0
2
0
| ... | ... |
@@ -290,529 +290,527 @@ |
| 290 | 290 |
protected: |
| 291 | 291 |
|
| 292 | 292 |
Preflow() {}
|
| 293 | 293 |
|
| 294 | 294 |
public: |
| 295 | 295 |
|
| 296 | 296 |
|
| 297 | 297 |
/// \brief The constructor of the class. |
| 298 | 298 |
/// |
| 299 | 299 |
/// The constructor of the class. |
| 300 | 300 |
/// \param digraph The digraph the algorithm runs on. |
| 301 | 301 |
/// \param capacity The capacity of the arcs. |
| 302 | 302 |
/// \param source The source node. |
| 303 | 303 |
/// \param target The target node. |
| 304 | 304 |
Preflow(const Digraph& digraph, const CapacityMap& capacity, |
| 305 | 305 |
Node source, Node target) |
| 306 | 306 |
: _graph(digraph), _capacity(&capacity), |
| 307 | 307 |
_node_num(0), _source(source), _target(target), |
| 308 | 308 |
_flow(0), _local_flow(false), |
| 309 | 309 |
_level(0), _local_level(false), |
| 310 | 310 |
_excess(0), _tolerance(), _phase() {}
|
| 311 | 311 |
|
| 312 | 312 |
/// \brief Destructor. |
| 313 | 313 |
/// |
| 314 | 314 |
/// Destructor. |
| 315 | 315 |
~Preflow() {
|
| 316 | 316 |
destroyStructures(); |
| 317 | 317 |
} |
| 318 | 318 |
|
| 319 | 319 |
/// \brief Sets the capacity map. |
| 320 | 320 |
/// |
| 321 | 321 |
/// Sets the capacity map. |
| 322 | 322 |
/// \return <tt>(*this)</tt> |
| 323 | 323 |
Preflow& capacityMap(const CapacityMap& map) {
|
| 324 | 324 |
_capacity = ↦ |
| 325 | 325 |
return *this; |
| 326 | 326 |
} |
| 327 | 327 |
|
| 328 | 328 |
/// \brief Sets the flow map. |
| 329 | 329 |
/// |
| 330 | 330 |
/// Sets the flow map. |
| 331 | 331 |
/// If you don't use this function before calling \ref run() or |
| 332 | 332 |
/// \ref init(), an instance will be allocated automatically. |
| 333 | 333 |
/// The destructor deallocates this automatically allocated map, |
| 334 | 334 |
/// of course. |
| 335 | 335 |
/// \return <tt>(*this)</tt> |
| 336 | 336 |
Preflow& flowMap(FlowMap& map) {
|
| 337 | 337 |
if (_local_flow) {
|
| 338 | 338 |
delete _flow; |
| 339 | 339 |
_local_flow = false; |
| 340 | 340 |
} |
| 341 | 341 |
_flow = ↦ |
| 342 | 342 |
return *this; |
| 343 | 343 |
} |
| 344 | 344 |
|
| 345 | 345 |
/// \brief Sets the source node. |
| 346 | 346 |
/// |
| 347 | 347 |
/// Sets the source node. |
| 348 | 348 |
/// \return <tt>(*this)</tt> |
| 349 | 349 |
Preflow& source(const Node& node) {
|
| 350 | 350 |
_source = node; |
| 351 | 351 |
return *this; |
| 352 | 352 |
} |
| 353 | 353 |
|
| 354 | 354 |
/// \brief Sets the target node. |
| 355 | 355 |
/// |
| 356 | 356 |
/// Sets the target node. |
| 357 | 357 |
/// \return <tt>(*this)</tt> |
| 358 | 358 |
Preflow& target(const Node& node) {
|
| 359 | 359 |
_target = node; |
| 360 | 360 |
return *this; |
| 361 | 361 |
} |
| 362 | 362 |
|
| 363 | 363 |
/// \brief Sets the elevator used by algorithm. |
| 364 | 364 |
/// |
| 365 | 365 |
/// Sets the elevator used by algorithm. |
| 366 | 366 |
/// If you don't use this function before calling \ref run() or |
| 367 | 367 |
/// \ref init(), an instance will be allocated automatically. |
| 368 | 368 |
/// The destructor deallocates this automatically allocated elevator, |
| 369 | 369 |
/// of course. |
| 370 | 370 |
/// \return <tt>(*this)</tt> |
| 371 | 371 |
Preflow& elevator(Elevator& elevator) {
|
| 372 | 372 |
if (_local_level) {
|
| 373 | 373 |
delete _level; |
| 374 | 374 |
_local_level = false; |
| 375 | 375 |
} |
| 376 | 376 |
_level = &elevator; |
| 377 | 377 |
return *this; |
| 378 | 378 |
} |
| 379 | 379 |
|
| 380 | 380 |
/// \brief Returns a const reference to the elevator. |
| 381 | 381 |
/// |
| 382 | 382 |
/// Returns a const reference to the elevator. |
| 383 | 383 |
/// |
| 384 | 384 |
/// \pre Either \ref run() or \ref init() must be called before |
| 385 | 385 |
/// using this function. |
| 386 | 386 |
const Elevator& elevator() const {
|
| 387 | 387 |
return *_level; |
| 388 | 388 |
} |
| 389 | 389 |
|
| 390 | 390 |
/// \brief Sets the tolerance used by the algorithm. |
| 391 | 391 |
/// |
