... | ... |
@@ -18,44 +18,45 @@ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_ELEVATOR_H |
20 | 20 |
#define LEMON_ELEVATOR_H |
21 | 21 |
|
22 | 22 |
///\ingroup auxdat |
23 | 23 |
///\file |
24 | 24 |
///\brief Elevator class |
25 | 25 |
/// |
26 | 26 |
///Elevator class implements an efficient data structure |
27 | 27 |
///for labeling items in push-relabel type algorithms. |
28 | 28 |
/// |
29 | 29 |
|
30 |
#include < |
|
30 |
#include <lemon/bits/traits.h> |
|
31 |
|
|
31 | 32 |
namespace lemon { |
32 | 33 |
|
33 | 34 |
///Class for handling "labels" in push-relabel type algorithms. |
34 | 35 |
|
35 | 36 |
///A class for handling "labels" in push-relabel type algorithms. |
36 | 37 |
/// |
37 | 38 |
///\ingroup auxdat |
38 | 39 |
///Using this class you can assign "labels" (nonnegative integer numbers) |
39 | 40 |
///to the edges or nodes of a graph, manipulate and query them through |
40 | 41 |
///operations typically arising in "push-relabel" type algorithms. |
41 | 42 |
/// |
42 | 43 |
///Each item is either \em active or not, and you can also choose a |
43 | 44 |
///highest level active item. |
44 | 45 |
/// |
45 | 46 |
///\sa LinkedElevator |
46 | 47 |
/// |
47 |
///\param Graph the underlying graph |
|
48 |
///\param Graph Type of the underlying graph. |
|
48 | 49 |
///\param Item Type of the items the data is assigned to (Graph::Node, |
49 |
///Graph:: |
|
50 |
///Graph::Arc, Graph::Edge). |
|
50 | 51 |
template<class Graph, class Item> |
51 | 52 |
class Elevator |
52 | 53 |
{ |
53 | 54 |
public: |
54 | 55 |
|
55 | 56 |
typedef Item Key; |
56 | 57 |
typedef int Value; |
57 | 58 |
|
58 | 59 |
private: |
59 | 60 |
|
60 | 61 |
typedef Item *Vit; |
61 | 62 |
typedef typename ItemSetTraits<Graph,Item>::template Map<Vit>::Type VitMap; |
... | ... |
@@ -91,50 +92,50 @@ |
91 | 92 |
Vit ct = _where[ti]; |
92 | 93 |
_where.set(ti,_where[*i=*j]); |
93 | 94 |
_where.set(*j,ct); |
94 | 95 |
*j=ti; |
95 | 96 |
} |
96 | 97 |
|
97 | 98 |
public: |
98 | 99 |
|
99 | 100 |
///Constructor with given maximum level. |
100 | 101 |
|
101 | 102 |
///Constructor with given maximum level. |
102 | 103 |
/// |
103 |
///\param g The underlying graph |
|
104 |
///\param max_level Set the range of the possible labels to |
|
105 |
///[0...\c max_level] |
|
106 |
Elevator(const Graph &g,int max_level) : |
|
107 |
|
|
104 |
///\param graph The underlying graph. |
|
105 |
///\param max_level The maximum allowed level. |
|
106 |
///Set the range of the possible labels to <tt>[0..max_level]</tt>. |
|
107 |
Elevator(const Graph &graph,int max_level) : |
|
108 |
_g(graph), |
|
108 | 109 |
_max_level(max_level), |
109 | 110 |
_item_num(_max_level), |
110 |
_where(g), |
|
111 |
_level(g,0), |
|
111 |
_where(graph), |
|
112 |
_level(graph,0), |
|
112 | 113 |
_items(_max_level), |
113 | 114 |
_first(_max_level+2), |
114 | 115 |
_last_active(_max_level+2), |
115 | 116 |
_highest_active(-1) {} |
116 | 117 |
///Constructor. |
117 | 118 |
|
118 | 119 |
///Constructor. |
119 | 120 |
/// |
120 |
///\param g The underlying graph |
|
121 |
///The range of the possible labels is [0...\c max_level], |
|
121 |
///\param graph The underlying graph. |
|
122 |
///Set the range of the possible labels to <tt>[0..max_level]</tt>, |
|
122 | 123 |
///where \c max_level is equal to the number of labeled items in the graph. |
123 |
Elevator(const Graph &g) : |
|
124 |
_g(g), |
|
125 |
|
|
124 |
Elevator(const Graph &graph) : |
|
125 |
_g(graph), |
|
126 |
_max_level(countItems<Graph, Item>(graph)), |
|
126 | 127 |
_item_num(_max_level), |
127 |
_where(g), |
|
128 |
_level(g,0), |
|
128 |
_where(graph), |
|
129 |
_level(graph,0), |
|
129 | 130 |
_items(_max_level), |
130 | 131 |
_first(_max_level+2), |
131 | 132 |
_last_active(_max_level+2), |
132 | 133 |
_highest_active(-1) |
133 | 134 |
{ |
134 | 135 |
} |
135 | 136 |
|
136 | 137 |
///Activate item \c i. |
137 | 138 |
|
138 | 139 |
///Activate item \c i. |
139 | 140 |
///\pre Item \c i shouldn't be active before. |
140 | 141 |
void activate(Item i) |
... | ... |
@@ -158,120 +159,112 @@ |
158 | 159 |
