220 |
int left=_data[_minimum].left_neighbor; |
|
221 |
int child=_data[_minimum].child; |
|
222 |
int last_child=_data[child].left_neighbor; |
|
222 | 223 |
|
223 | 224 |
makeroot(child); |
224 | 225 |
|
225 |
container[left].right_neighbor=child; |
|
226 |
container[child].left_neighbor=left; |
|
227 |
container[right].left_neighbor=last_child; |
|
228 |
container[last_child].right_neighbor=right; |
|
226 |
_data[left].right_neighbor=child; |
|
227 |
_data[child].left_neighbor=left; |
|
228 |
_data[right].left_neighbor=last_child; |
|
229 |
_data[last_child].right_neighbor=right; |
|
229 | 230 |
} |
230 |
|
|
231 |
_minimum=right; |
|
231 | 232 |
balance(); |
232 | 233 |
} // the case where there are more roots |
233 |
-- |
|
234 |
--_num; |
|
234 | 235 |
} |
235 | 236 |
|
236 | 237 |
/// \brief Deletes \c item from the heap. |
237 | 238 |
/// |
238 | 239 |
/// This method deletes \c item from the heap, if \c item was already |
239 | 240 |
/// stored in the heap. It is quite inefficient in Fibonacci heaps. |
240 | 241 |
void erase (const Item& item) { |
241 |
int i= |
|
242 |
int i=_iim[item]; |
|
242 | 243 |
|
243 |
if ( i >= 0 && container[i].in ) { |
|
244 |
if ( container[i].parent!=-1 ) { |
|
245 |
|
|
244 |
if ( i >= 0 && _data[i].in ) { |
|
245 |
if ( _data[i].parent!=-1 ) { |
|
246 |
int p=_data[i].parent; |
|
246 | 247 |
cut(i,p); |
247 | 248 |
cascade(p); |
248 | 249 |
} |
249 |
|
|
250 |
_minimum=i; //As if its prio would be -infinity |
|
250 | 251 |
pop(); |
251 | 252 |
} |
252 | 253 |
} |
253 | 254 |
|
254 | 255 |
/// \brief Decreases the priority of \c item to \c value. |
255 | 256 |
/// |
256 | 257 |
/// This method decreases the priority of \c item to \c value. |
257 | 258 |
/// \pre \c item must be stored in the heap with priority at least \c |
258 | 259 |
/// value relative to \c Compare. |
259 | 260 |
void decrease (Item item, const Prio& value) { |
260 |
int i=iimap[item]; |
|
261 |
container[i].prio=value; |
|
262 |
int |
|
261 |
int i=_iim[item]; |
|
262 |
_data[i].prio=value; |
|
263 |
int p=_data[i].parent; |
|
263 | 264 |
|
264 |
if ( p!=-1 && |
|
265 |
if ( p!=-1 && _comp(value, _data[p].prio) ) { |
|
265 | 266 |
cut(i,p); |
266 | 267 |
cascade(p); |
267 | 268 |
} |
268 |
if ( |
|
269 |
if ( _comp(value, _data[_minimum].prio) ) _minimum=i; |
|
269 | 270 |
} |
270 | 271 |
|
271 | 272 |
/// \brief Increases the priority of \c item to \c value. |
272 | 273 |
/// |
273 | 274 |
/// This method sets the priority of \c item to \c value. Though |
274 | 275 |
/// there is no precondition on the priority of \c item, this |
... | ... |
@@ -286,181 +287,181 @@ |
286 | 287 |
/// |
287 | 288 |
/// This method returns PRE_HEAP if \c item has never been in the |
288 | 289 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
289 | 290 |
/// otherwise. In the latter case it is possible that \c item will |
290 | 291 |
/// get back to the heap again. |
291 | 292 |