| 392 | 392 |
/// Sets the tolerance object used by the algorithm. |
| 393 | 393 |
/// \return <tt>(*this)</tt> |
| 394 | 394 |
Preflow& tolerance(const Tolerance& tolerance) {
|
| 395 | 395 |
_tolerance = tolerance; |
| 396 | 396 |
return *this; |
| 397 | 397 |
} |
| 398 | 398 |
|
| 399 | 399 |
/// \brief Returns a const reference to the tolerance. |
| 400 | 400 |
/// |
| 401 | 401 |
/// Returns a const reference to the tolerance object used by |
| 402 | 402 |
/// the algorithm. |
| 403 | 403 |
const Tolerance& tolerance() const {
|
| 404 | 404 |
return _tolerance; |
| 405 | 405 |
} |
| 406 | 406 |
|
| 407 | 407 |
/// \name Execution Control |
| 408 | 408 |
/// The simplest way to execute the preflow algorithm is to use |
| 409 | 409 |
/// \ref run() or \ref runMinCut().\n |
| 410 | 410 |
/// If you need better control on the initial solution or the execution, |
| 411 | 411 |
/// you have to call one of the \ref init() functions first, then |
| 412 | 412 |
/// \ref startFirstPhase() and if you need it \ref startSecondPhase(). |
| 413 | 413 |
|
| 414 | 414 |
///@{
|
| 415 | 415 |
|
| 416 | 416 |
/// \brief Initializes the internal data structures. |
| 417 | 417 |
/// |
| 418 | 418 |
/// Initializes the internal data structures and sets the initial |
| 419 | 419 |
/// flow to zero on each arc. |
| 420 | 420 |
void init() {
|
| 421 | 421 |
createStructures(); |
| 422 | 422 |
|
| 423 | 423 |
_phase = true; |
| 424 | 424 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 425 | 425 |
(*_excess)[n] = 0; |
| 426 | 426 |
} |
| 427 | 427 |
|
| 428 | 428 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
| 429 | 429 |
_flow->set(e, 0); |
| 430 | 430 |
} |
| 431 | 431 |
|
| 432 | 432 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
| 433 | 433 |
|
| 434 | 434 |
_level->initStart(); |
| 435 | 435 |
_level->initAddItem(_target); |
| 436 | 436 |
|
| 437 | 437 |
std::vector<Node> queue; |
| 438 | 438 |
reached[_source] = true; |
| 439 | 439 |
|
| 440 | 440 |
queue.push_back(_target); |
| 441 | 441 |
reached[_target] = true; |
| 442 | 442 |
while (!queue.empty()) {
|
| 443 | 443 |
_level->initNewLevel(); |
| 444 | 444 |
std::vector<Node> nqueue; |
| 445 | 445 |
for (int i = 0; i < int(queue.size()); ++i) {
|
| 446 | 446 |
Node n = queue[i]; |
| 447 | 447 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 448 | 448 |
Node u = _graph.source(e); |
| 449 | 449 |
if (!reached[u] && _tolerance.positive((*_capacity)[e])) {
|
| 450 | 450 |
reached[u] = true; |
| 451 | 451 |
_level->initAddItem(u); |
| 452 | 452 |
nqueue.push_back(u); |
| 453 | 453 |
} |
| 454 | 454 |
} |
| 455 | 455 |
} |
| 456 | 456 |
queue.swap(nqueue); |
| 457 | 457 |
} |
| 458 | 458 |
_level->initFinish(); |
| 459 | 459 |
|
| 460 | 460 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
|
| 461 | 461 |
if (_tolerance.positive((*_capacity)[e])) {
|
| 462 | 462 |
Node u = _graph.target(e); |
| 463 | 463 |
if ((*_level)[u] == _level->maxLevel()) continue; |
| 464 | 464 |
_flow->set(e, (*_capacity)[e]); |
| 465 | 465 |
(*_excess)[u] += (*_capacity)[e]; |
| 466 | 466 |
if (u != _target && !_level->active(u)) {
|
| 467 | 467 |
_level->activate(u); |
| 468 | 468 |
} |
| 469 | 469 |
} |
| 470 | 470 |
} |
| 471 | 471 |
} |
| 472 | 472 |
|
| 473 | 473 |
/// \brief Initializes the internal data structures using the |
| 474 | 474 |
/// given flow map. |
| 475 | 475 |
/// |
| 476 | 476 |
/// Initializes the internal data structures and sets the initial |
| 477 | 477 |
/// flow to the given \c flowMap. The \c flowMap should contain a |
| 478 | 478 |
/// flow or at least a preflow, i.e. at each node excluding the |
| 479 | 479 |
/// source node the incoming flow should greater or equal to the |
| 480 | 480 |
/// outgoing flow. |
| 481 | 481 |
/// \return \c false if the given \c flowMap is not a preflow. |
| 482 | 482 |
template <typename FlowMap> |
| 483 | 483 |
bool init(const FlowMap& flowMap) {
|
| 484 | 484 |
createStructures(); |
| 485 | 485 |
|