|
159 | 160 |
///Query whether item \c i is active |
160 | 161 |
bool active(Item i) const { return _where[i]<=_last_active[_level[i]]; } |
161 | 162 |
|
162 | 163 |
///Return the level of item \c i. |
163 | 164 |
int operator[](Item i) const { return _level[i]; } |
164 | 165 |
|
165 | 166 |
///Return the number of items on level \c l. |
166 | 167 |
int onLevel(int l) const |
167 | 168 |
{ |
168 | 169 |
return _first[l+1]-_first[l]; |
169 | 170 |
} |
170 |
///Return true if |
|
171 |
///Return true if level \c l is empty. |
|
171 | 172 |
bool emptyLevel(int l) const |
172 | 173 |
{ |
173 | 174 |
return _first[l+1]-_first[l]==0; |
174 | 175 |
} |
175 | 176 |
///Return the number of items above level \c l. |
176 | 177 |
int aboveLevel(int l) const |
177 | 178 |
{ |
178 | 179 |
return _first[_max_level+1]-_first[l+1]; |
179 | 180 |
} |
180 | 181 |
///Return the number of active items on level \c l. |
181 | 182 |
int activesOnLevel(int l) const |
182 | 183 |
{ |
183 | 184 |
return _last_active[l]-_first[l]+1; |
184 | 185 |
} |
185 |
///Return true if there is |
|
186 |
///Return true if there is no active item on level \c l. |
|
186 | 187 |
bool activeFree(int l) const |
187 | 188 |
{ |
188 | 189 |
return _last_active[l]<_first[l]; |
189 | 190 |
} |
190 | 191 |
///Return the maximum allowed level. |
191 | 192 |
int maxLevel() const |
192 | 193 |
{ |
193 | 194 |
return _max_level; |
194 | 195 |
} |
195 | 196 |
|
196 | 197 |
///\name Highest Active Item |
197 | 198 |
///Functions for working with the highest level |
198 | 199 |
///active item. |
199 | 200 |
|
200 | 201 |
///@{ |
201 | 202 |
|
202 | 203 |
///Return a highest level active item. |
203 | 204 |
|
204 |
///Return a highest level active item. |
|
205 |
/// |
|
206 |
/// |
|
205 |
///Return a highest level active item or INVALID if there is no active |
|
207 | 206 |
///item. |
208 | 207 |
Item highestActive() const |
209 | 208 |
{ |
210 | 209 |
return _highest_active>=0?*_last_active[_highest_active]:INVALID; |
211 | 210 |
} |
212 | 211 |
|
213 |
///Return |
|
212 |
///Return the highest active level. |
|
214 | 213 |
|
215 |
///Return a highest active level. |
|
216 |
/// |
|
217 |
/// |
|
214 |
///Return the level of the highest active item or -1 if there is no active |
|
218 | 215 |
///item. |
219 | 216 |
int highestActiveLevel() const |
220 | 217 |
{ |
221 | 218 |
return _highest_active; |
222 | 219 |
} |
223 | 220 |
|
224 | 221 |
///Lift the highest active item by one. |
225 | 222 |
|
226 | 223 |
///Lift the item returned by highestActive() by one. |
227 | 224 |
/// |
228 | 225 |
void liftHighestActive() |
229 | 226 |
{ |
230 | 227 |
Item it = *_last_active[_highest_active]; |
231 | 228 |
_level.set(it,_level[it]+1); |
232 | 229 |
swap(_last_active[_highest_active]--,_last_active[_highest_active+1]); |
233 | 230 |
--_first[++_highest_active]; |
234 | 231 |
} |
235 | 232 |
|
236 |
///Lift the highest active item. |
|
233 |
///Lift the highest active item to the given level. |
|
237 | 234 |
|
238 | 235 |
///Lift the item returned by highestActive() to level \c new_level. |
239 | 236 |
/// |
240 | 237 |
///\warning \c new_level must be strictly higher |
241 | 238 |
///than the current level. |
242 | 239 |
/// |
243 | 240 |
void liftHighestActive(int new_level) |
244 | 241 |
{ |
245 | 242 |
const Item li = *_last_active[_highest_active]; |
246 | 243 |
|
247 | 244 |
copy(--_first[_highest_active+1],_last_active[_highest_active]--); |
248 | 245 |
for(int l=_highest_active+1;l<new_level;l++) |
249 | 246 |
{ |
250 | 247 |
copy(--_first[l+1],_first[l]); |
251 | 248 |
--_last_active[l]; |
252 | 249 |
} |
253 | 250 |
copy(li,_first[new_level]); |
254 | 251 |
_level.set(li,new_level); |
255 | 252 |
_highest_active=new_level; |
256 | 253 |
} |
257 | 254 |
|
258 |
///Lift the highest active item. |
|
255 |
///Lift the highest active item to the top level. |
|
259 | 256 |
|
260 | 257 |
///Lift the item returned by highestActive() to the top level and |
261 |
///deactivates it. |
|
262 |
/// |
|
263 |
///\warning \c new_level must be strictly higher |
|