State state(const Item &item) const { |
292 |
int i= |
|
293 |
int i=_iim[item]; |
|
293 | 294 |
if( i>=0 ) { |
294 |
if ( |
|
295 |
if ( _data[i].in ) i=0; |
|
295 | 296 |
else i=-2; |
296 | 297 |
} |
297 | 298 |
return State(i); |
298 | 299 |
} |
299 | 300 |
|
300 | 301 |
/// \brief Sets the state of the \c item in the heap. |
301 | 302 |
/// |
302 | 303 |
/// Sets the state of the \c item in the heap. It can be used to |
303 | 304 |
/// manually clear the heap when it is important to achive the |
304 |
/// better time |
|
305 |
/// better time _complexity. |
|
305 | 306 |
/// \param i The item. |
306 | 307 |
/// \param st The state. It should not be \c IN_HEAP. |
307 | 308 |
void state(const Item& i, State st) { |
308 | 309 |
switch (st) { |
309 | 310 |
case POST_HEAP: |
310 | 311 |
case PRE_HEAP: |
311 | 312 |
if (state(i) == IN_HEAP) { |
312 | 313 |
erase(i); |
313 | 314 |
} |
314 |
|
|
315 |
_iim[i] = st; |
|
315 | 316 |
break; |
316 | 317 |
case IN_HEAP: |
317 | 318 |
break; |
318 | 319 |
} |
319 | 320 |
} |
320 | 321 |
|
321 | 322 |
private: |
322 | 323 |
|
323 | 324 |
void balance() { |
324 | 325 |
|
325 |
int maxdeg=int( std::floor( 2.08*log(double( |
|
326 |
int maxdeg=int( std::floor( 2.08*log(double(_data.size()))))+1; |
|
326 | 327 |
|
327 | 328 |
std::vector<int> A(maxdeg,-1); |
328 | 329 |
|
329 | 330 |
/* |
330 | 331 |
*Recall that now minimum does not point to the minimum prio element. |
331 | 332 |
*We set minimum to this during balance(). |
332 | 333 |
*/ |
333 |
int anchor=container[minimum].left_neighbor; |
|
334 |
int next=minimum; |
|
334 |
int anchor=_data[_minimum].left_neighbor; |
|
335 |
int next=_minimum; |
|
335 | 336 |
bool end=false; |
336 | 337 |
|
337 | 338 |
do { |
338 | 339 |
int active=next; |
339 | 340 |
if ( anchor==active ) end=true; |
340 |
int d=container[active].degree; |
|
341 |
next=container[active].right_neighbor; |
|
341 |
int d=_data[active].degree; |
|
342 |
next=_data[active].right_neighbor; |
|
342 | 343 |
|
343 | 344 |
while (A[d]!=-1) { |
344 |
if( |
|
345 |
if( _comp(_data[active].prio, _data[A[d]].prio) ) { |
|
345 | 346 |
fuse(active,A[d]); |
346 | 347 |
} else { |
347 | 348 |
fuse(A[d],active); |
348 | 349 |
active=A[d]; |
349 | 350 |
} |
350 | 351 |
A[d]=-1; |
351 | 352 |
++d; |
352 | 353 |
} |
353 | 354 |
A[d]=active; |
354 | 355 |
} while ( !end ); |
355 | 356 |
|
356 | 357 |
|
357 |
while ( container[minimum].parent >=0 ) |
|
358 |
minimum=container[minimum].parent; |
|
359 |
int s=minimum; |
|
360 |
int m=minimum; |
|
358 |
while ( _data[_minimum].parent >=0 ) |
|
359 |
_minimum=_data[_minimum].parent; |
|
360 |
int s=_minimum; |
|
361 |
int m=_minimum; |
|
361 | 362 |
do { |
362 |
if ( comp(container[s].prio, container[minimum].prio) ) minimum=s; |
|
363 |
s=container[s].right_neighbor; |
|
363 |
if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s; |
|
364 |
s=_data[s].right_neighbor; |
|
364 | 365 |
} while ( s != m ); |
365 | 366 |
} |