| 486 | 486 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
| 487 | 487 |
_flow->set(e, flowMap[e]); |
| 488 | 488 |
} |
| 489 | 489 |
|
| 490 | 490 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 491 | 491 |
Value excess = 0; |
| 492 | 492 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 493 | 493 |
excess += (*_flow)[e]; |
| 494 | 494 |
} |
| 495 | 495 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 496 | 496 |
excess -= (*_flow)[e]; |
| 497 | 497 |
} |
| 498 | 498 |
if (excess < 0 && n != _source) return false; |
| 499 | 499 |
(*_excess)[n] = excess; |
| 500 | 500 |
} |
| 501 | 501 |
|
| 502 | 502 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
| 503 | 503 |
|
| 504 | 504 |
_level->initStart(); |
| 505 | 505 |
_level->initAddItem(_target); |
| 506 | 506 |
|
| 507 | 507 |
std::vector<Node> queue; |
| 508 | 508 |
reached[_source] = true; |
| 509 | 509 |
|
| 510 | 510 |
queue.push_back(_target); |
| 511 | 511 |
reached[_target] = true; |
| 512 | 512 |
while (!queue.empty()) {
|
| 513 | 513 |
_level->initNewLevel(); |
| 514 | 514 |
std::vector<Node> nqueue; |
| 515 | 515 |
for (int i = 0; i < int(queue.size()); ++i) {
|
| 516 | 516 |
Node n = queue[i]; |
| 517 | 517 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 518 | 518 |
Node u = _graph.source(e); |
| 519 | 519 |
if (!reached[u] && |
| 520 | 520 |
_tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
|
| 521 | 521 |
reached[u] = true; |
| 522 | 522 |
_level->initAddItem(u); |
| 523 | 523 |
nqueue.push_back(u); |
| 524 | 524 |
} |
| 525 | 525 |
} |
| 526 | 526 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 527 | 527 |
Node v = _graph.target(e); |
| 528 | 528 |
if (!reached[v] && _tolerance.positive((*_flow)[e])) {
|
| 529 | 529 |
reached[v] = true; |
| 530 | 530 |
_level->initAddItem(v); |
| 531 | 531 |
nqueue.push_back(v); |
| 532 | 532 |
} |
| 533 | 533 |
} |
| 534 | 534 |
} |
| 535 | 535 |
queue.swap(nqueue); |
| 536 | 536 |
} |
| 537 | 537 |
_level->initFinish(); |
| 538 | 538 |
|
| 539 | 539 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
|
| 540 | 540 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
| 541 | 541 |
if (_tolerance.positive(rem)) {
|
| 542 | 542 |
Node u = _graph.target(e); |
| 543 | 543 |
if ((*_level)[u] == _level->maxLevel()) continue; |
| 544 | 544 |
_flow->set(e, (*_capacity)[e]); |
| 545 | 545 |
(*_excess)[u] += rem; |
| 546 |
if (u != _target && !_level->active(u)) {
|
|
| 547 |
_level->activate(u); |
|
| 548 |
} |
|
| 549 | 546 |
} |
| 550 | 547 |
} |
| 551 | 548 |
for (InArcIt e(_graph, _source); e != INVALID; ++e) {
|
| 552 | 549 |
Value rem = (*_flow)[e]; |
| 553 | 550 |
if (_tolerance.positive(rem)) {
|
| 554 | 551 |
Node v = _graph.source(e); |
| 555 | 552 |
if ((*_level)[v] == _level->maxLevel()) continue; |
| 556 | 553 |
_flow->set(e, 0); |
| 557 | 554 |
(*_excess)[v] += rem; |
| 558 |
if (v != _target && !_level->active(v)) {
|
|
| 559 |
_level->activate(v); |
|
| 560 |
} |
|
| 561 | 555 |
} |
| 562 | 556 |
} |
| 557 |
for (NodeIt n(_graph); n != INVALID; ++n) |
|
| 558 |
if(n!=_source && n!=_target && _tolerance.positive((*_excess)[n])) |
|
| 559 |
_level->activate(n); |
|
| 560 |
|
|
| 563 | 561 |
return true; |
| 564 | 562 |
} |
| 565 | 563 |
|
| 566 | 564 |
/// \brief Starts the first phase of the preflow algorithm. |
| 567 | 565 |
/// |
| 568 | 566 |
/// The preflow algorithm consists of two phases, this method runs |
| 569 | 567 |
/// the first phase. After the first phase the maximum flow value |
| 570 | 568 |
/// and a minimum value cut can already be computed, although a |
| 571 | 569 |
/// maximum flow is not yet obtained. So after calling this method |
| 572 | 570 |
/// \ref flowValue() returns the value of a maximum flow and \ref |
| 573 | 571 |
/// minCut() returns a minimum cut. |
| 574 | 572 |
/// \pre One of the \ref init() functions must be called before |
| 575 | 573 |
/// using this function. |
| 576 | 574 |
void startFirstPhase() {
|
| 577 | 575 |
_phase = true; |