264 |
///than the current level. |
|
265 |
/// |
|
258 |
///deactivate it. |
|
266 | 259 |
void liftHighestActiveToTop() |
267 | 260 |
{ |
268 | 261 |
const Item li = *_last_active[_highest_active]; |
269 | 262 |
|
270 | 263 |
copy(--_first[_highest_active+1],_last_active[_highest_active]--); |
271 | 264 |
for(int l=_highest_active+1;l<_max_level;l++) |
272 | 265 |
{ |
273 | 266 |
copy(--_first[l+1],_first[l]); |
274 | 267 |
--_last_active[l]; |
275 | 268 |
} |
276 | 269 |
copy(li,_first[_max_level]); |
277 | 270 |
--_last_active[_max_level]; |
... | ... |
@@ -280,70 +273,68 @@ |
280 | 273 |
while(_highest_active>=0 && |
281 | 274 |
_last_active[_highest_active]<_first[_highest_active]) |
282 | 275 |
_highest_active--; |
283 | 276 |
} |
284 | 277 |
|
285 | 278 |
///@} |
286 | 279 |
|
287 | 280 |
///\name Active Item on Certain Level |
288 | 281 |
///Functions for working with the active items. |
289 | 282 |
|
290 | 283 |
///@{ |
291 | 284 |
|
292 |
/// |
|
285 |
///Return an active item on level \c l. |
|
293 | 286 |
|
294 |
///Returns an active item on level \c l. |
|
295 |
/// |
|
296 |
/// |
|
287 |
///Return an active item on level \c l or \ref INVALID if there is no such |
|
297 | 288 |
///an item. (\c l must be from the range [0...\c max_level]. |
298 | 289 |
Item activeOn(int l) const |
299 | 290 |
{ |
300 | 291 |
return _last_active[l]>=_first[l]?*_last_active[l]:INVALID; |
301 | 292 |
} |
302 | 293 |
|
303 |
/// |
|
294 |
///Lift the active item returned by \c activeOn(level) by one. |
|
304 | 295 |
|
305 |
/// |
|
296 |
///Lift the active item returned by \ref activeOn() "activeOn(level)" |
|
306 | 297 |
///by one. |
307 | 298 |
Item liftActiveOn(int level) |
308 | 299 |
{ |
309 | 300 |
Item it =*_last_active[level]; |
310 | 301 |
_level.set(it,_level[it]+1); |
311 | 302 |
swap(_last_active[level]--, --_first[level+1]); |
312 | 303 |
if (level+1>_highest_active) ++_highest_active; |
313 | 304 |
} |
314 | 305 |
|
315 |
/// |
|
306 |
///Lift the active item returned by \c activeOn(level) to the given level. |
|
316 | 307 |
|
317 |
/// |
|
308 |
///Lift the active item returned by \ref activeOn() "activeOn(level)" |
|
318 | 309 |
///to the given level. |
319 | 310 |
void liftActiveOn(int level, int new_level) |
320 | 311 |
{ |
321 | 312 |
const Item ai = *_last_active[level]; |
322 | 313 |
|
323 | 314 |
copy(--_first[level+1], _last_active[level]--); |
324 | 315 |
for(int l=level+1;l<new_level;l++) |
325 | 316 |
{ |
326 | 317 |
copy(_last_active[l],_first[l]); |
327 | 318 |
copy(--_first[l+1], _last_active[l]--); |
328 | 319 |
} |
329 | 320 |
copy(ai,_first[new_level]); |
330 | 321 |
_level.set(ai,new_level); |
331 | 322 |
if (new_level>_highest_active) _highest_active=new_level; |
332 | 323 |
} |
333 | 324 |
|
334 |
/// |
|
325 |
///Lift the active item returned by \c activeOn(level) to the top level. |
|
335 | 326 |
|
336 |
///Lifts the active item returned by \c activeOn() member function |
|
337 |
///to the top level. |
|
327 |
///Lift the active item returned by \ref activeOn() "activeOn(level)" |
|
328 |
///to the top level and deactivate it. |
|
338 | 329 |
void liftActiveToTop(int level) |
339 | 330 |
{ |
340 | 331 |
const Item ai = *_last_active[level]; |
341 | 332 |
|
342 | 333 |
copy(--_first[level+1],_last_active[level]--); |
343 | 334 |
for(int l=level+1;l<_max_level;l++) |
344 | 335 |
{ |
345 | 336 |
copy(_last_active[l],_first[l]); |
346 | 337 |
copy(--_first[l+1], _last_active[l]--); |
347 | 338 |
} |
348 | 339 |
copy(ai,_first[_max_level]); |
349 | 340 |
--_last_active[_max_level]; |
... | ... |
@@ -375,110 +366,107 @@ |
375 | 366 |
for(int l=lo+1;l<new_level;l++) |
376 | 367 |
{ |
377 | 368 |
copy(_last_active[l],_first[l]); |
378 | 369 |
copy(--_first[l+1],_last_active[l]--); |
379 | 370 |
} |
380 | 371 |
copy(i,_first[new_level]); |
381 | 372 |
_level.set(i,new_level); |
382 | 373 |
if(new_level>_highest_active) _highest_active=new_level; |
383 | 374 |
} |
384 | 375 |
|
385 | 376 |
///Move an inactive item to the top but one level (in a dirty way). |
386 | 377 |
|
387 |