366 | 367 |
|
367 | 368 |
void makeroot(int c) { |
368 | 369 |
int s=c; |
369 | 370 |
do { |
370 |
container[s].parent=-1; |
|
371 |
s=container[s].right_neighbor; |
|
371 |
_data[s].parent=-1; |
|
372 |
s=_data[s].right_neighbor; |
|
372 | 373 |
} while ( s != c ); |
373 | 374 |
} |
374 | 375 |
|
375 | 376 |
void cut(int a, int b) { |
376 | 377 |
/* |
377 | 378 |
*Replacing a from the children of b. |
378 | 379 |
*/ |
379 |
-- |
|
380 |
--_data[b].degree; |
|
380 | 381 |
|
381 |
if ( container[b].degree !=0 ) { |
|
382 |
int child=container[b].child; |
|
382 |
if ( _data[b].degree !=0 ) { |
|
383 |
int child=_data[b].child; |
|
383 | 384 |
if ( child==a ) |
384 |
|
|
385 |
_data[b].child=_data[child].right_neighbor; |
|
385 | 386 |
unlace(a); |
386 | 387 |
} |
387 | 388 |
|
388 | 389 |
|
389 | 390 |
/*Lacing a to the roots.*/ |
390 |
int right=container[minimum].right_neighbor; |
|
391 |
container[minimum].right_neighbor=a; |
|
392 |
container[a].left_neighbor=minimum; |
|
393 |
container[a].right_neighbor=right; |
|
394 |
|
|
391 |
int right=_data[_minimum].right_neighbor; |
|
392 |
_data[_minimum].right_neighbor=a; |
|
393 |
_data[a].left_neighbor=_minimum; |
|
394 |
_data[a].right_neighbor=right; |
|
395 |
_data[right].left_neighbor=a; |
|
395 | 396 |
|
396 |
container[a].parent=-1; |
|
397 |
container[a].marked=false; |
|
397 |
_data[a].parent=-1; |
|
398 |
_data[a].marked=false; |
|
398 | 399 |
} |
399 | 400 |
|
400 | 401 |
void cascade(int a) { |
401 |
if ( container[a].parent!=-1 ) { |
|
402 |
int p=container[a].parent; |
|
402 |
if ( _data[a].parent!=-1 ) { |
|
403 |
int p=_data[a].parent; |
|
403 | 404 |
|
404 |
if ( |
|
405 |
if ( _data[a].marked==false ) _data[a].marked=true; |
|
405 | 406 |
else { |
406 | 407 |
cut(a,p); |
407 | 408 |
cascade(p); |
408 | 409 |
} |
409 | 410 |
} |
410 | 411 |
} |
411 | 412 |
|
412 | 413 |
void fuse(int a, int b) { |
413 | 414 |
unlace(b); |
414 | 415 |
|
415 | 416 |
/*Lacing b under a.*/ |
416 |
|
|
417 |
_data[b].parent=a; |
|
417 | 418 |
|
418 |
if (container[a].degree==0) { |
|
419 |
container[b].left_neighbor=b; |
|
420 |
container[b].right_neighbor=b; |
|
421 |
container[a].child=b; |
|
419 |
if (_data[a].degree==0) { |
|
420 |
_data[b].left_neighbor=b; |
|
421 |
_data[b].right_neighbor=b; |
|
422 |
_data[a].child=b; |
|
422 | 423 |
} else { |
423 |
int child=container[a].child; |
|
424 |
int last_child=container[child].left_neighbor; |
|
425 |
container[child].left_neighbor=b; |
|
426 |
container[b].right_neighbor=child; |
|
427 |
container[last_child].right_neighbor=b; |
|
428 |
container[b].left_neighbor=last_child; |
|
424 |
int child=_data[a].child; |
|
425 |
int last_child=_data[child].left_neighbor; |
|
426 |
_data[child].left_neighbor=b; |
|
427 |
_data[b].right_neighbor=child; |
|
428 |
_data[last_child].right_neighbor=b; |
|
429 |
_data[b].left_neighbor=last_child; |
|
429 | 430 |
} |
430 | 431 |
|
431 |
++ |
|
432 |
++_data[a].degree; |