| 578 | 576 |
|
| 579 | 577 |
while (true) {
|
| 580 | 578 |
int num = _node_num; |
| 581 | 579 |
|
| 582 | 580 |
Node n = INVALID; |
| 583 | 581 |
int level = -1; |
| 584 | 582 |
|
| 585 | 583 |
while (num > 0) {
|
| 586 | 584 |
n = _level->highestActive(); |
| 587 | 585 |
if (n == INVALID) goto first_phase_done; |
| 588 | 586 |
level = _level->highestActiveLevel(); |
| 589 | 587 |
--num; |
| 590 | 588 |
|
| 591 | 589 |
Value excess = (*_excess)[n]; |
| 592 | 590 |
int new_level = _level->maxLevel(); |
| 593 | 591 |
|
| 594 | 592 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 595 | 593 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
| 596 | 594 |
if (!_tolerance.positive(rem)) continue; |
| 597 | 595 |
Node v = _graph.target(e); |
| 598 | 596 |
if ((*_level)[v] < level) {
|
| 599 | 597 |
if (!_level->active(v) && v != _target) {
|
| 600 | 598 |
_level->activate(v); |
| 601 | 599 |
} |
| 602 | 600 |
if (!_tolerance.less(rem, excess)) {
|
| 603 | 601 |
_flow->set(e, (*_flow)[e] + excess); |
| 604 | 602 |
(*_excess)[v] += excess; |
| 605 | 603 |
excess = 0; |
| 606 | 604 |
goto no_more_push_1; |
| 607 | 605 |
} else {
|
| 608 | 606 |
excess -= rem; |
| 609 | 607 |
(*_excess)[v] += rem; |
| 610 | 608 |
_flow->set(e, (*_capacity)[e]); |
| 611 | 609 |
} |
| 612 | 610 |
} else if (new_level > (*_level)[v]) {
|
| 613 | 611 |
new_level = (*_level)[v]; |
| 614 | 612 |
} |
| 615 | 613 |
} |
| 616 | 614 |
|
| 617 | 615 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 618 | 616 |
Value rem = (*_flow)[e]; |
| 619 | 617 |
if (!_tolerance.positive(rem)) continue; |
| 620 | 618 |
Node v = _graph.source(e); |
| 621 | 619 |
if ((*_level)[v] < level) {
|
| 622 | 620 |
if (!_level->active(v) && v != _target) {
|
| 623 | 621 |
_level->activate(v); |
| 624 | 622 |
} |
| 625 | 623 |
if (!_tolerance.less(rem, excess)) {
|
| 626 | 624 |
_flow->set(e, (*_flow)[e] - excess); |
| 627 | 625 |
(*_excess)[v] += excess; |
| 628 | 626 |
excess = 0; |
| 629 | 627 |
goto no_more_push_1; |
| 630 | 628 |
} else {
|
| 631 | 629 |
excess -= rem; |
| 632 | 630 |
(*_excess)[v] += rem; |
| 633 | 631 |
_flow->set(e, 0); |
| 634 | 632 |
} |
| 635 | 633 |
} else if (new_level > (*_level)[v]) {
|
| 636 | 634 |
new_level = (*_level)[v]; |
| 637 | 635 |
} |
| 638 | 636 |
} |
| 639 | 637 |
|
| 640 | 638 |
no_more_push_1: |
| 641 | 639 |
|
| 642 | 640 |
(*_excess)[n] = excess; |
| 643 | 641 |
|
| 644 | 642 |
if (excess != 0) {
|
| 645 | 643 |
if (new_level + 1 < _level->maxLevel()) {
|
| 646 | 644 |
_level->liftHighestActive(new_level + 1); |
| 647 | 645 |
} else {
|
| 648 | 646 |
_level->liftHighestActiveToTop(); |
| 649 | 647 |
} |
| 650 | 648 |
if (_level->emptyLevel(level)) {
|
| 651 | 649 |
_level->liftToTop(level); |
| 652 | 650 |
} |
| 653 | 651 |
} else {
|
| 654 | 652 |
_level->deactivate(n); |
| 655 | 653 |
} |
| 656 | 654 |
} |
| 657 | 655 |
|
| 658 | 656 |
num = _node_num * 20; |
| 659 | 657 |
while (num > 0) {
|
| 660 | 658 |
while (level >= 0 && _level->activeFree(level)) {
|
| 661 | 659 |
--level; |
| 662 | 660 |
} |
| 663 | 661 |
if (level == -1) {
|
| 664 | 662 |
n = _level->highestActive(); |
| 665 | 663 |
level = _level->highestActiveLevel(); |
| 666 | 664 |
if (n == INVALID) goto first_phase_done; |
| 667 | 665 |
} else {
|
| 668 | 666 |
n = _level->activeOn(level); |
| 669 | 667 |
} |
| 670 | 668 |
--num; |
| 671 | 669 |
|
| 672 | 670 |
Value excess = (*_excess)[n]; |
| 673 | 671 |
int new_level = _level->maxLevel(); |
| 674 | 672 |
|
| 675 | 673 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 676 | 674 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
| 677 | 675 |
if (!_tolerance.positive(rem)) continue; |
| 678 | 676 |
Node v = _graph.target(e); |
| 679 | 677 |
if ((*_level)[v] < level) {
|
| 680 | 678 |
if (!_level->active(v) && v != _target) {
|
| 681 | 679 |
_level->activate(v); |
| 682 | 680 |
} |
| 683 | 681 |
if (!_tolerance.less(rem, excess)) {
|
| 684 | 682 |
_flow->set(e, (*_flow)[e] + excess); |