///This function moves an inactive item to the top but one level. |
|
388 |
///It makes the underlying datastructure corrupt, so use is only if |
|
389 |
/// |
|
378 |
///This function moves an inactive item from the top level to the top |
|
379 |
///but one level (in a dirty way). |
|
380 |
///\warning It makes the underlying datastructure corrupt, so use it |
|
381 |
///only if you really know what it is for. |
|
390 | 382 |
///\pre The item is on the top level. |
391 | 383 |
void dirtyTopButOne(Item i) { |
392 | 384 |
_level.set(i,_max_level - 1); |
393 | 385 |
} |
394 | 386 |
|
395 |
///Lift all items on and above |
|
387 |
///Lift all items on and above the given level to the top level. |
|
396 | 388 |
|
397 |
///This function lifts all items on and above level \c l to \c |
|
398 |
///maxLevel(), and also deactivates them. |
|
389 |
///This function lifts all items on and above level \c l to the top |
|
390 |
///level and deactivates them. |
|
399 | 391 |
void liftToTop(int l) |
400 | 392 |
{ |
401 | 393 |
const Vit f=_first[l]; |
402 | 394 |
const Vit tl=_first[_max_level]; |
403 | 395 |
for(Vit i=f;i!=tl;++i) |
404 | 396 |
_level.set(*i,_max_level); |
405 | 397 |
for(int i=l;i<=_max_level;i++) |
406 | 398 |
{ |
407 | 399 |
_first[i]=f; |
408 | 400 |
_last_active[i]=f-1; |
409 | 401 |
} |
410 | 402 |
for(_highest_active=l-1; |
411 | 403 |
_highest_active>=0 && |
412 | 404 |
_last_active[_highest_active]<_first[_highest_active]; |
413 | 405 |
_highest_active--) ; |
414 | 406 |
} |
415 | 407 |
|
416 | 408 |
private: |
417 | 409 |
int _init_lev; |
418 | 410 |
Vit _init_num; |
419 | 411 |
|
420 | 412 |
public: |
421 | 413 |
|
422 | 414 |
///\name Initialization |
423 |
///Using |
|
415 |
///Using these functions you can initialize the levels of the items. |
|
424 | 416 |
///\n |
425 |
///This initializatios is started with calling \c initStart(). |
|
426 |
///Then the |
|
427 |
///items should be listed levels by levels statring with the lowest one |
|
428 |
///(with level 0). This is done by using \c initAddItem() |
|
429 |
///and \c initNewLevel(). Finally \c initFinish() must be called. |
|
430 |
///The items not listed will be put on the highest level. |
|
417 |
///The initialization must be started with calling \c initStart(). |
|
418 |
///Then the items should be listed level by level starting with the |
|
419 |
///lowest one (level 0) using \c initAddItem() and \c initNewLevel(). |
|
420 |
///Finally \c initFinish() must be called. |
|
421 |
///The items not listed are put on the highest level. |
|
431 | 422 |
///@{ |
432 | 423 |
|
433 | 424 |
///Start the initialization process. |
434 |
|
|
435 | 425 |
void initStart() |
436 | 426 |
{ |
437 | 427 |
_init_lev=0; |
438 | 428 |
_init_num=&_items[0]; |
439 | 429 |
_first[0]=&_items[0]; |
440 | 430 |
_last_active[0]=&_items[0]-1; |
441 | 431 |
Vit n=&_items[0]; |
442 | 432 |
for(typename ItemSetTraits<Graph,Item>::ItemIt i(_g);i!=INVALID;++i) |
443 | 433 |
{ |
444 | 434 |
*n=i; |
445 | 435 |
_where.set(i,n); |
446 | 436 |
_level.set(i,_max_level); |
447 | 437 |
++n; |
448 | 438 |
} |
449 | 439 |
} |
450 | 440 |
|
451 | 441 |
///Add an item to the current level. |
452 |
|
|
453 | 442 |
void initAddItem(Item i) |
454 | 443 |
{ |
455 | 444 |
swap(_where[i],_init_num); |
456 | 445 |
_level.set(i,_init_lev); |
457 | 446 |
++_init_num; |
458 | 447 |
} |
459 | 448 |
|
460 | 449 |
///Start a new level. |
461 | 450 |
|
462 | 451 |
///Start a new level. |
463 | 452 |
///It shouldn't be used before the items on level 0 are listed. |
464 | 453 |
void initNewLevel() |
465 | 454 |
{ |
466 | 455 |
_init_lev++; |
467 | 456 |
_first[_init_lev]=_init_num; |
468 | 457 |
_last_active[_init_lev]=_init_num-1; |
469 | 458 |
} |
470 | 459 |
|
471 | 460 |
///Finalize the initialization process. |
472 |
|
|
473 | 461 |
void initFinish() |
474 | 462 |
{ |
475 | 463 |
for(_init_lev++;_init_lev<=_max_level;_init_lev++) |
476 | 464 |
{ |
477 | 465 |
_first[_init_lev]=_init_num; |
478 | 466 |
_last_active[_init_lev]=_init_num-1; |
479 | 467 |
} |
480 | 468 |