|
432 | 433 |
|
433 |
|
|
434 |
_data[b].marked=false; |
|
434 | 435 |
} |
435 | 436 |
|
436 | 437 |
/* |
437 | 438 |
*It is invoked only if a has siblings. |
438 | 439 |
*/ |
439 | 440 |
void unlace(int a) { |
440 |
int leftn=container[a].left_neighbor; |
|
441 |
int rightn=container[a].right_neighbor; |
|
442 |
container[leftn].right_neighbor=rightn; |
|
443 |
container[rightn].left_neighbor=leftn; |
|
441 |
int leftn=_data[a].left_neighbor; |
|
442 |
int rightn=_data[a].right_neighbor; |
|
443 |
_data[leftn].right_neighbor=rightn; |
|
444 |
_data[rightn].left_neighbor=leftn; |
|
444 | 445 |
} |
445 | 446 |
|
446 | 447 |
|
447 |
class |
|
448 |
class Store { |
|
448 | 449 |
friend class FibHeap; |
449 | 450 |
|
450 | 451 |
Item name; |
451 | 452 |
int parent; |
452 | 453 |
int left_neighbor; |
453 | 454 |
int right_neighbor; |
454 | 455 |
int child; |
455 | 456 |
int degree; |
456 | 457 |
bool marked; |
457 | 458 |
bool in; |
458 | 459 |
Prio prio; |
459 | 460 |
|
460 |
|
|
461 |
Store() : parent(-1), child(-1), degree(), marked(false), in(true) {} |
|
461 | 462 |
}; |
462 | 463 |
}; |
463 | 464 |
|
464 | 465 |
} //namespace lemon |
465 | 466 |
|
466 | 467 |
#endif //LEMON_FIB_HEAP_H |
... | ... |
@@ -38,24 +38,24 @@ |
38 | 38 |
/// priorities in such a way that finding the item with minimum priority is |
39 | 39 |
/// efficient. This heap type can store only items with \e int priority. |
40 | 40 |
/// In a heap one can change the priority of an item, add or erase an |
41 | 41 |
/// item, but the priority cannot be decreased under the last removed |
42 | 42 |
/// item's priority. |
43 | 43 |
/// |
44 |
/// \param |
|
44 |
/// \param IM A read and writable Item int map, used internally |
|
45 | 45 |
/// to handle the cross references. |
46 | 46 |
/// |
47 | 47 |
/// \see BinHeap |
48 | 48 |
/// \see Dijkstra |
49 |
template <typename |
|
49 |
template <typename IM> |
|
50 | 50 |
class RadixHeap { |
51 | 51 |
|
52 | 52 |
public: |
53 |
typedef typename |
|
53 |
typedef typename IM::Key Item; |
|
54 | 54 |
typedef int Prio; |
55 |
typedef |
|
55 |
typedef IM ItemIntMap; |
|
56 | 56 |
|
57 | 57 |
/// \brief Exception thrown by RadixHeap. |
58 | 58 |
/// |
59 | 59 |
/// This Exception is thrown when a smaller priority |
60 | 60 |
/// is inserted into the \e RadixHeap then the last time erased. |
61 | 61 |
/// \see RadixHeap |
... | ... |
@@ -96,28 +96,28 @@ |
96 | 96 |
RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {} |
97 | 97 |
}; |
98 | 98 |
|
99 | 99 |
std::vector<RadixItem> data; |
100 | 100 |
std::vector<RadixBox> boxes; |
101 | 101 |
|
102 |
ItemIntMap & |
|
102 |
ItemIntMap &_iim; |
|
103 | 103 |
|
104 | 104 |
|
105 | 105 |
public: |
106 | 106 |
/// \brief The constructor. |
107 | 107 |
/// |
108 | 108 |
/// The constructor. |
109 | 109 |
/// |
110 |
/// \param |
|
110 |
/// \param map It should be given to the constructor, since it is used |
|
111 | 111 |