| 685 | 683 |
(*_excess)[v] += excess; |
| 686 | 684 |
excess = 0; |
| 687 | 685 |
goto no_more_push_2; |
| 688 | 686 |
} else {
|
| 689 | 687 |
excess -= rem; |
| 690 | 688 |
(*_excess)[v] += rem; |
| 691 | 689 |
_flow->set(e, (*_capacity)[e]); |
| 692 | 690 |
} |
| 693 | 691 |
} else if (new_level > (*_level)[v]) {
|
| 694 | 692 |
new_level = (*_level)[v]; |
| 695 | 693 |
} |
| 696 | 694 |
} |
| 697 | 695 |
|
| 698 | 696 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 699 | 697 |
Value rem = (*_flow)[e]; |
| 700 | 698 |
if (!_tolerance.positive(rem)) continue; |
| 701 | 699 |
Node v = _graph.source(e); |
| 702 | 700 |
if ((*_level)[v] < level) {
|
| 703 | 701 |
if (!_level->active(v) && v != _target) {
|
| 704 | 702 |
_level->activate(v); |
| 705 | 703 |
} |
| 706 | 704 |
if (!_tolerance.less(rem, excess)) {
|
| 707 | 705 |
_flow->set(e, (*_flow)[e] - excess); |
| 708 | 706 |
(*_excess)[v] += excess; |
| 709 | 707 |
excess = 0; |
| 710 | 708 |
goto no_more_push_2; |
| 711 | 709 |
} else {
|
| 712 | 710 |
excess -= rem; |
| 713 | 711 |
(*_excess)[v] += rem; |
| 714 | 712 |
_flow->set(e, 0); |
| 715 | 713 |
} |
| 716 | 714 |
} else if (new_level > (*_level)[v]) {
|
| 717 | 715 |
new_level = (*_level)[v]; |
| 718 | 716 |
} |
| 719 | 717 |
} |
| 720 | 718 |
|
| 721 | 719 |
no_more_push_2: |
| 722 | 720 |
|
| 723 | 721 |
(*_excess)[n] = excess; |
| 724 | 722 |
|
| 725 | 723 |
if (excess != 0) {
|
| 726 | 724 |
if (new_level + 1 < _level->maxLevel()) {
|
| 727 | 725 |
_level->liftActiveOn(level, new_level + 1); |
| 728 | 726 |
} else {
|
| 729 | 727 |
_level->liftActiveToTop(level); |
| 730 | 728 |
} |
| 731 | 729 |
if (_level->emptyLevel(level)) {
|
| 732 | 730 |
_level->liftToTop(level); |
| 733 | 731 |
} |
| 734 | 732 |
} else {
|
| 735 | 733 |
_level->deactivate(n); |
| 736 | 734 |
} |
| 737 | 735 |
} |
| 738 | 736 |
} |
| 739 | 737 |
first_phase_done:; |
| 740 | 738 |
} |
| 741 | 739 |
|
| 742 | 740 |
/// \brief Starts the second phase of the preflow algorithm. |
| 743 | 741 |
/// |
| 744 | 742 |
/// The preflow algorithm consists of two phases, this method runs |
| 745 | 743 |
/// the second phase. After calling one of the \ref init() functions |
| 746 | 744 |
/// and \ref startFirstPhase() and then \ref startSecondPhase(), |
| 747 | 745 |
/// \ref flowMap() returns a maximum flow, \ref flowValue() returns the |
| 748 | 746 |
/// value of a maximum flow, \ref minCut() returns a minimum cut |
| 749 | 747 |
/// \pre One of the \ref init() functions and \ref startFirstPhase() |
| 750 | 748 |
/// must be called before using this function. |
| 751 | 749 |
void startSecondPhase() {
|
| 752 | 750 |
_phase = false; |
| 753 | 751 |
|
| 754 | 752 |
typename Digraph::template NodeMap<bool> reached(_graph); |
| 755 | 753 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 756 | 754 |
reached[n] = (*_level)[n] < _level->maxLevel(); |
| 757 | 755 |
} |
| 758 | 756 |
|
| 759 | 757 |
_level->initStart(); |
| 760 | 758 |
_level->initAddItem(_source); |
| 761 | 759 |
|
| 762 | 760 |
std::vector<Node> queue; |
| 763 | 761 |
queue.push_back(_source); |
| 764 | 762 |
reached[_source] = true; |
| 765 | 763 |
|
| 766 | 764 |
while (!queue.empty()) {
|
| 767 | 765 |
_level->initNewLevel(); |
| 768 | 766 |
std::vector<Node> nqueue; |
| 769 | 767 |
for (int i = 0; i < int(queue.size()); ++i) {
|
| 770 | 768 |
Node n = queue[i]; |
| 771 | 769 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 772 | 770 |
Node v = _graph.target(e); |
| 773 | 771 |
if (!reached[v] && _tolerance.positive((*_flow)[e])) {
|
| 774 | 772 |
reached[v] = true; |
| 775 | 773 |
_level->initAddItem(v); |
| 776 | 774 |
nqueue.push_back(v); |
| 777 | 775 |
} |
| 778 | 776 |
} |
| 779 | 777 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 780 | 778 |
Node u = _graph.source(e); |
| 781 | 779 |
if (!reached[u] && |
| 782 | 780 |
_tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
|
| 783 | 781 |
reached[u] = true; |
| 784 | 782 |
_level->initAddItem(u); |