_first[_max_level+1]=&_items[0]+_item_num; |
481 | 469 |
_last_active[_max_level+1]=&_items[0]+_item_num-1; |
482 | 470 |
_highest_active = -1; |
483 | 471 |
} |
484 | 472 |
|
... | ... |
@@ -491,27 +479,27 @@ |
491 | 479 |
///A class for handling "labels" in push-relabel type algorithms. |
492 | 480 |
/// |
493 | 481 |
///\ingroup auxdat |
494 | 482 |
///Using this class you can assign "labels" (nonnegative integer numbers) |
495 | 483 |
///to the edges or nodes of a graph, manipulate and query them through |
496 | 484 |
///operations typically arising in "push-relabel" type algorithms. |
497 | 485 |
/// |
498 | 486 |
///Each item is either \em active or not, and you can also choose a |
499 | 487 |
///highest level active item. |
500 | 488 |
/// |
501 | 489 |
///\sa Elevator |
502 | 490 |
/// |
503 |
///\param Graph the underlying graph |
|
491 |
///\param Graph Type of the underlying graph. |
|
504 | 492 |
///\param Item Type of the items the data is assigned to (Graph::Node, |
505 |
///Graph:: |
|
493 |
///Graph::Arc, Graph::Edge). |
|
506 | 494 |
template <class Graph, class Item> |
507 | 495 |
class LinkedElevator { |
508 | 496 |
public: |
509 | 497 |
|
510 | 498 |
typedef Item Key; |
511 | 499 |
typedef int Value; |
512 | 500 |
|
513 | 501 |
private: |
514 | 502 |
|
515 | 503 |
typedef typename ItemSetTraits<Graph,Item>:: |
516 | 504 |
template Map<Item>::Type ItemMap; |
517 | 505 |
typedef typename ItemSetTraits<Graph,Item>:: |
... | ... |
@@ -524,39 +512,39 @@ |
524 | 512 |
int _item_num; |
525 | 513 |
std::vector<Item> _first, _last; |
526 | 514 |
ItemMap _prev, _next; |
527 | 515 |
int _highest_active; |
528 | 516 |
IntMap _level; |
529 | 517 |
BoolMap _active; |
530 | 518 |
|
531 | 519 |
public: |
532 | 520 |
///Constructor with given maximum level. |
533 | 521 |
|
534 | 522 |
///Constructor with given maximum level. |
535 | 523 |
/// |
536 |
///\param g The underlying graph |
|
537 |
///\param max_level Set the range of the possible labels to |
|
538 |
/// |
|
524 |
///\param graph The underlying graph. |
|
525 |
///\param max_level The maximum allowed level. |
|
526 |
///Set the range of the possible labels to <tt>[0..max_level]</tt>. |
|
539 | 527 |
LinkedElevator(const Graph& graph, int max_level) |
540 | 528 |
: _graph(graph), _max_level(max_level), _item_num(_max_level), |
541 | 529 |
_first(_max_level + 1), _last(_max_level + 1), |
542 | 530 |
_prev(graph), _next(graph), |
543 | 531 |
_highest_active(-1), _level(graph), _active(graph) {} |
544 | 532 |
|
545 | 533 |
///Constructor. |
546 | 534 |
|
547 | 535 |
///Constructor. |
548 | 536 |
/// |
549 |
///\param g The underlying graph |
|
550 |
///The range of the possible labels is [0...\c max_level], |
|
537 |
///\param graph The underlying graph. |
|
538 |
///Set the range of the possible labels to <tt>[0..max_level]</tt>, |
|
551 | 539 |
///where \c max_level is equal to the number of labeled items in the graph. |
552 | 540 |
LinkedElevator(const Graph& graph) |
553 | 541 |
: _graph(graph), _max_level(countItems<Graph, Item>(graph)), |
554 | 542 |
_item_num(_max_level), |
555 | 543 |
_first(_max_level + 1), _last(_max_level + 1), |
556 | 544 |
_prev(graph, INVALID), _next(graph, INVALID), |
557 | 545 |
_highest_active(-1), _level(graph), _active(graph) {} |
558 | 546 |
|
559 | 547 |
|
560 | 548 |
///Activate item \c i. |
561 | 549 |
|
562 | 550 |
///Activate item \c i. |
... | ... |
@@ -648,56 +636,52 @@ |
648 | 636 |
|
649 | 637 |
///Return the number of active items on level \c l. |
650 | 638 |
int activesOnLevel(int l) const { |
651 | 639 |
int num = 0; |
652 | 640 |
Item n = _first[l]; |
653 | 641 |
while (n != INVALID && _active[n]) { |
654 | 642 |
++num; |
655 | 643 |
n = _next[n]; |
656 | 644 |
} |
657 | 645 |
return num; |
658 | 646 |
} |
659 | 647 |
|
660 |
///Return true if there is |
|
648 |
///Return true if there is no active item on level \c l. |
|
661 | 649 |
bool activeFree(int l) const { |
662 | 650 |
return _first[l] == INVALID || !_active[_first[l]]; |
663 | 651 |
} |
664 | 652 |
|
665 | 653 |
///Return the maximum allowed level. |