/// internally to handle the cross references. The value of the map |
112 | 112 |
/// should be PRE_HEAP (-1) for each element. |
113 | 113 |
/// |
114 | 114 |
/// \param minimal The initial minimal value of the heap. |
115 | 115 |
/// \param capacity It determines the initial capacity of the heap. |
116 |
RadixHeap(ItemIntMap &_iim, int minimal = 0, int capacity = 0) |
|
117 |
: iim(_iim) { |
|
116 |
RadixHeap(ItemIntMap &map, int minimal = 0, int capacity = 0) |
|
117 |
: _iim(map) { |
|
118 | 118 |
boxes.push_back(RadixBox(minimal, 1)); |
119 | 119 |
boxes.push_back(RadixBox(minimal + 1, 1)); |
120 | 120 |
while (lower(boxes.size() - 1, capacity + minimal - 1)) { |
121 | 121 |
extend(); |
122 | 122 |
} |
123 | 123 |
} |
... | ... |
@@ -265,13 +265,13 @@ |
265 | 265 |
} else { |
266 | 266 |
boxes[data[index].box].first = index; |
267 | 267 |
} |
268 | 268 |
if (data[index].next != -1) { |
269 | 269 |
data[data[index].next].prev = index; |
270 | 270 |
} |
271 |
|
|
271 |
_iim[data[index].item] = index; |
|
272 | 272 |
} |
273 | 273 |
data.pop_back(); |
274 | 274 |
} |
275 | 275 |
|
276 | 276 |
public: |
277 | 277 |
|
... | ... |
@@ -279,13 +279,13 @@ |
279 | 279 |
/// |
280 | 280 |
/// Adds \c i to the heap with priority \c p. |
281 | 281 |
/// \param i The item to insert. |
282 | 282 |
/// \param p The priority of the item. |
283 | 283 |
void push(const Item &i, const Prio &p) { |
284 | 284 |
int n = data.size(); |
285 |
|
|
285 |
_iim.set(i, n); |
|
286 | 286 |
data.push_back(RadixItem(i, p)); |
287 | 287 |
while (lower(boxes.size() - 1, p)) { |
288 | 288 |
extend(); |
289 | 289 |
} |
290 | 290 |
int box = findDown(boxes.size() - 1, p); |
291 | 291 |
insert(box, n); |
... | ... |
@@ -313,49 +313,49 @@ |
313 | 313 |
/// |
314 | 314 |
/// This method deletes the item with minimum priority. |
315 | 315 |
/// \pre The heap must be non-empty. |
316 | 316 |
void pop() { |
317 | 317 |
moveDown(); |
318 | 318 |
int index = boxes[0].first; |
319 |
|
|
319 |
_iim[data[index].item] = POST_HEAP; |
|
320 | 320 |
remove(index); |
321 | 321 |
relocate_last(index); |
322 | 322 |
} |
323 | 323 |
|
324 | 324 |
/// \brief Deletes \c i from the heap. |
325 | 325 |
/// |
326 | 326 |
/// This method deletes item \c i from the heap, if \c i was |
327 | 327 |
/// already stored in the heap. |
328 | 328 |
/// \param i The item to erase. |
329 | 329 |
void erase(const Item &i) { |
330 |
int index = iim[i]; |
|
331 |
iim[i] = POST_HEAP; |
|
330 |
int index = _iim[i]; |
|
331 |
_iim[i] = POST_HEAP; |
|
332 | 332 |
remove(index); |
333 | 333 |
relocate_last(index); |
334 | 334 |
} |
335 | 335 |
|
336 | 336 |
/// \brief Returns the priority of \c i. |
337 | 337 |
/// |
338 | 338 |
/// This function returns the priority of item \c i. |
339 | 339 |
/// \pre \c i must be in the heap. |
340 | 340 |
/// \param i The item. |
341 | 341 |
Prio operator[](const Item &i) const { |
342 |
int idx = |
|
342 |
int idx = _iim[i]; |
|
343 | 343 |