| 785 | 783 |
nqueue.push_back(u); |
| 786 | 784 |
} |
| 787 | 785 |
} |
| 788 | 786 |
} |
| 789 | 787 |
queue.swap(nqueue); |
| 790 | 788 |
} |
| 791 | 789 |
_level->initFinish(); |
| 792 | 790 |
|
| 793 | 791 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 794 | 792 |
if (!reached[n]) {
|
| 795 | 793 |
_level->dirtyTopButOne(n); |
| 796 | 794 |
} else if ((*_excess)[n] > 0 && _target != n) {
|
| 797 | 795 |
_level->activate(n); |
| 798 | 796 |
} |
| 799 | 797 |
} |
| 800 | 798 |
|
| 801 | 799 |
Node n; |
| 802 | 800 |
while ((n = _level->highestActive()) != INVALID) {
|
| 803 | 801 |
Value excess = (*_excess)[n]; |
| 804 | 802 |
int level = _level->highestActiveLevel(); |
| 805 | 803 |
int new_level = _level->maxLevel(); |
| 806 | 804 |
|
| 807 | 805 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 808 | 806 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
| 809 | 807 |
if (!_tolerance.positive(rem)) continue; |
| 810 | 808 |
Node v = _graph.target(e); |
| 811 | 809 |
if ((*_level)[v] < level) {
|
| 812 | 810 |
if (!_level->active(v) && v != _source) {
|
| 813 | 811 |
_level->activate(v); |
| 814 | 812 |
} |
| 815 | 813 |
if (!_tolerance.less(rem, excess)) {
|
| 816 | 814 |
_flow->set(e, (*_flow)[e] + excess); |
| 817 | 815 |
(*_excess)[v] += excess; |
| 818 | 816 |
excess = 0; |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2010 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <iostream> |
| 20 | 20 |
|
| 21 | 21 |
#include "test_tools.h" |
| 22 | 22 |
#include <lemon/smart_graph.h> |
| 23 | 23 |
#include <lemon/preflow.h> |
| 24 | 24 |
#include <lemon/concepts/digraph.h> |
| 25 | 25 |
#include <lemon/concepts/maps.h> |
| 26 | 26 |
#include <lemon/lgf_reader.h> |
| 27 | 27 |
#include <lemon/elevator.h> |
| 28 | 28 |
|
| 29 | 29 |
using namespace lemon; |
| 30 | 30 |
|
| 31 | 31 |
char test_lgf[] = |
| 32 | 32 |
"@nodes\n" |
| 33 | 33 |
"label\n" |
| 34 | 34 |
"0\n" |
| 35 | 35 |
"1\n" |
| 36 | 36 |
"2\n" |
| 37 | 37 |
"3\n" |
| 38 | 38 |
"4\n" |
| 39 | 39 |
"5\n" |
| 40 | 40 |
"6\n" |
| 41 | 41 |
"7\n" |
| 42 | 42 |
"8\n" |
| 43 | 43 |
"9\n" |
| 44 | 44 |
"@arcs\n" |
| 45 | 45 |
" label capacity\n" |
| 46 | 46 |
"0 1 0 20\n" |
| 47 | 47 |
"0 2 1 0\n" |
| 48 | 48 |
"1 1 2 3\n" |
| 49 | 49 |
"1 2 3 8\n" |
| 50 | 50 |
"1 3 4 8\n" |
| 51 | 51 |
"2 5 5 5\n" |
| 52 | 52 |
"3 2 6 5\n" |
| 53 | 53 |
"3 5 7 5\n" |
| 54 | 54 |
"3 6 8 5\n" |
| 55 | 55 |
"4 3 9 3\n" |
| 56 | 56 |
"5 7 10 3\n" |
| 57 | 57 |
"5 6 11 10\n" |
| 58 | 58 |
"5 8 12 10\n" |
| 59 | 59 |
"6 8 13 8\n" |
| 60 | 60 |
"8 9 14 20\n" |
| 61 | 61 |
"8 1 15 5\n" |
| 62 | 62 |
"9 5 16 5\n" |
| 63 | 63 |
"@attributes\n" |
| 64 | 64 |
"source 1\n" |
| 65 | 65 |
"target 8\n"; |
| 66 | 66 |
|
| 67 | 67 |
void checkPreflowCompile() |
| 68 | 68 |
{
|
| 69 | 69 |
typedef int VType; |
| 70 | 70 |
typedef concepts::Digraph Digraph; |
| 71 | 71 |
|
| 72 | 72 |
typedef Digraph::Node Node; |
| 73 | 73 |
typedef Digraph::Arc Arc; |
| 74 | 74 |
typedef concepts::ReadMap<Arc,VType> CapMap; |
| 75 | 75 |
typedef concepts::ReadWriteMap<Arc,VType> FlowMap; |
| 76 | 76 |
typedef concepts::WriteMap<Node,bool> CutMap; |
| 77 | 77 |
|
| 78 | 78 |
typedef Elevator<Digraph, Digraph::Node> Elev; |
| 79 | 79 |
typedef LinkedElevator<Digraph, Digraph::Node> LinkedElev; |
| 80 | 80 |
|
| 81 | 81 |
Digraph g; |
| 82 | 82 |
Node n; |
| 83 | 83 |
Arc e; |
| 84 | 84 |
CapMap cap; |
| 85 | 85 |
FlowMap flow; |
| 86 | 86 |
CutMap cut; |
| 87 | 87 |
VType v; |
| 88 | 88 |
bool b; |
| 89 | 89 |
|
| 90 | 90 |
typedef Preflow<Digraph, CapMap> |
| 91 | 91 |
::SetFlowMap<FlowMap> |
| 92 | 92 |
::SetElevator<Elev> |
| 93 | 93 |
::SetStandardElevator<LinkedElev> |
| 94 | 94 |
::Create PreflowType; |
| 95 | 95 |
PreflowType preflow_test(g, cap, n, n); |
| 96 | 96 |
const PreflowType& const_preflow_test = preflow_test; |
| 97 | 97 |
|
| 98 | 98 |
const PreflowType::Elevator& elev = const_preflow_test.elevator(); |
| 99 | 99 |
preflow_test.elevator(const_cast<PreflowType::Elevator&>(elev)); |