666 | 654 |
int maxLevel() const { |
667 | 655 |
return _max_level; |
668 | 656 |
} |
669 | 657 |
|
670 | 658 |
///\name Highest Active Item |
671 | 659 |
///Functions for working with the highest level |
672 | 660 |
///active item. |
673 | 661 |
|
674 | 662 |
///@{ |
675 | 663 |
|
676 | 664 |
///Return a highest level active item. |
677 | 665 |
|
678 |
///Return a highest level active item. |
|
679 |
/// |
|
680 |
///\return the highest level active item or INVALID if there is no |
|
681 |
///active item. |
|
666 |
///Return a highest level active item or INVALID if there is no active |
|
667 |
///item. |
|
682 | 668 |
Item highestActive() const { |
683 | 669 |
return _highest_active >= 0 ? _first[_highest_active] : INVALID; |
684 | 670 |
} |
685 | 671 |
|
686 |
///Return |
|
672 |
///Return the highest active level. |
|
687 | 673 |
|
688 |
///Return a highest active level. |
|
689 |
/// |
|
690 |
///\return the level of the highest active item or -1 if there is |
|
691 |
///no active item. |
|
674 |
///Return the level of the highest active item or -1 if there is no active |
|
675 |
///item. |
|
692 | 676 |
int highestActiveLevel() const { |
693 | 677 |
return _highest_active; |
694 | 678 |
} |
695 | 679 |
|
696 | 680 |
///Lift the highest active item by one. |
697 | 681 |
|
698 | 682 |
///Lift the item returned by highestActive() by one. |
699 | 683 |
/// |
700 | 684 |
void liftHighestActive() { |
701 | 685 |
Item i = _first[_highest_active]; |
702 | 686 |
if (_next[i] != INVALID) { |
703 | 687 |
_prev.set(_next[i], INVALID); |
... | ... |
@@ -710,25 +694,25 @@ |
710 | 694 |
if (_first[_highest_active] == INVALID) { |
711 | 695 |
_first[_highest_active] = i; |
712 | 696 |
_last[_highest_active] = i; |
713 | 697 |
_prev.set(i, INVALID); |
714 | 698 |
_next.set(i, INVALID); |
715 | 699 |
} else { |
716 | 700 |
_prev.set(_first[_highest_active], i); |
717 | 701 |
_next.set(i, _first[_highest_active]); |
718 | 702 |
_first[_highest_active] = i; |
719 | 703 |
} |
720 | 704 |
} |
721 | 705 |
|
722 |
///Lift the highest active item. |
|
706 |
///Lift the highest active item to the given level. |
|
723 | 707 |
|
724 | 708 |
///Lift the item returned by highestActive() to level \c new_level. |
725 | 709 |
/// |
726 | 710 |
///\warning \c new_level must be strictly higher |
727 | 711 |
///than the current level. |
728 | 712 |
/// |
729 | 713 |
void liftHighestActive(int new_level) { |
730 | 714 |
Item i = _first[_highest_active]; |
731 | 715 |
if (_next[i] != INVALID) { |
732 | 716 |
_prev.set(_next[i], INVALID); |
733 | 717 |
_first[_highest_active] = _next[i]; |
734 | 718 |
} else { |
... | ... |
@@ -738,64 +722,61 @@ |
738 | 722 |
_level.set(i, _highest_active = new_level); |
739 | 723 |
if (_first[_highest_active] == INVALID) { |
740 | 724 |
_first[_highest_active] = _last[_highest_active] = i; |
741 | 725 |
_prev.set(i, INVALID); |
742 | 726 |
_next.set(i, INVALID); |
743 | 727 |
} else { |
744 | 728 |
_prev.set(_first[_highest_active], i); |
745 | 729 |
_next.set(i, _first[_highest_active]); |
746 | 730 |
_first[_highest_active] = i; |
747 | 731 |
} |
748 | 732 |
} |
749 | 733 |
|
750 |
///Lift the highest active to top. |
|
734 |
///Lift the highest active item to the top level. |
|
751 | 735 |
|
752 | 736 |
///Lift the item returned by highestActive() to the top level and |
753 |
///deactivates the item. |
|
754 |
/// |
|
737 |
///deactivate it. |
|
755 | 738 |
void liftHighestActiveToTop() { |
756 | 739 |
Item i = _first[_highest_active]; |
757 | 740 |
_level.set(i, _max_level); |
758 | 741 |
if (_next[i] != INVALID) { |
759 | 742 |
_prev.set(_next[i], INVALID); |
760 | 743 |
_first[_highest_active] = _next[i]; |
761 | 744 |
} else { |
762 | 745 |
_first[_highest_active] = INVALID; |
763 | 746 |
_last[_highest_active] = INVALID; |
764 | 747 |
} |
765 | 748 |
while (_highest_active >= 0 && activeFree(_highest_active)) |
766 | 749 |
--_highest_active; |
767 | 750 |
} |
768 | 751 |
|
769 | 752 |
///@} |
770 | 753 |
|
771 | 754 |
///\name Active Item on Certain Level |
772 | 755 |