return data[idx].prio; |
344 | 344 |
} |
345 | 345 |
|
346 | 346 |
/// \brief \c i gets to the heap with priority \c p independently |
347 | 347 |
/// if \c i was already there. |
348 | 348 |
/// |
349 | 349 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
350 | 350 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
351 | 351 |
/// It may throw an \e UnderFlowPriorityException. |
352 | 352 |
/// \param i The item. |
353 | 353 |
/// \param p The priority. |
354 | 354 |
void set(const Item &i, const Prio &p) { |
355 |
int idx = |
|
355 |
int idx = _iim[i]; |
|
356 | 356 |
if( idx < 0 ) { |
357 | 357 |
push(i, p); |
358 | 358 |
} |
359 | 359 |
else if( p >= data[idx].prio ) { |
360 | 360 |
data[idx].prio = p; |
361 | 361 |
bubble_up(idx); |
... | ... |
@@ -371,25 +371,25 @@ |
371 | 371 |
/// This method decreases the priority of item \c i to \c p. |
372 | 372 |
/// \pre \c i must be stored in the heap with priority at least \c p, and |
373 | 373 |
/// \c should be greater or equal to the last removed item's priority. |
374 | 374 |
/// \param i The item. |
375 | 375 |
/// \param p The priority. |
376 | 376 |
void decrease(const Item &i, const Prio &p) { |
377 |
int idx = |
|
377 |
int idx = _iim[i]; |
|
378 | 378 |
data[idx].prio = p; |
379 | 379 |
bubble_down(idx); |
380 | 380 |
} |
381 | 381 |
|
382 | 382 |
/// \brief Increases the priority of \c i to \c p. |
383 | 383 |
/// |
384 | 384 |
/// This method sets the priority of item \c i to \c p. |
385 | 385 |
/// \pre \c i must be stored in the heap with priority at most \c p |
386 | 386 |
/// \param i The item. |
387 | 387 |
/// \param p The priority. |
388 | 388 |
void increase(const Item &i, const Prio &p) { |
389 |
int idx = |
|
389 |
int idx = _iim[i]; |
|
390 | 390 |
data[idx].prio = p; |
391 | 391 |
bubble_up(idx); |
392 | 392 |
} |
393 | 393 |
|
394 | 394 |
/// \brief Returns if \c item is in, has already been in, or has |
395 | 395 |
/// never been in the heap. |
... | ... |
@@ -397,13 +397,13 @@ |
397 | 397 |
/// This method returns PRE_HEAP if \c item has never been in the |
398 | 398 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
399 | 399 |
/// otherwise. In the latter case it is possible that \c item will |
400 | 400 |
/// get back to the heap again. |
401 | 401 |
/// \param i The item. |
402 | 402 |
State state(const Item &i) const { |
403 |
int s = |
|
403 |
int s = _iim[i]; |
|
404 | 404 |
if( s >= 0 ) s = 0; |
405 | 405 |
return State(s); |
406 | 406 |
} |
407 | 407 |
|
408 | 408 |
/// \brief Sets the state of the \c item in the heap. |
409 | 409 |
/// |
... | ... |
@@ -416,13 +416,13 @@ |
416 | 416 |
switch (st) { |
417 | 417 |
case POST_HEAP: |
418 | 418 |
case PRE_HEAP: |
419 | 419 |
if (state(i) == IN_HEAP) { |
420 | 420 |
erase(i); |
421 | 421 |
} |
422 |
|
|
422 |
_iim[i] = st; |
|
423 | 423 |
break; |
424 | 424 |
case IN_HEAP: |
425 | 425 |
break; |
426 | 426 |
} |
427 | 427 |
} |
428 | 428 |
|
0 comments (0 inline)