| 100 | 100 |
PreflowType::Tolerance tol = const_preflow_test.tolerance(); |
| 101 | 101 |
preflow_test.tolerance(tol); |
| 102 | 102 |
|
| 103 | 103 |
preflow_test |
| 104 | 104 |
.capacityMap(cap) |
| 105 | 105 |
.flowMap(flow) |
| 106 | 106 |
.source(n) |
| 107 | 107 |
.target(n); |
| 108 | 108 |
|
| 109 | 109 |
preflow_test.init(); |
| 110 | 110 |
preflow_test.init(cap); |
| 111 | 111 |
preflow_test.startFirstPhase(); |
| 112 | 112 |
preflow_test.startSecondPhase(); |
| 113 | 113 |
preflow_test.run(); |
| 114 | 114 |
preflow_test.runMinCut(); |
| 115 | 115 |
|
| 116 | 116 |
v = const_preflow_test.flowValue(); |
| 117 | 117 |
v = const_preflow_test.flow(e); |
| 118 | 118 |
const FlowMap& fm = const_preflow_test.flowMap(); |
| 119 | 119 |
b = const_preflow_test.minCut(n); |
| 120 | 120 |
const_preflow_test.minCutMap(cut); |
| 121 | 121 |
|
| 122 | 122 |
ignore_unused_variable_warning(fm); |
| 123 | 123 |
} |
| 124 | 124 |
|
| 125 | 125 |
int cutValue (const SmartDigraph& g, |
| 126 | 126 |
const SmartDigraph::NodeMap<bool>& cut, |
| 127 | 127 |
const SmartDigraph::ArcMap<int>& cap) {
|
| 128 | 128 |
|
| 129 | 129 |
int c=0; |
| 130 | 130 |
for(SmartDigraph::ArcIt e(g); e!=INVALID; ++e) {
|
| 131 | 131 |
if (cut[g.source(e)] && !cut[g.target(e)]) c+=cap[e]; |
| 132 | 132 |
} |
| 133 | 133 |
return c; |
| 134 | 134 |
} |
| 135 | 135 |
|
| 136 | 136 |
bool checkFlow(const SmartDigraph& g, |
| 137 | 137 |
const SmartDigraph::ArcMap<int>& flow, |
| 138 | 138 |
const SmartDigraph::ArcMap<int>& cap, |
| 139 | 139 |
SmartDigraph::Node s, SmartDigraph::Node t) {
|
| 140 | 140 |
|
| 141 | 141 |
for (SmartDigraph::ArcIt e(g); e != INVALID; ++e) {
|
| 142 | 142 |
if (flow[e] < 0 || flow[e] > cap[e]) return false; |
| 143 | 143 |
} |
| 144 | 144 |
|
| 145 | 145 |
for (SmartDigraph::NodeIt n(g); n != INVALID; ++n) {
|
| 146 | 146 |
if (n == s || n == t) continue; |
| 147 | 147 |
int sum = 0; |
| 148 | 148 |
for (SmartDigraph::OutArcIt e(g, n); e != INVALID; ++e) {
|
| 149 | 149 |
sum += flow[e]; |
| 150 | 150 |
} |
| 151 | 151 |
for (SmartDigraph::InArcIt e(g, n); e != INVALID; ++e) {
|
| 152 | 152 |
sum -= flow[e]; |
| 153 | 153 |
} |
| 154 | 154 |
if (sum != 0) return false; |
| 155 | 155 |
} |
| 156 | 156 |
return true; |
| 157 | 157 |
} |
| 158 | 158 |
|
| 159 |
void initFlowTest() |
|
| 160 |
{
|
|
| 161 |
DIGRAPH_TYPEDEFS(SmartDigraph); |
|
| 162 |
|
|
| 163 |
SmartDigraph g; |
|
| 164 |
SmartDigraph::ArcMap<int> cap(g),iflow(g); |
|
| 165 |
Node s=g.addNode(); Node t=g.addNode(); |
|
| 166 |
Node n1=g.addNode(); Node n2=g.addNode(); |
|
| 167 |
Arc a; |
|
| 168 |
a=g.addArc(s,n1); cap[a]=20; iflow[a]=20; |
|
| 169 |
a=g.addArc(n1,n2); cap[a]=10; iflow[a]=0; |
|
| 170 |
a=g.addArc(n2,t); cap[a]=20; iflow[a]=0; |
|
| 171 |
|
|
| 172 |
Preflow<SmartDigraph> pre(g,cap,s,t); |
|
| 173 |
pre.init(iflow); |
|
| 174 |
pre.startFirstPhase(); |
|
| 175 |
check(pre.flowValue() == 10, "The incorrect max flow value."); |
|
| 176 |
check(pre.minCut(s), "Wrong min cut (Node s)."); |
|
| 177 |
check(pre.minCut(n1), "Wrong min cut (Node n1)."); |
|
| 178 |
check(!pre.minCut(n2), "Wrong min cut (Node n2)."); |
|
| 179 |
check(!pre.minCut(t), "Wrong min cut (Node t)."); |
|
| 180 |
} |
|
| 181 |
|
|
| 182 |
|
|
| 159 | 183 |
int main() {
|
| 160 | 184 |
|
| 161 | 185 |
typedef SmartDigraph Digraph; |
| 162 | 186 |
|
| 163 | 187 |
typedef Digraph::Node Node; |
| 164 | 188 |
typedef Digraph::NodeIt NodeIt; |
| 165 | 189 |
typedef Digraph::ArcIt ArcIt; |
| 166 | 190 |
typedef Digraph::ArcMap<int> CapMap; |
| 167 | 191 |
typedef Digraph::ArcMap<int> FlowMap; |
| 168 | 192 |
typedef Digraph::NodeMap<bool> CutMap; |
| 169 | 193 |
|
| 170 | 194 |
typedef Preflow<Digraph, CapMap> PType; |
| 171 | 195 |
|
| 172 | 196 |
Digraph g; |
| 173 | 197 |
Node s, t; |
| 174 | 198 |
CapMap cap(g); |
| 175 | 199 |
std::istringstream input(test_lgf); |
| 176 | 200 |
DigraphReader<Digraph>(g,input). |
| 177 | 201 |
arcMap("capacity", cap).