///Functions for working with the active items. |
773 | 756 |
|
774 | 757 |
///@{ |
775 | 758 |
|
776 |
/// |
|
759 |
///Return an active item on level \c l. |
|
777 | 760 |
|
778 |
///Returns an active item on level \c l. |
|
779 |
/// |
|
780 |
/// |
|
761 |
///Return an active item on level \c l or \ref INVALID if there is no such |
|
781 | 762 |
///an item. (\c l must be from the range [0...\c max_level]. |
782 | 763 |
Item activeOn(int l) const |
783 | 764 |
{ |
784 | 765 |
return _active[_first[l]] ? _first[l] : INVALID; |
785 | 766 |
} |
786 | 767 |
|
787 |
/// |
|
768 |
///Lift the active item returned by \c activeOn(l) by one. |
|
788 | 769 |
|
789 |
/// |
|
770 |
///Lift the active item returned by \ref activeOn() "activeOn(l)" |
|
790 | 771 |
///by one. |
791 | 772 |
Item liftActiveOn(int l) |
792 | 773 |
{ |
793 | 774 |
Item i = _first[l]; |
794 | 775 |
if (_next[i] != INVALID) { |
795 | 776 |
_prev.set(_next[i], INVALID); |
796 | 777 |
_first[l] = _next[i]; |
797 | 778 |
} else { |
798 | 779 |
_first[l] = INVALID; |
799 | 780 |
_last[l] = INVALID; |
800 | 781 |
} |
801 | 782 |
_level.set(i, ++l); |
... | ... |
@@ -804,28 +785,28 @@ |
804 | 785 |
_prev.set(i, INVALID); |
805 | 786 |
_next.set(i, INVALID); |
806 | 787 |
} else { |
807 | 788 |
_prev.set(_first[l], i); |
808 | 789 |
_next.set(i, _first[l]); |
809 | 790 |
_first[l] = i; |
810 | 791 |
} |
811 | 792 |
if (_highest_active < l) { |
812 | 793 |
_highest_active = l; |
813 | 794 |
} |
814 | 795 |
} |
815 | 796 |
|
816 |
/// \brief Lifts the active item returned by \c activeOn() member function. |
|
817 |
/// |
|
818 |
/// Lifts the active item returned by \c activeOn() member function |
|
819 |
/// to the given level. |
|
797 |
///Lift the active item returned by \c activeOn(l) to the given level. |
|
798 |
|
|
799 |
///Lift the active item returned by \ref activeOn() "activeOn(l)" |
|
800 |
///to the given level. |
|
820 | 801 |
void liftActiveOn(int l, int new_level) |
821 | 802 |
{ |
822 | 803 |
Item i = _first[l]; |
823 | 804 |
if (_next[i] != INVALID) { |
824 | 805 |
_prev.set(_next[i], INVALID); |
825 | 806 |
_first[l] = _next[i]; |
826 | 807 |
} else { |
827 | 808 |
_first[l] = INVALID; |
828 | 809 |
_last[l] = INVALID; |
829 | 810 |
} |
830 | 811 |
_level.set(i, l = new_level); |
831 | 812 |
if (_first[l] == INVALID) { |
... | ... |
@@ -833,28 +814,28 @@ |
833 | 814 |
_prev.set(i, INVALID); |
834 | 815 |
_next.set(i, INVALID); |
835 | 816 |
} else { |
836 | 817 |
_prev.set(_first[l], i); |
837 | 818 |
_next.set(i, _first[l]); |
838 | 819 |
_first[l] = i; |
839 | 820 |
} |
840 | 821 |
if (_highest_active < l) { |
841 | 822 |
_highest_active = l; |
842 | 823 |
} |
843 | 824 |
} |
844 | 825 |
|
845 |
/// |
|
826 |
///Lift the active item returned by \c activeOn(l) to the top level. |
|
846 | 827 |
|
847 |
///Lifts the active item returned by \c activeOn() member function |
|
848 |
///to the top level. |
|
828 |
///Lift the active item returned by \ref activeOn() "activeOn(l)" |
|
829 |
///to the top level and deactivate it. |
|
849 | 830 |
void liftActiveToTop(int l) |
850 | 831 |
{ |
851 | 832 |
Item i = _first[l]; |
852 | 833 |
if (_next[i] != INVALID) { |
853 | 834 |
_prev.set(_next[i], INVALID); |
854 | 835 |
_first[l] = _next[i]; |
855 | 836 |
} else { |
856 | 837 |
_first[l] = INVALID; |
857 | 838 |
_last[l] = INVALID; |
858 | 839 |
} |
859 | 840 |
_level.set(i, _max_level); |
860 | 841 |
if (l == _highest_active) { |
... | ... |
@@ -891,112 +872,109 @@ |
891 | 872 |
} else { |
892 | 873 |
_prev.set(_first[new_level], i); |
893 | 874 |
_next.set(i, _first[new_level]); |
894 | 875 |
_first[new_level] = i; |
895 | 876 |
} |
896 | 877 |
if (_highest_active < new_level) { |
897 | 878 |
_highest_active = new_level; |
898 | 879 |
} |
899 | 880 |
} |
900 | 881 |
|
901 | 882 |
///Move an inactive item to the top but one level (in a dirty way). |
902 | 883 |
|
903 |
///This function moves an inactive item to the top but one level. |
|
904 |
///It makes the underlying datastructure corrupt, so use is only if |
|
905 |
/// |
|
884 |
///This function moves an inactive item from the top level to the top |
|
885 |
///but one level (in a dirty way). |
|
886 |
///\warning It makes the underlying datastructure corrupt, so use it |
|
887 |
///only if you really know what it is for. |
|
906 | 888 |
///\pre The item is on the top level. |
907 | 889 |
void dirtyTopButOne(Item i) { |
908 | 890 |
_level.set(i, _max_level - 1); |
909 | 891 |
} |
910 | 892 |
|
911 |
///Lift all items on and above |
|
893 |
///Lift all items on and above the given level to the top level. |
|
912 | 894 |
|
913 |
///This function lifts all items on and above level \c l to \c |
|
914 |
///maxLevel(), and also deactivates them. |
|
895 |
///This function lifts all items on and above level \c l to the top |
|
896 |
///level and deactivates them. |
|
915 | 897 |
void liftToTop(int l) { |
916 | 898 |
for (int i = l + 1; _first[i] != INVALID; ++i) { |
917 | 899 |
Item n = _first[i]; |
918 | 900 |
while (n != INVALID) { |
919 | 901 |
_level.set(n, _max_level); |
920 | 902 |
n = _next[n]; |
921 | 903 |
} |
922 | 904 |
_first[i] = INVALID; |
923 | 905 |
_last[i] = INVALID; |
924 | 906 |
} |
925 | 907 |
if (_highest_active > l - 1) { |
926 | 908 |
_highest_active = l - 1; |
927 | 909 |
while (_highest_active >= 0 && activeFree(_highest_active)) |
928 | 910 |
--_highest_active; |
929 | 911 |
} |
930 | 912 |
} |
931 | 913 |
|
932 | 914 |
private: |
933 | 915 |
|
934 | 916 |
int _init_level; |
935 | 917 |
|
936 | 918 |
public: |
937 | 919 |
|
938 | 920 |
///\name Initialization |
939 |
///Using |
|
921 |
///Using these functions you can initialize the levels of the items. |
|
940 | 922 |
///\n |
941 |
///This initializatios is started with calling \c initStart(). |
|
942 |
///Then the |
|
943 |
///items should be listed levels by levels statring with the lowest one |
|
944 |
///(with level 0). This is done by using \c initAddItem() |
|
945 |
///and \c initNewLevel(). Finally \c initFinish() must be called. |
|
946 |
///The items not listed will be put on the highest level. |
|
923 |
///The initialization must be started with calling \c initStart(). |
|
924 |
///Then the items should be listed level by level starting with the |
|
925 |
///lowest one (level 0) using \c initAddItem() and \c initNewLevel(). |
|
926 |
///Finally \c initFinish() must be called. |
|
927 |
///The items not listed are put on the highest level. |
|
947 | 928 |
///@{ |
948 | 929 |
|
949 | 930 |
///Start the initialization process. |
950 |
|
|
951 | 931 |
void initStart() { |
952 | 932 |
|
953 | 933 |
for (int i = 0; i <= _max_level; ++i) { |
954 | 934 |
_first[i] = _last[i] = INVALID; |
955 | 935 |
} |
956 | 936 |
_init_level = 0; |
957 | 937 |
for(typename ItemSetTraits<Graph,Item>::ItemIt i(_graph); |
958 | 938 |
i != INVALID; ++i) { |
959 | 939 |
_level.set(i, _max_level); |
960 | 940 |
_active.set(i, false); |
961 | 941 |
} |
962 | 942 |
} |
963 | 943 |
|
964 | 944 |
///Add an item to the current level. |
965 |
|
|
966 | 945 |
void initAddItem(Item i) { |
967 | 946 |
_level.set(i, _init_level); |
968 | 947 |
if (_last[_init_level] == INVALID) { |
969 | 948 |
_first[_init_level] = i; |
970 | 949 |
_last[_init_level] = i; |
971 | 950 |
_prev.set(i, INVALID); |
972 | 951 |
_next.set(i, INVALID); |
973 | 952 |
} else { |
974 | 953 |
_prev.set(i, _last[_init_level]); |
975 | 954 |
_next.set(i, INVALID); |
976 | 955 |
_next.set(_last[_init_level], i); |
977 | 956 |
_last[_init_level] = i; |
978 | 957 |
} |
979 | 958 |
} |
980 | 959 |
|
981 | 960 |
///Start a new level. |
982 | 961 |
|
983 | 962 |
///Start a new level. |
984 | 963 |
///It shouldn't be used before the items on level 0 are listed. |
985 | 964 |
void initNewLevel() { |
986 | 965 |
++_init_level; |
987 | 966 |
} |
988 | 967 |
|
989 | 968 |
///Finalize the initialization process. |
990 |
|
|
991 | 969 |
void initFinish() { |
992 | 970 |
_highest_active = -1; |
993 | 971 |
} |
994 | 972 |
|
995 | 973 |
///@} |
996 | 974 |
|
997 | 975 |
}; |
998 | 976 |
|
999 | 977 |
|
1000 | 978 |
} //END OF NAMESPACE LEMON |
1001 | 979 |
|
1002 | 980 |
#endif |
0 comments (0 inline)