|
| 178 | 202 |
node("source",s).
|
| 179 | 203 |
node("target",t).
|
| 180 | 204 |
run(); |
| 181 | 205 |
|
| 182 | 206 |
PType preflow_test(g, cap, s, t); |
| 183 | 207 |
preflow_test.run(); |
| 184 | 208 |
|
| 185 | 209 |
check(checkFlow(g, preflow_test.flowMap(), cap, s, t), |
| 186 | 210 |
"The flow is not feasible."); |
| 187 | 211 |
|
| 188 | 212 |
CutMap min_cut(g); |
| 189 | 213 |
preflow_test.minCutMap(min_cut); |
| 190 | 214 |
int min_cut_value=cutValue(g,min_cut,cap); |
| 191 | 215 |
|
| 192 | 216 |
check(preflow_test.flowValue() == min_cut_value, |
| 193 | 217 |
"The max flow value is not equal to the three min cut values."); |
| 194 | 218 |
|
| 195 | 219 |
FlowMap flow(g); |
| 196 | 220 |
for(ArcIt e(g); e!=INVALID; ++e) flow[e] = preflow_test.flowMap()[e]; |
| 197 | 221 |
|
| 198 | 222 |
int flow_value=preflow_test.flowValue(); |
| 199 | 223 |
|
| 200 | 224 |
for(ArcIt e(g); e!=INVALID; ++e) cap[e]=2*cap[e]; |
| 201 | 225 |
preflow_test.init(flow); |
| 202 | 226 |
preflow_test.startFirstPhase(); |
| 203 | 227 |
|
| 204 | 228 |
CutMap min_cut1(g); |
| 205 | 229 |
preflow_test.minCutMap(min_cut1); |
| 206 | 230 |
min_cut_value=cutValue(g,min_cut1,cap); |
| 207 | 231 |
|
| 208 | 232 |
check(preflow_test.flowValue() == min_cut_value && |
| 209 | 233 |
min_cut_value == 2*flow_value, |
| 210 | 234 |
"The max flow value or the min cut value is wrong."); |
| 211 | 235 |
|
| 212 | 236 |
preflow_test.startSecondPhase(); |
| 213 | 237 |
|
| 214 | 238 |
check(checkFlow(g, preflow_test.flowMap(), cap, s, t), |
| 215 | 239 |
"The flow is not feasible."); |
| 216 | 240 |
|
| 217 | 241 |
CutMap min_cut2(g); |
| 218 | 242 |
preflow_test.minCutMap(min_cut2); |
| 219 | 243 |
min_cut_value=cutValue(g,min_cut2,cap); |
| 220 | 244 |
|
| 221 | 245 |
check(preflow_test.flowValue() == min_cut_value && |
| 222 | 246 |
min_cut_value == 2*flow_value, |
| 223 | 247 |
"The max flow value or the three min cut values were not doubled"); |
| 224 | 248 |
|
| 225 | 249 |
|
| 226 | 250 |
preflow_test.flowMap(flow); |
| 227 | 251 |
|
| 228 | 252 |
NodeIt tmp1(g,s); |
| 229 | 253 |
++tmp1; |
| 230 | 254 |
if ( tmp1 != INVALID ) s=tmp1; |
| 231 | 255 |
|
| 232 | 256 |
NodeIt tmp2(g,t); |
| 233 | 257 |
++tmp2; |
| 234 | 258 |
if ( tmp2 != INVALID ) t=tmp2; |
| 235 | 259 |
|
| 236 | 260 |
preflow_test.source(s); |
| 237 | 261 |
preflow_test.target(t); |
| 238 | 262 |
|
| 239 | 263 |
preflow_test.run(); |
| 240 | 264 |
|
| 241 | 265 |
CutMap min_cut3(g); |
| 242 | 266 |
preflow_test.minCutMap(min_cut3); |
| 243 | 267 |
min_cut_value=cutValue(g,min_cut3,cap); |
| 244 | 268 |
|
| 245 | 269 |
|
| 246 | 270 |
check(preflow_test.flowValue() == min_cut_value, |
| 247 | 271 |
"The max flow value or the three min cut values are incorrect."); |
| 248 | 272 |
|
| 273 |
initFlowTest(); |
|
| 274 |
|
|
| 249 | 275 |
return 0; |
| 250 | 276 |
} |
0 comments (0 inline)